
Monte Carlo POMDPs

Sebastian Thrun
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a Monte Carlo algorithm for learning to act in partially observable

Markov decision processes (POMDPs) with real-valued state and action spaces.
Our approach uses importance sampling for representing beliefs, and Monte Carlo
approximation for belief propagation. A reinforcement learning algorithm, value
iteration, is employed to learn value functions over belief states. Finally, a sample
based version of nearest neighbor is used to generalize across states. Initial
empirical results suggest that our approach works well in practical applications.

1 Introduction

POMDPs address the problem of acting optimally in partially observable dynamic environ
ment [6] . In POMDPs, a learner interacts with a stochastic environment whose state is only
partially observable. Actions change the state of the environment and lead to numerical
penalties/rewards, which may be observed with an unknown temporal delay. The learner's
goal is to devise a policy for action selection that maximizes the reward. Obviously, the
POMDP framework embraces a large range of practical problems.

Past work has predominately studied POMDPs in discrete worlds [1]. Discrete worlds have

the advantage that distributions over states (so-called "belief states") can be represented
exactly, using one parameter per state. The optimal value function (for finite planning
horizon) has been shown to be convex and piecewise linear [lO, 14], which makes it

possible to derive exact solutions for discrete POMDPs.

Here we are interested in POMDPs with continuous state and action spaces, paying tribute

to the fact that a large number of real-world problems are continuous in nature. In general,
such POMDPs are not solvable exactly, and little is known about special cases that can be
solved. This paper proposes an approximate approach, the MC-POMDP algorithm, which
can accommodate real-valued spaces and models. The central idea is to use Monte Carlo
sampling for belief representation and propagation. Reinforcement learning in belief space
is employed to learn value functions, using a sample-based version of nearest neighbor
for generalization. Empirical results illustrate that our approach finds to close-to-optimal
solutions efficiently.

2 Monte Carlo POMDPs

2.1 Preliminaries

POMDPs address the problem of selection actions in stationary, partially observable, con
trollable Markov chains. To establish the basic vocabulary, let us define:

• State. At any point in time, the world is in a specific state, denoted by x.

Monte Carlo POMDPs 1065

• Action. The agent can execute actions, denoted a.
• Observation. Through its sensors, the agent can observe a (noisy) projection of the

world's state. We use 0 to denote observations.

• Reward. Additionally, the agent receives rewards/penalties, denoted R E ~. To
simplify the notation, we assume that the reward is part of the observation. More

specifically, we will use R(0) to denote the function that "extracts" the reward from

the observation.

Throughout this paper, we use the subscript t to refer to a specific point in time (e.g., St

refers to the state at time t).

POMDPs are characterized by three probability distributions:

1. The initial distribution, 7r(x) := Pr(xo), specifies the initial distribution of states at

time t = O.
2. The next state distribution, p(x' I a,x) := Pr(xt = x' I at-I = a,Xt-l = x),

describes the likelihood that action a, when executed at state x, leads to state x'.
3. The perceptual distribution, v(0 Ix) := Pr(0t = 0 I Xt = x), describes the likeli

hood of observing 0 when the world is in state x.

A history is a sequence of states and observations. For simplicity, we assume that actions

and observations are alternated. We use dt to denote the history leading up to time t:

dt {Ot,at-l,Ot-l,at-2, ... ,ao,00} (1)

The fundamental problem in POMDPs is to devise a policy for action selection that maxi

mizes reward. A policy, denoted

(T : d--+a (2)

is a mapping from histories to actions. Assuming that actions are chosen by a policy (T,

each policy induces an expected cumulative (and possibly discounted by a discount factor
, :::; 1) reward, defined as

00

J<7 = L E [,T R(OT)] (3)

T=O

Here E[] denotes the mathematical expectation. The POMDP problem is, thus, to find a

policy (T* that maximizes r, i.e.,

(T* = argmax J<7 (4)
<7

2.2 Belief States

To avoid the difficulty of learning a function with unbounded input (the history can be

arbitrarily long), it is common practice to map histories into belief states, and learn a

mapping from belief states to actions instead [10].

Formally, a belief state (denoted e) is a probability distribution over states conditioned on

past actions and observations:

et Pr(xt I dt} = Pr(xt lOt, at-I,"" 00) (5)

Belief are computed incrementally, using knowledge of the POMDP's defining distributions

7r, p, and v. Initially

eo = 7r (6)

For t ~ 0, we obtain

Bt+1 Pr(xt+1 I Ot+l, at,···, 00) (7)

0' Pr(Ot+1 I Xt+I,···, 00) Pr(Xt+l I at,···, 00) (8)

0' Pr(ot+1 I Xt+l) J Pr(Xt+l I at,···, 00, xt} Pr(xt I at,···, 00) dXt (9)

0' Pr(Ot+l I Xt+d J Pr(xt+1 I at, Xt) et dXt (10)

1066

0.2

0.1

11. ___ •••••••• 1111. 1.11111. II I I

2 • 10 12

S. Thrun

'''-',
I ,

I \
I \

9 / \
I \

I \
I ,

I \
I ,

I \
/ \

'-,

.. .• I II III. HI "I I •••... _ ___

4 10 12

Figure 1: Sampling: (a) Likelihood-weighted sampling and (b) importance sampling. At the bottom

of each graph, samples are shown that approximate the function f shown at the top. The height of
the samples illustrates their importance/actors.

Here a denotes a constant normalizer. The derivations of (8) and (10) follow directly from
the fact that the environment is a stationary Markov chain, for which future states and

observations are conditionally independent from past ones given knowledge of the state.
Equation (9) is obtained using the theorem of total probability.

Armed with the notion of belief states, the policy is now a mapping from belief states
(instead of histories) to actions:

(j : 0 -+ a (11)

The legitimacy of conditioning a on 0, instead of d, follows directly from the fact that the
environment is Markov, which implies that 0 is all one needs to know about the past to
make optimal decisions.

2.3 Sample Representations

Thus far, we intentionally left open how belief states 0 are represented. In prior work, state
spaces have been discrete. In discrete worlds, beliefs can be represented by a collection
of probabilities (one for each state), hence, beliefs can be represented exactly. Here were
are interested in real-valued state spaces. In general, probability distributions over real
valued spaces possess infinitely many dimensions, hence cannot be represented on a digital
computer.

The key idea is to represent belief states by sets of (weighted) samples drawn from the
belief distribution. Figure 1 illustrates two popular schemes for sample-based approxima
tion: likelihood-weighted sampling, in which samples (shown at the bottom of Figure la)

are drawn directly from the target distribution (labeled f in Figure la), and importance

sampling, where samples are drawn from some other distribution, such as the curve labeled
9 in Figure 1 b. In the latter case, samples x are annotated by a numerical importance factor

p(x)
f(x)
g(x)

(12)

to account for the difference in the sampling distribution, g, and the target distribution f
(the height of the bars in Figure 1 b illustrates the importance factors). Importance sampling

requires that f > 0 -+ 9 > 0, which will be the case throughout this paper. Obviously, both
sampling methods generate approximations only. Under mild assumptions, they converge

to the target distribution at a rate of -j;;, with N denoting the sample set size [16].

In the context of POMDPs, the use of sample-based representations gives rise to the
following algorithm for approximate belief propagation (c.f., Equation (10»:

Algorithm particleJilter(Ot , at, 0t+l):

Ot+l = 0
doN times:

draw random state Xt from Ot

Monte Carlo POMDPs

sample Xt+1 according to p(Xt+1 I at, xt}
set importance factorp(xt+J) = V(Ot+1 I xt+d
add (Xt+l,p(Xt+I)) toB t+1

normalize all p(Xt+d E Bt+1 so that LP(Xt+d = 1

return Bt+1

1067

This algorithm converges to (10) for arbitrary models p, v, and 11" and arbitrary belief

distributions B, defined over discrete, continuous, or mixed continuous-discrete state and

action spaces. It has, with minor modifications, been proposed under names like particle

filters [131. condensation algorithm [5], survival of the fittest [8], and, in the context of

robotics, Monte Carlo localization [4].

2.4 Projection

In conventional planning, the result of applying an action at at a state Xt is a distribution

Pr(Xt+l, Rt+1 I at, xt} over states Xt+1 and rewards R t+1 at the next time step. This
operation is called projection. In POMDPs, the state Xt is unknown. Instead, one has to

compute the result of applying action at to a belief state Bt . The result is a distribution

Pr(Bt+I' Rt+ 1 I at, Bt) over belief states Bt+1 and rewards Rt+ I. Since belief states them
selves are distributions, the result of a projection in POMDPs is, technically, a distribution

over distributions.

The projection algorithm is derived as follows. Using total probability, we obtain:

Pr(Bt+l , R t+1 I at,Bd Pr(Bt+I,Rt+11 at,dt} (13)

= J !r(Bt+l , Rt+: I Ot+l, at, dt), !r(ot+I,,1 at, dt}, dOt+1 (14)

(*) (**)

The term (*) has already been derived in the previous section (c.f., Equation (10», under

the observation that the reward Rt +1 is trivially computed from the observation 0t+l.

The second term, (**), is obtained by integrating out the unknown variables, Xt+1 and Xt.
and by once again exploiting the Markov property:

Pr(Ot+l I at, dt} J Pr(Ot+1 I Xt+d Pr(xt+1 I at. dt} dXt+1 (15)

J Pr(Ot+1 I Xt+l) J Pr(xt+1 I Xt, at} Pr(xt I dt} dXt dXt-t616)

J V(Ot+1 I Xt+d J p(Xt+1 I Xt, at} Bt(xt) dXt dXt+1 (17)

This leads to the following approximate algorithm for projecting belief state. In the spirit

of this paper, our approach uses Monte Carlo integration instead of exact integration. It
represents distributions (and distributions over distributions) by samples drawn from such

distributions.

Algorithm particle_projection(Bt, at):

8 t = 0
doN times:

draw random state Xt from Bt
sample a next state Xt+1 accordingtop(xt+1 I at,xt)
sample an observation Ot+1 according to V(Ot+1 I Xt+d
compute Bt+1 = partic1e_filter(Bt. at. Ot+l)
add (Bt+I,R(ot+J)) t08t

return8 t

The result of this algorithm, 8 t , is a sample set of belief states Bt+1 and rewards Rt+I,
drawn from the desired distribution Pr(Bt+ I, Rt+ 1 I Bt , at}. As N ~ 00, at converges

with probability 1 to the true posterior [16].

1068 S. Thrun

2.5 Learning Value Functions

Following the rich literature on reinforcement learning [7, 15], our approach solves the
POMDP problem by value iteration in belief space. More specifically, our approach
recursively learns a value function Q over belief states and action, by backing up values
from subsequent belief states:

Q(Ot,at} ~ E[R(ot+t}+,m:xQ(Ot+l,a)] (18)

Leaving open (for a moment) how Q is represented, it is easy to be seen how the algorithm
particle_projection can be applied to compute a Monte Carlo approximation of the right
hand-side expression: Given a belief state Ot and an action at, particle_projection computes
a sample of R(0t+ I) and Ot+ I, from which the expected value on the right hand side of (18)
can be approximated.

It has been shown [2] that if both sides of (18) are equal, the greedy policy

(1'Q(O) = argmaxQ(O,a) (19)
a

is optimal, i.e., (1'* = (1'Q. Furthermore, it has been shown (for the discrete case!) that
repetitive application of (18) leads to an optimal value function and, thus, to the optimal
policy [17, 3].

Our approach essentially performs model-based reinforcement learning in belief space
using approximate sample-based representations. This makes it possible to apply a rich
bag of tricks found in the literature on MDPs. In our experiments below, we use on
line reinforcement learning with counter-based exploration and experience replay [9] to
determine the order in which belief states are updated.

2.6 Nearest Neighbor

We now return to the issue how to represent Q. Since we are operating in real-valued
spaces, some sort of function approximation method is called for. However, recall that
Q accepts a probability distribution (a sample set) as an input. This makes most existing
function approximators (e.g., neural networks) inapplicable.

In our current implementation, nearest neighbor [11] is applied to represent Q. More
specifically, our algorithm maintains a set of sample sets 0 (belief states) annotated by an
action a and a Q-value Q(O, a). When a new belief state Of is encountered, its Q-value is
obtained by finding the k nearest neighbors in the database, and linearly averaging their
Q-values. If there aren't sufficiently many neighbors (within a pre-specified maximum
distance), Of is added to the database; hence, the database grows over time.

Our approach uses KL divergence (relative entropy) as a distance function I. Technically,
the KL-divergence between two continuous distributions is well-defined. When applied
to sample sets, however, it cannot be computed. Hence, when evaluating the distance be

tween two different sample sets, our approach maps them into continuous-valued densities
using Gaussian kernels, and uses Monte Carlo sampling to approximate the KL divergence
between them. This algorithm is fairly generic an extension of nearest neighbors to func
tion approximation in density space, where densities are represented by samples. Space
limitations preclude us from providing further detail (see [11, 12]).

3 Experimental Results

Preliminary results have been obtained in a world shown in two domains, one synthetic and
one using a simulator of a RWI B21 robot.

In the synthetic environment (Figure 2a), the agents starts at the lower left comer. Its
objective is to reach "heaven" which is either at the upper left comer or the lower right

1 Strictly speaking, KL divergence is not a distance metric, but this is ignored here.

Monte Carlo POMDPs 1069

... (a) ,.-__ ...,.._ (~"----~~- , -~--~-v----v.n-"'"

I=) \on... 50

P '-- , 1M
25

·25

-50

t.S:: t,.· ·75 ·100

0 20 40 60 80 10 15 20 25 30

Figure 2: (a) The environment, schematically. (b) Average perfonnance (reward) as a function of
training episodes. The black graph corresponds to the smaller environment (25 steps min), the grey
graph to the larger environment (50 steps min). (c) Same results, plotted as a function of number of
backups (in thousands).

comer. The opposite location is "hell." The agent does not know the location of heaven,
but it can ask a "priest" who is located in the upper right comer. Thus, an optimal solution
requires the agent to go first to the priest, and then head to heaven. The state space contains
a real-valued (coordinates of the agent) and discrete (location of heaven) component. Both
are unobservable: In addition to not knowing the location of heaven, the agent also cannot
sense its (real-valued) coordinates. 5% random motion noise is injected at each move.

When an agent hits a boundary, it is penalized, but it is also told which boundary it hit
(which makes it possible to infer its coordinates along one axis). However, notice that the
initial coordinates of the agent are known.

The optimal solution takes approximately 25 steps; thus, a successful POMDP planner must
be capable of looking 25 steps ahead. We will use the term "successful policy" to refer

to a policy that always leads to heaven, even if the path is suboptimal. For a policy to be
successful, the agent must have learned to first move to the priest (information gathering),

and then proceed to the right target location.

Figures 2b&c show performance results, averaged over 13 experiments. The solid (black)
curve in both diagrams plots the average cumulative reward J as a function of the number

of training episodes (Figure 2b), and as a function of the number of backups (Figure 2c).
A successful policy was consistently found after 17 episodes (or 6,150 backups), in all
13 experiments. In our current implementation, 6,150 backups require approximately 29
minutes on a Pentium Pc. In some experiments, a successful policy was identified in 6
episodes (less than 1,500 backups or 7 minutes). After a successful policy is found, further
learning gradually optimizes the path. To investigate scaling, we doubled the size of the
environment (quadrupling the size of the state space), making the optimal sol uti on 50 steps
long. The results are depicted by the gray curves in Figures 2b&c. Here a successful
policy is consistently found after 33 episodes (10,250 backups, 58 minutes). In some runs,
a successful policy is identified after only 14 episodes.

We also applied MC-POMDPs to a robotic locate-and-retrieve task. Here a robot (Figure 3a)
is to find and grasp an object somewhere in its vicinity (at floor or table height). The robot's
task is to grasp the object using its gripper. It is rewarded for successfully grasping the
object, and penalized for unsuccessful grasps or for moving too far away from the object.
The state space is continuous in x and y coordinates, and discrete in the object's height.

The robot uses a mono-camera system for object detection; hence, viewing the object from
a single location is insufficient for its 3D localization. Moreover, initially the object might
not be in sight of the robot's camera, so that the robot must look around first. In our
simulation, we assume 30% general detection error (false-positive and false-negative), with
additional Gaussian noise if the object is detected correctly. The robot's actions include

turns (by a variable angle), translations (by a variable distance), and grasps (at one of two
legal heights). Robot control is erroneous with a variance of20% (in x-y-space) and 5% (in
rotational space). Typical belief states range from uniformly distributed sample sets (initial
belief) to samples narrowly focused on a specific x-y-z location.

1070

,
\

\

\ ,

(b)

L

C

(c)

% success
1

OB

0.6

0.4

2000

S. Thrun

4000 6000 BOOO

iteration

Figure 3: Find and fetch task: (a) The mobile robot with gripper and camera, holding the target

object (experiments are carried out in simulation!), (b) three successful runs (trajectory projected into

2D), and (c) success rate as a function of number of planning steps.

Figure 3c shows the rate of successful grasps as a function of iterations (actions). While
initially, the robot fails to grasp the object, after approximately 4,000 iterations its perfor
mance surpasses 80%. Here the planning time is in the order of 2 hours. However, the robot
fails to reach 100%. This is in part because certain initial configurations make it impossible
to succeed (e.g., when the object is too close to the maximum allowed distance), in part

because the robot occasionally misses the object by a few centimeters. Figure 3b depicts
three successful example trajectories. In all three, the robot initially searches the object,

then moves towards it and grasps it successfully.

4 Discussion

We have presented a Monte Carlo approach for learning how to act in partially observable
Markov decision processes (POMDPs). Our approach represents all belief distributions
using samples drawn from these distributions. Reinforcement learning in belief space is
applied to learn optimal policies, using a sample-based version of nearest neighbor for
generalization. Backups are performed using Monte Carlo sampling. Initial experimental
results demonstrate that our approach is applicable to real-valued domains, and that it yields

good performance results in environments that are-by POMDP standards-relatively large.

References
[1] AAAI Fall symposium on POMDPs. 1998. See http://www.cs.duke.edu/ ... mlittman/talks/

pomdp-symposiurn.html

[2] R E. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] P. Dayan and T. 1. Sejnowski. ID('>') converges with probability 1. 1993.

[4] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient position estimation for mobile robots.
AAAI-99.

[5] M. lsard and A. Blake. Condensation: conditional density propagationforvisual tracking.lnternationalJoumalofComputer

Vision, 1998.

[6] L.P. Kaelbling, M.L. Littman, and A.R Cassandra. Planning and acting in partially observable stochastic domains. Submitted

for publication, 1997.

[7] L.P. Kaelbling, M.L. Littman, and A. W. Moore. Reinforcement learning: A survey. lAIR,4, 1996.

[8] K Kanazawa, D. Koller, and S.l. Russell. Stochastic simulation algorithms for dynamic probabilistic networks. UAI-95.

[9] L.-l. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8,

1992.
[10] M.L. Littman, A.R Cassandra, and L.P. KaeJbling. Learning poliCies for partially observable environments: Scaling up.

ICML-95.

[11] A.w. Moore, C.G. Atkeson, and S.A. Schaal. Locally weighted learning for control. AI Review, II, 1997.

[12] D. Ormoneit and S. Sen. Kernel-based reinforcernentlearning. TR 1999-8, Statistics, Stanford University, 1999.

[13] M. Pitt and N. Shephard. Filtering via simulation: auxiliary particle filter. lournal of the American Statistical Association,

1999.

[14] E. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis, Stanford, 1971.

[I 5] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

[16] M.A. Tanner. ToolsforStatistical Inference. Springer Verlag, 1993.

[17] C. 1. C. H. Watkins. Learningfrom Delayed Rewards. PhD thesis, King's College, Cambridge, 1989.

