
Department of Applied Mathematics
Faculty of EEMCS

t
University of Twente

The Netherlands

P.O. Box 217
7500 AE Enschede

The Netherlands

Phone: +31-53-4893400
Fax: +31-53-4893114

Email: memo@math.utwente.nl

www.math.utwente.nl/publications

Memorandum No. 1754

Monte Carlo methods in

PageRank computation:

When one iteration is sufficient

K. Avrachenkov1, N. Litvak,

D. Nemirovsky 2, and N. Osipova3.

March, 2005

ISSN 0169-2690

1INRIA Sophia Antipolis, France
2St. Petersburg State University, Russia
3St. Petersburg State University, Russia



Monte Carlo methods in PageRank computation:

When one iteration is sufficient

K.Avrachenkov∗, N. Litvak†, D. Nemirovsky‡, N. Osipova§

Abstract

PageRank is one of the principle criteria according to which Google ranks Web pages.
PageRank can be interpreted as a frequency of visiting a Web page by a random surfer
and thus it reflects the popularity of a Web page. Google computes the PageRank using
the power iteration method which requires about one week of intensive computations. In
the present work we propose and analyze Monte Carlo type methods for the PageRank
computation. There are several advantages of the probabilistic Monte Carlo methods over
the deterministic power iteration method: Monte Carlo methods provide good estimation
of the PageRank for relatively important pages already after one iteration; Monte Carlo
methods have natural parallel implementation; and finally, Monte Carlo methods allow
to perform continuous update of the PageRank as the structure of the Web changes.

Keywords: Google, PageRank, Monte Carlo methods, absorbing Markov chains
AMS Subject Classification: 65C05, 68U35, 60J22, 62F25

1 Introduction

Surfers on the Internet frequently use search engines to find pages satisfying their query.
However, there are typically hundreds or thousands of relevant pages available on the Web.
Thus, listing them in a proper order is a crucial and non-trivial task. The original idea of
Google presented in [5] is to list pages according to their PageRank which reflects popularity
of a page. The PageRank is defined in the following way. Denote by n the total number of
pages on the Web and define the n × n hyperlink matrix P as follows. Suppose that page
i has k > 0 outgoing links. Then pij = 1/k if j is one of the outgoing links and pij = 0
otherwise. If a page does not have outgoing links, the probability is spread among all pages of
the Web, namely, pij = 1/n. In order to make the hyperlink graph connected, it is assumed
that a random surfer goes with some probability to an arbitrary Web page with the uniform
distribution. Thus, the PageRank is defined as a stationary distribution of a Markov chain
whose state space is the set of all Web pages, and the transition matrix is

P̃ = cP + (1 − c)(1/n)E, (1)
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†University of Twente, The Netherlands, e-mail: n.litvak@ewi.utwente.nl
‡St.Petersburg State University, Russia, e-mail: nemd@newmail.ru
§St.Petersburg State University, Russia, e-mail: osipovanata@mail.ru

1



where E is a matrix whose all entries are equal to one and c ∈ (0, 1) is the probability of
not jumping to a random page (it is chosen by Google to be 0.85). The Google matrix P̃ is
stochastic, aperiodic, and irreducible, so there exists a unique row vector π such that

πP̃ = π, π1 = 1, (2)

where 1 is a column vector of ones. The row vector π satisfying (2) is called a PageRank
vector, or simply PageRank. If a surfer follows a hyperlink with probability c and jumps to a
random page with probability 1−c, then πi can be interpreted as a stationary probability that
the surfer is at page i. The PageRank also allows several different interpretations through
expectations. For instance, in [2], the PageRank is seen as the average number of surfers
navigating a given page at a given time instant provided that at each time instant t ≥ 0,
a surfer can cease from navigating with probability (1 − c) and on average (1 − c) surfers
start navigating from each page. This interpretation is helpful for deeper understanding of
the PageRank but it is hard to use in practice because it involves the time component. The
interpretation via absorbing Markov chains that we explore in the present paper, is easier
and it naturally leads to simple simulation algorithms for the computation of PageRank. The
end-point of a random walk that starts from a random page and can be terminated at each
step with probability 1 − c, appears to be a sample from the distribution π [4, 7, 9]. Thus,
after repeating the process many times, the estimate of πj for j = 1, . . . , n, is determined as
the number of times when a run terminated at j, divided by the total number of runs.

In order to keep up with constant modifications of the Web structure, Google updates its
PageRank at least once per month. According to publicly available information Google still
uses simple Power Iteration (PI) method to compute the PageRank. Starting from the initial
approximation as the uniform distribution vector π(0) = (1/n)1T , the k-th approximation
vector is calculated by

π(k) = π(k−1)P̃ , k ≥ 1. (3)

The method stops when the required precision ε is achieved. The number of flops needed for
the method to converge is of the order log ε

log c nnz(P ), where nnz(P ) is the number of non-zero
elements of the matrix P [13]. We note that the relative error decreases uniformly for all
pages. Several proposals [8, 11, 12, 14] (see also an extensive survey paper [13]) have recently
been put forward to accelerate the power iteration algorithm.

In contrast, here we study Monte Carlo (MC) type methods for the PageRank computa-
tion. To our best knowledge only in two works [3, 7] the Monte Carlo methods are applied to
the PageRank computation. The principle advantages of the probabilistic Monte Carlo type
methods over the deterministic methods are: the PageRank of important pages is determined
with high accuracy already after the first iteration; MC methods have natural parallel imple-
mentation; and MC methods allow continuous update of the PageRank as the structure of
the Web changes.

The structure and the contributions of the paper are as follows. In Section 2, we describe
different Monte Carlo algorithms. In particular, we propose an algorithm that takes into
account not only the information about the last visited page (as in [3, 7]), but about all
visited pages during the simulation run. In Section 3, we analyze and compare the convergence
of Monte Carlo algorithms in terms of confidence intervals. We show that the PageRank of
relatively important pages can be determined with high accuracy even after the first iteration.
In Section 4, we show that experiments with real data from the Web confirm our theoretical
analysis. Finally, we summarize the results of the present work in Section 5. Technical proofs
we put in the Appendix.
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2 Monte Carlo algorithms

Monte Carlo algorithms are motivated by the following convenient formula that follows
directly from the definition of the PageRank:

π =
1 − c

n
1T [I − cP ]−1 =

1 − c

n
1T

∞∑
k=0

ckP k. (4)

This formula suggests a simple way of sampling from the PageRank distribution [4, 7, 9].
Consider a random walk {Xt}t≥0 that starts from a randomly chosen page. Assume that
at each step, the random walk terminates with probability (1 − c), and makes a transition
according to the matrix P with probability c. It follows from (4) that the end-point of such
random walk has a distribution π. Hence, one can suggest the following algorithm employed
in [3].

Algorithm 1 MC end-point with random start. Simulate N runs of the random
walk {Xt}t≥0 initiated at a randomly chosen page. Evaluate πj as a fraction of N random
walks which end at page j = 1, . . . , n.

Let π̂j,N be the estimator of πj obtained by Algorithm 1. It is straightforward that

E(π̂j,N) = πj, V ar(π̂j,N) = N−1πj(1 − πj).

A rough estimate V ar(π̂j,N) < 1/(4N) given in [3] results in a conclusion that the number
of samples (random walks) needed to achieve a good relative accuracy with high probability,
is of the order O(n2). In the ensuing Sections 3 and 4 we will show that this complexity
evaluation is quite pessimistic. The number of required samples turns out to be linear in n.
Moreover, a reasonable evaluation of the PageRank for popular pages can be obtain even with
N = n, that is, one needs only as little as one run per page!

In order to improve the estimator π̂, one can think of various ways of variance reduction.
For instance, denoting Z = [I − cP ]−1 and writing πj in (4) as

πj =
1 − c

n

n∑
i=1

zij , j = 1, . . . , n,

we can view πj as a given number (1/n) multiplied by a sum of conditional probabilities
pij = (1 − c)zij that the random walk ends at j given that it started at i. Since n is known,
an unnecessary randomness in experiments can be avoided by taking N = mn and initiating
the random walk exactly m times from each page in a cyclic fashion, rather than jumping N
times to a random page. This results in the following algorithm whose version was used in
[7] for computing personalized PageRank.

Algorithm 2 MC end-point with cyclic start. Simulate N = mn runs of the random
walk {Xt}t≥0 initiated at each page exactly m times. Evaluate πj as a fraction of N random
walks which end at page j = 1, . . . , n.

Let p̂ij be a fraction of m random walks initiated at i, that ended at j. Then the estimator
for πj suggested by Algorithm 2 can be expressed as

ˆ̂πj =
1
n

∑
i=1

p̂ij.
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For this estimator, we have

E(ˆ̂πj) = πj,

V ar(ˆ̂πj) = (N)−1[πj − n−1
n∑

i=1

p2
ij ] < V ar(π̂j).

Besides the variance reduction, the estimator ˆ̂πi has important advantages in implementation
because picking a page at random from a huge database is not a trivial problem [10]. This
difficulty is completely avoided if the pages are visited in a cyclic fashion1. As the only
advantage of the Monte Carlo with random start, note that it does not require the number
of samples N to be a multiple of n.

Another and probably more promising way of reducing the variance is to look at formula
(4) from yet another angle. Note that for all i, j = 1, . . . , n, the element zij of the matrix

Z = [I − cP ]−1 =
∞∑

k=0

ckP k (5)

can be regarded as the average number of times that the random walk {Xt}t≥0 visits a page j
given that this random walk started at page i. Thus, we can propose an estimator based on a
complete path of the random walk {Xt}t≥0 instead of taking into account only its end-point.
The complete path version of the Monte Carlo method can be described as follows.

Algorithm 3 MC complete path. Simulate the random walk {Xt}t≥0 exactly m times
from each page. For any page i, evaluate πj as the total number of visits to page j multiplied
by (1 − c)/(n ∗ m).

The Algorithm 3 can be further improved by getting rid of artifacts in the matrix P related
to pages without outgoing links (so-called dangling nodes). When a random walk reaches a
dangling node, it jumps with the uniform probability to an arbitrary page. Clearly, it is more
efficient just to terminate the random walk once it reaches a dangling node. Thus, we aim to
rewrite (4) in terms of the original hyperlink matrix Q defined as

Qij =




1/k, if i has k > 0 outgoing links,
and j is one of the links;

0, otherwise.

Denote by I0 a set of dangling pages and by I1 = {1, . . . , n}\I0 a set of pages which have at
least one outgoing link. For all j = 1, . . . , n, it follows from (1) and (2) that

πj = c
n∑

i=1

Pijπi +
(1 − c)

n

n∑
i=1

πi = c
n∑

i=1

Qijπi + γ, (6)

where γ is the same for each j:

γ =
c

n

∑
i∈I0

πi +
(1 − c)

n
<

1
n

. (7)

1When referring to MC algorithms with cyclic start, we shall use the words “cycle” and “iteration” inter-
changeably.
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Now, we rewrite equation (6) in the matrix form

π = πcQ + γ1T ,

which leads to the new expression for π:

π = γ1T [I − cQ]−1. (8)

Note that the above equation is in accordance with the original definition of PageRank pre-
sented by Brin and Page [5]. The definition via the matrix P appeared later in order to
develop the Markov chain formulation of the PageRank problem. The one-to-one correspon-
dence between (4) and (8) was noticed and proved in [2] but we find the proof presented above
more insightful in our context.

Consider now a random walk {Yt}t≥0 which follows hyperlinks exactly as {Xt}t≥0 except
the transitions are governed by the matrix Q instead of the matrix P . Thus, the random walk
{Yt}t≥0 can be terminated at each step either with probability (1 − c) or when it reaches a
dangling node. For all i, j = 1, . . . , n, the element wij of the matrix W = [I − cQ]−1, is the
average number of visits of {Yt}t≥0 to page j given that the random walk started at page i.
Denote

w·j =
n∑

i=1

wij .

Since the coordinates of π in (8) sum up to one, we have

γ =


 n∑

i,j=1

wij



−1

=


 n∑

j=1

w·j



−1

(9)

and

πj = w·j


 n∑

j=1

w·j



−1

. (10)

This calls for another version of the complete path method.

Algorithm 4 MC complete path stopping at dangling nodes. Simulate the ran-
dom walk {Yt}t≥0 starting exactly m times from each page. For any page j, evaluate πj as
the total number of visits to page j divided by the total number of visited pages.

Let Wij be a random variable distributed as a number of visits to page j = 1, . . . , n by the
random walk {Yt}t≥0 given that the random walk initiated at state i = 1, . . . , n. Formally,

P(Wij = x) = P

([ ∞∑
t=0

1{Yt=j}

]
= x|Y0 = i

)
, x = 0, 1, . . . ,

where 1{·} is the indicator function. Let W
(l)
ij , l ≥ 1, be independent random variables

distributed as Wij. Then the estimator produced by Algorithm 4 can be written as

π̄j =

[
m∑

l=1

n∑
i=1

W
(l)
ij

]  m∑
l=1

n∑
i,j=1

W
(l)
ij



−1

. (11)
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In the next section we present the analysis of this estimator.
We note that the complete path versions of the Monte Carlo methods also admit a random

start. The corresponding algorithm is as follows.

Algorithm 5 MC complete path with random start. Simulate N samples of the
random walk {Yt}t≥0 started at a random page. For any page j, evaluate πj as the total
number of visits to page i divided by the total number of visited pages.

One can show however that Algorithm 4 provides an estimator with a smaller variance
than Algorithm 5. Indeed, let WUj be the number of visits to page j from a randomly chosen
page U ∈ {1, . . . , n}. Then, we have

V ar(WUj) =
1
n

n∑
i=1

V ar(Wij) +
1
n

n∑
i=1

E
2(Wij)

−
[

1
n

n∑
i=1

E(Wij)

]2

>
1
n

n∑
i=1

V ar(Wij).

Now note that in n simulation runs, Algorithm 4 generates one sample of the sum
∑n

i=1 Wij ,
whereas Algorithm 5 generates n samples of WUj . Hence, Algorithm 4 provides random
variables with smaller variance in both numerator and denominator of (11).

3 Convergence Analysis

From the preliminary analysis of the previous section, we can already conclude that MC
algorithms with cyclic start are preferable to the analogous MC algorithms with random start.
In the present section we thoroughly analyze and compare MC complete path stopping at
dangling nodes with MC end-point. We show that under natural conditions MC complete
path stopping at dangling nodes outperforms MC end-point.

We start by studying the properties of Wij’s. Denote by qij the probability that starting
from page i, the random walk {Yt}t≥0 reaches page j:

qij = P


⋃

t≥1

{Yt = j}|Y0 = i


 , i, j = 1, . . . , n.

Note that in this definition, qjj < 1 is a probability to return to state j if the process started
at j. It follows from the strong Markov property that Wjj has a geometric distribution with
parameter 1 − qjj ≥ 1 − c:

P(Wjj = x) = qx−1
jj (1 − qjj), x = 1, 2, . . . ,

which implies

E(Wjj) =
1

1 − qjj
; V ar(Wjj) =

qjj

(1 − qjj)2
;

Further, applying again the strong Markov property, one can show that for all i, j = 1, . . . , n,
Wij has a shifted geometric distribution:

P(Wij = x) =
{

1 − qij, x = 0,
qijP(Wjj = x), x = 1, 2, . . . .

6



Consequently,
E(Wij) = wij = qijE(Wjj) =

qij

1 − qjj
(12)

and

V ar(Wij) =
1 + qjj

1 − qjj
wij − w2

ij. (13)

Now, define

W·j =
n∑

i=1

Wij , j = 1, . . . , n, W =
n∑

j=1

W·j.

Assuming that all Wij’s are independent, we immediately obtain

E(W·j) =
n∑

i=1

wij = w·i,

V ar(W·j) =
1 + qjj

1 − qjj
w·j −

n∑
i=1

w2
ij <

1 + qjj

1 − qjj
w·j,

E(W ) =
n∑

j=1

w·j = γ−1.

For i, j = 1, . . . , n, let the empirical mean

W̄ij =
1
m

m∑
l=1

W
(l)
ij

be the estimator of wij, and view

W̄·j =
∑
i=1

W̄ij, j = 1, . . . , n,

and
W̄ =

∑
j=1

W̄·j

as estimators of w·j and γ−1, respectively. The estimator (11) can be then written as

π̄j = W̄·jW̄−1. (14)

Since the second multiplier in (14) is the same for all j = 1, . . . , n, the estimator π̄j is
completely determined by W̄·j. The following theorem states that the relative errors of π̄ and
W̄·j are similar.

Theorem 1 Given the event that the estimator W̄·j satisfies

|W̄·j − w·j | ≤ εw·j , (15)

the event
|π̄j − πj | ≤ εn,βπj
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occurs with probability at least 1 − β for any β > 0 and εn,β satisfying

|ε − εn,β| <
C(β)(1 + ε)√

nm
.

The factor C(β) can be approximated as

C(β) ≈ x1−β/2

√
n − n0

n
(1 + c3)

c

1 − c
,

where x1−β/2 is a (1−β/2)-quantile of the standard normal distribution and n0 is the number
of dangling nodes.

Proof. See the Appendix.
Theorem 1 has two important consequences. First, it states that the estimator π̄j con-

verges to πj in probability when m goes to infinity. Thus, the estimator π̄j is consistent.
Second, Theorem 1 states that the error in the estimate of πj originates mainly from estimat-
ing w·j. The additional relative error caused by estimating γ as

[∑
W̄·j
]−1, is of the order

1/
√

mn with arbitrarily high probability, and thus this error can essentially be neglected.
It follows from the above analysis that the quality of the estimator π̄j as well as the

complexity of the algorithm can be evaluated by the estimator W̄·j. We proceed by analyzing
the confidence intervals. Consider the confidence interval for W̄·j defined as

P(|W̄·j − w·j| < εw·j) ≥ 1 − α. (16)

From (12) and (13), we have

E(W̄·j) = w·j , V ar(W̄·j) ≤ 1
m

1 + qjj

1 − qjj
w·j.

Since W̄·j is a sum of a large number of terms, the random variable [W̄·j − w·j]/
√

V ar(W̄·j)
has approximally a standard normal distribution. Thus, from (16) we deduce

εw·j/
√

V ar(W̄·j) ≥ x1−α/2,

which results in

m ≥ 1 + qjj

1 − qjj

x2
1−α/2

ε2w·j
.

Now applying w·j = γ−1πj, we get

m ≈ 1 + qjj

1 − qjj

γx2
1−α/2

ε2πj
. (17)

Note that πj ≥ γ for all j = 1, . . . , n. Thus, with a high probability, a couple of hundreds
iterations allows to evaluate the PageRank of all pages with relative error at most 0.1. In
practice, however, it is essential to evaluate well the PageRank of important pages in a short
time. We argue that a typical user of a search engine does not check more than a dozen of
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first answers to his/her query. Therefore, let us evaluate the relative error ε for a given value
of πj. Using (7), from (17) we derive

ε ≈ x1−α/2

√
1 + qjj

1 − qjj

√
1 − c + c

∑
i∈I0

πi

√
πj
√

mn
. (18)

Strikingly, it follows from (18) that the Monte Carlo method gives good results for important
pages in one iteration only, that is, when m = 1. From the examples of PageRank values
presented in [5], it follows that the PageRank of popular pages is at least 104 times greater
than the PageRank of an average page. Since the PageRank value is bounded from below by
(1−c)/n, the formula (18) implies that if the important pages have PageRank 104 times larger
than the PageRank of the pages with the minimal PageRank value, the Monte Carlo method
achieves an error of about 1% for the important pages already after the first iteration. In
contrast, the power iteration method takes into account only the weighted sum of the number
of incoming links after the first iteration.

Let us now compare the precision of the end-point version and the complete path version
of the Monte Carlo method. According to Algorithm 1, the end-point version estimates
πj simply as a fraction of N = mn random walks that ended at page j. Using standard
techniques for such estimate, we construct a confidence interval

P(|π̂j,N − πj,N | < επj,N ) = 1 − α.

Using again the standard normal distribution, we get

ε = x1−α/2

√
1 − πj√

πj
√

mn
. (19)

Forgetting for a moment about slight corrections caused by the trade-off between random
and cyclic start, we see that the choice between the end-point version and the complete-path
version essentially depends on two factors: the total PageRank of dangling nodes and the
probability of a cycle when a random walk started from j returns back to j. If the Web
graph has many short cycles then the extra information from registering visits to every page
is obtained at cost of a high extra variability which leads to a worse precision. If total
rank of dangling nodes is high, the random walk will often reach dangling nodes and stop.
This can have a negative impact on the complete path algorithm. The above mentioned two
phenomena, if present, can make the difference between the end-point and the complete-path
versions negligible. The experiments of the next section on the real data however indicate
that the real Web structure is such that the complete path version is more efficient than the
end-point version.

We remark that if the results of the first iteration are not satisfactory, it is hard to improve
them by increasing m. After m iterations, the relative error of the Monte Carlo method
will reduce on average only by the factor 1/

√
m whereas the error of the power iteration

method decreases exponentially with m. However, because of simplicity in implementation
(in particular, simplicity in parallel implementation), the Monte Carlo algorithms can be still
advantageous even if a high precision is required.

Let us also evaluate a magnitude of πj’s for which a desired relative error ε is achieved.
Rewriting (18), we get

πj ≈ x2
1−α/2

1 + qjj

1 − qjj

(1 − c + c
∑

i∈I0
πi)

ε2mn
. (20)
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Finally, we would like to emphasize that the Monte Carlo algorithms have natural parallel
implementation and they allow to perform a continuous update of the PageRank vector.
Indeed, each available processor can run an independent Monte Carlo simulation. Since the
PageRank vector changes significantly during one month, Google prefers to recompute the
PageRank vector starting from the uniform distribution rather than to use the PageRank
vector of the previous month as the initial approximation [13]. Then, it takes about a week to
compute a new PageRank vector. It is possible to update the PageRank vector using linear
algebra methods [14]. However, one needs first to separate new nodes and links from the old
ones. This is not necessary if one uses Monte Carlo algorithms. Specifically, we suggest to
run Monte Carlo algorithms continuously while the database is updated with new data and
hence to have an up-to-date estimation of the PageRank for relatively important pages with
high accuracy. Then, once in a while one can run the power iteration method to have a good
PageRank estimation for all pages. In particular, the continuous update should eliminate the
negative reaction of users to the so-called “Google dance” [15].

4 Experiments

For our numerical experiments we have taken the Web site of INRIA Sophia Antipolis
http://www-sop.inria.fr. It is a typical Web site with about 50000 Web pages and 200000
hyperlinks. Since the Web has a fractal structure [6], we expect that our dataset is enough
representative. Accordingly, datasets of similar sizes have been extensively used in experi-
mental studies of novel algorithms for PageRank computation [1, 13, 14]. To collect the Web
graph data, we construct our own Web crawler which works with the Oracle database. The
crawler consists of two parts: the first part is realized based on Java and is responsible for
downloading pages from the Internet, parsing the pages and inserting their hyperlinks into
the database; the second part is realized with the help of the stored procedures written in
PL/SQL language and is responsible for the data management. The program allows to run
several crawlers in parallel to use efficiently the network and computer resources. Since the
multi-user access is already realized in Oracle database management system, it is relatively
easy to organize the information collection by several crawlers and parallel implementation
of Monte Carlo algorithms. We have also implemented the power iteration method and the
following three Monte Carlo algorithms in PL/SQL language:

• MC complete path stopping in dangling nodes,
MC comp path dangl nodes, for short;

• MC end-point with cyclic start,
MC end-point cycl start, for short;

• MC complete path with random start,
MC comp path rand start, for short.

First, we performed a sufficient number of power iterations to obtain the value of PageRank
with 20 digits accuracy. We sorted the PageRank vector in the decreasing order and plotted it
in the loglog scale (see Figure 1). It is interesting to observe that the PageRank vector follows
very closely a power law. One can also see in Figure 2 how well the power low approximates
the PageRank vector in linear scale starting from approximately the 100-th largest element.
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Then, we have chosen four elements from the sorted PageRank vector:

π1 = 0.004093834,
π10 = 0.001035867,

π100 = 0.000546446,
π1000 = 0.000097785. (21)
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Fig. 1: Sorted PageRank, loglog scale
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Fig. 2: Sorted PageRank, linear scale

We have performed 10 iterations of the PI method and 10 iterations of the three imple-
mented MC algorithms. In Figures 3-6, we compare the results of 10 iterations of PI method
and MC complete path stopping in dangling nodes method for the four chosen pages (21).
Indeed, as predicted by formula (18), already the first iteration of MC complete path stop-
ping in dangling nodes algorithm gives a small error for important Web pages. In fact, from
Figures 3-6 one can see that MC complete path stopping in dangling nodes algorithm outper-
forms PI method even for the first 1000 most important pages. In Figures 3-6, we also plotted
95% confidence intervals for the MC method. As expected, there are some randomness in the
convergence pattern of the Monte Carlo method and some points might fall outside of confi-
dence intervals. However, as one can see from Figures 3-4, the PI method does not converge
monotonously for the first few iterations as well.

At first sight, it looks surprising that one iteration gives a relative error of only 7% with
95% confidence for pages with high PageRank. On the other hand, such result is to be
expected. Roughly speaking, we use 5 ∗ 104 independent samples in order to estimate the
probability π = 0.004. A binomial random variable B with parameters n = 5 ∗ 104, p = 0.004
has mean 200 and standard deviation 14.1, and thus, with a high probability, a relative error
of a standard estimator π̃ = B/n will be less than 11%. The additional gain that we get in
(18) is due to regular visits to every page and the usage of the complete path information.

Next, in Figures 7-10 we compare three versions of the Monte Carlo method: MC complete
path stopping in dangling nodes, MC end-point with cyclic start, and MC complete path with
random start. We plotted actual relative error and the estimated 95% confidence intervals.
It turns out that on our dataset MC complete path stopping in dangling nodes performs the
best, followed by MC complete path with random start.

MC end-point with cyclic start has the worst performance. The better performance of
MC with cyclic start in respect to MC with random start was expected from the preliminary
analysis of Section 2. MC is not trapped in cycles in our instance of the Web graph and the
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Fig. 3: PI vs. MC: π1.
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Fig. 4: PI vs. MC: π10.
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Fig. 5: PI vs. MC: π100.
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Fig. 6: PI vs. MC: π1000.

total PageRank of dangling nodes is relatively small∑
i∈I0

πi = 0.23,

hence, we have

εcomp.path ≈
√

1 − c + c
∑
i∈I0

πi εend−point ≈ 0.59εend−point.

To check if the presence of cycles hinder the convergence of the Monte Carlo methods, we
took into account the intra-page hyperlinks. On the modified graph the Monte Carlo methods
have shown a very slow convergence. It is thus fortunate for MC methods that the original
definition of the PageRank excludes the intra-page hyperlinks.

5 Conclusions

We have considered several Monte Carlo algorithms. In particular, we have proposed a
new Monte Carlo algorithm that takes into account not only the information about the last
visited page, but about all visited pages during the simulation run. We have shown that MC
algorithms with cyclic start outperform MC algorithms with random start. Our theoretical
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Fig. 8: MC algorithms: π10.
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Fig. 9: MC algorithms: π100.
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Fig. 10: MC algorithms: π1000.

and experimental results have demonstrated that the Monte Carlo algorithms determine the
PageRank of relatively important pages already after the first iteration. Here is a sharp
contrast with the power iteration method that approximates the PageRank vector with the
uniform relative error and takes into account only the weighted sum of the number of incoming
links after the first iteration. The other advantages of MC algorithms are natural parallel
implementation and the possibility of the continuous PageRank update while the crawler
brings new data from the Web.

Appendix: The proof of Theorem 1

To prove Theorem 1 we need the following lemma.

Lemma 1 Let Wi· =
∑n

j=1 Wij be the length of the random walk {Yt}t≥0 initiated at page
i = 1, . . . , n. Then for all dangling nodes i ∈ I0, it holds Wi· ≡ 1, and for non-dangling nodes
i ∈ I1,

E(Wi·) ≤ 1
1 − c

, V ar(Wi·) ≤ c(1 + c3)
(1 − c)2

. (22)
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Proof. The statement for dangling nodes is obvious. For non-dangling nodes, (22)
essentially follows from the distributional identity

Wi·
d= min{X,Ni}, i = 1, . . . , n, (23)

where Ni is a number of transitions needed to reach a dangling node from page i, and X has
a geometric distribution with parameter 1 − c. The mean and variance of X are given by

E(X) =
1

1 − c
; V ar(X) =

c

(1 − c)2
.

The upper bound for the expectation of Wi· follows now directly from (23). For the variance,
we write

V ar(Wi·) = E[V ar(Wi·|Ni)] + V ar[E(Wi·|Ni)].

Conditioning on events [Ni = k] and computing V ar(Wi|k) for k = 1, 2, . . ., one can show
that

E[V ar(Wi·|Ni)] < V ar(X).

Furthermore, we derive

E(Wi·|Ni) =
Ni∑

k=1

P(X ≥ k) =
Ni∑

k=1

ck =
c(1 − cNi)

1 − c
,

and thus the variance of E(Wi·|Ni) satisfies

V ar(E(Wi·|Ni)) = c2V ar(cNi)/(1 − c)2 ≤ c4/(1 − c)2,

because for non-dangling nodes, the random variable cNi takes values only in the interval
[0, c]. This completes the proof of the lemma. �

We are now ready to prove Theorem 1.
Proof of Theorem 1. Using (9) and (10), we derive

π̄j − πj = W̄·jW̄−1 − πj

= γ(W̄·j − w·j)(γW̄ )−1 +
(
(γW̄ )−1 − 1

)
πj .

Given the event (15), the last equation together with (9) and (10) yields

|π̄j − πj| ≤ επj +
∣∣(γW̄ )−1 − 1

∣∣ (1 + ε)πj . (24)

Let us now investigate the magnitude of the term (γW̄ )−1. First, note that the random
variables

W̄i· =
n∑

j=1

W̄ij, i ∈ I1,

are independent because they are determined by simulation runs initiated at different pages.
Further, for a non-dangling node i, using Lemma 1, we find

E(W̄i·) =
n∑

j=1

wij ,

V ar(W̄i·) =
1
m

V ar(Wi·) ≤ 1
m

c(1 + c3)
(1 − c)2

.
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Thus, W̄ equals the number of dangling nodes n0 plus the sum of n−n0 independent random
variables Ŵi·, i ∈ I1. Since the number n − n0 is obviously very large, W̄ is approximately
normally distributed with mean γ−1 and variance

V ar(W̄ ) =
∑
i∈I1

V ar(Ŵi·) ≤ (n − n0)
c(1 + c3)
m(1 − c)2

.

Hence, γW̄ is approximately normally distributed with mean 1 and variance

V ar(γW̄ ) ≤ γ2(n − n0)
c(1 + c3)
m(1 − c)2

<
n − n0

n2

c(1 + c3)
m(1 − c)2

, (25)

which is a value of the order (nm)−1. Now, let us consider a (1−β)-confidence interval defined
as

P
(∣∣(γW̄ )−1 − 1

∣∣ < ε
)

> 1 − β (26)

for some small positive β and ε. If ε is small enough so that 1/(1−ε) ≈ 1+ε and 1/(1+ε) ≈ 1−ε,
then the above probability approximately equals P

(∣∣γW̄ − 1
∣∣ < ε

)
, and because of (25), the

inequality (26) holds for all ε satisfying

ε ≥ x1−β/2
c

1 − c

√
n − n0

n
(1 + c3)

1√
nm

. (27)

The right-hand side of (27) constitutes the additional relative error in estimating πj . For any
β > 0, this additional error can be exceeded with probability at most β. This completes the
proof of the theorem. �
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