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Abstract. The dynamics of low-density flows is governed bv the 
Boltzmann equation of the kinetic theory of gases. This is a nonlinear 
integro-differcntial equation and, in general, numerical methods must 
bc used to obtain its solution. The present paper, after a brief review of 
Direct Simulation Monte C'ark) (DSMC) methods due to Bird, and 
Belotscrkovskii and Yanitskii, studies the details of the DSM(" method of 
Dcshpande f o r  mono as well zts multicomponent gascs. The present 
method is a statistical particle-in-cell method and is based upon the 
Kac-Prigogine master equation which reduces to the Boltzmann 
equation under the hypothesis of molecular chaos. The proposed 
Markoff model simulating the collisions uses a Poisson distribution for 
the number of collisions allowed in cells into which the physical space is 
divided. The model is then extended to a binary mixture of gases and it 
is shown that it is necessary to perform the collisions in a certain 
sequence to obtain unbiased simulation. 

Keywords. Low density flow: Boltzmann equation; Kac-Prigogine 
master equation: collision dynamics: Monte Carlo method; unbiased 
and consistent estimator. 

1. Introduction 

With the advent of space vehicles flying at altitudes of several hundred kilometers 
or more, it has become necessary to study aerodynamics at low densities. The chief 
parameter  that governs such flows is the Knudsen number Kn, which is the ratio of 
the mean free path of molecules between collisions (say A) to a characteristic linear 
dimension of the body in flight (say L). Figure 1 shows the variation of a with 
altitude in the International Tropical Reference Atmosphere (ITRA) (Anantha- 
sayanam & Narasimha 1986). It is seen that for L = I m, the Knudsen number 
Kn = 1 at an altitude of 110 km. At much lower altitudes, Kn is small and by 

A part of the material in this paper was presented at the Minisymposium 2 of the I('IAM 87 held in Paris 
during June 29-July 3, 1987 
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I0- 4 I0 0 I 0 B m Tropical Reference Almosphere  
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implication the number of intermolecular collisions (in volume L 3) is much larger 
than the molecular impacts with the body. Consequently, the gas is very nearly in 
thermodynamic equilibrium everywhere and may be treated as obeying the laws of 
classical gas dynamics to a good approximation, in the opposite limit of a large 
Knudsen number, the molecules hardly collide among themselves; the 'free 
molecule flow that results is then dominated by molecular impacts with the body 
and the gas is everywhere far from thermodynamic equilibrium. The molecular gas 
dynamics regime starts roughly when Kn = O(1) and continues all the way upto 
Kn---, zc. In this regime the governing equation is the well-known Boltzmann 
equation of the kinetic theory of gases. This is a nonlinear integro-differential 
equation governing the spatio-temporal ew)lution of the one-par~sle velocity 
distribution function f ( t ,  x, v), and is given by 

(Of/i)t) + v.  (FlJT/~x) + F. (0f/0v) = t [f(~, ' )f(w')  

- f ( v ) f ( w ) ] g b  db de Dw, (1) 

where v is the molecular velocity, x is the position vector, F is the external force per 
unit mass: v, w are the precollision velocities of a colliding pair; b is the impact 
parameter: ~- is the angle between the plane of motion and a reference plane (see 
figure 2), and Dw is an infinitesimal volume in velocity space. Further, in (1) we 
have written ,/'(v) in place o f f ( t ,  x, v) and shown only one integration symbol for 
brevity. The velocities v', w' are functions of v. w, f and the scauering angle 0 (see 
figure 2) and are given by 

v' = v + k ( k ,  g ) ,  w '  = w - k ( k ,  g ) ,  ( 2 )  
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I b ~° Figure 2. Trajectory of a particle in a 
central force field. 

where g = relative velocity of colliding pair = v - w  (3) 

and k is the unit vector given by 

k = [cos (0/2) cos F, cos (0/2) sin ~, sin (0/2)]. (4) 

The scattering angle 0 has to be determined by the two-body collision dynamics 
and, in general, depends on the impact parameter b, relative speed g and the 
intermolecular force law. 

It is clear that obtaining a solution of (1) for bodies in low density flows is a 
formidable task and no exact solution to (1) is known except when the gas is 
everywhere in thermodynamic equilibrium. Over the last several years the 
statistical-particle-in-cell method or the Monte Carlo method for obtaining the 
numerical solution of the Boltzmann equation has been developed and successfully 
applied to a variety of low density flows, some of the most recent examples being 
hypersonic transitional flows by Moss (1986) and Advanced Orbital Transfer 
Vehicle (AOTV) entry flows by Bird (1986). We will consider in the following 
sections of the paper the basics of DSMC (Direct Simulation Monte Carlo) and some 
aspects of its application to free molecule as well as transitional flows. The 
development of various computer codes and the Kac-Prigogine equation based 
DSMC were undertaken under various ISRO*-sponsored research contracts spanning 
the period from 1970 to 1983. 

2. Free molecule drag calculation by Monte Carlo 

In free molecule flows the intermolecular collision term in (1) is zero, and the flow 
field changes because of molecular impacts with the body. It is then possible to 
calculate the drag and lift coefficients as well as the Stanton number by simply 
calculating the momentum and energy transferred to the body by the impacts. In 
fact, assuming diffuse reflection at the body surface the free molecule drag 
coefficient Coy,,, for an arbitrary body is given by 

CDp,, = 1/(½p~U~Zr~f) I a S ( p ) I  Dv[v~+v"(~RTw/2)½"nx(p) 
I',, :> 0 

+ v,l v, tlx(p) + v,ev, t2~(p)lF~, (5) 

* Indian Space Research Organisation 
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where p~ = 

A r e  f : 

[3  ~ --- 

R =  
U . ~  

a B =  
dS(p) = 

D v  = 

density in the free stream, 

reference area, 
the free-stream Maxwellian distribution 

n~(fi~/rc) ~/2 exp [ -  fl~ (v - U~)2], 

free stream number density. 
1/(2 RT~) ,  T~ = f r e c  stream temperature.  
gas constant per unit mass, 
mean velocity in the free stream, 
body surface, 
elementary area on aB around point P, 
dvl dv2dv3 = infinitesimal volume in velocity space (vl, v2, v3), 

(6) 

n~(p), tl~(p), tz,-(p) are respectively the x-components of normal vector n and tt ,  
t2 are two tangent vectors to the body surface aB at the point P, and v,,, v,~, v,2 are 
the corresponding components of velocity v. 

The limits of integration with respect to v in (5) are defined by v,, > 0. By 
defining the characteristic function X(v , , )=  1, if v,, > 0, = 0 otherwise, the 
integral in (1) can be written in the compressed form 

- ac 

where 
1 

D,:(v, p) = [v~ + v,,(~R T~,./2) ~ n, (p) + v,, v,,tlx(p) + 

+ v,2 v,, t2~ (p)] F~ ~(lea U~ A rcf). 

The sample mean Monte Carlo estimator for CDfm can now be constructed as 
follows. First, we choose a finite volume • in velocity space in such a way that the 
contribution to CDp,, due to velocities falling outside ~ is negligibly small. For 
example, 1) can be taken as a cube centred around U~ and having sides equal "to 
several times the mean thermal speed l/fl~ 2. The body surface is then divided into 
several elemental surfaces A~, A 2 . . . A N  as shown in figures 3 and 4 where the 
SLY-3 surface is paneled. Then the sample mean Monte Carlo estimator for Ct~f,,, is 
given by 

N 

Ct, j,,, = ({~A/N) ~ DF(Vi, pi)X(v, , i)(Ai/A) (8) 
i = 1  

where Pi is a point uniformly distributed on the SLV-3 surface, vi is a random 
velocity vector uniformly distributed within the volume 1), and A is the total area of 
all the panels on the body. Figure 5 shows the free molecule drag coefficient of 
SLY-3 with zero angle of attack and diffuse reflection using the above sample mean 
Monte Carlo estimator at various speed ratios. Also shown in the same figure is 
the scatter of the estimator. The statistical scatter is always present in any Monte 
Carlo estimator and is a very characteristic feature of the Monte Carlo method. The 
details of surface paneling, drawing of random numbers, estimation of variance, 



Monte Carlo simulation for molecular gas dynamics 109 

J i~,\ 

/ Ii I 
Figure 3. Paneling of SLV-3 surface (side view). 

use of variance reduction techniques and calculation of drag coefficients for various 
bodies including SLY-3 are given in Deshpande & Subba Raju (1973). 

3. DSMC method for the Boitzmann equation 

3.1 Introduction 

For the purpose of Monte Carlo simulation of (1) we drop the F.  (Sf/Sv) term and 
the equation becomes 

(Sf/Ot) + v.  (Sf/c~x) = J( f ,  f )  

= f [f(t, x, v ' ) f ( t ,  x, w') - f ( t ,  x, v)f(t ,  x, w)]go-(lL g)Dw d~,  
) (9) 

Figure 4. Approximate representation 
of SLV-3 base (enlarged). 
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Figure 5. Drag coefficient for SLV-3 at zero angle of attack in free molecule flow, diffuse reflection. 

where o-dO is the differential scattering cross section, df~ = sin 0 d0de, is the 
infinitesimal solid angle, and 0 is the scattering angle. In terms of impact parameter 
b introduced in §1 we have o- dO = bdbde. The most difficult problem in seeking a 
solution of (9) has been the tackling of the quadratic nonlinear collision term 
J(f, f) .  Among different numerical methods used the DSMC of.Bird (1970, 1976) 
has been very successful in handling a variety of multidimensional flows in 
aerospace engineering. The faithfulness of the Time Counter (we) strategy of Bird 
has always been doubted (Deshpande 1978; Pullin 1"974; Yanitskii 1973). For 
example, Yanitskii (1973) has shown that the collision-relaxation model of Bird is 
not satisfactory in the sense that Bird's method distorts the actual distribution of 
the number of collisions q and further that the method gives a biased value of the 
mathematical expectation of q. This bias becomes vanishingly small as the number 
of molecules per cell tends to infinity. Further, Deshpande (1976) has pointed out 
that while trying to simulate the collision term Bird (1970) suggests that a time 
counter be kept for each class of molecules whose velocity vectors fall within v and 
v + dv. On the other hand, in all applications of this method to specific flow 
problems, a time counter is kept for each cell in physical space, that is, for all 
molecules in a physical cell. No analysis is made regarding the possible 
approximation involved. Bird (1970) has observed that the Monte Carlo would be 
more directly comparable to the Boltzmann equation if a time counter is kept for 
each molecule and suitably advanced. We will show that for faithful simulation it is 
not necessary to keep a time counter for each cell ~. 

The metivation for the Kac-Prigogine based DSMC arose from the above doubts 
concerning the faithfulness of the TC strategy of Bird. The connection between the 
master equation and the Boltzmann equation was exploited by Deshpande (1976) 
to develop an RCN (random collision number) strategy. The theoretical basis of the 
unbiasedness and consistency of the RCN method was studied in considerable detail 

* In a private communication with the author in 1976 Bird stated that he no longer speculates on the 
possibility of using a separate time counter for each molecule. 
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by Deshpande (1978). A modified RCN (MRCN) method was developed by 
Deshpande et al (1979) to keep the computing task proportional to the number of 
particles by using the sampling technique to determine the expected number of 
collisions per cell. A considerably simpler and transparent proof of the Kac- 
Prigogine-equation:based DSMC method of Deshpande was given by Deshpande 
(1982) in a paper at a workshop on Monte Carlo methods. This method was later 
extended to multicomponent mixtures by Deshpande (1983). Further, the above 
DSMC method was made computationally more efficient by Deshpande & Subba 
Raju (1981) by using operator splitting. 

It may be noted here that Belotserkovskii & Yanitskii (1975) were the first to use 
the master equation to develop the statistical particle in cell method, termed the 
tracer method by Yen (1985). Their method is different from that of Deshpande 
(1976) in that Belotserkovskii & Yanilskii (1975) use a time counter while 
Deshpande uses the Poisson distribution to draw the allowed number of collisions 
in a cell. A review of different DSMC methods is given by Yen (1985) and by Nanbu 
(1986). As we shall see later some comments of Nanbu (1986) about Deshpande's 
method are not entirely correct. We shall study here the theoretical basis of the 
Kac-Prigogine equation-based DSM(" of Deshpande for mono and multicomponent 
gases. 

3.2 Kac-Prigogine master-equation-based DSM¢" 

We write the Boltzmann equation (9) as 

where 

(c~f/at) = (Of~at) ..... + (Of~at)c,,, (lO) 

(9) in two steps as: 

(Of/Ot) = (Of/c~t)co°, f " +  ' 

(Of/Ot)  = (,gf/,gt)~.,,i, f " +  ' 

= o ~ . , , , , ( a O f "  = f " +  at(af /at) 'L. ,  (13) 

= o c o ~ ( a t ) . I " +  

= f " + '  + a t  J ( f "+ ' ,  f "+ ' ) ,  (14) 

where f " =  velocity distribution at the time level n, and f"+~ is the solution 
at the intermediate time level. The solution f"+~ given by (13) is the solution 
when the collision term is dropped and hence will represent the free molecule flow, 
while (14) is the solution with only the collision term present and thus represents 
the solution of the homogeneous Boltzmann equation. The decoupling between the 
collision and streaming is possible due to the splitting and the resultant solution 

f "+ '  = 0 ..... (ar)o,., ,~(at) f "  + o ( a t  2) 

= O~.,,l(at) O ..... (At) f " +  O(at2), (14a) 

is only first-order accurate in time. It is now necessary to develop methods for 
solving the split equations or equivalently for constructing the solution operators 
Ocon and 0,.,,~. 

(Of/Ot)c .... = streaming term = - v. (Of/Ox), (11) 

(Of/Ot)col = collision term = J(f ,  f). (12) 

Using the operator splitting theory of Yanenko (1971) we construct the solution of 
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The solution operator  O ...... can be easily constructed as fldlows. We choose a 
sufficiently large box (see figure 6) around a body to approximate the infinite flow 
field. The computational domain is then divided into a network of cells (or finite 
volumes), the molecules outside the box are assumed to obey the free stream 
velocity distrfl~ution which in many cases is the Maxwellian distribution defined by 
(6). Severai tl-tousands of molecules are distributed initially in the box with their 
positions distributed in space and their velocities are uniformly drawn from the free 
stream Maxwellian distribution. Once the initialization is over the simulation of 
(~)]'/ZJt) + v. (~/'//~x) = (I is done by moving along the characteristics 

(df/ds) = (,~f/,)t)(dt/d~) + ( ; ( f / (~) .  (dx/ds), 

(dt/ds) = I, ( d x / d s ) =  v, (15) 

that is, we just move the molecules with their velocities over the time interval At. 
During this movement the molecules may quit the box, may hit the body and get 
reflected, and thus transfer momentum and energy to the body. The various 
possibilities are taken care of by developing (1) a subroutine for influx of 
molecules into the box through the boundaries, (2) a subroutine for determining 
the intersection of the molecular trajectory with the body surface, (3) a subroutine 
for obtaining reflected velocities after impact with the body, and (4) a subroutine 
for arranging a molecular list according to the cell numbers they occupy. 
Subroutines ('ONV and ARAN(; were developed by Deshpande et al (1977) and 
validated against available results for a cone and cone-cylinder in a free molecule 
f low. 

3.3 Simulation of collisions 

The Markoff process for the simulation of the homogeneous Boltzmann equation 
(12) is based on the Kac-Prigogine model 

OP. _ 1 \" \" f dl~ikcr(llik, g/k)gik 

x l e , , ( t ,  v lk)  - e,,(t, v)], (16) 

I i : 
I I I 

, I ,  I I , , ' ' , , , ' ,  , ~ I L l  x 
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Figure 6. Division of flow field for computing flow past a cone. 
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where P, is the N-particle velocity distribution function, 

v = (v~,  w . . . . .  v ~ } ,  v ;~  = { v , ,  v_, . . . .  v'j . . . .  vk . . . .  v ~ } ,  

gik = v j -  v k. (17) 

The master equation (16) governs the time evolution of the N-particle distribution 
due to collisions among N molecules in the cell whose volume is denoted by "Vol". 
One of the very important properties of the Kac-Prigogine equation (16) is that 
under the hypothesis of molecular chaos 

P.(t, V) = dp(t, v t ) ~ ( t ,  v2) . . . .  00(t, vx), (18) 

where qb (t, v) is the one-particle velocity distribution function, the master equation 
reduces to the Boltzmann equation. Further, the molecular chaos once established 
perpetuates in time provided N is very large, and the initial validity of the chaos is 
ensured by taking 

P~,(6., V) ~ /%_(vj)F~(v2) . . . .  F~(v?v). (19) 

F~ is the free stream MaxweHian defined by (6). 
The relationship between the simulation method and the master equation 

becomes transparent if we write (16) in the form 

where 

(~e,,/at) = B ( o  - / ) e , , ( t ,  v ) ,  

B = number of binary interactions per unit volume per unit 
time = SUM/Vol, 

SUM = ~,~r~,~¢--\" ~ \" f gi~o-(l~i, ., giF) d~i,., 

I ' 
OP. = \" \" Pik (°)k, gjk) P.(V/k) dl~jk 

(20) 

(21) 

(22) 

Pjk(l~ik, gjk) = [giko'(fljk, gjk)I/SUM, (23) 

1 = identity operator. 

The operator O gives OPo which is the new N-particle velocity distribution after 
one collision. Everytime there is a collision the N-particle velocity distribution 
undergoes a change (O - l)Po(t, V). As there are B binary interactions per unit 
time per unit volume the total change due to them will be B(O - l)Po. Equation 
(20) is obtained by equating this change per unit time to aP./~t. A formal solution 
of (20) for a small time interval At is 

Po(t + At, V) = e x p ( -  BAt)  exp(AtBO)P~j 
~ c  

= e x p ( - B A t )  ~'. [(AtB)F/r!]Orp.(t, V). 
r = O  

Recognizing that 

[(AtB)F/r!lexp( - BAt),  

(24) 

(25) 
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procedure. In order 
randomly draw N 
(i2, rx) . . . .  (iN, rN), 
estimator 

N 

is a Poisson distribution, it follows from (24) that Po( t+At ,  V) is the 
mathematical expectation of Orp,(t,  V) with r obeying a Poisson distribution 
having a mean equal to BAt. 

The Monte Carlo simulation of the homogeneous Boltzmann equation (12) can 
thus be performed by the following algorithm: 
(a) Calculate the binary interaction rate B by using (21), which requires relative 
velocity for every possible colliding pair, and the differential scattering cross- 
section ~r(IL g). 
(b) Draw a random variable r from the Poisson distribution e x p ( -  B A t)(BAt)fir! 
(c) Select a pair of molecules vj, vk and solid angle l~jk from the probability 
distribution Pjk (~jk, gjk). 
(d) For the collision partners drawn in step (c) determine the post-collision 
velocities v~, v~ from collision dynamics and replace vj and vk by v) and v~,. The 
determination of the post-collision velocities requires the use of (2) which in turn 
requires the values of the azimuthal angle e and the scattering angle 0. The latter 
can be determined from the dynamics of two-body collision. 
(e) Repeat the steps (c) and (d) r times. 

Several comments are in order about the Kac-Prigogine-equation-based DSMC 
method. First, step (a) requires the calculation of N,. = N ( N  - 1)/2 pairs of relative 
velocities gik as j and k run from 1 to N. Hence, the collision strategy described 
above will require an operation count that goes like N 2. It is preferable to have an 
operation count that goes like N especially when N is large. However, whenever 
the number of molecules per cell is very large (as happens when the flow is 
c611ision-dominated) it is possible to estimate the SUM given by (21) by a sampling 

to determine SUM in such a case all that is required is to 
pairs gl, g2 . . . .  gu corresponding to partners (il, rt), 

and then determine SUM by the sample mean Monte Carlo 

SUM ----  --Y f g/o-(fL &) dO. (26) 
j = l  

Further, several variance reduction techniques can be employed (importance 
sampling, stratified sampling etc.) to construct an estimator for SUM having smaller 
variance than for the sample mean estimator (26). The sample mean estimator (26) 
is the basis of the M R C N  method of Deshpande et a! (1979). In summary, the 
present DSMC can be easily designed to have an operation count that is linearly 
related to the number of molecules in a cell. This point has not been recognised by 
Nanbu (1986) in his recent article on "Theoretical basis of the DSMC method" 
where he claims that unless the molecular model is Maxwellian, only Bird's method 
and Nanbu's method modified by Babovsky are of practical use as the computing 
task is proportional to the number of particles. This claim as we have seen is not 
entirely correct because in the present DSMC method also the computing task is 
proportional to the number of particles. Further Nanbu (1986) has stated that 
Deshpande (1978) "tried to derive the method from the Kac equation but his 
derivation is rather a kind of plausibility argument". It is difficult to know the basis 
of this statement. Unbiasedness and consistency of DSMC of Deshpande were 
proven in the report of Deshpande (1978). The analysis of the present paper is the 
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same as that o f  Deshpande (1982) and is much more transparent than the one given 
by Deshpande (1978) earlier. The actual calculations of low density flows past a 
cone at Knudsen number close m unity (see Deshpande et al t978) show that the 
RCN strategy and the T(. strategy of Bird require very nearly the same CPU time 
even though the R('N strategy requires an operation count that goes like N 2 instead 
of like N for the TC strategy. This is primarily because the number of operations 
required to advance the solution from one time level to the next is dominated by 
the convection operator O ..... and not by the collision operator 0~,,~ for flows having 
Kn = O(1). 

The step (a) above requires the calculation of SUM given by (21), and SUM in turn 
depends on the intermolecular force law. For rigid sphere molecules 

gb db de = rrd-g, 
t l  o t l  

where d is the diameter of the molecules. The SUM then is given by 

SUM = rrd 2 _V_V g#. (27) 
I ~ t < i %  ,~" 

For a molecular pair i, j retained for a collision the vector relative velocity, gii is 
known. The scattering angle 0 and the azimuthal angle e" in (4) are drawn with 
uniform distributions from the intervals [0, ~r] and [0, 2rr]. For these values of gii, 
O, and e, the post-collision velocities v', w' can then be determined from relations 
(2) and (4). 

In case of molecules with soft potential having point-centres of repulsion we 
have, 

F = intermolecular force between two molecules separated by 
distance r = a/r'.  (28) 

Defining the dimensionless impact parameter ~ by 

= b [ m g 2 / 2 ( s _  l)a]l,c,-al 

we obtain 

where 

gbdb de = K~g'"t~d(xde, 

co = ( s -  5 ) / ( s -  l), KI, = [2 ( s -  l )a /m] l'(' i) 

For such molecules SUM reduces to 

(29a) 

(29b) 

2 ~ SUM = rr¢~,-na × Ko __V __V g!i" (3(}) 
I<~t<l%N 

where a,,,~,x is the cut-off value of the dimensionless impact parameter. The 
scattering angle 0 for molecules with soft potentials is no longer a uniformly 
distributed random variable. The scattering angle 0 is a function of oe given by 

f "  rl -~ (31) 0 = ~ ' - 2  dr/ { 1 -  - [ 2 / ( s - 1 ) ] ( r l / ~ ) '  '} ''-~ 
I} 
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where r h is the positive real root of the equation 

1 - rl21 - - [ 2 / ( s  - 1)](~l , /a)  ' -I  = 0. (32) 

The scattering angle is determined by drawing a random number a uniformly 
distributed between [0, a . . . .  ], and then computing 0 by the evaluation of the 
integral (31). This integral in general has to be computed numerically, but for some 
values of s closed form results are available, e.g. for a Maxwell molecule s = 5, and 
(31) reduces to 

1 

0 = r r -  2(1 - 2q2)~-K(q), (33) 

where 
I 

q2 = ½{1 - 1/[1 + (2/a4)]~-}, 

and K(q) is the complete elliptic integral of the first kind (Abramowitz & Stegun 
1965). The above detailed algorithm about drawing random numbers g, a or 0, e 
can be briefly summarized by the simplified expressions for p( IL g) given by 

p(f l ,  g) = p(O, e, g) = (g/'Zg), for rigid spheres, and 

p(12, g) = p(~,  e, g) = (g'°/Eg'°) (a/Tra~,~,x), for soft potentials. 

3.4 An efficient operator-split DSMC 

We have now given methods for constructing operators O~,,,, (At) and Oc,,t (At) used 
in advancing the solution in time. The ceu  time required depends on the number of 
arithmetic operations involved in Oc,,,(At) and Oc,,l(At). For advancing the 
solution through two time steps we have to use the sequence twice, that is, 

f,,+2 = [0  ..... (At) Oc,,,(At)][O ..... (At) Oc,,,(At)] f" .  (34) 

which involves two convection and collision operators. On the other hand the 
equivalent sequence 

f,,+2 = Oc,, I(At) 0 ..... (2At) O~.,,,(At) f " ,  (35) 

involves only one convection and two collision operators. It has been found that the 
sequence (35) required about half as much time as required by the sequence (34). 
This time saving is due to the following reason. After the convection of molecules is 
done the computer code has to arrange the molecular list according to cell 
numbers. This arrangement is done by subroutine ARANG. Such an arrangement is 
necessary for calling subroutine COLSN which performs collisions cell by cell. The 
sequence (35) makes only one call to subroutine ARANG while the sequence (34) 
requires two calls. This is the reason for the saving in cPU time when sequence (35) 
is used instead of the sequence (34). Table 1 shows a comparison between the CPU 
times taken by the two sequences for advancing the solution through two time 
steps. 

4. Extens ion of  the Kac-Prigogine  based DSMC to mixture  o f  gases 

Let us cons ider  the binary mixture o f  two  gases  d e n o t e d  by subscripts a and b. The  
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Table 1. Comparison of ('PU; times 

Subroutines (s) Complete 
cycle 

Method ('ONV ARAN(; (S) 

Sequence (34) 17.g 16,5.9 195.8 
Sequence (35) 15.5 7{I.9 95.9 

' Computer used is CYBER 170/7311 system at VSSC, 
Trivandrum. The RD[' = rate ol data processing defined 
by the ('I'U time required to advance the solution through 
2At per molecule is a measure ol the efficiency of the 
numerical method. The RDP for the sequence (34) is 
0.1132 s per molecule per 2,~t, while it is I).t116 s for the 
sequence (35). 

re levant  B o l t z m a n n  equa t ions  for  the one -pa r t i c l e  p robab i l i t y  dens i ty  funct ions  
@,( t ,  x, v) and  %, ( t ,  x, v) are  

({)qb,/{)l) + v,, I • ((gdP,/Ox) = J(ql) , ~, ,)  + J(qba. dO/,), 

({~;,/{~t) + v; , l '  (c?q);,/,~x) = J ( ~ ; . .  ~I),,) +J(di);, .  ¢[%). (36) 

The  col l is ion te rms  J are  de f ined  by 

J(.,,. ~,,)-=,,,, tlv,,,-wl,.,,,,(~. Jv.,-wl) × 

[c l~ , (v i ,~ ) ( I~ , , (w ' ) -~ , , ( v , , i ) cb , , (w)]  df~Dw,  (37a) 

J ( . . . . ; , )  -= .,, I I v . , -  w I,.,,;,(~. I v , , , -w l )  × 
1 

14'.(v:,l)q,h(w')- q,.(v,,,)q,;,(w)] d~Dw.  (37b) 

J(q),,. ®.) - - . .  f i '~;, ,-  wl,..h(X~. !~ , , -w i )  × 

[(l,~,(V~,l )qb . (w ' )  - %,(v~,, ) q':,,,(w)] d ~ D w .  (37c) 

J(@,, ,  qb;,) = n;, I I v;,, - w I ,rh;,(,~)~. iv;,, - w l )  x 

[q ' t , (v) , j )q~/ ,(w')  -- ~/,(Vhj)@h(W)] d l~Dw,  (37d) 

He re  n,,, ttl, are  the n u m b e r  dens i t ies  of  species  a and b, ¢r, .... ,r,,~, etc. are  

c ross -sec t ions  for a - a ,  a - h  etc.  col l is ions ,  and  d e p e n d e n c e  of  qb,,, qb;, on t and x is 
supp re s sed  for  brevi ty .  The  so lu t ion  of  (36) can be cons t ruc ted  in two steps by 

adop t ing  the split scheme:  

(i) C o n v e c t i o n  step 
In tegra te  the equa t ions  

(?~Op,,/{~t) + v,,, -(O{l~,,/Ox) = (), (?~(l)l,/{Jt) + v/,~- (c?~h/Ox) = 0 

over  small  t ime du ra t i on  At by moving par t ic les  a and par t ic les  b with thei r  
respec t ive  veloci t ies .  This  convec t ion  of  the par t ic les  is exact ly  s imilar  to the 
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convection step described earlier for monocomponent gases. We thus obtain the 
intermediate solution @~+l, @g+l, and the convection operator O~o.(At) corres- 
ponding to the solution is defined by 

[ ®::+' ] [®::-I ¢~-q- = o . , . ( a t )  [¢:~J . 

(ii) Collision step 
Next, construct the solution 

[o,:+, ] [o:+, ] 
(p~+, = O~ol(At) cp,,_-77i- , 

by integrating the homogenous Soltzmann equations 

( a ¢ , , / a t )  = J ( ¢ , , ,  ¢ , , )  + J ( ¢ , , ,  ¢ ; , ) .  

(aqb,/at) = J(dpl,, dP,,)+J(dPl,, dPl,), 

(38) 

( 3 9 )  

where 

l \ ,  + - -  
Vol ;~1 

[Po(V'.ik, Vh)- Po(V)] d[~jk 

v l l  v, , ; -  v,,, l o-,,,,(a,,, Iv,,,- v,;, I) x 
J 

[P,,(V;,,,i,) - Po(V) ]  d[~,, 

+. 1 < \ 7 \ ,  f ~ J v , , ; -  v,,, I o-,,,,(~;,, Iv , , ; -  v,,~ P) × 
VoI l ~ [<k_< M 

[P,,(V,,, V;, / ,)-  P,,(V)]  d~~vk, 

v = ( v , .  v ; , } .  v, ,  = ( v , , ,  v .2  . . . . .  v , ,N}.  

v ; ,  = ( v ; , .  v;,2 . . . . .  V;,M}, 

Vl, ; ,  = ( v , ,  . . . . .  v~,j . . . . .  vl,k . . . . .  v , ,N},  

V;V,  = {v;,, . . . . .  v ; v  . . . . .  v Z  . . . . .  V;,M}. 

V:,;,,k = {v , .  . . . . .  vlq  . . . . .  v , ,x .  v ; .  . . . . .  v~.k . . . . .  v ; ,M}.  

(41) 

over time duration At with dp',~ +~, ~',+~ as initial velocity distribution functions. 
The solution so obtained will be first-order accurate in time. 

The collision operator Oc,,ffAt) for solving (4(I) is constructed using the 
relationship between the Boltzmann equations (40) and the Kac-Prigogine master 
equation. We write the master equation for a binary mixture of gases in a box of 
volume "Vol'" as 

(ap , , /a t )  = J (p , , )  

Vol I ~ i~k~  N 

(40) 
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Further, o',,,dflik is the differential scattering cross-section for a-a collisions, 
O',,bdlljk for a-b collisions and so on. In (41) Po(t, V) is a joint probability density 
function. An interesting property of (41) is that it reduces to the homogenous 
Boltzmann equations (36) under the hypothesis of molecular chaos. For, we then 
have 

Po(t, V) = qb,,(t, Val )d i )a ( t ,  Va2).. .dPa(t , VaN)di )b( t  , Vbl ) X 

~b(t, vh2)..,  qbb(t, VhM). (42) 

Integrating the master equation (41) with respect to all the velocity variables except 
Val and observing that 

v f da , t v,,j - I I - I) × 
l<~j<k<~M 3 

[Po(V,,, V'hj,)-  P,,(V)] Dva2 . . . .  DVhM = 0, 

we obtain the first of the homogenous Boltzmann equations (36). In establishing 
this result we have assumed that N and M are sufficiently large so that 

n o =  (N-1 ) /Vo l ,  nb = (M-1 ) /Vo l .  

Similarly, integrating the master equation (41) with respect to all velocity variables 
except vbt and invoking (42) we obtain the second of the homogenous Boltzmann 
equations (36). Thus, under the condition of molecular chaos, we obtain 

J(~a,  dp~) + J(dpa, dpb) = I J (P0)Dv,2. . .  DVaN Dvhl . . .  DVbM, (43) 

J(~h,  ~,,) + J(dPb, dPh) = I J(Po)DvoI. . .  DV,,N Dvb2-.. DVhM. (44) 

These relations are very crucial to the present DSMC method for a binary mixture. 
These relations enable us to tackle the nonlinear Boltzmann equations through the 
linear Kac-Prigogine master equation. What is now required for the development 
of DSMC is the Monte Carlo game exactly simulating the Kac-Prigogine equation 
governing the time evolution of the (N + M)-particle probability density function 
Po(/, V). 

It may be observed that the equivalence between (40) and (41) requires the 
condition of molecular chaos and even though we can ensure its satisfaction at some 
initial time by properly sampling the N + M velocity vectors, its validity thereafter 
is in general not guaranteed. As time proceeds correlations between velocity 
vectors will appear thus destroying the chaos. However, the molecular chaos has 
the self-preservation property in the limit of an infinite number of particles. _It is 
therefore possible to reduce the distortion introduced in the numerical simulation 
by choosing sufficiently large N and M in a cell. 

The development of the Markoff model for the simulation of the master equation 
(41) is very similar to the case of a monocomponent gas. The details of the Markoff 
model for a binary mixture are given in Deshpande (1983). only a brief description 
is given here. 
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5. Markoff model for a binary mixture 

For the purpose of developing the Markoff model we introduce the following 
probability distributions 

P,,,, j .  = e , , , , ( a j , .  ] v,,,. - v .~  I)  = l v . , -  v,,, l~,,,,(aj~, l v , , , -  v,,~ I)/s,,,,, 

S .... = --T =V (I v,q - v,,k [ o',,,,(D#k, v,q - v,,k) d[).jk. (45) 
I<~j<k<~N J 

P,,,,ik = P,,.([~ik, I v,,i - v.k l) = I v,,, - v . k  I , ~ , , . ( a ,~ ,  I v . j  - v . k  I ) / s . . ,  

N M 

S.. = ~ ~.\~ I l v , , i -  v.k I(r,,,,(~ik, t v , , j -  vt, k l )  df~ik, (46) 
j = l  k = l  ! 

P,,,,j~ -- P, , , , (~ j , ,  I v,,j - v,,, l) -- I v , / -  v,,, 1 o-,, , ,(~j,,  Iv,,, - v,,, I ) /s.. ,  

s,,,, _- ~v ~_~ ~1 v , , j -  v,,~ I o-,,,,(~j~, Iv,,, - v,,~ I) d a j , .  (47)  
l<~j<k<~M ) 

The probability distributions P,,,,jk, P,,bik, and Phhjk a r e  functions of discrete 
variables j, k and continuous variables 0, e. The dependence on 0, e is because of 
the dependence of the distributions on f~jk- 

Define operators O ..... O,,t, and Ore, by 

O,,,,e,,(t. V) = ~S" ~ f P,,,,jk(f~jk. [v , , j -v , ,~ l )  × 
I<_j<k<~N J 

P,,(t, V'.jk) d[]ik, (48) 

N M t "  

O.,,P,,(t, V) = ~. ~ |P,,,,j,(f~i,,jv.j-v,,kl)x 
j=l k=J J 

Po(t, V',,t,jk) dl-lik, (49) 

J 

Po(t, V;,hik) d~]j,. (50) 

These operators give the (N + M)-particle probability density function after one 
collision of the type a-a, a-b, and b-b. In terms of these operators (41) can be 
written in the compressed form 

(c~Po/c~t) = (B,,,,O,,,, + B,,hO,,t, + Bi, h O m , -  Bl )Po( t ,  v), (51) 

where B = B,,,, + B,,h + Bt, b, B .... = S,,,,/Vol, B,,~, = S,,h/Vol, Bh, = S~h/Voi, and 
1 = identity operator.  Notice that as collisions are allowed the set of velocity 
vectors V changes which in turn causes changes in S ..... S,,b and Sin,. The variables 
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B .... B,a,, Bin, and B therefore change with time. For small values of time duration 
At, the variables B, B,,,,, B,,h and Bhh can be treated as constants ar, d we can write 
the formal solution of (51) as 

Po(t + At. V) 

= e x p ( -  BAt)exp[At(B, , ,O~ + B,,bO,,i, + Bm, Om,)]Po(t, V). (52) 

The operators O .... and Ore, do not commute with 0,#, and consequently 

exp[At(B,,,,O,,,, + B,,~,O,,~, + BhhOm,)] 

exp( At B,,,,O,,,,)exp( At B,h O,i, ) exp( At Bm, Om,). 

It is therefore not possible to develop a simulation in which b-b collisions are 
performed first, a-b collisions next and a-a collisions last, or for that matter any 
fixed sequence of collisions of various types. Expanding the exponential in (52) we 
obtain 

P.( t+ At, V) = e x p ( -  BAt) x 

[(AtB,,,,O,,, + AtB,,bO,,i, + 6tBhhOhh)r/r!]Po(t, V). 
r = 0 

It is now easy to construct a Monte Carlo estimator for Po(t + At, V). We first draw 
a Poissonly distributed random integer r with mean BAt  and then draw r uniformly 
distributed random variables Rf~ . . . .  Rt~. lying in the interval [ll. 1]. Wc thcn 
construct an operator  O according to the following procedure. Define 

O = O i O 2 . .  - O~, (53) 

Ok = O ..... if (I < R)'~. < B,,,,/B, 

Ok = O,,h, if B , , / B  < Rfk < (B,,, + B,,~,)/B, 

Ok = Obh, if (B~,, + B,,t,)/B < Rfk < 1. 

Evidently the expectation of O defined by (53) for fixed r is 

E { O }  = (B,,,,O,,,, + B,,bO,,t, + Bm, Om,)"/B' 

and hence O t 0 2 . . . O r P . ( t ,  V) is an unbiased Monte Carlo estimator for 
Po(t + At, V) in the limit of At---. 0. 

Now if we have a sample at time t of N +  M velocity vectors, which is a 
realization from the ensemble wit.h probability density Po(t, V) then a realization 
from the ensemble with probability density Po(t + At, V) can be easily constructed 
using the operator  sequence (53). We just let O operate on V. The operator  O is an 
ordered product of O~ . . . .  0,. and each of these factors can be any one of the 
operators 0 ..... O,a,, Ore,. Hence, it is enough for the purpose of letting 0 operate 
on V if we know how transformed samples 0,,, V, O,,h V can be obtained. The 
procedure for obtaining the transformed sample consists in drawing a pair j, k of 
molecules either of a-a type, a-h type. b-b type, and the azimuth 6 and scattering 
angle 0 are then sampled from the relevant distributions. A collision is then allowed 
between the molecules of the pair and precollision velocities replaced by the 
post-collision velocities using collision dynamics. 

where 
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In operating 01, 02 . . . .  etc. on V the exact order of the various operators has to 
be preserved and a-a collisions, a-b collisions etc. cannot be performed in any way 
we please without introducing a bias in the estimator. No such ordering is present 
for monocomponent gases. The present Markoff model for a binary mixture can be 
easily extended to the mixture of several components. 

6. Concluding remarks 

A direct simulation Monte Carlo method based on the Kac-Prigogine master 
equation has been developed for the numerical simulation of the Boltzmann 
equation. This method requires the estimation of collision-rate per unit volume. 
The operation count required to determine the collision can be linearly related to 
the number of particles by resorting to sample mean Monte Carlo estimator. This 
fact has not been noticed by Nanbu (1986) in his critique of the method. A 
computationally efficient version of the present DSMC has been developed by 
employing a suitable sequence of convection and collision operators. Further, the 
DSMC has been extended to multicomponent mixtures of gases and it has been 
shown that it is necessary to perform the collisions in a certain sequence to obtain 
unbiased simulation. 

A part of the work reported here was performed for a project supported by vssc, 
Trivandrum. The remaining part was completed with support from ISRO through a 
new project sponsored through its RESPOND programme. The authors are grateful 
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