
Journal of Artificial Intelligence Research 34 (2009) 297-337 Submitted 06/08; published 03/09

Monte Carlo Sampling Methods for Approximating
Interactive POMDPs

Prashant Doshi PDOSHI@CS.UGA.EDU

Department of Computer Science
University of Georgia
415 Boyd GSRC
Athens, GA 30602

Piotr J. Gmytrasiewicz PIOTR@CS.UIC.EDU

Department of Computer Science
University of Illinois at Chicago
851 S. Morgan St
Chicago, IL 60607

Abstract

Partially observable Markov decision processes (POMDPs) provide a principled framework
for sequential planning in uncertain single agent settings. An extension of POMDPs to multiagent
settings, called interactive POMDPs (I-POMDPs), replaces POMDP belief spaces with interactive
hierarchical belief systems which represent an agent’s belief about the physical world, about beliefs
of other agents, and about their beliefs about others’ beliefs. This modification makes the difficul-
ties of obtaining solutions due to complexity of the belief and policy spaces even more acute. We
describe a general method for obtaining approximate solutions of I-POMDPs based on particle fil-
tering (PF). We introduce the interactive PF, which descends the levels of the interactive belief
hierarchies and samples and propagates beliefs at each level. The interactive PF is able to miti-
gate the belief space complexity, but it does not address the policy space complexity. To mitigate
the policy space complexity – sometimes also called the curse of history – we utilize a comple-
mentary method based on sampling likely observations while building the look ahead reachability
tree. While this approach does not completely address the curse of history, it beats back the curse’s
impact substantially. We provide experimental results and chart future work.

1. Introduction

Interactive POMDPs (I-POMDPs) (Gmytrasiewicz & Doshi, 2005; Seuken & Zilberstein, 2008)
are a generalization of POMDPs to multiagent settings and offer a principled decision-theoretic
framework for sequential decision making in uncertain multiagent settings. I-POMDPs are appli-
cable to autonomous self-interested agents who locally compute what actions they should execute
to optimize their preferences given what they believe while interacting with others with possibly
conflicting objectives. Though POMDPs can be used in multiagent settings, it is so only under
the strong assumption that the other agent’s behavior be adequately represented implicitly (say, as
noise) within the POMDP model (see Boutilier, Dean, & Hanks, 1999; Gmytrasiewicz & Doshi,
2005, for examples). The approach adopted in I-POMDPs is to expand the traditional state space
to include models of other agents. Some of these models are the sophisticated intentional models,
which ascribe beliefs, preferences, and rationality to others and are analogous to the notion of agent

c©2009 AI Access Foundation. All rights reserved.

297

DOSHI & GMYTRASIEWICZ

types in Bayesian games (Harsanyi, 1967; Mertens & Zamir, 1985). Other models, such as finite
state machines, do not ascribe beliefs or rationality to other agents and we call them subintentional
models. An agent’s beliefs within I-POMDPs are called interactive beliefs, and they are nested
analogously to the hierarchical belief systems considered in game theory (Mertens & Zamir, 1985;
Brandenburger & Dekel, 1993; Heifetz & Samet, 1998; Aumann, 1999), in theoretical computer
science (Fagin, Halpern, Moses, & Vardi, 1995) and to the hyper-priors in hierarchical Bayesian
models (Gelman, Carlin, Stern, & Rubin, 2004). Since the interactive beliefs may be infinitely
nested, Gmytrasiewicz and Doshi (2005) defined finitely nested I-POMDPs as computable special-
izations of the infinitely nested ones. Solutions of finitely nested I-POMDPs map an agent’s states
of belief about the environment and other agents’ models to policies. Consequently, I-POMDPs
find important applications in agent, human, and mixed agent-human environments. Some potential
applications include path planning in multi-robot environments, coordinating troop movements in
battlefields, planning the course of a treatment in a multi-treatment therapy, and explaining com-
monly observed social behaviors (Doshi, Zeng, & Chen, 2007).

However, optimal decision making in uncertain multiagent settings is computationally very hard
requiring significant time and memory resources. For example, the problem of solving decentral-
ized POMDPs has been shown to lie in the NEXP-complete class (Bernstein, Givan, Immerman, &
Zilberstein, 2002). Expectedly, exact solutions of finitely nested I-POMDPs are difficult to compute
as well, due to two primary sources of intractability: (i) The complexity of the belief representa-
tion which is proportional to the dimensions of the belief simplex, sometimes called the curse of
dimensionality. (ii) The complexity of the space of policies, which is proportional to the number of
possible future beliefs, also called the curse of history.

Both these sources of intractability exist in POMDPs also (see Pineau, Gordon, & Thrun, 2006;
Poupart & Boutilier, 2004) but the curse of dimensionality is especially more acute in I-POMDPs.
This is because in I-POMDPs the complexity of the belief space is even greater; the beliefs may
include beliefs about the physical environment, and possibly the agent’s beliefs about other agents’
beliefs, about their beliefs about others’, and so on. Thus, a contributing factor to the curse of
dimensionality is the level of belief nesting that is considered. As the total number of agent models
grows exponentially with the increase in nesting level, so does the solution complexity.

We observe that one approach to solving a finitely nested I-POMDP is to investigate collaps-
ing the model to a traditional POMDP, and utilize available approximation methods that apply to
POMDPs. However, the transformation into a POMDP is not straightforward. In particular, it does
not seem possible to model the update of other agents’ nested beliefs as a part of the transition func-
tion in the POMDP. Such a transition function would include nested beliefs and require solutions
of others’ models in defining it, and thus be quite different from the standard ones to which current
POMDP approaches apply.

In this article, we present the first set of generally applicable methods for computing approxi-
mately optimal policies for the finitely nested I-POMDP framework while demonstrating computa-
tional savings. Since an agent’s belief is defined over other agents’ models, which may be a complex
infinite space, sampling methods which are able to approximate distributions over large spaces to ar-
bitrary accuracy are a promising approach. We adopt the particle filter (Gordon, Salmond, & Smith,
1993; Doucet, Freitas, & Gordon, 2001) as our point of departure. There is growing empirical evi-
dence (Koller & Lerner, 2001; Daum & Huang, 2002) that particle filters are unable to significantly
reduce the adverse impact of increasing state spaces. Specifically, the number of particles needed to
maintain the error from the exact state estimation increases as the number of dimensions increase.

298

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

However, the rate of convergence of the approximate posterior to the true one is independent of the
dimensions of the state space (Crisan & Doucet, 2002) under weak assumptions. In other words,
while we may need more particles to maintain error as the state space increases, the rate at which the
error reduces remains unchanged, regardless of the state space. Furthermore, sampling approaches
allow us to focus resources on the regions of the state space that are considered more likely in an
uncertain environment, providing a strong potential for computational savings.

We generalize the particle filter, and more specifically the bootstrap filter (Gordon et al., 1993),
to the multiagent setting, resulting in the interactive particle filter (I-PF). The generalization is not
trivial: We do not simply treat the other agent as an automaton whose actions follow a fixed and
known distribution. Rather, we consider the case where other agents are intentional – they pos-
sess beliefs, capabilities and preferences. Subsequently, the propagation step in the I-PF becomes
more complicated than in the standard PF. In projecting the subject agent’s belief over time, we
must project the other agent’s belief, which involves predicting its action and anticipating its obser-
vations. Mirroring the hierarchical character of interactive beliefs, the interactive particle filtering
involves sampling and propagation at each of the hierarchical levels of the beliefs. We empirically
demonstrate the ability of the I-PF to flexibly approximate the state estimation in I-POMDPs, and
show the computational savings obtained in comparison to a regular grid based implementation.
However, as we sample an identical number of particles at each nesting level, the total number of
particles and the associated complexity, continues to grow exponentially with the nesting level.

We combine the I-PF with value iteration on sample sets thereby providing a general way to
solve finitely nested I-POMDPs. Our approximation method is anytime and is applicable to agents
that start with a prior belief and optimize over finite horizons. Consequently, our method finds ap-
plications for online plan computation. We derive error bounds for our approach that are applicable
to singly-nested I-POMDPs and discuss the difficulty in generalizing the bounds to multiply nested
beliefs. We empirically demonstrate the performance and computational savings obtained by our
method on standard test problems as well as a larger uninhabited aerial vehicle (UAV) reconnais-
sance problem.

While the I-PF is able to flexibly mitigate the belief space complexity, it does not address the pol-
icy space complexity. In order to mitigate the curse of history, we present a complementary method
based on sampling observations while building the look ahead reachability tree during value itera-
tion. This translates into considering only those future beliefs during value iteration that an agent
is likely to have from a given belief. This approach is similar in spirit to the sparse sampling
techniques used in generating partial look ahead trees for action selection during reinforcement
learning (Kearns, Mansour, & Ng, 2002; Wang, Lizotte, Bowling, & Schuurmans, 2005) and for
online planning in POMDPs (Ross, Pineau, Paquet, & Chaib-draa, 2008). While these approaches
were applied in single agent reinforcement learning problems, we focus on a multiagent setting
and recursively apply the technique to solve models of all agents at each nesting level. Observa-
tion sampling was also recently utilized in DEC-POMDPs (Seuken & Zilberstein, 2007), where it
was shown to improve the performance on large problems. We note that this approach does not
completely address the curse of history, but beats back its impact on the difficulty of computing
the I-POMDP solutions, substantially. We report on the additional computational savings obtained
when we combine this method with the I-PF, and provide empirical results in support.

Rest of this article is structured in the following manner. We review the various state estima-
tion methods and their relevance, and the use of particle filters in previous works in Section 2. In
Section 3, we review the traditional particle filtering technique concentrating on bootstrap filters in

299

DOSHI & GMYTRASIEWICZ

particular. We briefly outline the finitely nested I-POMDP framework in Section 4 and the multia-
gent tiger problem used for illustration in Section 5. In Section 6, we discuss representations for the
nested beliefs and the inherent difficulty in formulating them. In order to facilitate understanding,
we give a decomposition of the I-POMDP belief update in Section 7. We then present the I-PF that
approximates the finitely nested I-POMDP belief update in Section 8. This is followed by a method
that utilizes the I-PF to compute solutions to I-POMDPs, in Section 9. We also comment on the
asymptotic convergence and compute error bounds of our approach. In Section 10, we report on
the performance of our approximation method on simple and larger test problems. In Section 11,
we provide a technique for mitigating the curse of history, and report on some empirical results.
Finally, we conclude this article and outline future research directions in Section 12.

2. Related Work

Several approaches to nonlinear Bayesian estimation exist. Among these, the extended Kalman fil-
ter (EKF) (Sorenson, 1985), is most popular. The EKF linearises the estimation problem so that the
Kalman filter can be applied. The required probability density function (p.d.f.) is still approximated
by a Gaussian, which may lead to filter divergence, and therefore an increase in the error. Other
approaches include the Gaussian sum filter (Sorenson & Alspach, 1971), and superimposing a grid
over the state space with the belief being evaluated only over the grid points (Kramer & Sorenson,
1988). In the latter approach, the choice of an efficient grid is non-trivial, and the method suffers
from the curse of dimensionality: The number of grid points that must be considered is exponential
in the dimensions of the state space. Recently, techniques that utilize Monte Carlo (MC) sampling
for approximating the Bayesian state estimation problem have received much attention. These tech-
niques are general enough, in that, they are applicable to both linear, as well as, non-linear problem
dynamics, and the rate of convergence of the approximation error to zero is independent of the di-
mensions of the underlying state space. Among the spectrum of MC techniques, two that have been
particularly well-studied in sequential settings are Markov chain Monte Carlo (MCMC) (Hastings,
1970; Gelman et al., 2004), and particle filters (Gordon et al., 1993; Doucet et al., 2001). Approxi-
mating the I-POMDP belief update using the former technique, may turn out to be computationally
exhaustive. Specifically, MCMC algorithms that utilize rejection sampling (e.g. Hastings, 1970)
may cause a large number of intentional models to be sampled, solved, and rejected, before one
is utilized for propagation. In addition, the complex estimation process in I-POMDPs makes the
task of computing the acceptance ratio for rejection sampling computationally inefficient. Although
Gibbs sampling (Gelman et al., 2004) avoids rejecting samples, it would involve sampling from a
conditional distribution of the physical state given the observation history and model of other, and
from the distribution of the other’s model given the physical state. However, these distributions are
neither efficient to compute nor easy to derive analytically. Particle filters need not reject solved
models and compute a new model in replacement, propagating all solved models over time and
resampling them. They are intuitively amenable to approximating the I-POMDP belief update and
produce reasonable approximations of the posterior while being computationally feasible.

Particle filters previously have been successfully applied to approximate the belief update in
continuous state space single agent POMDPs (Thrun, 2000; Poupart, Ortiz, & Boutilier, 2001).
While Thrun (2000) integrates particle filtering with Q-learning to learn the policy, Poupart et
al. (2001) assume the prior existence of an exact value function and present an error bound analy-
sis of substituting the POMDP belief update with particle filters. Loosely related to our work are

300

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

the sampling algorithms that appear in (Ortiz & Kaelbling, 2000) for selecting actions in influence
diagrams, but this work does not focus on sequential decision making. In the multiagent setting, par-
ticle filters have been employed for collaborative multi-robot localization (Fox, Burgard, Kruppa,
& Thrun, 2000). In this application, the emphasis was on predicting the position of the robot, and
not the actions of the other robots, which is a critical step in our approach. Additionally, to facili-
tate fast localization, beliefs of other robots encountered during motion were considered to be fully
observable to enable synchronization.

Within the POMDP literature, approaches other than sampling methods have also appeared that
address the curse of dimensionality. An important class of such algorithms prescribe substituting
the complex belief space with a simpler subspace (Bertsekas, 1995; Tsitsiklis & Roy, 1996; Poupart
& Boutilier, 2003; Roy, Gordon, & Thrun, 2005). The premise of these methods is that the be-
liefs – distributions over all the physical states – contain more information than required in order
to plan near-optimally. Poupart and Boutilier (2003) use Krylov subspaces (Saad, 1996) to directly
compress the POMDP model, and analyze the effect of the compression on the decision quality.
To ensure lossless compression, i.e. the decision quality at each compressed belief is not compro-
mised, the transition and reward functions must be linear. Roy et al. (2005) proposed using principal
component analysis (Collins, Dasgupta, & R.E.Schapire, 2002) to uncover a low dimensional belief
subspace that usually encompasses a robot’s potential beliefs. The method is based on the obser-
vation that beliefs along many real-world trajectories exhibit only a few degrees of freedom. The
effectiveness of these methods is problem specific; indeed, it is possible to encounter problems
where no substantial belief compression may occur. When applied to the I-POMDP framework, the
effectiveness of the compression techniques would depend, for example, on the existence of agent
models whose likelihoods within the agent’s belief do not change after successive belief updates
or on the existence of correlated agent models. Whether such models exist in practice is a topic of
future work.

Techniques that address the curse of history in POMDPs also exist. Poupart and Boutilier (2004)
generate policies via policy iteration using finite state controllers with a bounded number of nodes.
Pineau et al. (2006) perform point-based value iteration (PBVI) by selecting a small subset of reach-
able belief points at each step from the belief simplex and planning only over these belief points.
Doshi and Perez (2008) outline the challenges and develop PBVI for I-POMDPs. Though our
method of mitigating the curse of history is conceptually close to point based selection methods, we
focus on plan computation when the initial belief is known while the previously mentioned methods
are typically utilized for offline planning. An approximate way of solving POMDPs online is the
RTBSS approach (Paquet, Tobin, & Chaib-draa, 2005; Ross et al., 2008) that adopts the branch-and-
bound technique for pruning the look ahead reachability tree. This approach focuses on selecting
the best action to expand which is complementary to our approach of sampling the observations.
Further, its extension to the multiagent setting as formalized by I-POMDPs may not be trivial due
to the need for a bounding heuristic function whose formulation in multiagent settings remains to
be investigated.

3. Background: Particle Filter for the Single Agent Setting

To act rationally in uncertain settings, agents need to track the evolution of the state over time,
based on the actions they perform and the available observations. In single agent settings, the
state estimation is usually accomplished with a technique called the Bayes filter (Russell & Norvig,

301

DOSHI & GMYTRASIEWICZ

2003). A Bayes filter allows the agent to maintain a belief about the state of the world at any given
time, and update this belief each time an action is performed and new sensory information arrives.
The convenience of this approach lies in the fact that the update is independent of the past percepts
and action sequences. This is because the agent’s belief is a sufficient statistic: it fully summarizes
all of the information contained in past actions and observations.

The operation of a Bayes filter can be decomposed into a two-step process:

• Prediction: When an agent performs a new action, at−1, its prior belief state is updated:

Pr(st|at−1, bt−1) =
∫

st−1

bt−1(st−1)T (st|st−1, at−1)dst−1 (1)

• Correction: Thereafter, when an observation, ot, is received, the intermediate belief state,
Pr(·|at−1, bt−1), is corrected:

Pr(st|ot, at−1, bt−1) = αO(ot|st, at−1)Pr(st|at−1, bt−1) (2)

where α is the normalizing constant, T is the transition function that gives the uncertain effect
of performing an action on the physical state, and O is the observation function which gives
the likelihood of receiving an observation from a state on performing an action.

Particle filters (PF) (Gordon et al., 1993; Doucet et al., 2001) are specific implementations
of Bayes filters tailored toward making Bayes filters applicable to non-linear dynamic systems.
Rather than sampling directly from the target distribution which is often difficult, PFs adopt the
method of importance sampling (Geweke, 1989), which allows samples to be drawn from a more
tractable distribution called the proposal distribution, π. For example, if Pr(St|ot, at−1, bt−1) is
the target posterior distribution, and π(St|ot, at−1, bt−1) the proposal distribution, and the support
of π(St|ot, at−1, bt−1) includes the support of Pr(St|ot, at−1, bt−1), we can approximate the target
posterior by sampling N i.i.d. particles {s(n), n = 1...N} according to π(St|ot, at−1, bt−1) and
assigning to each particle a normalized importance weight:

w(n) =
w̃(s(n))∑N

n=1 w̃(s(n))
where w̃(s(n)) =

Pr(s(n)|ot, at−1, bt−1)
π(s(n)|ot, at−1, bt−1)

Each true probability, Pr(s|ot, at−1, bt−1), is then approximated by:

PrN (s|ot, at−1, bt−1) =
N∑

n=1

w(n)δD(s− s(n))

where δD(·) is the Dirac-delta function. As N →∞, PrN (s|ot, at−1, bt−1) a.s.→ Pr(s|ot, at−1, bt−1).
When applied recursively over several steps, importance sampling leads to a large variance in the
weights. To avoid this degeneracy, Gordon et al. (1993) suggested inserting a resampling step,
which would increase the population of those particles that had high importance weights. This has
the beneficial effect of focusing the particles in the high likelihood regions supported by the ob-
servations and increasing the tracking ability of the PF. Since particle filtering extends importance
sampling sequentially and appends a resampling step, it has also been called sequential importance
sampling and resampling (SISR).

302

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

The general algorithm for the particle filtering technique is given by Doucet et al. (2001). We
concentrate on a specific implementation of this algorithm, that has previously been studied under
various names such as MC localization, survival of the fittest, and the bootstrap filter. The im-
plementation maintains a set of N particles denoted by b̃t−1 independently sampled from the prior,
bt−1, and takes an action and observation as input. Each particle is then propagated forwards in time,
using the transition kernel T of the environment. Each particle is then weighted by the likelihood
of perceiving the observation from the state that the particle represents, as given by the observation
function O. This is followed by the (unbiased) resampling step, in which particles are picked pro-
portionately to their weights, and a uniform weight is subsequently attached to each particle. We
outline the algorithm of the bootstrap filter in Fig. 1. Crisan and Doucet (2002) outline a rigorous
proof of the convergence of this algorithm toward the true posterior as N →∞.

Function PARTICLEFILTER(̃bt−1, at−1, ot) returns b̃t

1. b̃tmp ← φ, b̃t ← φ
Importance Sampling

2. for all s(n),t−1 ∈ b̃t−1 do
3. Sample s(n),t ∼ T (St|at−1, s(n),t−1)
4. Weight s(n),t with the importance weight:

w̃(n) = O(ot|s(n),t, at−1)
5. b̃tmp ∪← (s(n),t, w̃(n))
6. Normalize all w̃(n) so that

∑N
n=1 w(n) = 1

Selection
7. Resample with replacement N particles {s(n),t, n = 1...N}

from the set b̃tmp according to the importance weights.
8. b̃t ← {s(n),t, n = 1...N}
9. return b̃t

end function

Figure 1: The particle filtering algorithm for approximating the Bayes filter.

Let us understand the working of the PF in the context of a simple example – the single agent
tiger problem (Kaelbling, Littman, & Cassandra, 1998). The single agent tiger problem resembles
a game show in which the agent has to choose to open one of two doors behind which lies either a
valuable prize or a dangerous tiger. Apart from actions that open doors, the subject has the option of
listening for the tiger’s growl coming from the left, or the right door. However, the subject’s hearing
is imperfect, with given percentages (say, 15%) of false positive and false negative occurrences.
Following Kaelbling et al. (1998), we assume that the value of the prize is 10, that the pain associated
with encountering the tiger can be quantified as -100, and that the cost of listening is -1.

Let the agent have a prior belief according to which it is uninformed about the location of the
tiger. In other words, it believes with a probability of 0.5 that the tiger is behind the left door (TL),
and with a similar probability that the tiger is behind the right door (TR). We will see how the agent
approximately updates its belief using the particle filter when, say, it listens (L) and hears a growl
from the left (GL). Fig. 2 illustrates the particle filtering process. Since the agent is uninformed
about the tiger’s location, we start with an equal number of particles (samples) denoting TL (lightly

303

DOSHI & GMYTRASIEWICZ

Propagate ResampleWeight

L

GL

~
bi

t-1 ~
b i

tmp ~bi
t

Prediction step Correction step

Figure 2: Particle filtering for state estimation in the single agent tiger problem. The light and dark
particles denote the states TL and TR respectively. The particle filtering process consists
of three steps: Propagation (line 3 of Fig. 1), Weighting (line 4), and Resampling (line 7).

shaded) and TR (darkly shaded). The initial sample set is approximately representative of the agent’s
prior belief of 0.5. Since listening does not change the location of the tiger, the composition of the
sample set remains unchanged after propagation. On hearing a growl from the left, the light particles
denoting TL will be tagged with a larger weight (0.85) because they are more likely to be responsible
for GL, than the dark particles denoting TR (0.15). Here, the size of the particle is proportional to
the weight attached to the particle. Finally, the resampling step yields the sample set at time step t,
which contains more particles denoting TL than TR. This sample set approximately represents the
updated belief of 0.85 of the agent that the tiger is behind the left door. Note that the propagation
carries out the task of prediction as shown in Eq. 1 approximately, while the correction step (Eq. 2)
is approximately performed by weighting and resampling.

4. Overview of Finitely Nested I-POMDPs

I-POMDPs (Gmytrasiewicz & Doshi, 2005) generalize POMDPs to handle multiple agents. They do
this by including models of other agents in the state space. We focus on finitely nested I-POMDPs
here, which are the computable counterparts of I-POMDPs in general. For simplicity of presentation
let us consider an agent, i, that is interacting with one other agent, j. The arguments generalize to a
setting with more than two agents in a straightforward manner.

Definition 1 (I-POMDPi,l). A finitely nested interactive POMDP of agent i, I-POMDPi,l, is:

I-POMDPi,l = 〈ISi,l, A, Ti, Ωi, Oi, Ri〉

where:
• ISi,l is a set of interactive states defined as ISi,l = S ×Mj,l−1, l ≥ 1, and ISi,0 = S,1 where S
is the set of states of the physical environment, and Mj,l−1 is the set of possible models of agent j.

1. If there are more agents participating in the interaction, K > 2, then ISi,l = S ×K−1
j=1 Mj,l−1

304

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Each model, mj,l−1 ∈ Mj,l−1, is defined as a triple, mj,l−1 = 〈hj , fj , Oj〉, where fj : Hj → Δ(Aj)
is agent j’s function, assumed computable, which maps possible histories of j’s observations, Hj ,
to distributions over its actions. hj is an element of Hj , and Oj is a function, also computable,
specifying the way the environment is supplying the agent with its input. For simplicity, we may
write model mj,l−1 as mj,l−1 = 〈hj , m̂j〉, where m̂j consists of fj and Oj .

A specific class of models are the (l−1)th level intentional models, Θj,l−1, of agent j: θj,l−1 =
〈bj,l−1, A,Ωj , Tj , Oj , Rj , OCj〉. bj,l−1 is agent j’s belief nested to the level l−1, bj,l−1 ∈ Δ(ISj,l−1),
and OCj is j’s optimality criterion. Rest of the notation is standard. We may rewrite θj,l−1 as,
θj,l−1 = 〈bj,l−1, θ̂j〉, where θ̂j ∈ Θ̂j includes all elements of the intentional model other than the
belief and is called the agent j’s frame. The intentional models are analogous to types as used in
Bayesian games (Harsanyi, 1967).

As mentioned by Gmytrasiewicz and Doshi (2005), we may also ascribe the subintentional
models, SMj , which constitute the remaining models in Mj,l−1. Examples of subintentional models
are finite state controllers and fictitious play models (Fudenberg & Levine, 1998). While we do not
consider these models here, they could be accommodated in a straightforward manner.

In order to promote understanding, let us define the finitely nested interactive state space in an
inductive manner:

ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ Δ(ISj,0), A = Aj},
ISi,1 = S ×Θj,0, Θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ Δ(ISj,1)},

. .

. .

. .

ISi,l = S ×Θj,l−1, Θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ Δ(ISj,l)}.
Recursive characterizations of state spaces analogous to above have appeared previously in the

game-theoretic literature (Mertens & Zamir, 1985; Brandenburger & Dekel, 1993; Battigalli &
Siniscalchi, 1999) where they have led to the definitions of hierarchical belief systems. These have
been proposed as mathematical formalizations of type spaces in Bayesian games. Additionally,
the nested beliefs are, in general, analogous to hierarchical priors utilized for Bayesian analysis of
hierarchical data (Gelman et al., 2004). Hierarchical priors arise when unknown priors are assumed
to be drawn from a population distribution, whose parameters may themselves be unknown thereby
motivating a higher level prior.

• A = Ai ×Aj is the set of joint moves of all agents.

• Ti is a transition function, Ti : S×A×S → [0, 1] which describes the results of the agent’s actions
on the physical states of the world. (It is assumed that actions can directly change the physical state
only, see Gmytrasiewicz & Doshi, 2005).

• Ωi is the set of agent i’s observations.

• Oi is an observation function, Oi : S ×A× Ωi → [0, 1] which gives the likelihood of perceiving
observations in the state resulting from performing the action. (It is assumed that only the physical
state is directly observable, and not the models of the other agent.)

• Ri is defined as, Ri : ISi ×A → R. While an agent is allowed to have preferences over physical
states and models of other agents, usually only the physical state will matter.

305

DOSHI & GMYTRASIEWICZ

4.1 Belief Update

Analogous to POMDPs, an agent within the I-POMDP framework also updates its belief as it acts
and observes. However, there are two differences that complicate a belief update in multiagent
settings, when compared to single agent ones. First, since the state of the physical environment
depends on the actions performed by both agents, the prediction of how the physical state changes
has to be made based on the predicted actions of the other agent. The probabilities of other’s actions
are obtained based on its models. Second, changes in the models of the other agent have to be
included in the update. Specifically, since the other agent’s model is intentional the update of the
other agent’s beliefs due to its new observation has to be included. In other words, the agent has to
update its beliefs based on what it anticipates that the other agent observes and how it updates. The
belief update function for an agent in the finitely nested I-POMDP framework is:

bt
i(is

t) = α
∫

ist−1:θ̂t−1
j =θ̂t

j

bt−1
i,l (ist−1)

∑
at−1

j

Pr(at−1
j |θt−1

j,l−1) Oi(st, at−1, ot
i) Ti(st−1, at−1, st)

×∑
ot

j

δD(SE
θ̂t
j
(bt−1

j,l−1, a
t−1
j , ot

j)− bt
j,l−1) Oj(st, at−1, ot

j) d ist−1

(3)
where α is the normalization constant, δD is the Dirac-delta function, SE

θ̂t
j
(·) is an abbreviation

denoting the belief update, and Pr(at−1
j |θt−1

j,l−1) is the probability that at−1
j is Bayes rational for the

agent described by θt−1
j,l−1.

If j is also modeled as an I-POMDP, then i’s belief update invokes j’s belief update (via the term
SE

θ̂t
j
(bt−1

j,l−1, a
t−1
j , ot

j)), which in turn invokes i’s belief update and so on. This recursion in belief

nesting bottoms out at the 0th level. At this level, belief update of the agent reduces to a POMDP
based belief update. 2 For an illustration of the belief update, additional details on I-POMDPs, and
how they compare with other multiagent planning frameworks, see (Gmytrasiewicz & Doshi, 2005).

In a manner similar to the belief update in POMDPs, the following proposition holds for the
I-POMDP belief update. The proposition results from noting that Eq. 3 expresses the belief in
terms of parameters of the previous time step only. A complete proof of the belief update and this
proposition is given by Gmytrasiewicz and Doshi (2005).

Proposition 1. (Sufficiency) In a finitely nested I-POMDPi,l of agent i, i’s current belief, i.e., the
probability distribution over the set S × Θj,l−1, is a sufficient statistic for the past history of i’s
observations.

4.2 Value Iteration

Each level l belief state in I-POMDPi,l has an associated value reflecting the maximum payoff the
agent can expect in this belief state:

U t(〈bi,l, θ̂i〉) = max
ai∈Ai

{ ∫
is∈ISi,l

ERi(is, ai)bi,l(is)d is+

γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)U t−1(〈SE
θ̂i

(bi,l, ai, oi), θ̂i〉)
} (4)

2. The 0th level model is a POMDP: Other agent’s actions are treated as exogenous events and folded into T, O, and R.

306

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

where, ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |θj,l−1) (since is = (s, θj,l−1)).

Eq. 4 is a basis for value iteration in I-POMDPs, and can be succinctly rewritten as U t =
HU t−1, where H is commonly known as the value backup operator. Analogous to POMDPs, H
is both isotonic and contracting, thereby making the value iteration convergent (Gmytrasiewicz &
Doshi, 2005).

Agent i’s optimal action, a∗i , for the case of finite horizon with discounting, is an element of the
set of optimal actions for the belief state, OPT (θi), defined as:

OPT (〈bi,l, θ̂i〉) = argmax
ai∈Ai

{ ∫
is∈ISi,l

ERi(is, ai)bi,l(is)d is+

γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)U(〈SE
θ̂i

(bi,l, ai, oi), θ̂i〉)
} (5)

5. Example: The Multiagent Tiger Problem

To illustrate our approximation methods, we utilize the multiagent tiger problem as an example. The
multiagent tiger problem is a generalization of the single agent tiger problem outlined in Section 3
to the multiagent setting. For the sake of simplicity, we restrict ourselves to a two-agent setting, but
the problem is extensible to more agents in a straightforward way.

In the two-agent tiger problem, each agent may open doors or listen. To make the interaction
more interesting, in addition to the usual observation of growls, we added an observation of door
creaks, which depends on the action executed by the other agent. Creak right (CR) is likely due to
the other agent having opened the right door, and similarly for creak left (CL). Silence (S) is a good
indication that the other agent did not open doors and listened instead. We assume that the accuracy
of creaks is 90%, while the accuracy of growls is 85% as before. Again, the tiger location is chosen
randomly in the next time step if any of the agents opened any doors in the current step. We also
assume that the agent’s payoffs are analogous to the single agent version. Note that the result of
this assumption is that the other agent’s actions do not impact the original agent’s payoffs directly,
but rather indirectly by resulting in states that matter to the original agent. Table 1 quantifies these
factors.

When an agent makes its choice in the multiagent tiger problem, it may find it useful to consider
what it believes about the location of the tiger, as well as whether the other agent will listen or
open a door, which in turn depends on the other agent’s beliefs, preferences and capabilities. In
particular, if the other agent were to open any of the doors, the tiger’s location in the next time
step would be chosen randomly. The information that the agent had about the tiger’s location till
then, would reduce to zero. We simplify the situation somewhat by assuming that all of the agent
j’s properties, except for beliefs, are known to i, and that j’s time horizon is equal to i’s. In other
words, i’s uncertainty pertains only to j’s beliefs and not to its frame.

6. Representing Prior Nested Beliefs

As we mentioned, there is an infinity of intentional models of an agent. Since an agent is unaware
of the true models of interacting agents ex ante, it must maintain a belief over all possible candidate
models. The complexity of this space precludes practical implementations of I-POMDPs for all

307

DOSHI & GMYTRASIEWICZ

〈ai, aj〉 State TL TR
〈OL, ∗〉 * 0.5 0.5
〈OR, ∗〉 * 0.5 0.5
〈∗, OL〉 * 0.5 0.5
〈∗, OR〉 * 0.5 0.5
〈L,L〉 TL 1.0 0
〈L,L〉 TR 0 1.0

〈ai, aj〉 TL TR
〈OR,OR〉 10 -100
〈OL,OL〉 -100 10
〈OR,OL〉 10 -100
〈OL,OR〉 -100 10
〈L,L〉 -1 -1
〈L,OR〉 -1 -1
〈OR,L〉 10 -100
〈L,OL〉 -1 -1
〈OL,L〉 -100 10

〈ai, aj〉 TL TR
〈OR,OR〉 10 -100
〈OL,OL〉 -100 10
〈OR,OL〉 -100 10
〈OL,OR〉 10 -100
〈L,L〉 -1 -1
〈L,OR〉 10 -100
〈OR,L〉 -1 -1
〈L,OL〉 -100 10
〈OL,L〉 -1 -1

Transition function: Ti = Tj Reward functions of agents i and j

〈ai, aj〉 State 〈 GL, CL 〉 〈 GL, CR 〉 〈 GL, S 〉 〈 GR, CL 〉 〈 GR, CR 〉 〈 GR, S 〉
〈L,L〉 TL 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9
〈L,L〉 TR 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9
〈L,OL〉 TL 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05
〈L,OL〉 TR 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05
〈L,OR〉 TL 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05
〈L,OR〉 TR 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05
〈OL, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6
〈OR, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

〈ai, aj〉 State 〈 GL, CL 〉 〈 GL, CR 〉 〈 GL, S 〉 〈 GR, CL 〉 〈 GR, CR 〉 〈 GR, S 〉
〈L,L〉 TL 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9
〈L,L〉 TR 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9
〈OL,L〉 TL 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05
〈OL,L〉 TR 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05
〈OR,L〉 TL 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05
〈OR,L〉 TR 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05
〈∗, OL〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6
〈∗, OR〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

Observation functions of agents i and j.

Table 1: Transition, reward, and observation functions for the multiagent tiger problem.

but the simplest settings. Approximations based on sampling use a finite set of sample points to
represent a complete belief state.

In order to sample from nested beliefs we first need to represent them. Agent i’s level 0 belief,

bi,0 ∈ Δ(S), is a vector of probabilities over each physical state: bi,0
def
= 〈 pi,0(s1), pi,0(s2),

. . ., pi,0(s|S|) 〉. The first and second subscripts of bi,0 denote the agent and the level of nesting,

respectively. Since belief is a probability distribution,
∑|S|

q=1 pi,0(sq) = 1. We refer to this constraint

as the simplex constraint. As we may write, pi,0(s|S|) = 1 −∑|S|−1
q=1 pi,0(sq), subsequently, only

|S| − 1 probabilities are needed to specify a level 0 belief.

For the tiger problem, let s1 = TL and s2 = TR. An example level 0 belief of i for the tiger

problem, bi,0
def
= 〈pi,0(TL), pi,0(TR)〉, is 〈0.7, 0.3〉 that assigns a probability of 0.7 to TL and 0.3

to TR. Knowing pi,0(TL) is sufficient for a complete specification of the level 0 belief.

308

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Agent i’s first level belief, bi,1 ∈ Δ(S × Θj,0), is a vector of densities over j’s level 0 beliefs,
one for each combination of state and j’s frame and possibly distinct from each other. Hence,

there are |S||Θ̂j | such densities: bi,1
def
= 〈 p

〈s,θ̂j〉1
i,1 , p

〈s,θ̂j〉2
i,1 , . . ., p

〈s,θ̂j〉|S||Θ̂j |
i,1 〉, where 〈s, θ̂j〉k,

k = 1, . . . , |S||Θ̂j | is a particular state and j’s frame combination. Because of the simplex con-
straint, the sum of integrals of the level 1 densities over the level 0 beliefs must be 1. We observe
that the level 1 densities may be represented using any family of probability distributions such as
exponential family (Dobson, 2002) or polynomials that allow approximation of any function up to
arbitrary accuracy. As such, the densities could exhibit any shape given that they satisfy the simplex
constraint.

 0.494

 0.496

 0.498

 0.5

 0.502

 0.504

 0.506

 0 0.2 0.4 0.6 0.8 1

p

 (
p

)

p (TL)
j,0

<T
L

,m
’>

j,0
i,1

i,1

�
<

T
L

,

’>
p

(p

)

j,0

 0.494

 0.496

 0.498

 0.5

 0.502

 0.504

 0.506

 0 0.2 0.4 0.6 0.8 1

p

(p

)

p (TL)
j,0

 j,
0

i,1
<T

R
,m

’ >

i,1
p

 (

p

)
 j,

0

�
<

T
R

,

’>

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

p

 (
p

)

p (TL)
j,0

<T
L

,m
’>

 i,
1

 j,
0

<T
L

,
 ’

>
�

p

 (
p

)
 j,

0
 i,

1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1

p

(p

)

p (TL)
j,0

i,1
 j,

0
<T

R
,m

’ >�
<

T
R

,

’>
i,1

p

 (
p

)

j,0

(b)

Figure 3: Example level 1 beliefs of i in the two-agent tiger problem. (a) According to this belief,
i is uninformed of j’s level 0 beliefs. Since the marginal of each plot is 0.5, i is also
unaware of the location of the tiger. (b) Agent i believes that j likely knows the location

of the tiger (
∫ 0.5
0 p

〈TL,θ̂′〉
i,1 (pj,0)dpj,0 �

∫ 1
0.5 p

〈TL,θ̂′〉
i,1 (pj,0)dpj,0), though i itself is unaware

of it as the marginal of each plot is 0.5.

An example level 1 belief of i, bi,1
def
= 〈p〈TL,θ̂′j〉

i,1 , p
〈TR,θ̂′j〉
i,1 〉, in the tiger problem is one according

to which i is uninformed about j’s level 0 beliefs and about the location of the tiger (see Fig. 3(a)).
The superscript, θ̂′j , is agent j’s frame that is known to i. Another example level 1 belief of i is one
according to which it believes that j likely knows the location of the tiger (Fig. 3(b)).

Agent i’s second level belief, bi,2 ∈ Δ(S×Θj,1), is a vector of densities over j’s level 1 beliefs
for each state and j’s intentional frame. In comparison to level 0 and level 1 beliefs, represent-
ing doubly-nested beliefs and beliefs with deeper nestings is not trivial. This is because these are
distributions over density functions whose representations need not be finite. For example, let j’s

309

DOSHI & GMYTRASIEWICZ

singly-nested belief densities be represented using the family of polynomials. Then, i’s doubly-
nested belief over j’s densities is a vector of normalized mathematical functions of variables where
the variables are the parameters of lower-level densities. Because the lower level densities are poly-
nomials which could be of any degree and therefore any number of coefficients, the functions that
represent doubly-nested beliefs may have an indefinite number of variables. Thus computable rep-
resentations of i’s level 2 beliefs are not trivially obtained. We formalize this observation using
Proposition 2, which shows that multiply-nested beliefs are necessarily partial functions that fail to
assign a probability to some elements (lower level beliefs) in their domain.

Proposition 2. Agent i’s multiply nested belief, bi,l, l ≥ 2, is strictly a partial recursive function.

Proof. We briefly revisit the definition of nested beliefs: bi,l ∈Δ(ISi,l) = Δ(S×Θj,l−1) = Δ(S×
〈Bj,l−1, Θ̂j〉), where Bj,l−1 is the level l − 1 belief simplex and Θ̂j is the set of frames of j. As
the basis case, let l = 2, then bi,2 ∈ Δ(S × 〈Bj,1, Θ̂j〉). Because the state and frame spaces are
discrete, bi,2 may be represented using a collection of density functions on j’s beliefs, one for each

discrete state and j’s frame combination, p
〈s,θ̂j〉
i,2 (bj,1), where bj,1 ∈ Bj,1. Notice that, bj,1 being

singly-nested, is itself a collection of densities over j’s level 0 beliefs, one for each state and i’s

frame combination. Thus, as mentioned before let bj,1
def
= 〈 p

〈s,θ̂i〉1
j,1 , p

〈s,θ̂i〉2
j,1 , . . ., p

〈s,θ̂i〉|S||Θ̂i|
j,1 〉.

Recall from Section 4 that the models and therefore the belief density functions are assumed

computable. Let x be the program of length in bits, l(x), that encodes, say p
〈s,θ̂i〉1
j,1 , in the language

g. Then define the complexity of the density function, p
〈s,θ̂i〉1
j,1 , as: Cg(p

〈s,θ̂i〉1
j,1) = min {l(x) :

g(x) = p
〈s,θ̂i〉1
j,1 }. Cg(·) is the minimum length program in language g that computes the argument.3

We observe that l(x) is proportional to the number of parameters that describe p
〈s,θ̂i〉1
j,1 . Because the

number of parameters of a density need not be bounded, l(x) and consequently the complexity of
the density may not be finite. Intuitively, this is equivalent to saying that the density could have
“any shape”.

Assume, by way of contradiction, that the level 2 density function, p
〈s,θ̂j〉
i,2 is a total recursive

function. Construct a Turing machine, T , that computes it. Because p
〈s,θ̂j〉
i,2 is total, T will halt on all

inputs. Specifically, T will read the set of symbols on its input tape that describe the level 1 density
function (the program, x), and once it has finished reading it halts and leaves a number between 0
and 1 on the output tape. This number is the output of the density function encoded by T . Note that
T does not execute the input program x, but simply parses it to enable identification. Thus T is not
a universal Turing machine. As we mentioned previously, the minimum length program (and hence
the complexity) that encodes the level l density function may be infinite. Thus the size of the set of
symbols on the input tape of T , l(x), may be infinite, and T may not halt. But this is a contradiction.

Thus, p
〈s,θ̂j〉
i,2 is a partial recursive function.

The argument may be extended inductively to further levels of nesting.

As multiply-nested beliefs in their general form are partial recursive functions that are not de-
fined for every possible lower level belief in their domain, restrictions on the complexity of the

3. Note that the complexity, Cg , is within a constant of the Kolmogorov complexity (Li & Vitanyi, 1997) of the density

function, p
〈s,θ̂i〉1
j,1 .

310

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

nested beliefs (where complexity is as defined in Proposition 2) are needed to allow for computabil-
ity and so that they are well-defined. One way is to focus our attention on limited representations
involving a bounded number of parameters.

Because of these complications, a general-purpose language for representing nested beliefs is
beyond the scope of this article and we do not attempt it here; it is a topic of continuing investiga-
tions. Instead, we utilize specific examples of doubly-nested and more deeply nested beliefs for our
experiments in the remainder of this article.

7. Decomposing the I-POMDP Belief Update

Analogous to Eqs. 1 and 2 of the Bayes filter, we decompose the I-POMDP belief update into two
steps. The decomposition not only facilitates a better understanding of the belief update, but also
plays a pivotal role in the development of the approximation.

• Prediction: When an agent, say i, performs an action at−1
i , and agent j performs at−1

j , the
predicted belief state is:

Pr(ist|at−1
i , at−1

j , bt−1
i,l) =

∫
ISt−1:θ̂t−1

j =θ̂t
j
bt−1
i,l (ist−1)Pr(at−1

j |θt−1
j,l−1)

×Ti(st−1, at−1
i , at−1

j , st)
∑

ot
j
Oj(st, at−1

i , at−1
j , ot

j)

×δD(SE
θ̂t
j
(bt−1

j,l−1, a
t−1
j , ot

j)− bt
j,l−1) d ist−1

(6)

where δD is the Dirac-delta function, SE
θ̂t
j
(·) is an abbreviation for the belief update, Pr(at−1

j

| θt−1
j,l−1) is the probability that at−1

j is Bayes rational for the agent described by θt−1
j,l−1.

• Correction: When agent i perceives an observation, ot
i, the corrected belief state is a weighted

sum of the predicted belief states for each possible action of j:

Pr(ist|ot
i, a

t−1
i , bt−1

i,l) = α
∑
at−1

j

Oi(st, at−1
i , at−1

j , ot
i)Pr(ist|at−1

i , at−1
j , bt−1

i,l) (7)

where α is the normalizing constant.

Equations 6 and 7 along with Proposition 1 may be seen as a generalization of the single agent
Bayes filter (see Section 3) to the multiagent setting. At a general level, these equations represent
an application of the update of hierarchical priors given observed data (Gelman et al., 2004) to the
problem of state estimation in multiagent settings.

8. Interactive Particle Filter for the Multiagent Setting

We presented the algorithm for the traditional bootstrap filter in Section 3. As we mentioned before,
the bootstrap filter is a MC sampling based randomized implementation of the POMDP belief update
(Bayes filter). We generalize this implementation so as to approximate the I-POMDP belief update
steps presented previously in Section 7.

311

DOSHI & GMYTRASIEWICZ

8.1 Description

Our generalization of the PF to the multiagent case, which we call an interactive particle filter
(I-PF), similar to the basic PF, involves the key steps of importance sampling and selection. The
resulting algorithm inherits the convergence properties of the original algorithm (Doucet et al.,
2001). Specifically, the approximate posterior belief generated by the filter converges to the truth
(as computed by Eqs. 6 and 7) as the number of particles (N) tends to infinity. Note that the presence
of other agents does not affect the convergence because, (a) the exact belief update that provides the
stationary point similarly reasons about the presence of other agents, and (b) we explicitly model
other agents’ actions due to which the nonstationarity in the environment vanishes.

The extension of the PF to the multiagent setting turns out to be nontrivial because we are
faced with predicting the other agent’s action(s), which requires us to deal with an interactive belief
hierarchy. Analogously to the I-POMDP belief update, the I-PF reduces to the traditional PF when
there is only one agent in the environment.

The I-PF, described in Fig. 4, requires an initial set of N particles, b̃t−1
k,l , that is approximately

representative of the agent’s prior belief, along with the action, at−1
k , the observation, ot

k, and the
level of belief nesting, l > 0. As per our convention, k will stand for either agent i or j, and −k for
the other agent, j or i, as appropriate. Each particle, is

(n)
k , in the sample set represents the agent’s

possible interactive state, in which the other agent’s belief may itself be a set of particles. Formally,
is

(n)
k = 〈s(n), θ(n)−k 〉, where θ

(n)
−k = 〈̃b(n)−k,l−1, θ̂

(n)
−k 〉. Note that b̃

(n)
k,0 is a probability distribution over

the physical state space.
We generate b̃t−1

k,l by sampling N particles from the prior nested belief. Given a prior nested
belief, this is a simple recursive procedure that first uses the marginals over the physical states and
frames at the current nesting level to sample the state and frame of the other agent. We then sample
N particles from the density over the lower level beliefs, conditioned on the sampled state and frame
combination. If the belief is multiply nested, this operation is recursively performed bottoming out
at the lowest level where the other agent’s flat (level 0) beliefs are sampled.

The interactive particle filtering proceeds by propagating each particle forward in time. How-
ever, as opposed to the traditional particle filtering, this is not a one-step process: (i) In order to
perform the propagation, other agent’s action must be known. As the model ascribed to the other
agent is intentional, this is obtained by solving the other agent’s model (using the algorithm AP-
PROXPOLICY described later in Section 9) to find a distribution over its actions, from which its
action is sampled (lines 3–4 in Fig. 4). Specifically, if OPT is the set of optimal actions obtained
by solving the model, then Pr(a−k) = 1

|OPT | if a−k is in OPT, 0 otherwise. (ii) Additionally,
analogous to the exact belief update, for each of the other agent’s possible observations, we must
update its model (line 6). Because the model is intentional, we must update its belief state. If l > 1,
updating the other agent’s belief requires recursively invoking the I-PF for performing its belief up-
date (lines 12–14). This recursion in depth of the belief nesting terminates when the level of nesting
becomes one, and a LEVEL0BELIEFUPDATE, described in Fig. 5, is performed (lines 8–10).4 In
addition to using the agent’s own observation for weighting, the other agent’s observations also par-
ticipate in the weighting process (lines 15–16). The latter allows us to distinguish j’s beliefs that are
more likely given the physical state. Though the propagation and weighting steps generate |Ω−k|N
appropriately weighted particles, we resample N particles out of these (line 19), using an unbiased

4. If the physical state space is also continuous or very large, then we would replace the level 0 belief update with a
traditional particle filter. However, in doing so, we would loose the theoretical bounds given in Section 9.1

312

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Function I-PARTICLEFILTER (̃bt−1
k,l , at−1

k , ot
k, l > 0) returns b̃t

k,l

1. b̃tmp
k,l ← φ, b̃t

k,l ← φ

Importance Sampling

2. for all is
(n),t−1
k = 〈s(n),t−1, θ

(n),t−1
−k 〉 ∈ b̃t−1

k,l do

3. Pr(A−k|θ(n),t−1
−k) ← APPROXPOLICY(θ(n),t−1

−k , l − 1)

4. Sample at−1
−k ∼ Pr(A−k|θ(n),t−1

−k) // Sample other agent’s action
5. Sample s(n),t ∼ Tk(St|at−1

k , at−1
−k , s(n),t−1) // Sample the physical state

6. for all ot
−k ∈ Ω−k do // Update other agent’s belief

7. if (l = 1) then // I-POMDP is singly nested

8. b
(n),t
−k,0 ← LEVEL0BELIEFUPDATE(b(n),t−1

−k,0 , at−1
−k , ot

−k)

9. θ
(n),t
−k ← 〈b(n),t

−k,0, θ̂
(n)
−k 〉

10. is
(n),t
k ← 〈s(n),t, θ

(n),t
−k 〉

11. else // I-POMDP is multiply nested

12. b̃
(n),t
−k,l−1 ← I-PARTICLEFILTER(̃b(n),t−1

−k,l−1 , at−1
−k , ot

−k, l − 1)

13. θ
(n),t
−k ← 〈 b̃

(n),t
−k,l−1, θ̂

(n)
−k 〉

14. is
(n),t
k ← 〈s(n),t, θ

(n),t
−k 〉

15. Weight is
(n),t
k : w

(n)
t ← O−k(ot

−k|s(n),t, at−1
k , at−1

−k)
16. Adjust weight: w

(n)
t ← w

(n)
t ×Ok(ot

k|s(n),t, at−1
k , at−1

−k)
17. b̃tmp

k,l
∪← (is(n),t

k , w
(n)
t)

18. Normalize all w
(n)
t so that

∑N
n=1 w

(n)
t = 1

Selection

19. Resample with replacement N particles {is(n),t
k , n = 1...N}

from the set b̃tmp
k,l according to the importance weights.

20. b̃t
k,l ← {is(n),t

k , n = 1...N}
21. return b̃t

k,l

end function

Figure 4: Interactive particle filtering for approximating the I-POMDP belief update. A nesting of
filters is used to update all levels of the belief. k denotes either agent i or j, and −k the
other agent, j or i, as appropriate. Also see Fig. 6 for a visualization.

resampling scheme. Lines 2–15 represent a simulation of the prediction step (Eq. 6), while lines
16–20 are the simulated implementation of the correction step (Eq. 7).

An alternative approach within the propagation step is to sample the other agent’s observation
because it is a hidden variable. We may then update its belief given the sampled observation.
Although statistically equivalent to our approach, it involves an additional step of sampling, which
further contributes to the sources of error in the I-PF. In particular, for lesser number of particles,
other agent’s beliefs resulting from low probability observations may not appear in the resampled
posterior. This is because other agent’s low probability observations are less likely to be sampled.
Because the original agent’s observation is independent of the other’s belief, particles with identical
physical states but different beliefs of the other are weighted equally. As the beliefs resulting from
low probability observations are less frequent in the sample set, they are less likely to be picked
in the resampled posterior. In comparison, weighting using the other agent’s observation removes

313

DOSHI & GMYTRASIEWICZ

Function LEVEL0BELIEFUPDATE (bt−1
k,0 , at−1

k , ot
k) returns bt

k,0

1. Pr(at−1
−k) ← 1/at−1

−k // Other agent’s action as noise
2. for all st ∈ S do
3. sum ← 0
4. for all st−1 ∈ S do
5. Pr(st|st−1, at−1

k) ← 0
6. for all at−1

−k ∈ A−k do // Marginalize noise

7. Pr(st|st−1, at−1
k) +← Tk(st|st−1, at−1

k , at−1
−k)Pr(at−1

−k)
8. sum

+← Pr(st|st−1, at−1
k)bt−1

k (st−1)
9. Pr(ot

k|st, at−1
k) ← 0

10. for all at−1
−k ∈ A−k do // Marginalize noise

11. Pr(ot
k|st, at−1

k) +← Ok(ot
k|st, at−1

k , at−1
−k)Pr(at−1

−k)
12. bt

k,0(s
t) ← Pr(ot

k|st, at−1
k)× sum

13. Normalize the belief, bt
k

14. return bt
k

end function

Figure 5: The level 0 belief update which is similar to the exact POMDP belief update with the
other agent’s actions treated as noise. As an example, the noise may simply be a uniform
distribution over the other agent’s actions.

the intermediate sampling step and a source of error but at the expense of temporarily generating a
larger number of particles. Based on a preference for reduced approximation error or computational
efficiency, one of the two alternative steps may be used.

A visualization of our I-PF implementation is shown in Fig. 6. Note that the number of particles
grows exponentially with the nesting level, due to which the approach becomes intractable for a
larger number of levels. A method to limit the number of particles as we descend through the
nesting level is needed to address this source of complexity. This is one line of our future work.

Notice that the I-PF could also be viewed as a recursive implementation of an approximately
Rao-Blackwellised particle filter (RBPF) (Doucet, de Freitas, Murphy, & Russell, 2000), where
the conditional distribution over models is itself updated using a RBPF. Doshi (2007) presented a
Rao-Blackwellised I-PF (RB-IPF), where the conditional distribution is updated using a variational
Kalman filter. Although the performance of the RB-IPF improves on the I-PF, it is restricted to prior
beliefs that are Gaussian and could not be generalized to beyond a single level of nesting.

8.2 Illustration of the I-PF

We illustrate the operation of the I-PF using the multiagent tiger problem introduced in Section 5.
For the sake of simplicity we consider i’s prior belief to be singly nested, i.e. l = 1. The procedure is
recursively performed for more deeply nested beliefs. Let i be uninformed about j’s level 0 beliefs,
and about the location of the tiger (see Fig. 3(a)). We demonstrate the operation of the I-PF for the
case when i listens (L) and hears a growl from the left and no creaks, 〈GL,S〉.

In Fig. 7, we show the initial sample set, b̃t−1
i,1 , consisting of N = 2 particles that is approxi-

mately representative of i’s singly-nested beliefs. Since we assume that j’s frame is known, each

314

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

b
k,l

t−1
k
t

 o

b
k,l

tmp
b
k,l

t

b
−k,l−1

(n),t−1
b
−k,l−1

(n),t

b −k
t−1

b −k
t

b
k,l−2
(n),t−1 b

k,l−2
(n),t

b
k,1

(n),t−1
k,1

b (n),t

a k
t−1

Resample

Level 1

WeightPropagation

� −ks , , � −ks , ,
(n) (n) (n) (n)

� ks, , � ks, ,
 (n) (n) (n) (n)

� ks, , � ks, ,
 (n) (n) (n) (n)

depth

time

Figure 6: An illustration of the nesting in the I-PF. Colors black and gray distinguish filtering for
the two agents. Because the propagation step involves updating the other agent’s beliefs,
we perform particle filtering on its beliefs. The filtering terminates when it reaches the
level 1 nesting, where a level 0 belief update is performed for the other agent.

<st- 1 = TL, bj,0
t-1 = 0.5>

<st- 1 = TR, b j,0
t-1 = 0.5>

~
bi,1

t-1

ai
t-1=L

Figure 7: An initial sample set of 2 particles that is approximately representative of bt−1
i,1 shown in

Fig. 3(a).

particle is an interactive state consisting of the tiger’s location and j’s level 0 belief. Let a belief of
0.5 of j be sampled from each of the flat line densities.

315

DOSHI & GMYTRASIEWICZ

<st- 1 = TL, b j,0
t-1 = 0.5>

<st- 1 = TR, b j,0
t-1 = 0.5>

~
bi,1

t-1

a i
t-1=L

a j
t-1=L

a j
t-1=L

Figure 8: The initial sample set with j’s optimal action shown for each particle.

As we mentioned before, the propagation of the particles from time step t− 1 to t is a two-step
process. As the first step, we solve j’s POMDP to compute its optimal action when its belief is 0.5.
j’s action is to listen since it does know the location of the tiger. We depict this in Fig. 8.

~
bi,1

t-1

ai
t-1=L

< = TR, bj,0
t = 0.85>

1 . Sample s t~ T(S|st-1,ai
t-1,aj

t-1)
2 . forall oj

t bj,0
t = SEj(bj,0

- ,aj
t-1,oj

t)

Propagation

= TR, bj,0
t = 0.15>

< = TL, bj,0
t = 0.85>

< = TL, bj,0
t = 0.15>L,GL

L,GR

L,GR

L,GL

st

st

st

< st

t 1

Figure 9: The propagation of the particles from time step t− 1 to time step t. It involves sampling
the next physical state and updating j’s beliefs by anticipating its observations (denoted
using dashed arrows). Because j may receive any one of two observations, there are 4
particles in the propagated sample set.

The second step of the propagation is to sample the next physical state for each particle using
the transition function. Since both i and j listen, the location of the tiger remains unchanged. Next,
we must update j’s beliefs. We do this by anticipating what j might observe, and updating its belief
exactly given its optimal action of listening. Since j could receive one of two possible observations
– GL or GR – each particle ”splits” into two. This is shown using the dashed arrows going from
particles in the initial sample set to the particles in the propagated sample set, in Fig. 9. When j
hears a GL, its updated belief is 0.85 (that the tiger is behind the left door), otherwise it is 0.15 when
it hears a GR. If the level of belief nesting is greater than one, j’s belief update would be performed
by recursively invoking the interactive particle filter on j’s beliefs.

316

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

< = TR, bj,0
t = 0.85>

w = 0.15*0. 135 = 0.020

<st- 1 = TR , bj,0
t = 0.15>

w = 0.85*0. 135 = 0.115

< = TL , bj,0
t = 0.85>

w = 0.85*0. 765 = 0.650

< = TL , bj,0
t = 0.15>

w = 0.15*0. 765 = 0.115Weighting

oi
t =GL,S ~

bi,1
tmp

st

st

st

ai
t-1=L

~
bi,1

t-1

Propagation

Figure 10: The weighting step is a two step process: Each particle is first weighted with the likeli-
hood with which j receives its observations, followed by adjusting this weight using the
probability of i making its observation of 〈GL,S〉. Note that resulting weights as shown
are not normalized.

As part of the weighting, we will first weight each particle with the probability of j receiving
its observations. Particles with larger weights contain beliefs of j that are more likely. Thereafter,
we will scale this weight with the probability of i observing a growl from the left and no creaks,
〈GL,S〉. To understand the weighting process, let’s focus on a single particle. Weighting for the
remaining particles is analogous.

We consider the particle on the top right in the sample set, b̃tmp
i,1 , shown in Fig. 10. Agent j’s

level 0 belief of 0.85 in this particle is due to j hearing a growl from the left on listening. The
probability of j making this observation as given by its observation function, when the tiger is on
the left is 0.85. We will adjust this weight with the probability of i perceiving 〈GL,S〉 when the tiger
is on the left and both agents are listening. This probability as given by i’s observation function
is 0.765 (see Table 1). The final weight attached to this particle is 0.65. Note that the weights as
shown in Fig. 10 are not normalized. After normalization i’s belief that the tiger is on the left is
0.85 (obtained by adding the normalized weights for particles that have st=TL), and 0.15 for tiger
on the right. We note that this conforms to our expectations.

The final step of the I-PF is an unbiased resampling of the particles using the weights as the
distribution. To prevent an exponential growth in the number of particles 5, we resample N particles
resulting in the sample set, b̃t

i,1, that is approximately representative of the exactly updated belief.
When i’s belief is nested to deeper levels, the above mentioned example forms the bottom step

of the recursive filtering process.

8.3 Performance of the I-PF

As part of our empirical investigation of the performance of the I-PF, we show, using a standard
pseudo-distance metric and visually, that it approximates the exact state estimation closely. We

5. After t propagation steps, there will be N |Ωj |t particles in the sample set.

317

DOSHI & GMYTRASIEWICZ

ai
t-1=L

~
bi,1

t-1

Propagation < = TL , bj,0
t = 0.85>Weighting

oi
t =GL,S ~

bi,1
tmp

< = TL , bj,0
t = 0.85>

Resampling

~
bi,1

t

st

st

Figure 11: The final step is an unbiased resampling using the weights as the distribution.

begin by utilizing extended versions of standard test problems and proceed to demonstrate the per-
formance on a larger problem.

8.3.1 MULTIAGENT TIGER AND MACHINE MAINTENANCE PROBLEMS

For our analysis, we first utilize the two-agent tiger problem that has two physical states, as de-
scribed in Section 5, and a two-agent version of the machine maintenance problem (MM) (Small-
wood & Sondik, 1973) described in detail in Appendix A, that has three physical states. While these
problems have few physical states, the interactive state space tends to get large as it includes models
of the other agent. Due to an absence of other general approximation techniques for I-POMDPs,
we use a grid based numerical integration implementation of the exact filter as the baseline approx-
imation for comparison. We obtained the points for numerical integration by superimposing regular
grids of differing resolutions on the interactive state space.

The lineplots in Fig. 12 show that the quality of the I-PF based approximation, as measured by
KL-Divergence becomes better as the number of particles increases, for both the problem domains.
This remains true for both level 1 and 2 beliefs. KL-Divergence measures the difference between
the two probability distributions by giving the relative entropy of the filtered posterior with respect
to the near-exact one as obtained from the numerical integration. Note that the performance of the I-
PF remains consistent over both the two-state tiger and the three-state MM problem. However, level
2 belief approximations require considerably more particles as compared to level 1 approximations,
to achieve similar performance, indicating that the performance of the I-PF is affected by the level of
nesting. Each data point in the lineplots is the average of 10 runs of the I-PF on multiple prior belief
states. In the case of the tiger problem, the posterior used for comparison is the one that is obtained
after agent i listens and hears a growl from the left and no creaks. For the MM problem, the posterior
obtained after i manufactures and perceives no defect in the product, is used for comparison. Two
of the prior level 1 beliefs of agent i when playing the tiger problem are those shown in Fig. 3. We
considered a level 2 belief according to which agent i is unaware of the tiger’s location and believes
with equal probabilities that either of the level 1 beliefs shown in Fig. 3 are likely. We utilized
analogous beliefs for the machine maintenance problem.

A comparison of the run times of the I-POMDP belief update implemented using grid based
numerical integration and the I-PF is shown in Table. 2. We varied the number of grid points and

318

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Multiagent Tiger Multiagent Machine Maintenance

 0

 100

 200

 300

 400

 500

 600

 10 100 1000 10000

K
L-

D
iv

er
ge

nc
e

No. of Particles (N)

Level 1
Level 2

 0

 100

 200

 300

 400

 500

 600

 10 100 1000 10000

K
L-

D
iv

er
ge

nc
e

No. of Particles (N)

Level 1
Level 2

(i) (ii)

Figure 12: Anytime performance of the I-PF as a function of the number of particles, on (i) mul-
tiagent tiger problem, (ii) multiagent machine maintenance problem. The performance
of the I-PF significantly improves with an increase in the number of particles leading
toward convergence to the true posterior. The vertical bars are the standard deviations.

Belief Problem Method N=500 N=1000
I-PF 0.148s 0.332s

Multiagent ± 0.001s ± 0.007s
Tiger Grid 21.65s 1m 25.19s

Level based ± 0.18s 1.02s
1 I-PF 0.452s 0.931s

Multiagent ± 0.009s ± 0.0146s
MM Grid 1m 0.28s 3m 27.87s

based ± 0.21s ± 0.13s
I-PF 2m 23.28s 11m 41.30s

Multiagent ± 1.1s ± 1.52s
Tiger Grid 34m 40.36s 77m 2.9s

Level based ± 0.55s ± 4.88s
2 I-PF 1m 37.59s 8m 27.29s

Multiagent ± 0.17s ± 1.65s
MM Grid 24m 55.33s 56m 21.97s

based ± 4.77s ± 5.73s

Table 2: Comparison of the average running times of our grid based numerical integration and I-PF
implementations on the same platform (Pentium IV, 1.7GHz, 512MB RAM, Linux).

the number of particles in the two implementations, respectively. As we use initial beliefs that are
flat, having the same number of grid points and particles provides for a comparable approximation
quality. The I-PF implementation significantly outperforms the numerical integration based imple-
mentation, while providing the comparable performance quality. Additionally, the run times of the
grid based implementation increase significantly more when we move from the two-state tiger prob-

319

DOSHI & GMYTRASIEWICZ

lem to the three-state MM problem, in comparison to the increase for the I-PF for level 1 beliefs.
Since the level 1 multiagent tiger model has 6 observations in comparison to 2 for the multiagent
MM, the run times decrease as we move from the tiger to the MM problem for level 2 beliefs.

Despite using an equal number of grid points and particles, the reduced run time of the I-PF
in comparison to the grid based approach is due to: (i) iterating over all grid points in order to
obtain the belief over each interactive state under consideration. In contrast, the I-PF iterates over
all particles at each level once – propagating and weighting them to obtain the posterior; (ii) the
I-PF solves the models approximately in comparison to solving them exactly over the grid points;
and (iii) while the grid based belief update considers all the optimal actions for a model, the I-PF
samples a single action from the distribution and propagates the corresponding particle using this
action.

Level 1 Beliefs in the Multiagent Tiger Problem

Exact
Particle Filter

 0
 0.2

 0.4
 0.6

 0.8
 1

b_j
 1

 1.5

 2

 2.5

 3

Time steps (T)

 0

 5

 10

 15

 20

 25

Pr(TL,b_j)

Pr (TL)j

Pr (TL,p)j

Exact
Particle Filter

 0
 0.2

 0.4
 0.6

 0.8
 1

b_j
 1

 1.5

 2

 2.5

 3

Time steps (T)

 0

 1

 2

 3

 4

 5

Pr(TR,b_j)

Pr (TL)j

Pr (TR,p) j

Figure 13: The exact and approximate p.d.f.s after successive filtering steps. The peaks of the
approximate p.d.f.s align correctly with those of the exact p.d.f.s, and the areas under
the approximate and exact p.d.f.s are approximately equal.

In order to assess the quality of the approximations after successive belief updates, we graphed
the probability density functions produced by the I-PF and the exact belief update. The densities
arising after each of three filtering steps on the level 1 belief of agent i (Fig. 3(a)) in the tiger
problem, are shown in Fig. 13. Each approximate p.d.f. is the average of 10 runs of the I-PF
which contained 5000 particles, and is shaped using a standard Gaussian kernel. Gmytrasiewicz
and Doshi (2005) provide an explanation of the exact I-POMDP belief update shown here. Briefly,
as the prior belief is a flat line, the posterior becomes segmented where the segments correspond to
beliefs of j that are likely based on the predicted action and anticipated observations of j. The height
of a segment is proportional to the likelihood of j’s possible observation. The action and observation
sequence followed was 〈L, GL, S〉, 〈L, GL, S〉, 〈OR, GL, S〉. As can be seen, the I-PF produces a
good approximation of the true densities.

320

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

8.3.2 A UAV RECONNAISSANCE PROBLEM

Unmanned agents such as UAVs are finding important applications in tasks such as fighting forest
fires (Casbeer, Beard, McLain, Sai-Ming, & Mehra, 2005; Sarris, 2001), law enforcement (Murphy
& Cycon, 1998) and reconnaissance in warfare. The agents must operate in complex environments
characterized by multiple parameters that affect their decisions, including, particularly in warfare,
other agents who may have antagonistic preferences. The task is further complicated because the
agent may possess noisy sensors and unreliable actuators.

We consider the task of a UAV i which performs low-altitude reconnaissance of a potentially
hostile theater that may be populated by other agents with conflicting objectives that serve as ground
reconnaissance targets (see Fig. 14(a)). To facilitate our analysis, we divide the UAV’s operating
theater into a 3×3 grid of sectors and consider a ground reconnaissance target (T), which could be
located in any of the 9 sectors. For example, the target could be a terrorist who may be hiding in a
safe house located in each sector. Of course, the UAV is unaware of which sector contains T , but
is aware of its own location. To assist in its goal of spotting T by moving to the sector containing
it, the UAV may receive a noisy communication which informs it about the rows (similar colored
sectors in Fig. 14) that likely contain T , though with some uncertainty. The UAV has the option
of moving in any of the four cardinal directions to the adjacent sector, or hovering in its current
location and listening for more communications.

The target T may be informed (by its collaborators) that it could be in danger of being spotted
by the UAV although with high uncertainty, in which case T may move to an adjacent or diagonal
sector. Note that the actions of both, the UAV and agent T may affect the physical state of the
problem. We formulate the decision problem of the UAV below:
• A physical state, s={rowi, sidei or centeri, rowT , sideT or centerT }, where rowi and sidei or
centeri indicate the row location of UAV i and whether the UAV is located in the side columns or the
center column, respectively; • The joint action space, A = Ai×AT , where Ai = {moveN ,. . .,moveW ,
listen} and AT = {moveN ,. . .,moveW ,listen}. Here, movex moves the UAV or the target in the di-
rection indicated by x, and listen denotes the act of receiving communications about the location of
T or the UAV; • Observation space of the UAV is, Ωi = {top-row (TR), center-row (CR), bottom-
row (BR)}, where for example, TR indicates that the corresponding target is in one of the three
sectors in the top row; • Transition function is, Ti : S × A × S → [0, 1]. Ti models the fact
that the UAV and the target move deterministically to a surrounding sector; • Observation function,
Oi : S × A × Ωi → [0, 1] gives the likelihood that the UAV will be informed of the correct row
in which the target is located; and • Reward function, Ri : S × A → [0, 1] formalizes the goal of
spotting the reconnaissance target. If the UAV moves to a sector containing a target , we assume
that the target is spotted and the game ends.

Because the target may move, it is beneficial for i to anticipate T ’s actions. Thus, the UAV
tracks some possible beliefs that T may have about the location of the UAV. We assume that the
UAV is aware of T ’s objectives that conflict with its own, the probabilities of its observations, and
therefore T ’s frame. We point out the size and complexity of this problem, involving 36 physical
states, 5 actions and 3 observations for each agent.

Analogously to the previous problem sets, we measured the quality of the estimation provided
by the I-PF for this larger problem. In Fig. 14(b), we show the KL-Divergence of the approximate
distribution as the number of particles allocated to the I-PF are increased. The KL-Divergence
decreases rapidly as we increase the number of particles for both level 1 and 2 beliefs. However,

321

DOSHI & GMYTRASIEWICZ

T

ii

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 100 1000 10000

K
L-

D
iv

er
ge

nc
e

No. of Particles (N)

Level 1
Level 2

(b)

Belief Method N=500 N=1000
I-PF 2.929s 5.251s

Level ± 0.894s ± 0.492s
1 Grid 3m 37.07s 7m 16.42s

based ± 4.22s ± 0.27s
N=100 N=200

Level I-PF 2m 55.52s 11m 10.43s
2 ± 25.61s ± 56.724s

(c)

Figure 14: (a) The operating theater of the UAV i. The problem may be flexibly scaled by adding
more targets and sectors. (b) The posterior obtained from the I-PF approaches the exact
as the number of particles increase. (c) Comparison of the average running times of our
numerical integration and I-PF implementations on the same platform (Xeon, 3.0GHz,
2GB RAM, Linux).

notice that the magnitude of the divergence is larger for lower numbers of particles in comparison to
the previous problems. This is, in part, due to the larger state space of the problem and demonstrates
that the I-PF does not fully address the curse of dimensionality. Thus, many more particles are
needed to reach comparable levels of divergence. We also show a comparison of the run times
of the I-POMDP belief update implemented using the I-PF and grid based numerical integration
in the table in Fig. 14(c). An identical number of particles and grid points were selected, which
provided comparable qualities of the estimations. We were unable to run the numerical integration
implementation for level 2 beliefs for this problem.

9. Value Iteration on Sample Sets

Because the I-PF represents the belief of agent i, bi,l, using a set of N particles, b̃i,l, a value function
backup operator which operates on samples is needed. Let H̃ denote the required backup operator,

322

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

and Ũ the approximate value function, then the backup operation, Ũ t = H̃Ũ t−1, is:

Ũ t(〈̃bi,l, θ̂i〉) = max
ai∈Ai

{
1
N

∑
is(n)∈b̃i,l

ERi(is(n), ai)+γ
∑

oi∈Ωi

Pr(oi|ai, b̃i,l)Ũ t−1(〈I-PF(̃bi,l, ai, oi), θ̂i〉)
}

(8)
where ERi(is(n), ai) =

∑
aj

Ri(s(n), ai, aj)Pr(aj |θ(n)j), γ is the discount factor and I-PF(·) is the

algorithm shown in Fig. 4. The set of optimal action(s) at a given approximate belief, OPT(〈̃bi,l, θ̂j〉),
is then calculated by returning the action(s) that have the maximum value:

OPT (〈̃bi,l, θ̂i〉) = argmax
ai∈Ai

{
1
N

∑
is(n)∈b̃i,l

ERi(is(n), ai) + γ
∑

oi∈Ωi

Pr(oi|ai, b̃i,l)

×Ũ t(〈I-PF(̃bi,l, ai, oi), θ̂i〉)
} (9)

Equations 8 and 9 are analogous to Eqs. 4 and 5 respectively, with exact integration replaced by
Monte Carlo integration, and the exact belief update replaced with the I-PF. Note that H̃ → H as
N →∞.

The algorithm for computing an approximately optimal finite horizon policy tree given an initial
belief using value iteration when l > 0 is shown in Fig. 18 in Appendix B.

9.1 Convergence and Error Bounds

The use of randomizing techniques such as PFs means that value iteration does not necessarily
converge. This is because, unlike the exact belief update, posteriors generated by the PF with
finitely many particles are not guaranteed to be identical for identical input. The non-determinism
of the approximate belief update rules out isotonicity and contraction for H̃ as N →∞. 6

Our inability to guarantee convergence of value iteration implies that we must approximate an
infinite horizon policy with the approximately optimal finite horizon policy. Let U∗ be the value
of the optimal infinite horizon policy, Ũ t be the value of the approximate and U t be the value
of the optimal t-horizon policy tree. Then the error bound (using the supremum norm || · ||) is,
||U∗− Ũ t|| = ||U∗−U t +U t− Ũ t|| ≤ ||U∗−U t||+ ||U t− Ũ t|| (triangle inequality). Note that the
first term, ||U∗ − U t||, is bounded by γt||U∗ − U0||. The bound for the second term is calculated
below:

E t = ||Ũ t − U t||
= ||H̃Ũ t−1 −HU t−1||
= ||H̃Ũ t−1 −HŨ t−1 + HŨ t−1 −HU t−1|| (add zero)
≤ ||H̃Ũ t−1 −HŨ t−1||+ ||HŨ t−1 −HU t−1|| (triangle inequality)
≤ ||H̃Ũ t−1 −HŨ t−1||+ γ||Ũ t−1 − U t−1|| (contracting H)
≤ ||H̃Ũ t−1 −HŨ t−1||+ γE t−1

We turn our attention to calculating ||H̃Ũ t−1 −HŨ t−1||. In the analysis that follows we focus
on level 1 beliefs. Let U̇ t = HŨ t−1, Ũ t = H̃Ũ t−1, and bi,1 be the singly nested belief where

6. One may turn PFs into deterministic belief update operators (de-randomization) by generating several posteriors from
the same input. A representative posterior is then formed by taking a convex combination of the different posteriors.
For example, Thrun (2000) uses a k-nearest neighborhood approach for this purpose.

323

DOSHI & GMYTRASIEWICZ

the worst error is made: bi,1 = argmax
bi,1∈Bi,1

|U̇ t − Ũ t|. Let α̃ be the policy tree (alpha vector) that is

optimal at b̃i,1 (the sampled estimate of bi,1), and α̇ be the policy tree that is optimal at bi,1. We will
use Chernoff-Hoeffding (C-H) upper bounds (Theorem A.1.4, pg 265 in Alon & Spencer, 2000) 7,
a well-known tool for analyzing randomized algorithms, to derive a confidence threshold 1 − δ at
which the observed estimate, Ũ t

α̃, is within 2ε of the true estimate U̇ t
α̇ (= E[α̇]):

Pr(Ũ t
α̃ > U̇ t

α̇ + ε) ≤ e−2Nε2/(α̃max−α̃min)
2

Pr(Ũ t
α̃ < U̇ t

α̇ − ε) ≤ e−2Nε2/(α̃max−α̃min)
2

We may write,

Pr(Ũ t
α̃ > U̇ t

α̇ + ε OR Ũ t
α̃ < U̇ t

α̇ − ε) = Pr(Ũ t
α̃ > U̇ t

α̇ + ε) + Pr(Ũ t
α̃ < U̇ t

α̇ − ε)
−Pr(Ũ t

α̃ > U̇ t
α̇ + ε AND Ũ t

α̃ < U̇ t
α̇ − ε)

As the last term is zero, the equation becomes:

Pr(Ũ t
α̃ > U̇ t

α̇ + ε OR Ũ t
α̃ < U̇ t

α̇ − ε) ≤ 2e−2Nε2/(α̃max−α̃min)
2

We may replace Pr(Ũ t
α̃ > U̇ t

α̇ + ε OR Ũ t
α̃ < U̇ t

α̇ − ε) with 1−Pr(U̇ t
α̇ − ε ≤ Ũ t

α̃ ≤ U̇ t
α̇ + ε). After

some simple operations, the above inequality becomes:

Pr(U̇ t
α̇ − ε ≤ Ũ t

α̃ ≤ U̇ t
α̇ + ε) ≥ 1− 2e−2Nε2/(α̃max−α̃min)

2

Let the probability that Ũ t
α̃ is within 2ε of the true estimate U̇ t

α̇, be at least 1− δ. Then we have:

1− δ = 1− 2e−2Nε2/(α̃max−α̃min)
2

With a confidence probability of at least 1− δ, the error bound is:

ε =

√
(α̃max − α̃min)2ln(2/δ)

2N
(10)

where α̃max − α̃min may be loosely upper bounded as Rmax−Rmin
1−γ . Note that Eq. 10 can also be

used to derive the number of particles, N , for some given δ and ε. To get the desired bound, we note
that with at least probability 1 − δ our error bound is 2ε and with probability at most δ the worst
possible suboptimal behavior may result: ||H̃Ũ t−1 − HŨ t−1|| ≤ (1 − δ)2ε + δ Rmax−Rmin

1−γ . The
final error bound now obtains:

E t ≤ (1− δ)2ε + δ Rmax−Rmin
1−γ + γE t−1

= (1− δ)2ε(1−γt)
1−γ + δ (Rmax−Rmin)(1−γt)

(1−γ)2
(geometric series)

(11)

where ε is as defined in Eq. 10.

7. At horizon t, samples in b̃i,1 are i.i.d. However, at horizons less than t, the samples are generated by the I-PF and
exhibit limited statistical independence, but independent research (Schmidt, Siegel, & Srinivasan, 1995) reveals that
C-H bounds still apply.

324

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Proposition 3 (Error Bound). For a singly nested t-horizon I-POMDPi,1, the error introduced by
our approximation technique is upper bounded and is given by:

||Ũ t − U t|| ≤ (1− δ)
2ε(1− γt)

1− γ
+ δ

(Rmax −Rmin)(1− γt)
(1− γ)2

where ε is as defined in Eq. 10.

At levels of belief nesting greater than one, j’s beliefs are also approximately represented using
samples. Hence the approximation error is not only due to the sampling, but also due to the possible
incorrect prediction of j’s actions based on its approximate beliefs. Since even a slight deviation
from the exact belief may lead to an action that turns out to be the worst in value when compared
to the optimal action, it seems difficult to derive bounds that are useful – tighter than the usual
difference between the best and worst possible behavior (Rmax−Rmin

(1−γ)2
) – for this case.

9.2 Computational Savings

Since the complexity of solving I-POMDPs is dominated by the complexity of solving the models
of other agents we analyze the reduction in the number of agent models that must be solved. In a
K+1-agent setting with the number of particles bounded by N at each level, each particle in b̃t−1

k,l

of level l contains K models all of level l− 1. Solution of each of these level l− 1 models requires
solution of the lower level models recursively. The upper bound on the number of models that
are solved is O((KN)l−1). Given that there are K level l − 1 models in a particle, and N such
possibly distinct particles, we need to solve O((KN)l) models. Our upper bound on the number
of models to be solved is polynomial in K for a fixed nesting level. This can be contrasted with
O((K|Θ∗|K)l) models that need to be solved in the exact case, which is exponential in K. Here,
among the spaces of models of all agents, Θ∗ is the largest space and is theoretically countably
infinite. Typically, N � |Θ∗|K , resulting in a substantial reduction in computation. However, note
that the total number of particles is exponential in the nesting level, l. This makes solutions for large
nesting levels still intractable.

10. Empirical Performance

The goal of our experimental analysis is to demonstrate empirically, (a) the reduction in error with
increasing sample complexity, and (b) savings in computation time when the approximation tech-
nique is used. We again use the multiagent tiger problem introduced previously, and a multiagent
version of the machine maintenance (MM) problem (see Appendix A) as test problems. While
the single-agent versions of these problems are simple, their multiagent versions are sufficiently
complex so as to motivate the use of approximation techniques to solve them. Additionally, we
demonstrate that our approach scales to larger problems by applying it to the UAV reconnaissance
problem as well.

10.1 Multiagent Tiger and Machine Maintenance Problems

To demonstrate the reduction in error, we construct performance profiles showing an increase in
performance as more computational resources – in this case particles – are allocated to the approx-
imation algorithm. In Figs. 15(a) and (c) we show the performance profile curves when agent i’s
prior belief is the level 1 belief described previously in Fig. 3(a), and suitably modified for the MM

325

DOSHI & GMYTRASIEWICZ

Multiagent Tiger Problem

-30

-25

-20

-15

-10

-5

 0

 1 10 100 1000

E
xp

ec
te

d
R

ew
ar

d

No. of Particles (N)

H=2:Exact
H=2:Approx

H=3:Exact
H=3:Approx

-30

-25

-20

-15

-10

-5

 0

 1 10 100

E
xp

ec
te

d
R

ew
ar

d

No. of Particles (N)

H=2:Exact
H=2:Approx

H=3:Exact
H=3:Approx

(a) (b)

Multiagent Machine Maintenance Problem

-1

-0.5

 0

 0.5

 1

 1 10 100 1000 10000

E
xp

ec
te

d
R

ew
ar

d

No. of Particles (N)

H=2:Exact
H=2:Approx

H=3:Exact
H=3:Approx

-1

-0.5

 0

 0.5

 1

 1 10 100

E
xp

ec
te

d
R

ew
ar

d

No. of Particles (N)

H=2:Exact
H=2:Approx

H=3:Exact
H=3:Approx

(c) (d)

Figure 15: Anytime performance profiles: The multiagent tiger problem using the (a) level 1, and
(b) level 2 belief as the prior for agent i. The multiagent MM using the (c) level 1, and
(d) level 2 belief as i’s prior. The approximate policies gradually improve as we employ
an increasing number of particles.

problem. As expected the average rewards for both, horizon 2 and 3 approach the optimal expected
reward as the number of particles increases. We show the analogous plots for a level 2 belief in
Figs. 15(b) and (d). In each of these cases the average of the rewards accumulated by i over a 2 and
3 horizon policy tree (computed using the APPROXPOLICY algorithm in Fig. 18) while playing
against agent j in simulated tiger and MM problems were plotted. To compensate for the random-
ness in sampling, we generated i’s policy tree 10 times independently of each other, and averaged

326

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

over 100 runs each time. Within each run, the location of the tiger and j’s prior beliefs were sampled
according to i’s prior belief. j’s policy was then computed using the algorithm in Fig. 18.

Problem Error t = 2 t = 3
N=100 N=1000 N=100 N=1000

Multiagent Obs. 5.61 0 4.39 2.76
tiger Et 64.73 41.53 120.90 77.57

Worst 209.00 298.10
Multiagent Obs. 0.28 0.23 0.46 0.40

MM Et 4.58 2.05 8.79 3.64
Worst 8.84 12.61

Table 3: Comparison of the worst case observed errors, our theoretical error bounds and the trivial
error bound (Rmax−Rmin

(1−γ)2
).

In Table 3, we compare the empirically determined error bound – difference between the optimal
expected reward and the worst observed expected reward – with the theoretical error bound (δ=0.1,
γ=0.9) from Section 9.1, for horizons 2 and 3. The theoretical error bounds appear loose due to the
worst-case nature of our analysis but (expectedly) are much tighter than the trivial worst bounds,
and become better as the number of particles increases.

Problem Method Run times
t = 2 t = 3 t = 4 t = 5

Multiagent Grid 37.84s 11m 22.25s * *
tiger ± 0.6s ± 1.34s

SB 1.44s 1m 44.29s 19m 16.88s *
± 0.05s ± 0.6s ± 17.5s

Multiagent Grid 5m 26.57s 20m 45.69s * *
MM ± 0.07s ± 0.29s

SB 5.75s 34.52s 3m 24.9s 17m 58.39s
± 0.01s ± 0.01s ± 0.04s ± 0.57s

Table 4: Run times on a Pentium IV 2.0 GHz, 2.0GB RAM and Linux. * = program ran out of
memory.

Table 4 compares the average run times of our sample-based approach (SB) with the grid based
approach, for computing policy trees of different horizons starting from the level 1 belief. The
values of the policy trees generated by the two approaches were similar. The run times demonstrate
the impact of the curse of dimensionality on the grid based method as shown by the higher run times
for the MM problem in comparison to the tiger problem. Our I-PF based implementation though
not immune to this curse reduces its impact, but is affected by the curse of history, as illustrated by
the higher run times for the tiger problem (branching factor of the reachability tree: |Ai||Ωi| = 18)
compared to the MM problem (branching factor:|Ai||Ωi| = 8). We were unable to compute the
solutions using the grid based implementation for both the problems for horizons beyond 3.

327

DOSHI & GMYTRASIEWICZ

 0

 2

 4

 6

 8

 10

 12

 10 100 1000

E
xp

ec
te

d
R

ew
ar

d

No. of Particles (N)

H=2:Approx H=3:Approx

Problem Method Run times
t = 2 t = 3

UAV SB 8m 50.03s 20m 59.23s
Recon. ± 5.26s ± 4.09s

(a) (b)

Figure 16: (a) Anytime performance profile for the UAV reconnaissance problem for horizons 2
and 3. Notice that the profile flattens when the number of particles reaches 1,000 and
greater, thereby indicating that the corresponding average reward is close to optimal.
(b) Run times for obtaining a policy on a Xeon 3.0 GHz, 2.0GB RAM and Linux. For
horizon 2, we used 500 particles while 100 particles were used for horizon 3. As we
see in (a), rewards of policies at these numbers of particles are not much less than the
converged values.

10.2 UAV Reconnaissance Problem

We evaluate the performance of our approach on the UAV reconnaissance problem, which we intro-
duced previously in Section 8.3. As we mentioned, this is a larger problem consisting of 36 physical
states, 5 actions and 3 observations. We show the level 1 performance profile for this problem in
Fig. 16(a) for horizons 2 and 3. Due to the size of the problem, we were unable to compute the
exact value of the optimal policies. As before, each data point is the average reward obtained by
simulating a horizon 2 or 3 policy in a two-agent setting. Agent i’s initial belief is one according
to which it is uncertain about the physical state and models of the other agent. We observe that the
profiles tend to flatten as the number of particles increases. The corresponding expected reward is
therefore close to the optimal value of the policies.

We also show the time taken to generate a good quality horizon 2 and 3 policy on average.
They indicate that while it is indeed possible to obtain (approximate) policies for large problems,
the times needed are somewhat large. Notice that these times are significantly greater than the run
times for the multiagent tiger and MM problems. This is, in part, due to the larger state space and,
as we show later in this article, in part due to the larger numbers of actions and observations of each
agent.

11. Sampling the Look Ahead Reachability Tree

Although we were able to solve I-POMDPs for large state spaces, we were unable to generate
solutions for large horizons. The main reason for this is the exponential growth of the look ahead
reachability tree with increasing horizons; we referred to this as the curse of history. At some
time step t, there could be (|Ai||Ωi|)t−1 reachable belief states of the agent i. For example, in the

328

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

multiagent tiger problem, at the second time step there could be 18 possible belief states, 324 of
them at the third time step, and more than 0.1 million at the fifth time step.

To mitigate the curse of history, we reduce the branching factor of the look ahead reachability
tree by sampling from the possible observations that the agent may receive. While this approach
does not completely address the curse of history, it beats back the impact of this curse substantially.
During the reachability tree expansion phase, the agent’s actions are used to propagate its belief.
Observations are then sampled at each propagated belief, ot

i ∼ Pr(Ωi|at−1
i , b̃t−1

i,l) where b̃t−1
i,l is

the propagated belief. During the value iteration phase, value is backed up the (possibly) partial
reachability tree, and the agent performs the action that is optimal at the root node of the tree. For
convenience, let us label this approach as reachability tree sampling (RTS).

RTS shares its conceptual underpinnings with the belief expansion models of PBVI (Pineau
et al., 2006), but differs in that our method is applicable to online policy tree generation for I-
POMDPs, compared to PBVI’s use in offline policy generation for POMDPs. It is also similar to
the sparse sampling technique proposed for selecting actions for exploration during reinforcement
learning (Kearns et al., 2002) and for online planning in POMDPs (Ross et al., 2008) by sampling
the look ahead trees. A distinction is that we focus on sampling observations given the propagated
multiagent beliefs, while the latter approaches focused on settings of single agent learning. Conse-
quently, the process of computing the sampling distribution and the experimental settings differ.

11.1 Computational Savings

We consider the computational savings that result from sampling observations in the look ahead
reachability tree. If we are sampling NΩi < |Ωi| observations at each propagated belief within
the reachability tree, then at some time step t, we will obtain (|Ai||NΩi |)t−1 possible belief states,
assuming the worst case occurs and we end up sampling NΩi distinct observations. This is in
comparison to the (|Ai||Ωi|)t−1 belief states in the complete reachability tree. Typically, as our
experiments demonstrate, the number of distinct sampled observations is less than |Ωi|, resulting in
significant computational savings.

Method Run times
t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

SB-No-RTS 1.44s 1m 44.29s 19m 16.88s * * *
± 0.05s ± 0.6s ± 17.5s

SB-RTS 0.86s 15.17s 2m 52.9s 4m 13.43s 7m 29.9s 11m 51.57s
± 0.02s ± 1.6s ± 6.51s ± 27.51s ± 47.98s ± 20.05s

Table 5: Run times for the multiagent tiger problem on a Pentium IV 2.0 GHz, 2.0GB RAM and
Linux. * = program ran out of memory.

As an illustration of the computational savings we compare the run times of computing the
policy tree for the multiagent tiger (Table 5) and the UAV reconnaissance (Table 6) problems for
singly-nested beliefs. We compare value iteration in which the reachability tree is sampled (SB-
RTS) with value iteration that does no reachability tree sampling (SB-No-RTS), the algorithm for
which is given in Fig. 18. For SB-RTS in the multiagent tiger problem, we sampled eight times from
the observation distribution up to the fifth horizon and six times thereafter. For both the algorithms,
we used a similar number of particles in the I-PF. As the tiger problem has a total of 6 observations,

329

DOSHI & GMYTRASIEWICZ

not only does the SB-RTS compute the policy faster, we were able to compute it up to seven time
horizons. When compared with the performance of SB-No-RTS, these results demonstrate that the
approach of sampling the reachability tree could yield significant computational savings.

Method Run times
t = 2 t = 3 t = 4

SB-No-RTS 8m 50.03s 20m 59.23s *
± 5.26s ± 4.09s

SB-RTS 8m 23.86s 19m 25.54s 121m 16.2s
± 20.46s ± 89.08s ± 592s

Table 6: Run times for the UAV reconnaissance problem on a Xeon 3.0 GHz, 2.0GB RAM and
Linux. * = program ran out of memory.

However, as we see in Table 6, the approach does not yield significant savings in the context
of the UAV problem for small horizons. Because the space of observations in the problem is small
(3 distinct observations), a majority of these are often selected on sampling. Hence, for smaller
horizons such as 2 and 3, we did not observe a significant decrease in the size of the look ahead
reachability tree. However, the reduction in the look ahead trees for horizon 4 is enough to allow
the computation of the corresponding policy, though the run time is considerable. We were unable
to obtain it for the case with no RTS. Thus, the UAV problem reveals an important limitation of this
technique – it may not provide significant computational savings when the space of observations is
small, particularly for small horizons.

11.2 Empirical Performance

We present the performance profiles in Fig. 17 for the multiagent tiger problem when partial look
ahead reachability trees are built by sampling the observations. Similar to our previous experiments,
the performance profiles reflect the average of the rewards accumulated by following the action
prescribed by the root of the approximate policy tree that is built online. We plot the average reward
accumulated by i over 10 independent trials consisting of 100 runs each, as the number of the
observation samples, NΩi are gradually increased. Within each run, the location of the tiger and
j’s prior beliefs were sampled according to i’s prior level 1 belief. Since we have combined RTS
with the I-PF, in addition to varying NΩi , we also vary the number of particles, Np, employed to
approximate the beliefs. As expected of performance profiles, the expected reward initially increases
sharply, before flattening out as NΩi becomes large and the sampled observation distribution reaches
the true one. Reflecting intuition, the plots for Np = 100 exhibit slightly better expected rewards on
average than those for Np = 50. While the increase is not large, we note that it is consistent across
all observation samples. We also obtained the average reward over a similar number of trials when a
random policy (null hypothesis) is used for i. For horizon 3, the random policy gathered an average
reward of -84.785 (± 37.9847), and -108.5 (± 41.56) for horizon 4. Even for a small number of
observation samples, RTS does significantly better than the random policy thereby demonstrating
the usefulness of partial tree expansion. However, we note that a random policy is a poor baseline
for comparison and is used due to an absence of other similar approximations for I-POMDPs.

330

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Multiagent Tiger Problem

-25

-20

-15

-10

-5

 0

 2 4 8 16

E
xp

ec
te

d
R

ew
ar

d

No. of Obs. Samples

Np=50
Np=100

-30

-25

-20

-15

-10

-5

 0

 2 4 8 16

E
xp

ec
te

d
R

ew
ar

d

No. of Obs. Samples

Np=50
Np=100

(a) (b)

Figure 17: Performance profiles for the multiagent tiger problem for (a) horizon 3, and for (b)
horizon 4 when the look ahead tree is built by sampling observations.

Due to the small number of observations in the MM and UAV reconnaissance problems, we did
not observe significant increases in the expected reward as more observations are sampled. Hence,
we do not show the performance profiles for these problems.

We observed that the empirical expected reward is close to the optimal expected reward when
only a few distinct observations were sampled while building the reachability tree. This observa-
tion when combined with the computational savings demonstrated in Section 11.1 indicate that our
approximation approach is viable. Additionally, by varying the parameters Np and NΩi , we can
flexibly, though only partially, control the effects of both the curses of dimensionality and history,
respectively, on the solutions according to the application requirements. An interesting line of future
work is to investigate the interplay of these parameters.

12. Discussion

We described randomized methods for obtaining approximate solutions to finitely nested I-POMDPs
based on a novel generalization of particle filtering to multiagent settings. The generalization is
not straightforward because we are confronted with an interactive belief hierarchy in multiagent
settings. We proposed the interactive particle filter which descends the levels of interactive belief
hierarchies, and samples and propagates beliefs at each level. While sampling methods such as
particle filters are unable to completely avoid the curse of dimensionality, they serve to focus the
computational resources on those elements of the model that matter the most to the agent.

However, the interactive particle filter does not address the policy space complexity. Though
value iteration using sample sets is not guaranteed to converge asymptotically, we established use-
ful error bounds for singly-nested I-POMDPs. Their generalization to multiply-nested beliefs has
proved to be difficult but we continue to investigate it. We provided performance profiles for the
multiagent tiger and the machine maintenance problems, and demonstrated scalability using the
larger UAV reconnaissance problem.

The experiments show that the approach saves on computation over the space of models but it
does not scale (usefully) to large values of time horizons and needs to be combined with methods

331

DOSHI & GMYTRASIEWICZ

that deal with the curse of history. In order to reduce the impact of the curse of history, we proposed
to sample observations while constructing the look ahead tree during the reachability analysis phase
of policy computation. This sparse sampling technique effectively reduces the branching factor of
the tree and allows computation of solutions for larger horizons as we demonstrated.

A method to further scale the approximation technique is to pick a subset of actions in addition to
sampling the observations while building the reachability tree. This further dampens the exponential
growth of the reachability tree with increasing horizons, and permits solutions for larger horizons.
However, this approach must be used cautiously – we do not want to leave out critical actions from
the policy.

Specific approaches to speeding up the computation also remain to be explored. As we men-
tioned, the number of particles in the interactive particle filter grows exponentially with the number
of nesting levels. In this regard, can we assign monotonically decreasing number of particles to
represent beliefs nested at deeper levels exploiting an insight from cognitive psychology that beliefs
nested at deeper levels are less likely to influence the optimal policy? Thus, if we decrease the par-
ticles sampled at the rate of r < 1, there will be no more than Np/(1−r) particles in total, resulting
in computational savings.

Finally, in regards to the appropriate strategy level to use for nested models, we note the anal-
ogy with classical POMDPs, and the amount of detail and modeling information included therein.
Adding more nested level of modeling is analogous to including more details in the POMDP formu-
lation. Then, the solution to an I-POMDP is optimal given the level of detail included in the model,
just like for classical POMDPs.

Acknowledgments

This research is supported in part by grant #FA9550-08-1-0429 from AFOSR and in part by grants
IRI-9702132 and IRI-0119270 from NSF. Versions of parts of this article have previously appeared
in (Doshi & Gmytrasiewicz, 2005a) and in (Doshi & Gmytrasiewicz, 2005b). We acknowledge all
the reviewers for their useful comments.

Appendix A. Multiagent Machine Maintenance Problem

We extend the traditional single agent version of the machine maintenance (MM) problem (Small-
wood & Sondik, 1973) to a two-agent cooperative version. The original MM problem involved a
machine containing two internal components operated by a single agent. Either one or both compo-
nents of the machine may fail spontaneously after each production cycle. If an internal component
has failed, then there is some chance that when operating upon the product, it will cause the product
to be defective. The agent may choose to manufacture the product (M) without examining it, exam-
ine the product (E), inspect the machine (I), or repair it (R) before the next production cycle. On an
examination of the product, the subject may find it to be defective. Of course, if more components
have failed, then the probability that the product is defective is greater.

The transition function, observation functions, and the reward functions for the two agents, i
and j, are as shown in Table 7. Apart from including two agents that operate on the machine during
the production cycle, we increased the nondeterminism of the original problem to make it more
realistic. This also has the beneficial effect of producing a richer policy structure.

332

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

〈ai, aj〉 State 0-fail 1-fail 2-fail
〈M/E,M/E〉 0-fail 0.81 0.18 0.01
〈M/E,M/E〉 1-fail 0.0 0.9 0.1
〈M/E,M/E〉 2-fail 0.0 0.0 1.0
〈M,I/R〉 0-fail 1.0 0.0 0.0
〈M,I/R〉 1-fail 0.95 0.05 0.0
〈M,I/R〉 2-fail 0.95 0.0 0.05
〈E,I/R〉 0-fail 1.0 0.0 0.0
〈E,I/R〉 1-fail 0.95 0.05 0.0
〈E,I/R〉 2-fail 0.95 0.0 0.05
〈I/R,*〉 0-fail 1.0 0.0 0.0
〈I/R,*〉 1-fail 0.95 0.05 0.0
〈I/R,*〉 2-fail 0.95 0.0 0.05

Transition function for agents i and j: Ti = Tj

〈ai, aj〉 State not-defective defective
〈M,M/E〉 * 0.5 0.5
〈M,I/R〉 * 0.95 0.05
〈E,M/E〉 0-fail 0.75 0.25
〈E,M/E〉 1-fail 0.5 0.5
〈E,M/E〉 2-fail 0.25 0.75
〈E,I/R〉 * 0.95 0.05
〈I/R,*〉 * 0.95 0.05
〈ai, aj〉 State not-defective defective
〈M/E,M〉 * 0.5 0.5
〈I/R,M〉 * 0.95 0.05
〈M/E,E〉 0-fail 0.75 0.25
〈M/E,E〉 1-fail 0.5 0.5
〈M/E,E〉 2-fail 0.25 0.75
〈I/R,E〉 * 0.95 0.05
〈*,I/R〉 * 0.95 0.05

Observation functions for agents i and j.

〈ai, aj〉 0-fail 1-fail 2-fail
〈M,M〉 1.805 0.95 0.5
〈M,E〉 1.555 0.7 0.25
〈M,I〉 0.4025 -1.025 -2.25
〈M,R〉 -1.0975 -1.525 -1.75
〈E,M〉 1.5555 0.7 0.25
〈E,E〉 1.305 0.45 0.0
〈E,I〉 0.1525 -1.275 -2.5
〈E,R〉 -1.3475 -1.775 -2.0
〈I,M〉 0.4025 -1.025 -2.25
〈I,E〉 0.1525 -1.275 -2.5
〈I,I〉 -1.0 -3.00 -5.00
〈I,R〉 -2.5 -3.5 -4.5
〈R,M〉 -1.0975 -1.525 -1.75
〈R,E〉 -1.3475 -1.775 -2.0
〈R,I〉 -2.5 -3.5 -4.5
〈R,R〉 -4 -4 -4

〈ai, aj〉 0-fail 1-fail 2-fail
〈M,M〉 1.805 0.95 0.5
〈M,E〉 1.555 0.7 0.25
〈M,I〉 0.4025 -1.025 -2.25
〈M,R〉 -1.0975 -1.525 -1.75
〈E,M〉 1.555 0.7 0.25
〈E,E〉 1.305 0.45 0.0
〈E,I〉 0.1525 -1.275 -2.5
〈E,R〉 -1.3475 -1.775 -2.0
〈I,M〉 0.4025 -1.025 -2.25
〈I,E〉 0.1525 -1.275 -2.5
〈I,I〉 -1.0 -3.00 -5.00
〈I,R〉 -2.5 -3.5 -4.5
〈R,M〉 -1.0975 -1.525 -1.75
〈R,E〉 -1.3475 -1.775 -2.0
〈R,I〉 -2.5 -3.5 -4.5
〈R,R〉 -4 -4 -4

Reward functions for agents i and j.

Table 7: Transition, observation and reward functions for the multiagent MM problem.

Appendix B. Algorithm for Value Iteration on Sample Sets

We show the algorithm for computing an approximately optimal finite horizon policy tree given an
initial belief using value iteration when l > 0. When l = 0, the algorithm reduces to the POMDP
policy tree computation which is carried out exactly.8 The algorithm consists of the usual two steps:
compute the look ahead reachability tree for horizon T as part of the reachability analysis (see
Section 17.5 of Russell & Norvig, 2003) in lines 2-6 and perform value backup on the reachability

8. For large problems, exact POMDP solutions may be replaced with approximate ones. But in doing so, our error
bounds will no longer be applicable and those of the approximation technique will have to be considered.

333

DOSHI & GMYTRASIEWICZ

tree, in lines 7-28. The value of the beliefs at the leaves of the reachability tree is simply the one-step
expected reward resulting from the best action.

Function APPROXPOLICY(θk, l > 0) returns Δ(Ak)
1. b̃0

k,l ← {is(n)
k , n = 1...N |is(n)

k ∼ bk,l ∈ θk} //Initial sampled belief
Reachability Analysis

2. reach(0) ← b̃0
k,l

3. for t ← 1 to T − 1 do
4. reach(t) ← φ

5. for all b̃t−1
k,l ∈ reach(t− 1), ak ∈ Ak, ok ∈ Ωk do

6. reach(t)
∪← I-PARTICLEFILTER(̃bt−1

k,l , ak, ok, l)
Dynamic Programming

7. for t ← T − 1 downto 0 do
8. for all b̃t

k,l ∈ reach(t) do
9. ŨT−t(〈 b̃t

k,l, θ̂k〉) ← −∞, OPT(〈 b̃t
k,l, θ̂k〉) ← φ

10. for all ak ∈ Ak do
11. ŨT−t

ak
(〈̃bt

k,l, θ̂k〉) ← 0

12. for all is
(n),t
k = 〈s(n),t, θ

(n)
−k 〉 ∈ b̃t

k,l do

13. Pr(A−k|θ(n)
−k) ← APPROXPOLICY(θ(n)

−k , l − 1)
14. for all a−k ∈ A−k do

15. ŨT−t
ak

(〈̃bt
k,l, θ̂k〉) +← 1

N R(s(n),t, ak, a−k)Pr(a−k|θ(n)
−k)

16. if (t < T) then
17. for all ok ∈ Ωk do
18. sum ← 0, b̃t+1

k,l ← reach(t + 1)[|Ωk|ak + ok]
19. for all is

(n),t
k = 〈s(n),t, θ

(n)
−k 〉 ∈ b̃t

k,l do

20. Pr(A−k|θ(n)
−k) ← APPROXPOLICY(θ(n)

−k , l − 1)
21. for all a−k ∈ A−k, st+1 ∈ Sk do

22. sum
+← Ok(ok|st+1, ak, a−k)Pr(is(n),t+1|is(n),t, ak, a−k)Pr(a−k|θ(n)

−k)
23. ŨT−t

ak
(〈̃bt

k,l, θ̂k〉) +← γ × 1
N × sum × ŨT−t−1(̃bt+1

k,l)
24. if new value ŨT−t

ak
(〈̃bt

k,l, θ̂k〉) ≥ previously best ŨT−t(〈̃bt
k,l, θ̂k〉)) then

25. if (ŨT−t
ak

(〈̃bt
k,l, θ̂k〉) > ŨT−t(〈̃bt

k,l, θ̂k〉) then
26. ŨT−t(〈̃bt

k,l, θ̂k〉) ← ŨT−t
ak

(〈̃bt
k,l, θ̂k〉)

27. OPT(〈̃bt
k,l, θ̂k〉) ← φ

28. OPT(〈̃bt
k,l, θ̂k〉) ∪← ak

29. for all ak ∈ Ak do
30. if (ak ∈ OPT(〈̃b0

k,l, θ̂k〉) then
31. Pr(ak|θk) ← 1

|OPT(〈̃b0k,l,θ̂k〉)|
32. else
33. Pr(ak|θk) ← 0
34. return Pr(Ak|θk)

Figure 18: Computing an approximately optimal finite horizon policy tree given a model containing
an initial sampled belief. When l = 0, the exact POMDP policy tree is computed.

334

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

References

Alon, N., & Spencer, J. (2000). The Probabilistic Method. John Wiley and Sons.

Aumann, R. J. (1999). Interactive epistemology i: Knowledge. International Journal of Game
Theory, 28, 263–300.

Battigalli, P., & Siniscalchi, M. (1999). Hierarchies of conditional beliefs and interactive epistemol-
ogy in dynamic games. Journal of Economic Theory, 88(1), 188–230.

Bernstein, D. S., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complexity of decen-
tralized control of markov decision processes. Mathematics of Operations Research, 27(4),
819–840.

Bertsekas, D. (1995). Dynamic Programming and optimal control. Athena Scientific.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

Brandenburger, A., & Dekel, E. (1993). Hierarchies of beliefs and common knowledge. Journal of
Economic Theory, 59, 189–198.

Casbeer, D., Beard, R., McLain, T., Sai-Ming, L., & Mehra, R. (2005). Forest fire monitoring with
multiple small uavs. In American Control Conference, pp. 3530–3535.

Collins, M., Dasgupta, S., & R.E.Schapire (2002). A generalization of principal component analysis
to the exponential family. In Neural Information Processing Systems (NIPS), pp. 617–624.

Crisan, D., & Doucet, A. (2002). A survey of convergence results on particle filtering methods for
practitioners. IEEE Transactions on Signal Processing, 50(3), 736–746.

Daum, F., & Huang, J. (2002). Mysterious computational complexity of particle filters. In Confer-
ence on Signal and Data Processing of Small Targets, SPIE Proceedings Series, pp. 418–426,
Orlando, FL.

Dobson, A. (2002). An Introduction to Generalized Linear Models, 3rd Ed. Chapman and Hall.

Doshi, P. (2007). Improved state estimation in multiagent settings with continuous or large dscrete
state spaces. In Twenty Second Conference on Artificial Intelligence (AAAI), pp. 712–717.

Doshi, P., & Gmytrasiewicz, P. J. (2005a). Approximating state estimation in multiagent settings
using particle filters. In Autonomous Agents and Multi-agent Systems Conference (AAMAS),
pp. 320–327.

Doshi, P., & Gmytrasiewicz, P. J. (2005b). A particle filtering based approach to approximating
interactive pomdps. In Twentieth National Conference on Artificial Intelligence (AAAI), pp.
969–974.

Doshi, P., & Perez, D. (2008). Generalized point based value iteration for interactive pomdps. In
Twenty Third Conference on Artificial Intelligence (AAAI), pp. 63–68.

Doshi, P., Zeng, Y., & Chen, Q. (2007). Graphical models for online solutions to interactive pomdps.
In Autonomous Agents and Multiagent Systems Conference (AAMAS), pp. 809–816, Hon-
olulu, Hawaii.

Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000). Rao-blackwellised particle filtering
for dynamic bayesian networks. In Uncertainty in Artificial Intelligence (UAI), pp. 176–183.

335

DOSHI & GMYTRASIEWICZ

Doucet, A., Freitas, N. D., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.
Springer Verlag.

Fagin, R., Halpern, J., Moses, Y., & Vardi, M. (1995). Reasoning about Knowledge. MIT Press.

Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (2000). A probabilistic approach to collaborative
multi-robot localization. Autonomous Robots on Heterogenous Multi-Robot Systems, 8(3),
325–344.

Fudenberg, D., & Levine, D. K. (1998). The Theory of Learning in Games. MIT Press.

Gelman, A., Carlin, J., Stern, H., & Rubin, D. (2004). Bayesian Data Analysis, Second Edition.
Chapman and Hall/CRC.

Geweke, J. (1989). Bayesian inference in econometric models using monte carlo integration. Econo-
metrica, 57, 1317–1339.

Gmytrasiewicz, P., & Doshi, P. (2005). A framework for sequential planning in multiagent settings.
Journal of Artificial Intelligence Research, 24, 49–79.

Gordon, N., Salmond, D., & Smith, A. (1993). Novel approach to non-linear/non-gaussian bayesian
state estimation. IEEE Proceedings-F, 140(2), 107–113.

Harsanyi, J. C. (1967). Games with incomplete information played by bayesian players. Manage-
ment Science, 14(3), 159–182.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57, 97–109.

Heifetz, A., & Samet, D. (1998). Topology-free typology of beliefs. Journal of Economic Theory,
82, 324–341.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101, 99–134.

Kearns, M., Mansour, Y., & Ng, A. (2002). A sparse sampling algorithm for near-optimal planning
in large markov decision processes. Machine Learning, 49, 193–208.

Koller, D., & Lerner, U. (2001). Sampling in factored dynamic systems. In Doucet, A., Freitas,
N. D., & Gordon, N. (Eds.), Sequential Monte Carlo Methods in Practice. Springer.

Kramer, S. C., & Sorenson, H. (1988). Recursive bayesian estimation using piecewise constant
approximations. Automatica, 24, 789–801.

Li, M., & Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and its Applications.
Springer.

Mertens, J., & Zamir, S. (1985). Formulation of bayesian analysis for games with incomplete
information. International Journal of Game Theory, 14, 1–29.

Murphy, D., & Cycon, J. (1998). Applications for mini vtol uav for law enforcement. In SPIE
3577:Sensors, C3I, Information, and Training Technologies for Law Enforcement.

Ortiz, L., & Kaelbling, L. (2000). Sampling methods for action selection in influence diagrams. In
Seventeenth National Conference on Artificial Intelligence (AAAI), pp. 378–385, Austin, TX.

Paquet, S., Tobin, L., & Chaib-draa, B. (2005). An online pomdp algorithm for complex multiagent
environments. In International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 970–977, Utrecht, Netherlands.

336

MONTE CARLO SAMPLING METHODS FOR APPROXIMATING I-POMDPS

Pineau, J., Gordon, G., & Thrun, S. (2006). Anytime point-based value iteration for large pomdps.
Journal of Artificial Intelligence Research, 27, 335–380.

Poupart, P., & Boutilier, C. (2003). Value-directed compression in pomdps. In Neural Information
Processing Systems (NIPS), pp. 1547–1554.

Poupart, P., & Boutilier, C. (2004). Vdcbpi: An approximate algorithm scalable for large-scale
pomdps. In Neural Information Processing Systems (NIPS), pp. 1081–1088.

Poupart, P., Ortiz, L., & Boutilier, C. (2001). Value-directed sampling methods for belief monitoring
in pomdps. In Uncertainty in Artificial Intelligence (UAI), pp. 453–461.

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (2008). Online planning algorithms for pomdps.
Journal of Artificial Intelligence Research (JAIR), 32, 663–704.

Roy, N., Gordon, G., & Thrun, S. (2005). Finding approximate pomdp solutions through belief
compression. Journal of Artificial Intelligence Research (JAIR), 23, 1 – 40.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (Second Edition).
Prentice Hall.

Saad, Y. (1996). Iterative Methods for Sparse Linear Systems. PWS, Boston.

Sarris, Z. (2001). Survey of uav applications in civil markets. In IEEE Mediterranean Conference
on Control and Automation, p. 11.

Schmidt, J. P., Siegel, A., & Srinivasan, A. (1995). Chernoff-hoeffding bounds for applications with
limited independence. SIAM Journal on Discrete Mathematics, 8(2), 223–250.

Seuken, S., & Zilberstein, S. (2007). Improved memory bounded dynamic programming for decen-
tralized pomdps. In Uncertainty in Artificial Intelligence (UAI), pp. 2009–2015.

Seuken, S., & Zilberstein, S. (2008). Formal models and algorithms for decentralized decision
making under uncertainty. Journal of Autonomous Agents and Multiagent Systems, 17(2),
190–250.

Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable markov decision
processes over a finite horizon. Operations Research, 21, 1071–1088.

Sorenson, H. W., & Alspach, D. L. (1971). Recursive bayesian estimation using gaussian sums.
Automatica, 7, 465–479.

Sorenson, H. W. (Ed.). (1985). Kalman Filtering: Theory and Application. IEEE Press, New York.

Thrun, S. (2000). Monte carlo pomdps. In Neural Information Processing Systems (NIPS), pp.
1064–1070.

Tsitsiklis, J., & Roy, B. V. (1996). Feature-based methods for large scale dynamic programming.
Machine Learning, 22, 59–94.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. (2005). Bayesian sparse sampling for online
reward optimization. In International Conference on Machine Learning (ICML), pp. 956–
963.

337

