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Monte Carlo simulation of ice models
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We study a number of Monte Carlo algorithms for the simulation of ice models, and compare their effi-
ciency. One of them, a cluster algorithm for the equivalent three-color model, appears to have a dynamic
exponent close to zero, making it particularly useful for simulations of critical ice models. We have performed
extensive simulations using our algorithms to determine a number of critical exponents for the square ice and
F models.@S1063-651X~98!09301-5#

PACS number~s!: 02.70.Lq, 05.50.1q, 05.70.Jk, 77.84.Fa
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I. INTRODUCTION

Ice models are a class of simple classical models of
statistical properties of the hydrogen atoms in water ice
ice, the oxygen atoms are located on a lattice, and each
gen atom has four hydrogen bonds to neighboring oxy
atoms, giving a fourfold-coordinated lattice. However, as h
long been known, the proton~hydrogen atom! which forms a
hydrogen bond is located not at the center point of the
between two oxygens, but at a point closer to one of the t
Bernal and Fowler@1# and Pauling@2# proposed that the
protons are arranged according to two rules, known as the
rules: ~1! there is precisely one hydrogen atom on each
drogen bond and~2! there are precisely two hydrogen atom
near each oxygen atom.

Ice models are a class of models mimicking the behav
of systems which obey these rules. The most widely stud
ice model is the model on a square lattice in two dimensio
A version of this model was solved exactly by Lieb@3–5#.
The exact solution gives us, for instance, the critical te
perature and the free energy of the model. However, th
are a number of quantities of interest which cannot be
tained from the exact solution, and for these quantities
turn to Monte Carlo simulation.

In this paper we introduce a number of Monte Carlo
gorithms for the simulation of ice models, and compare th
efficiency. We will show that one of them, the three-co
cluster algorithm for square ice described in Sec. V, p
sesses a very small dynamic exponent~possibly zero!, and so
suffers very little from critical slowing down. We also ex
tend this algorithm to the case of energetic ice models in S
VII. Using these algorithms we determine numerically se
eral critical exponents which have not been accurately m
sured previously: the dimensionality of the percolating cl
ter of symmetric vertices in theF model at critical
temperature, the scaling of the largest loop in the loop r
resentation of both square ice and theF model at critical
temperature, and the scaling of the trajectory of a wande
defect in square ice.

II. ICE MODELS

Our ice model is as follows. Oxygen atoms are arrang
on the vertices of a square grid, and between each oxy
571063-651X/98/57~1!/1155~12!/$15.00
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and its four neighbors there are hydrogen bonds, represe
by the lines of the grid. Commonly, arrows are drawn on
bonds to indicate the positions of the protons: the arr
points towards the vertex which the proton is nearest to. T
first ice rule above then corresponds to the condition t
there should be exactly one arrow on each bond. The sec
ice rule says that each vertex should have exactly two arr
pointing towards it, and two pointing away. This gives us s
types of vertices, and for this reason ice models are so
times also referred to as six-vertex models. The six verti
are illustrated in Fig. 1.

In the first part of this paper we study the simplest s
vertex model, in which all types of vertices are assigned
same energy. This model is usually called ‘‘square ice.’’ T
name is somewhat confusing, since other ice models
square lattices, such as the KDP andF models of Sec. VII,
are not also called square ice. However, since the nam
widely used, we will follow convention and use it here to
Because all configurations of square ice possess the s
energy, the model’s properties are entirely entropica
driven, and variations in temperature have no effect on
behavior. It turns out that the square ice model is equiva
to three other well-studied models in statistical physics:
three-coloring model, a random-surface model on a squ
lattice, and the ‘‘fully packed loop model’’ of Nienhuis.

A. Coloring models

Lenard@3,6# showed an important result about square
which will help us in the design of an efficient Monte Car
algorithm for the simulation of the model. Lenard demo
strated that the configurations of an ice model on a squ
lattice can be mapped onto the configurations of a lattice
squares colored using three different colors, with the rest

FIG. 1. The six possible vertex configurations of an ice mo
on a square lattice.
1155 © 1998 The American Physical Society
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1156 57G. T. BARKEMA AND M. E. J. NEWMAN
tion that no two nearest-neighbor squares have the s
color. It is actually not very difficult to demonstrate th
equivalence. The procedure for working out the configu
tion of the arrows of the ice model, given a suitable colori
of the plaquets on the lattice, is shown in Fig. 2, in which t
three colors are represented by the numbers 1, 2 and 3.
rule is that we imagine ourselves standing on one of
squares of the lattice and looking toward one of the adjac
ones. If the number in the adjacent square is one hig
~modulo 3! than the number in the square we are stand
on, we draw an arrow on the intervening bond pointing to
right. Otherwise, we draw an arrow to the left. The proced
is then repeated for every other bond on the lattice.

Clearly the resulting configuration of arrows obeys t
first ice rule; since neighboring plaquets must have differ
colors, the prescription above will place one and only o
arrow on every bond. The second ice rule requires that e
vertex has two ingoing and two outgoing arrows. If we wa
from square to square in four steps around a vertex, t
each time we cross a bond separating two squares, the
either increases or decreases by one, modulo 3. The only
to get back to the color we started with when we have g
all the way around is if we increase twice and decrease tw
This means that the vertex we walk around must have
ingoing and two outgoing arrows, exactly as we desire. T
each configuration of the three-coloring model correspo
to a unique correct configuration of square ice.

We can also reverse the process, transforming an
model configuration into a three-coloring configuration. W
are free to choose the color of one square on the lattice a
wish, but once that one is fixed, the arrows on the bo
separating that square from each of its neighbors uniqu
determine the color of the neighboring squares, and, by
peated application of the rule given above, the color of
the rest of the squares in the lattice. Thus the number of w
in which the squares of the lattice can be colored is exa
the number of configurations of the ice model on the sa
lattice, regardless of the size of the lattice, except for a fa
of 3.

FIG. 2. A three coloring of a square lattice and its correspond
configurations of arrows and fully packed loops.
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Given this three-color mapping, it is clear that the squ
ice model is also equivalent to theq53 Potts antiferromag-
net on a square lattice in the limit of infinite couplingJ; the
three colors correspond to the three states of the Potts mo
and the infiniteJ ensures that no two adjacent sites can p
sess the same color.

B. Random surfaces

Square ice is also equivalent to a random surface mode
which heights are assigned to the plaquets of a square lat
If we assign these heights in such a way that adjac
plaquets have heights which differ by exactly 1, then ag
there is a one-to-one mapping between the configuration
the ice model and the random surface: the mapping is id
tical to the three-color mapping of Sec. II A, except for t
absence of the modulo operation. There has in fact b
considerable recent interest in the connection between co
ing ~and Potts! models and models of random surfaces~see,
for example, Ref.@7#!, another reason for the development
efficient Monte Carlo algorithms for these problems.

C. Fully packed loop models

The six-vertex model is also equivalent to the ‘‘full
packed loop model’’@8,9#, in which ~nondirected! loops are
formed by joining the vertices of the square lattice w
‘‘links’’ in such a way that each site on the lattice belongs
exactly one self-avoiding loop. To demonstrate this equi
lence, consider the following rule. First, divide the lattic
into even and odd sites in a checkerboard pattern. Now p
links along all bonds whose arrows are pointing away fro
an even vertex. Since each such arrow must also point
wards an odd vertex, and since each vertex has two ingo
and two outgoing arrows, this creates two links to every s
on the lattice. Hence the lattice is fully covered by clos
self-avoiding loops.

Proving the reverse result, that each configuration
loops corresponds to exactly one configuration of arrows
equally simple: we place outgoing arrows on each bond
joining an even site which is part of one of our loops. T
direction of all the remaining arrows is then fixed by usi
the second ice rule.

III. MONTE CARLO ALGORITHMS FOR SQUARE ICE

In this paper we develop a number of different Mon
Carlo algorithms for calculating the average properties of
models on square lattices. In the case of square ice, in w
all configurations of the lattice have the same energy,
necessary steps for creating such an algorithm are~i! to
choose a set of elementary moves which take us from
state of the model to another,~ii ! to demonstrate that thes
moves can take us from any state of a finite lattice to a
other in a finite number of steps~the condition of ergodicity!,
and ~iii ! to construct an algorithm from these moves su
that in equilibrium the rate at which a particular move occu
which takes us from a statem to a staten is the same as the
rate for the reverse move fromn to m ~the condition of
detailed balance!. It is then straightforward to show tha
over a sufficiently long period of time, we will sample a
states on a finite lattice with equal probability. However, t

g
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57 1157MONTE CARLO SIMULATION OF ICE MODELS
choice of an elementary move is not obvious, since ther
no local change we can make to the directions of the arr
on the lattice which will preserve the second ice rule. Th
is no equivalent of the reversal of a single spin in an Is
model, for example. In the next few sections we will co
sider four different candidate nonlocal update moves
square ice, which lead us to four different Monte Carlo
gorithms of varying efficiency. Two out of these four alg
rithms have been described before by other authors, but
still worth our going over them here, because in Sec. VII
will make use of some of the same ideas to develop a
rithms for energetic ice models. These latter algorithms h
not, to our knowledge, been described before.

A. Standard ice algorithm

First, we look at the standard algorithm for square
@10,11#, which involves reversing the arrows around a lo
on the lattice. It is clear that one possible move which ta
us from an allowed configuration of arrows in an ice mod
to another is the reversal of all the arrows in a loop cho
such that all arrows point in the same direction around
loop. Such a loop has one arrow pointing in and one point
out of each participating vertex, so that the reversal of al
them preserves the number of arrows going in and ou
each vertex. Notice that these loops are not the same loo
those in the fully packed loop model described above. In t
case the arrows along the loop point in alternating directio
and their reversal would violate the second ice rule.

How do we find a loop in which all arrows point in th
same direction around the loop? The most straightforw
method is illustrated in Fig. 3. Starting with a correct co
figuration of the model~a!, we choose a single vertex a
random from the lattice. We then choose at random one
the two outgoing arrows at this vertex and reverse it~b!. ~We
could just as well choose an ingoing arrow—either is fin!
This creates a violation of the second ice rule at the ini
vertex, and also at a new vertex at the other end of
reversed arrow. In ice terminology these are referred to
ionic defects: the vertices with one and three outgoing

FIG. 3. Flipping arrows one by one along a line across
lattice allows us to change the configuration and still satisfy the
rules. The only problems are at the ends of the line, but if the
ends eventually meet one another, forming a closed loop of flip
arrows, this problem goes away too.
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rows correspond to OH2 and H3O
1 ions respectively. We

can remove the defect at the new vertex by choosing at
dom one of the two outgoing arrows at this vertex and
versing it ~c!. ~There are actually three outgoing arrows
this vertex, but one of them is the arrow we reversed in
first move, and we exclude this one from our set of possi
choices to avoid having the loop retrace its steps.! This cre-
ates another defect at the other end of that arrow, and
forth. In this manner one of the two defects created by
reversal of the first arrow diffuses around the lattice~d!, until
by chance it finds itself back at the starting site once more
which point it annihilates with the defect there, resulting in
new configuration of the lattice which satisfies the ice ru
~e!. The net result is the reversal of a loop of arrows on
lattice.

In the figure we illustrate the case of the smallest poss
loop, which on the square lattice involves the reversal of j
four arrows. However, provided the size of the lattice allo
for it, the loops can be arbitrarily long, and for this reason
will refer to this algorithm as the ‘‘long loop algorithm.’’ At
each step around the loop we have a choice to make betw
two possible arrows that we could reverse, and if we ma
these choices at random with equal probability we genera
species of random walk across the lattice. This walk co
quite possibly take a long time to return to its starting poi
However, on the finite lattices we use in our Monte Ca
simulations, we are guaranteed that the walk will eventua
return. And long loops are not necessarily a bad thing, sin
although they take longer to generate, they also flip a lar
number of arrows, which allows the system to decorrel
quicker.

An alternative, but entirely equivalent scheme, makes
of so-called Bjerrum defects@12#, rather than the ionic de
fects we have employed. A Bjerrum defect is a violation
the first ice rule: a bond containing two protons, one at eit
end of the bond~a BjerrumD defect!, or a bond containing
no protons~a BjerrumL defect!. One can construct a Mont
Carlo move using Bjerrum defects just as we did with ion
defects by removing an arrow from a bond, and placing it
another bond. This creates oneD defect and oneL defect.
These defects can also wander around and eventually rec
bine, resulting in a new state of the lattice.

The process in which two defects~either ionic or Bjer-
rum! are created and diffuse around the lattice until they fi
one another again is actually very similar to what goes on
real ice. In real ice, changes in the proton configuration
mediated principally by the diffusion of Bjerrum defec
around the lattice. The density of defects is very smal
already at210 °C, only about one in five million bonds i
occupied by a Bjerrum defect, and the number of ionic d
fects is smaller even than this@13#.

B. Ergodicity

We have now specified a move that will take us from o
correct configuration of the arrows to another, and our p
posed Monte Carlo algorithm for square ice is simply
carry out a large number of such moves, one after anot
However, as we remarked above, we still need to dem
strate that the algorithm satisfies the criteria of ergodicity a
detailed balance.
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1158 57G. T. BARKEMA AND M. E. J. NEWMAN
First, consider ergodicity, whose proof is illustrated
Fig. 4. The figure shows how the difference between t
configurations of the model on a finite lattice can be deco
posed into the flips of arrows around a finite number
loops. We can demonstrate the truth of this statement for
two configurations by the following argument. Each of t
vertices in Fig. 1 differs from each of the others by the
versal of an even number of arrows. This fact follows
rectly from the ice rules. Thus, if we take two different co
figurations of the model on a particular lattice and imag
drawing lines along the bonds on which the arrows differ,
are guaranteed that there will be an even number of s
lines meeting at each vertex. Thus these lines must form a
of ~possibly intersecting! loops covering a subset of the ve
tices on the lattice. It is not difficult to show that these loo
can be chosen so that the arrows around each one all po
the same direction. Since the reversal of the arrows aro
these loops are precisely our Monte Carlo moves, and s
there are a finite number of such loops, it follows that we c
move from any configuration to any other in a finite numb
of steps, and thus the system is ergodic. Note that it is
portant to allow the loops to pass through the perio
boundary conditions for this to work@14#.

C. Detailed balance

Our Monte Carlo move consists of choosing a starting
S0 and reversing a loop of arrows starting at that site a
ending,m steps later, at the same siteSm5S0. The probabil-
ity of selecting a particular siteS0 as the starting site is 1/N,
whereN is the number of sites on the lattice. The probabil
of making a particular choice from the two possible outgo
arrows at each step around the loop is1

2 for each step, so tha
the probability that we chose a certain sequence of step
equal to 22m, and the probability of generating the enti
loop is 22m/N. For the reverse move, in which the same lo
of arrows is flipped back again to take us from staten back
to statem, the exact same arguments apply, again giving u
probability of 22m/N for making the move, and hence d
tailed balance is observed. This, in combination with
demonstration of ergodicity above, ensures that our a
rithm will sample all states of the model with equal probab
ity.

IV. AN ALTERNATIVE ALGORITHM,
INVOLVING SMALLER LOOPS

A practical problem which arises in the algorithm pr
sented above is that, if we simulate a large lattice, the pr
ability that we return to the starting siteS0 is quite small

FIG. 4. The difference between any two configurations of
six-vertex model can be decomposed in a number of loops~which
may run around the periodic boundaries!. If all the arrows along
these loops are reversed, we go from one configuration to the o
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once we have wandered sufficiently far away from it, a
thus it may take a long time to generate even one move
response to this problem, Rahman and Stillinger@10# pro-
posed a second algorithm which also reverses the arr
around a closed loop of bonds, but which generates sho
loops. For obvious reasons we call this the ‘‘short loop alg
rithm.’’ Here we describe a slightly refined version of th
algorithm due to Yanagawa and Nagle@11#.

The short loop algorithm works in a similar way to th
long loop algorithm: we choose a starting siteS0 at random
from the lattice, and reverse one of the outgoing arrows
that vertex, thereby creating two defects. We then reve
further arrows so that one of the defects wanders around
lattice randomly. However, rather than waiting until the tw
defects find one another again, we now continue only u
the wandering defect encounters a site, call itSm , which it
has encountered before in its path across the lattice:Sm5Sl
with l ,m. From this point, we retrace our stepsbackwards
down the old path of the defect, until we reachS0 again,
reversing all the arrows along the way. The net result is t
we reverse all the arrows along the path from siteS0 to Sl
twice ~which means that they are the same before and a
the move!, and all the arrows in the loop fromSl to Sm once.
Thus we have again reversed all the arrows around a loop
contrast with the long loop algorithm however, the wand
ing defect does not have to find its way back to its origin
starting point; it only needs to find any site on its previo
path. This guarantees that the length of its walk will nev
exceedN steps, and in practice the typical move is mu
shorter than this.~In fact, the number of steps tends to
finite limit as the lattice becomes large—see Sec. VI B.!

As with the previous algorithm, we need to demonstr
ergodicity and detailed balance. The proof of ergodicity
identical to that for the previous case: the difference betw
any two states on a finite lattice can be reduced to the re
sal of the spins around a finite number of loops. Since
algorithm has a finite chance of reversing each such loop
can connect any two states in a finite number of moves.

The proof of detailed balance is also similar to that for t
long loop algorithm. Consider again a move which takes
from statem to staten. The move consists of choosing
starting siteS0 at random, then a pathP5$S0 , . . . ,Sl% in
which the arrows are left untouched, followed by a loopL
5$Sl , . . . ,Sm% in which we reverse the arrows.~Remember
that the last site in the loopSm is necessarily the same as th
first Sl .) The probability that we choseS0 as the starting
point is 1/N, whereN is the number of sites on the lattice
After that we have a choice of two directions at each s
along the starting path and around the loop, so that the p
ability that we end up taking the pathP is equal to 22 l , and
the probability that we follow the loopL is 22(m2 l ). After
the loop reaches siteSm5Sl , we do not have any more fre
choices. The probability that we move from a configurati
m to configurationn by following a particular pathP and
loop L is thus

P~m→n!5
1

N
22 l22~m2 l !522m. ~1!

For the reverse move, the probability of starting atS0 is
again 1/N, and the probability of following the same pathP

e

er.
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57 1159MONTE CARLO SIMULATION OF ICE MODELS
as before to siteSl is 22 l again. However, we cannot now
follow the same loopL from Sl to Sm as we did before, since
the arrows along the loop are reversed from what they w
in statem. On the other hand, we can follow the loop in th
reverse direction, and this again has probability 22(m2 l ).
Thus we have

P~n→m!5
1

N
22 l22~m2 l !522m, ~2!

exactly as before. This demonstrates detailed balance fo
algorithm and, in combination with the demonstration of
godicity, ensures that all possible states will be sampled w
equal probability.

V. MONTE CARLO ALGORITHMS
FOR THE THREE-COLOR MODEL

We now have two Monte Carlo algorithms which co
rectly sample the states of the square ice model, and sinc
we showed in Sec. II A, the states of this model can
mapped onto the states of the three-color lattice model,
can of course use the same algorithms to study the th
color model. In this section however, we will explore th
other side of the same question: is there a natural Mo
Carlo dynamics for the three-coloring model which cou
then be used to sample the states of the ice model? It t
out that there is, and the resulting algorithm provides
only an efficient way of simulating ice models, but will als
prove useful when we move to the energetic ice models
Sec. VII, in which different types of vertices are assign
different energies.

In the three-coloring representation the degrees
freedom—the colors—are located on the plaquets of the
tice, rather than at the vertices, and, as we showed earlier
ice rules translate into the demand that nearest-neigh
squares have different colors. Just as in the case of the sq
ice model, there is no obvious update move which will ta
us from state to state. Although there are some state
which the color of one square can be changed from one v
to another without violating the ice rules, there are also sta
in which no such moves are possible, and therefore sin
plaquet moves of this kind cannot reach these states, an
do not lead to an ergodic dynamics. Again then, we m
resort to nonlocal moves, and the most obvious such mov
to look for clusters of nearest-neighbor plaquets of only t
colors, call themA andB, entirely surrounded by plaquets o
the third colorC. A move which exchanges the two colorsA
and B in such a cluster but leaves the rest of the latt
untouched satisfies the ice rules, and this suggests the
lowing cluster-type algorithm for square ice:

~1! We choose a plaquet at random from the lattice as
seed square for the cluster. Suppose this plaquet has colA.

~2! We choose another colorBÞA at random from the
two other possibilities.

~3! Starting from our seed square, we form a cluster
adding all nearest-neighbor squares which have either c
A or colorB. We keep doing this until no more such neare
neighbors exist.

~4! The colorsA and B of all sites in the cluster are
exchanged.
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There are a couple of points to notice about this alg
rithm. First, the cluster possesses no nearest neighbor
either colorA or colorB, and therefore all its nearest neigh
bors must be of the third colorC. In the simplest case, th
seed square has no neighbors of colorB at all, in which case
the cluster consists of only the one plaquet. It is crucial to
working of the algorithm that such moves should be p
sible. If we had chosen instead to seed our cluster by pick
two neighboring plaquets and forming a cluster with th
colors, single-plaquet moves would not be possible, and
would find that the algorithm satisfied neither ergodicity n
detailed balance. Notice also that within the boundary
color C, the cluster ofA’s andB’s must form a checkerboard
pattern, since no twoA’s or B’s can be neighbors.

We are now in a position to prove that our algorith
satisfies the conditions of ergodicity and detailed balance
this case it turns out that detailed balance is the easie
prove. Consider, as before, a Monte Carlo move which ta
us from a statem to a staten, and suppose that this mov
involves a cluster ofm squares. The probability of choosin
our seed square in this cluster ism/N, whereN is the total
number of plaquets on the lattice. The probability that
then chooseB as the other color for the cluster is1

2, and after
that there are no more choices: the algorithm specifies
actly how the cluster should be grown from here on. Th
the total probability for the move fromm to n is m/(2N).
Exactly the same argument applies for the reverse m
from n to m with the same values ofm andN, and hence the
rates for forward and reverse moves are the same. Thus
tailed balance is obeyed.

The proof of ergodicity is a little trickier. It involves two
steps. First, we show that from any configuration we c
evolve via a finite sequence of reversible moves to a che
erboard coloring~a configuration in which one of the thre
colors is absent!. Then we show that all checkerboard colo
ings are connected through reversible moves.

Any configuration of the lattice can be regarded as a nu
ber of checkerboard regions consisting of only two colo
divided by boundaries. This result is obvious, since each
of color A must have at least two neighbors with the sa
color, and therefore each square on the lattice belongs
checkerboard domain of at least three squares. However
der the dynamics of our proposed Monte Carlo algorith
the boundaries between these domains can move. If we h
a domain of colorsA andB and another ofB andC, then by
choosing one of the plaquets on the boundary as the s
square for our Monte Carlo move, andB as one of the colors
for the cluster, we can make the boundary move one squ
in one direction or the other, with the direction depending
whether the other color for the cluster wasA or C. In this
way we can take a single simply connected cluster of o
checkerboard pattern and, over a number of steps, grow
border until the cluster covers the entire lattice, leaving
lattice in a checkerboard state.

There are six of these checkerboard colorings, and fr
any one of them the others can easily be reached, since
checkerboard the color of any square can be changed o
own without changing any other squares. Thus, for exam
we can move from a checkerboard of colorsA andB to one
of A andC by changing all theB’s to C’s one by one. All
other combinations can be reached by a similar proc
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Since we can move from any statem to a checkerboard col
oring and from any checkerboard to any other, all via reve
ible moves, it follows that our algorithm is ergodic.

The algorithm presented above, a single-cluster algorit
resembles in spirit the Wolff single-cluster algorithm for t
Ising model @15#. It is also possible to construct a mult
cluster algorithm for the three-coloring model, similar to t
Swendsen-Wang algorithm for the Ising model@16#. In this
algorithm we start by choosing at random a pair of colorsA
and B. Then we construct all clusters of nearest-neigh
spins made out of these two colors, and for each cluster
choose at random with 50% probability whether to excha
the two colors or not. This algorithm satisfies ergodicity f
the same reason the single-cluster algorithm did—we
repeatedly choose two colors for the move until a sin
cluster grows to fill the entire lattice, giving a checkerboa
pattern. But we can move from any checkerboard to a
other, so that any state can be reached in a finite numbe
steps on a finite lattice. The algorithm also satisfies deta
balance: the probability of selecting a particular two out
the three colors for a move is13, and the probability of ex-
changing the colors in a particular set of clusters is 22n,
wheren is the number of clusters. The probability for th
reverse move is exactly the same, and hence detailed ba
is upheld.

This full-lattice algorithm is in fact precisely the same
an algorithm proposed in 1990 by Wang, Swendsen,
Kotecky @17#. Although their algorithm was designed t
simulate a Potts antiferromagnet, it can~as they pointed out!
also be used to simulate square ice, via the correspond
between the two models pointed out in Sec. II A.

VI. COMPARISON OF ALGORITHMS FOR SQUARE ICE

In previous sections, we proposed four algorithms for
simulation of square ice: the long loop algorithm, the sh
loop algorithm, the single-cluster three-coloring algorith
and the full-lattice three-coloring algorithm. In this sectio
we consider these algorithms one by one and compare
computational efficiency.

A. Long loop algorithm

The long loop algorithm involves the creation of a pair
ionic defects, one of which diffuses around the lattice unti
recombines with the first, in the process reversing all
arrows along the path of its diffusion. To assess the e
ciency of this algorithm, we first measure the average nu
ber of steps which the wandering defect takes before it
combines as a function of the system sizeL. For an ordinary
random walker on a square lattice, this number scales asL2.
In the case of the wandering defect however, we find tha
scales instead asL1.67—see Fig. 5@18#. The amount of CPU
time required per step in our algorithm increases linea
with the size of the loop, and hence we expect the CPU t
per Monte Carlo step also to increase with system size
L1.67. This is not necessarily a problem; since longer loo
reverse more arrows as well as taking more CPU time,
unclear whether longer is better in this case, or worse.
answer this question we need to consider the correlation
of the algorithm. We have measured the correlation time
-
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an observablersym, which we define to be the density of th
symmetric vertices 5 and 6 in Fig. 1. As Fig. 6 shows, wh
we measure time in Monte Carlo steps we find a correlat
time tsteps;L0.6860.03. It is, however, more common~and
more convenient for the comparison of our algorithms! to
measure time in ‘‘sweeps’’ of the lattice, which in this ca
means arrow flips per bond on the lattice. On average, e
Monte Carlo step corresponds to^m&/(dLd) sweeps on a
d-dimensional lattice, which means that the correlation ti
on our two-dimensional lattice goes as

t;L0.68
L1.67

L2
5L0.3560.03. ~3!

This quantity measures the amount of computer effort
have to invest, per unit area of the lattice, in order to gene
an independent configuration of the arrows.

The square ice model is a critical model, possessing
infinite correlation length@5#. Thus it comes as no surpris
that the correlation time scales as a nonintegral power
with system size. The exponentz50.35 is the dynamic ex-

FIG. 5. The mean lengtĥm& of loops in the long loop algo-
rithm as a function of system sizeL. We find that ^m&
;L1.66560.002.

FIG. 6. The correlation time in Monte Carlo steps of the lo
loop algorithm as a function of system sizeL. The best fit straight
line giveststeps;L0.6860.03.
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ponent for the critical system—the anomalous scaling of
correlation time over and above theLd scaling expected of a
system far from criticality. As dynamic exponents go, this
a reasonably small one. The Metropolis algorithm for t
normal Ising model in two dimensions for example has
dynamic exponent of aboutz52.17@19#, making simulations
of the model very time consuming for large lattices close
criticality. However, as we will see, some of our other alg
rithms for square ice do better still, possessing dynamic
ponents not measurably different from zero.

B. Short loop algorithm

The short loop algorithm of Sec. IV also involves creati
a pair of defects, and having one of them diffuse arou
Recall, however, that in this case the wandering defect o
has to findanyof the sites which it has previously visited i
order to close the loop and finish the Monte Carlo step. If
diffusion were a normal random walk, then this proce
would generate loops of a finite average length. Although
diffusion of defects in square ice is not a true random wa
it turns out once more that the same result applies. Num
cally we find that the average number of steps per mov
^m&513.1, independent of the lattice size, for a sufficien
large lattice. This figure includes the steps taken at the en
the move, which simply flip a number of arrows back to th
starting configuration and therefore have no net effect on
state of the system~see Sec. IV!. We find that typically about
58% of the arrows reversed during a move have to be
stored in their original state. This is certainly a source
inefficiency in the algorithm.

The correlation time measured in Monte Carlo ste
tsteps, for the same observablersym as above, increases asL2

~Fig. 7!. Since the mean number of steps in a loop is in
pendent ofL, the correlation time per unit volume goes a

t;L2
L0

L2 5const. ~4!

Thus the short loop algorithm scales optimally with syst
size. To the accuracy of our simulations the dynamic ex
nent isz50.0060.01.

FIG. 7. The correlation timetsteps of the short loop algorithm
measured in Monte Carlo steps as a function of system size.
best fit straight line giveststeps;L2.0060.01.
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C. Single-cluster three-coloring algorithm

Our third algorithm is the single-cluster three-coloring a
gorithm outlined in Sec. II A. For this algorithm the avera
CPU time per Monte Carlo step scales as the average clu
size^c&. Like the loop length in the long loop algorithm, th
quantity scales up with increasing lattice size, and num
cally we find that

^c&;L1.5. ~5!

The correlation time per Monte Carlo step goes as

tsteps;L1.8, ~6!

and hence the correlation time in steps per site goes as

t;L1.8
L1.5

L2
5L1.3, ~7!

indicating that the single-cluster algorithm is a poor alg
rithm for studying square ice on large lattices.

D. Full-lattice three-coloring algorithm

Our last algorithm, the full-lattice three-coloring algo
rithm, also described in Sec. II A, generates clusters in a w
similar to the single-cluster algorithm, but rather than gen
ating only one cluster per Monte Carlo step, it covers
whole lattice with them. For this algorithm we find numer
cally that the correlation timet stepsmeasured in Monte Carlo
steps is approximately constant as a function of lattice s
~Fig. 8!. Since each Monte Carlo move updates sites over
entire lattice, the CPU time per move scales asL2, and hence
the correlation time in moves per site is

t;L0
L2

L2 5L0. ~8!

Thus, like the short loop algorithm, this one possesses o
mal scaling as lattice size increases, with a measured
namic exponent ofz520.1260.07.~This figure agrees with

he

FIG. 8. The correlation timetsteps of the full-lattice three-
coloring algorithm measured in Monte Carlo steps as a function
system size. The best fit straight line giveststeps;L20.1260.07.
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1162 57G. T. BARKEMA AND M. E. J. NEWMAN
the results for theq53 Potts antiferromagnet from Ref.@17#,
in which it is also found that the full-lattice algorithm has
zero dynamic exponent.!

Comparing the four algorithms, clearly the most efficie
ones for large systems are the short loop algorithm and
full-lattice three-coloring algorithm. In both other algo
rithms, the computer time required to generate an indep
dent configuration of the lattice increases with system s
The larger impact of the larger moves in these algorith
does not compensate for the extra effort invested in gene
ing them. Between the short loop algorithm and the fu
lattice three-coloring algorithm, it is harder to decide t
winner, since both have the same scaling of CPU requ
ments with system size. Our results show in fact that the
algorithms are comparable in speed, both giving on the o
of 1 000 000 site updates per second on the workstat
used for this study. The loop algorithm is perhaps sligh
faster~maybe 10%–20%! and has the advantage of workin
on lattices of other topologies as well as the square latt
used here. The three-coloring algorithm, on the other han
considerably more straightforward to program.

As an example of the use of our algorithms, we measu
one of the simplest nontrivial critical exponents for t
square ice model. As we showed in Sec. II C, each stat
the square ice model corresponds to a configuration o
square lattice which is entirely covered by closed, non-s
intersecting loops. Using our full-lattice three-coloring alg
rithm, we measured the probabilityPl that a particular site is
visited by the largest loop in such a model as a function
lattice sizeL. The results are shown in Fig. 9. The da
closely follow a power law:Pl;L20.25.

VII. ENERGETIC ICE MODELS

There are a number of other systems besides H2O with
fourfold-coordinated hydrogen bonds, the most studied be
potassium dihydrogen phosphate~KH 2PO4), also known as
KDP. Slater@20# argued that KDP at low temperatures cou
be modeled using a six-vertex model in which vertices 1 a
2 in Fig. 1 are favored by giving them an energy2e, while
all the others are given energy zero. Notice that it is poss

FIG. 9. The probabilityPl that a site belongs to the longest loo
in the fully-loop-covered representation of square ice, as a func
of system sizeL. We find thatPl;L20.25160.002.
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to form a domain on a square lattice consisting only
type-1 vertices, or only of type 2. Thus there are two deg
erate ground states of the KDP model in which the lattice
entirely covered with vertices of one of these two types, a
the model displays a symmetry-breaking phase transi
from a high-temperature phase in which the two appear w
equal probability to a low-temperature one in which one
the other dominates. A suitable order parameter to desc
this transition is the polarization, or average direction of t
arrows:

P5
1

A2N
(

i
n̂i , ~9!

where the vectorn̂i is a unit vector in the direction of thei th
arrow. In the thermodynamic limit the polarization will b
zero above the critical temperatureTc , and nonzero below it
with a direction either upwards and to the right, or dow
wards and to the left, and a magnitude which approac
unity asT→0.

Another widely studied energetic ice model is the s
calledF model @21#, in which vertices 5 and 6 in Fig. 1 ar
given a lower energy2e, and all the others are given energ
zero. This model has a ground state in which vertices 5
6 alternate in a checkerboard pattern across the lattice. T
are again two possible such ground states, depending
which type of vertex falls on the even sites of the check
board and which on the odd, and there is a symme
breaking phase transition from the high-temperature phas
which the two vertices fall on even and odd sites with eq
probability. Since neither vertex 5 nor vertex 6 possesses
net polarization, the value ofP is zero in the thermodynamic
limit for the F model, regardless of temperature. Howev
one can define an antiferroelectric order parameter wh
does become nonzero in the low-temperature phase@3,4#.

A third energetic ice model which has attracted some
tention recently is the staggered, body-centered solid-
solid model@22,23#. In this model the square lattice is d
vided into even and odd sites, and the vertex types
divided into three groups. On even lattice sites, vertices
types 1 and 2 have energye and types 3 and 4 have energ
e8; on odd lattice sites,e ande8 are reversed, and vertices o
types 5 and 6 have energy zero everywhere. The valuese
ande8 may be either positive or negative. In the height re
resentation discussed in Sec. II B, this model is believed
describe roughening transitions in certain ionic crystals w
the CsCl structure.

Monte Carlo algorithms for energetic ice models

In Sec. VI we developed a variety of elementary ergo
moves for sampling the states of ice models on square
tices, and showed how these could be used to create M
Carlo algorithms for the square ice model, in which all sta
have the same energy. We can use the same sets of ele
tary moves to create Monte Carlo algorithms for the en
getic ice models as well. The simplest method is to emplo
Metropolis-type scheme in which, instead of always carry
out every move generated by the algorithm, we carry th
out with an acceptance probabilityP which depends on the

n
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energy differenceDE5En2Em between the statesm andn
of the system before and after the move

P5H e2bDE if DE.0

1 otherwise.
~10!

Here we give examples of algorithms for theF model, but
the same ideas can easily be adapted for use with othe
ergetic ice models.

The Hamiltonian of theF model is given by

H52e(
i

~dv i ,5
1dv i ,6

!, ~11!

wherev i is a number corresponding to the type of vertex
site i , using the numbering scheme illustrated in Fig. 1.

Let us first consider algorithms in which the propos
moves involve reversing the directions of the arrows arou
a loop on the lattice, as in the long and short loop algorith
of Secs. III and IV. For these moves the only vertices wh
change type~and hence energy! are those which the loop
passes through. As is shown in Fig. 10, a symmetric ve
~type 5 or 6! always becomes nonsymmetric if the loo
passes through it, thereby increasing the total energy. If
loop passes straight through a nonsymmetric vertex, the
tex remains nonsymmetric and its energy is unchanged.
the other hand, if the loop makes a turn as it passes thro
a nonsymmetric vertex, the vertex becomes symmetric
the energy decreases. Thus, given a particular loop, we
calculate the value ofDE by counting the numberm of
symmetric vertices which the loop passes through and
numbern of nonsymmetric vertices in which it makes a 90
turn, and applying the formula

DE5~m2n!e. ~12!

The density of symmetric vertices in theF model in-
creases with decreasing temperature, so that the ave
number of symmetric vertices through which a loop pas
grows as we go to lower temperatures. Since each symm
vertex which we pass adds an amounte to DE, it is clear that
loop moves will carry an energy cost which increases w
their length and that long loops will be very energetica
costly, especially at low temperatures. This suggests tha
short loop algorithm of Sec. IV will be more efficient for th
simulation of theF model at finite temperature. In Fig. 11 w

FIG. 10. Symmetric vertices become nonsymmetric if a lo
passes through them~a!. Nonsymmetric vertices stay nonsymmetr
if the loop through them goes straight through~b!, but become
symmetric if the loop makes a turn~c!.
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show the correlation timetsteps measured in Monte Carlo
steps for this algorithm, and the best fit to these data give

tsteps;L2.0. ~13!

As with square ice, the number of sites updated by a sin
Monte Carlo step tends to a constant for large lattices, so
the correlation time in steps per site is

t;L2.0
L0

L2 5L0. ~14!

To the accuracy of our simulations then, this algorithm ha
zero dynamic exponent@24#. However, it turns out that this
algorithm is still quite inefficient for temperatures in the r
gion of the critical temperature and below. For example,
Tc the measured acceptance ratio is 36%, so that nearly
thirds of the computational effort is wasted. For this reas
we have investigated a number of other algorithms for sim
lating theF model.

How can we increase the acceptance ratio of our Mo
Carlo algorithm? We would like to propose moves that a
less likely to cost energy. For example, if we can encour
the loop to make turns in nonsymmetric vertices, we will
average end up with a lower final energy, since a reversa
the arrows around the loop will create more symmetric v
tices. Unfortunately, it turns out to be quite complicated
formulate a correct algorithm along these lines, and the
pression for the acceptance ratio becomes quite tedi
There is, however, an elegant alternative, which is to emp
a three-coloring algorithm of the type discussed in Sec. V

The equivalent of a symmetric vertex in the three-colori
model is a group of four squares in which both of the diag
nally opposing pairs share the same color. In nonsymme
vertices only one of these two diagonal pairs share the s
color. Making use of this observation we can write t
Hamiltonian of theF model @Eq. ~11!# in the form

H52e(
@ i , j #

~dci ,cj
2 1

2
!5Ne2e(

@ i , j #
dci ,cj

, ~15!

FIG. 11. The correlation timetstepsof the short loop algorithm
for the F model measured in Monte Carlo steps, as a function
system size. The best fit straight line giveststeps;L2.0060.09.



-
te
or
r-

1164 57G. T. BARKEMA AND M. E. J. NEWMAN
FIG. 12. Sample configurations of theF
model for increasingb. Grey squares denote ver
tices of types 1, 2, 3, and 4. White vertices deno
either vertices of type 5 on even lattice sites,
vertices of type 6 on odd lattice sites. Other ve
tices are black. Top row:b/bc50.5, 0.8, and 0.9.
Bottom row:b/bc51.0, 1.1, and 1.2.
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where the summation runs over all pairs of next-near
neighbor squares@ i , j #, andci is the color of squarei . We
see that it is energetically favorable to have pairs of ne
nearest-neighbor squares with the same color. We can m
use of this observation to create an efficient algorithm for
three-coloring model. In this algorithm, as in the algorithm
for square ice discussed in Sec. V, we build clusters
nearest-neighbor plaquets of two colors, but now, in ad
tion, we also add to the cluster next-nearest-neigh
plaquets as well. In detail our algorithm is as follows.

~1! We choose a plaquet at random from the lattice as
seed square for the cluster. Suppose that this plaquet
color A.

~2! We choose another colorBÞA at random from the
two other possibilities.

~3! Starting from our seed square, we form a cluster
adding all nearest-neighbor squares which have either c
A or colorB, and in addition we now also add to the clust
the squares which are next-nearest neighbors of some sq
i which is already in the cluster, provided they have thesame
color as squarei . However, we make this latter addition wit

FIG. 13. The correlation timetsteps of the full-lattice three-
coloring algorithm for theF model measured in Monte Carlo step
as a function of system size. The best fit straight line giveststeps

;L0.00560.022.
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a temperature-dependent probabilitya,1, whose value we
calculate below in order to satisfy the condition of detail
balance. We go on adding squares to the cluster in this
until no more additions are possible.

~4! The colorsA and B of all sites in the cluster are
exchanged.

We can also make a full-lattice version of this algorith
in exactly the same way as for the square ice case.
choose two colorsA andB at random, and create clusters a
over the lattice from these two, using the method above.

It is straightforward to prove ergodicity for these alg
rithms. Since our three-coloring algorithms for square
were ergodic~see Sec. V!, and since each move in the squa
ice algorithms is also a possible move in ourF-model algo-
rithm ~as long asa,1), the result follows immediately.

Detailed balance is a little more tricky. We outline th
argument here for the single-cluster version of the algorith
As before, consider two statesm andn which differ by the
exchange of colors in a single cluster ofm squares. The
probability of choosing the seed square in this cluster ism/N

FIG. 14. The probabilityPl that a site is visited by the longes
loop, as a function of system sizeL, for the F model at critical
temperature. At critical temperature we find thatPl;L20.27060.002,
which is very close to the exponent measured in the case of sq
ice ~Sec. VI D!.



ol
e

xt
A

d
k

ig
te
-

-

e

x

air

ia

ant

e

of
as

e-
two
s
nd
-6
lat-

a
ith

tes.
at
ri-
er;
en-
ou
ran-

in
is
ro

t
e.

in

the
al
m-
ber

del
gu-
nted
e
in

e-
ally

el,
are
are

in-

t

57 1165MONTE CARLO SIMULATION OF ICE MODELS
and the probability that we choose the correct second c
to create this particular cluster is12, just as in the square ic
case. However, we now also have a factor ofa for every
square which we add to the cluster which is only a ne
nearest neighbor of another and not a nearest neighbor.
we have a factor of 12a for every such site which we coul
have added but did not. Thus the overall probability of ma
ing the move fromm to n is

P~m→n!5
m

2N )
@ i , j #con

a )
@ i , j #dis

~12a!d~ci
~m! ,cj

~m!
!, ~16!

where the two products run over pairs of next-nearest ne
bors which are connected to or disconnected from the clus
respectively. We will find it easier to work with the loga
rithm of this probability:

lnP~m→n!52 ln~m/2N!1 lna (
@ i , j #con

1

1 ln~12a! (
@ i , j #dis

d~ci
~m! ,cj

~m!!. ~17!

The expression for lnP(n→m) is identical except for the ex
change of the labelsm andn.

We want to know the ratio of the probabilities for th
forward and reverse moves:

ln
P~m→n!

P~n→m!
5 ln~12a! (

@ i , j #dis

d~ci
~m! ,cj

~m!!2d~ci
~n! ,cj

~n!!.

~18!

The energy differenceDE between statesm andn is equal to
e times the change in the number of identically colored ne
nearest-neighbor squares@see Eq.~15!#. The only contribu-
tion to this sum comes from next-nearest-neighbor p
@ i , j #, such thati belongs to the cluster andj does not, since
all other pairs contribute the same amount to the Hamilton
in statem as in staten. Thus

FIG. 15. The probabilityCl that a site is part of the larges
cluster, as a function of system sizeL, for the F model at critical
temperature.
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DE5En2Em52e (
@ i , j #dis

@d~ci
~n! ,cj

~n!!2d~ci
~m! ,cj

~m!!#.

~19!

In order to satisfy the condition of detailed balance we w
the ratio of the ratesP(m→n) andP(n→m) to be equal to
the ratio exp(2bDE) of the Boltzmann weights of the two
states. Comparing Eqs.~18! and~19!, we see that this can b
arranged by setting ln(12a)52be, or

a512e2be. ~20!

The proof of detailed balance for the full-lattice version
the algorithm follows from the single-cluster version, just
in the case of the square ice model.

In Fig. 12 we show some results of simulations of theF
model using the full-lattice version of the algorithm d
scribed above. In this figure we have colored areas of the
low-energy domains~checkerboards of symmetric vertice!
in black and white—type-5 vertices on even lattice sites a
type-6 vertices on odd lattice sites are black, while type
vertices on even lattice sites and type-5 vertices on odd
tice sites are white. All other vertices are in gray.

The phase transition is clearly visible in the figure as
change from a state in which black and white appear w
equal frequency to one in which one or the other domina
Analytically it is known that this transition takes place
Tc5e/ ln2. This number is rather difficult to measure nume
cally, however, since the phase transition is of infinite ord
no matter how often you differentiate the energy or the d
sity of symmetric vertices with respect to temperature, y
will not see a singularity. Nonetheless there is a phase t
sition. For instance, the absolute value of the difference
density of black and white squares on an infinite lattice
strictly zero above the critical temperature, while nonze
below, ruling out any analytic behavior.

The full-lattice three-coloring algorithm does well a
simulating theF model, even at the critical temperatur
There is no measurable increase in the correlation time
number of lattice sweeps with system size atTc ; our best
estimate of the dynamic exponent isz50.00560.022 ~see
Fig. 13!.

Because of the infinite order of the phase transition in
F model, we cannot define critical exponents in the norm
fashion to describe power-law behavior of the order para
eters as we approach criticality. However, there are a num
of nontrivial exponents governing the behavior of the mo
at the critical temperature. As noted previously, the confi
rations of an ice model on a square lattice can be represe
as sets of closed loops covering the entire lattice, and thF
model corresponds to such a fully packed loop system
which the loops have ‘‘stiffness:’’ symmetric vertices corr
spond to straight segments of the loop and are energetic
favored in theF model. Using our full-lattice three-coloring
algorithm, we have measured the probabilityPl that a site is
visited by the largest loop in this representation of the mod
just as we did for square ice in Sec. VI D. The results
presented in Fig. 14. At the critical temperature, the data
well fitted by a power law with an exponent of20.27, very
close to the value in the square ice case, indicating that
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troduction of stiffness to the loops does not significantly
fluence the value of this exponent.

We have also used our Monte Carlo algorithm to meas
as a function of system sizeL the probabilityCl that atTc a
given site is part of the largest~percolating! cluster of
nearest-neighbor symmetric vertices. The results are sh
in Fig. 15. Interestingly, there is no clear power-law behav
in these data, despite the fact that the measurements
made atTc . Possibly this is the result of strong finite-siz
effects in this system. Below the critical temperature, by c
trast, the largest cluster is compact and scales asL2.

VIII. CONCLUSIONS

We have described a number of Monte Carlo algorith
for simulating ice models. One of them, the full-lattice thre
coloring algorithm, is apparently able to simulate theF
model without critical slowing down.

Using these algorithms, we have determined several
cs

a,

th

ola
in
-

re

n
r
ere

-

s
-

x-

ponents governing nonlocal quantities in square ice and
F model. We find that, in square ice, the average numbe
steps taken by a defect before it returns to its starting p
scales asL1.67. The probability that a site belongs to th
largest loop in the loop representation of the model scale
L20.25. In theF model, the probability of belonging to larg
est loop scales with a very similar exponentL20.27, although
the prefactor is different.
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