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A general explicit formulation of Monte Carlo simulation for quantum systems is given 
in this paper on the basis of the previous fundamental proposal by Suzuki. This paper also 
demonstrates explicitly the possibility of it and gives new interesting physical results on the 
two-dimensional XY-model. That is, the present preliminary simulation seems to indicate 
a phase transition with a divergent susceptibility, and a very weak singularity of specific heat 
if it exists, and without long-range order. · 

§ 1. Introduction 

A possible phase transition of two-dimensional spin systems such as the Hei

senberg model and XY-model has been investigated by many authors,ll~ttl since 

Stanley and Kaplan12l proposed a new type of phase transition without ordinary 

long-range order. The mechanism of this phase transition, however, is not well 

understood. In this situation, it is very useful to perform Monte Carlo simulations 

for quantum systems, which have been proposed by one13l' 14l of the present authors, 

and whose applications to the two-dimensional XY-model have been reported al
ready briefly.15l,tal 

The purpose of our paper is to show explicitly the possibility of Monte Carlo 

simulation in quantum spin systems and to present interesting results on the one

and two-dimensional spin systems in detail. The present paper is the first one 

of a series of papers concerning Monte Carlo simulation on quantum systems, 

so that the method itself is also described in detail. 

In § 2 a general formulation14l of Monte Carlo simulation is presented. As 

a simple application of it, the one-dimensional Heisenberg model and XY-model 

are studied in § 3. The two-dimensional case is presented in § 4. Some considera

tions are given in § 5. 

§ 2. Monte Carlo method for quantum systems 

The key point of our method is to make use of classical representations of 
quantum systems14l,m.tsl based on the generalized Trotter formula: 13l For any 

set of operators {A1} in a Banach algebra 

II exp ( tl AJ) - {eArfneA,fn .. ·eApfn} n II< ! ( tl II AJ II) 2exp ( n: 2 tl II AJ II)' 

(2·1) 
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where p zs an arbitrary positive integer. 
For bounded operators {A1}, 

p 

exp ( 2:: AJ =lim (eAJ!neA,Jn .. ·eApfn) n. 
j =1 n-)oo 

(2·2) 

It should be remarked that the operators {A1} do not necessarily commute with 

one another, and that the a hove formula ( 2 · 2) can be used effectively as an 
approximation for finite n. 

Now let the Hamiltonian of a quantum system be given by a sum of local 

Hamiltonians !}{(r) as !J[=2:: .. !J[(r), which do not necessarily commute with one 

another. Then, we apply the generalized Trotter formula (2 · 2) as follows: The 

partition function Z is given by 

Z = Tr exp (- fj!}{) =lim Zn (2·3) 

and 

(2·4) 

where 

(2·5) 

and 

exp j{ (a, a')= <aJ exp [- ~ fj!J[ (r) J Ja'), (2·6) 

with an appropriate diagonal representation Ia). For more details, see Ref. 14). 

Thus, the relevant quantum system is transformed to a (d + 1) -dimensional classical 

system. The additional dimension plays a role of path integrals in a discrete space 

or it expresses the non-commutative effect of local Hamiltonians. Owing to this 

equivalence relation, the Monte Carlo method can be now applied to quantum 

systems, as in ordinary classical systems. 19l~22l A small value of n in the formula 

(2 · 2) may be sufficient for practical calculations, except at low temperatures. 

As the temperature is decreased, the approximant (2 · 2) with a larger value of 

n should be used to keep an approximation of the same order. Furthermore, an 

asymptotic evaluation for a large n will be possible by calculating Zn successively 

for gradually increasing values of n. 
In order to carry out the above scheme of Monte Carlo calculations for 

quantum systems, it is necessary to formulate more explicitly the Monte Carlo 

procedure by taking into consideration conservation laws and some other restrictions 

due to quantum effects. In general, the ensemble average of a certain physical 

quantity is given by19l 

(2·7) 
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in the Monte Carlo simulation, where laj) denotes the j-th Monte Carlo state 

which is generated with the probability proportional to <ajlexp( -(]!}{) laj). ~When 

!]{ is classical or is diagonalized from the beginning as usual, 19) this probability is 

easily calculated. It is difficult, however, to evaluate the matrix element <a I exp 

(- {3!1{) Ia) for quantum systems. The generalized Trotter formula (2 · 2) provides 

an approximate method to calculate it. That is, the n-th approximant of the matrix 

element is expressed as 

<alexp( -{3!}{) la)n = I; <alexp( -!!{!) l/3ll)<f3nl··· 
l/3u),i=l,···,n-1 

j=l,···,p 

(2·8) 

with !fti=n- 1{3!/{i, for !]{=!fC+···+!f{P. If the interaction !]{i is of finite range, 

it is quite easy to calculate the matrix element <a I exp (- !fti) I /3) explicitly, for 

example, by diagonalizing !ft;. 

One of the key-point of our method is to treat a set {Ia), l/3ii); i=1, 2, ···, n-1 

and j=1, 2, ···,P-1} as a state in the Monte Carlo simulation and to denote it by 

Ia; {/3ii} ). At first sight, this seems intractable, because there exist (n -1) · 
(p-1) states l/3ij) even for a specified state Ia), where Pis of order N (the sys

tem-size). For finite range interactions, the matrix element <f3ii I exp (- !J{j) l/3ijc_ 1 ) 

is non-vanishing only when the microscopic states of l/3ij) and l/3ij+ 1 ) are identical 

except for the interaction range of !J{h as was generally discussed in Ref. 14). 

Thus, the state Ia, {!3i)) for a specific a has only r(n-1) degrees of freedom, 

where r is the atom (or spin) number of the relevant lattice region of !]{j· It 

should be remarked again that the state Ia; {(J';j}) is not generated by the probabil

ity of the associated energy of the state, but is generated by the partial Boltzmann 

factor. 

Now the energy of the system is expressed by 

(2. 9) 

by usmg the formulae (2·3) and (2·8). Here Probn(a, {/3ij}) denotes the prob

ability to find the state Ia, {/3ij} ), which is given by 

(2·10) 

and En(a, {!3ij}) is the energy function defined by 

fJ ~ ~ 
En(a, Wu}) =- ~ <!3ul~ 0 e- 3''11'3iHl)<l'3ijle-31 'l/3ij+J) 

,,J vp 
(2 ·11) 

with f3oo-/3n,p=a. In the Monte Carlo simulation (MCS), the state Ia, {/'3i)) is 

approximately selected with the probability Probn (a, {/3ij}) for a large number of 
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steps of MCS. Thus, the energy is calculated from the following n-th approximant 

<E)M.c.=:E:EEn(a; {JY,1})/(the number of MCS), 
[a, {P<;l> 

(2·12) 

m our Monte Carlo method. Similarly, an arbitrary physical quantity Q is cal

culated from the n-th approximant of the form 

<Q)M.c.=:E:EQn(cx.; {JY,1})/(the number of MCS). (2·13) 
[a, {P<;}) 

It is quite easy to find the expression for Qn (a; {JY,1}) for any Q, as for the 

energy. For example, the specific heat function Cn(CX., {Pi,1}) is given by 

kBTCn(a; {JY,i}) = [En(a, {JSI,J}) -<E)M.c.J 2 

- lt [ <JY,JI:!Y e_$('1JY,i+l>I<!Yijle-.9C'I!Yij+l> r 
(2 ·14) 

The susceptibility is calculated from the formula 

'X =!Y!f.B2 :E :E (Mn(CX.) -<.Mn(a) )M.c.) 2/ (the number of MCS), (2·15) 
[a, {~<J}) 

where 

l'!;fn(a) =<cx.I:E O"ilcx.). (2·16) 
j 

For a spin Hamiltonian of the form 

j{ = :E !}{,j=:E (Kx0"/0"/ +Ky0"/0"/ +K.0"/0"/), (2·17) 
(ij) (ij) 

the matrix elements of the partial Boltzmann factor are given by14> 

where 

1+Xa. 0, 

0, 1-Xa, 

0, X1+X2, 

X 1-X2, 0, 

o, X1-X2 ) lit) 
xl +X2, o Itt> 
1-Xa, o IH>' 

o, 1+Xa IH> 
(2 ·18) 

a= cosh Kx cosh Ky cosh K.- sinh Kx sinh Ky sinh K. , 

X 1 = (tanh Kx- tanh Ky tanh Kz) / (1- tanh Kx tanh Ky tanh K.), ( 2 · 19) 

X 2 and X 3 are cyclic with respect to x, y and z. 
These expressions will be used in the following sections. 
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§ 3. One-dimensional quantum spin systems 

As a simple demonstration of Monte Carlo simulations of quantum systems, 

we study here the one-dimensional Heisenberg model and XY-model at finite tem

peratures. The simplest case is n = 1 as shown in Fig. 1. In Fig. 1, the state 

Ia) is denoted by the symbol 0, the state lt311 ) is expressed by the spins encircled 

by a solid line, and lt312) by a dotted line. The trace operation requires that 

t3' =a, namely periodic boundary conditions in our effective lattice. This has been 

already solved analytically by one of the present authors as a "pair-product" ap

proximation23l of the anisotropic Heisenberg model. The partition function in this 

approximation is given by 

(3·1) 

with a defined in (2 ·19). Then, we perform the Monte Carlo simulation for 

the case n = 2, whose effective lattice is shown in Fig. 2. It should be remarked 

here that the most effective procedure of the MCS is to flip all spins (five spins 

0 

Fig. 1. Construction of the effective lattice for 
n=l in one-dimension, where a denotes 
IS1 ··· SN), i.e., a state of N spins, and {3 and 
{3' denote intermediate states. 

Pair Product 

2 3 - k,T/J 5 

Fig. 3. Temperature-dependence of the total 
energy for the one-dimensional quantum 
XY-model (N=33, n=2); "Pair Product" 
means the analytic solution for N=oo, n=l, 
and "Katsura" means the rigorous solution 
of this model. 

{)( 

s. SN SN•1 

Fig. 2. Structure of the effective lattice for n=2 
in one-dimension. 

0.4 

Q 

0.1 oo 

0 
0 2 3 -- k,T/J 

Fig. 4. Temperature-dependence of the perpen
dicular susceptibility for the one-dimensional 
quantum XY-model (N=33, n=2). 

5 
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in our example) corresponding to each real spin Si as a set, because many matrix 

elements of exp(-§ti) vanish as shown in (2·18). It is more effective to treat 

more spins as a set in each step, although programming becomes more complicated. 

Results thus obtained are shown in Figs. 3r-v6, for the XY-model and Heisenberg 

model. Clearly the results of the XY-model agree very well with the well-known 

exact solution by Katsura24l and by Lieb et al.,"5l except for low temperatures 

below JjkB, in which region simulations for a larger value of n are necessary. 

In fact, as the value of n increases, the temperature region of validity of our 

simulation extends towards zero temperature, as seen from our results for n = 1 

and n = 2 in Figs. 3r-v6. 

-0.2 

-0.4 

Fig. 5. Temperature-dependence of the total 
energy for the one-dimensional quantum 
Heisenberg model (N=33, n=2); "Bonner, 
Fisher " means an exterpolation from exact 
numerical solutions in finite systems. 

2 3 -- k0T/J 

Fig. 6. Temperature-dependence of the energy
correlation (or specific heat) for the one· 
dimensional quantum Heisenberg model (N 
=33, n=2). 

§ 4. Two-dimensional XY-model 

It is very interesting to investigate the two-dimensional XY-model with the 

help of Monte Carlo simulations. We study here the following Hamiltonian: 

j{ = :E (KxrJftCJf+I. j + KyrJ[jrJf+l, j + KzrJ~jrJ~+l, j) 
i, j 

(4·1) 

The effective classical representation of this system is obtained in a similar way14l 

to the one-dimensional case discussed in § 3. 

A unit cell of the effective lattice is shown m Fig. 7. These twenty spms 

of this unit cell are treated as a unit for each step of spin flips. 

The temperature-dependence of energy for two-dimensional systems obtained 

by the present Monte Carlo simulation is shown in Fig. 8, together with the 
results of the Ising model for comparison. The specific heats multiplied with 

5 
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(keT) 2 are shown in Fig. 9. The specific heat for the Heisenberg model is quite 

smooth, and that for the Ising model diverges at Tc, as is well known. The 

specific heat of the XY-model for d = 2 is delicate and it might have a cusp, 

although our simulation shows that it does not diverge. In fact, the size depend

ence of the maximum value of it is very small, as shown in Fig. 10. This indicates 

that the specific heat is nondivergent. In order to see more clearly the temperature 

dependence of the specific heat, we have plotted the derivative of it, as shown 

in Fig. 11. This may have cusp. However, to draw a definite conclusion it will be 

necessary to perform a more detailed simulation, which will be published in future. 

The susceptibility calculated by our simulation is shown in Fig. 12. It seems 

that the susceptibility diverges near lzBT ~2J, although the existence of finite-size 

....._ 

Fig. 7. Unit cell of the effective lattice: 
effective four-spin interactions are 
denoted by bold-faced solid or dotted 
lines. 

Fig. 8. Temperature-dependence of the energy for the 
two-dimensional models; "X", Ising model (9 X 9) ; 
"6", Heisenberg model (9X9); "e", XY-model 
(9X9); "0", XY-model (15X15) and"@", XY-model 
(30 X 30). 

~ 
J_ 

';;, 
N =30x30 0 

N=15x15 0 

.2 
u 

4 

.. 

• 

Fig. 9. Temperature-dependence of energy-cor
relation (or specific heat) for the two-dimen
sional models, with similar symbols to Fig. 8. 

~ 

::; 

4 

! 
2 

0 

e • 

. 
0 

2 

N= 9x 9 • 

3 -- I<,T/J 5 

Fig. 10. Size-dependence of energy-correlation 
(or specific heat) for the two-dimensional 
XY-model. 
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effect cannot be excluded. In Fig. 13, the above result for the ~YY-model is 

compared \vith that for the Heisenberg model. It is seen that the former increases 

more rapidly than the latter. 

.. 
3 

N=30x30 0 

N = 15x 15 o 
N= 9x 9 • 

---ksT/J 
4 5 

0 

20 

0 

N=30x30 0 

N=15x15 o 

N= 9x 9 • 

-o]~ 1----__[ ___ _j_ _ __Q__._L ___ _L ___ -.1 
0 

0 . 

Fig. 11. Temperature derivative of energy cor
relation for the two-dimensional XY-moclcl. 

20 

':i 
z 

15 ?< 

10 

10 

0 

0 3 

Fig. 1:2. Temperature- and size-dependence of 
susceptibility in the XY-plane for the two
dimensional XY-model. 

; 
• • 

O~--~~~~~~~~---~ .. --__j5 
------- k8 T I J 

Fig. 13. Temperature-dependence of susceptibility for two-dimensional models; "!It", XY-moclel 
(15X15); "6", Heisenberg model; "X", Ising model and"=", XII in the XY-model. 

§ 5. Some theoretical considerations and remarks 

In this paper, we have demonstrated that it is practically possible to perform 

Monte Carlo simulations of quantum systems such as the Heisenberg model and 

XY-model. The present calculations are still preliminary and more thorough 

simulations will be performed in the near future. 

From our preliminary results, it may be expected already that there occurs a 

phase transition with a divergent susceptibility and without long-range order. 

It should be remarked that there exist some similarities between the above 

phase transition of the XY-model and spin-glass phase transitions.27l, 28) In both 

systems, there exists no ordinary long-range order, and the singularities of specific 

heat are very weak. Thus, there is a possibility to construct a phenomenological 
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theory of the phase transition of the XY-model, as for the spin-glass transition. 28J 

In fact, we have already proposed a very simple phenomenological theory!') 

It \vas discussed before'') for the classical XY-model with vortices. 15l, zD, 221 How

ever, this theory is also valid for the two-dimensional quantum XY-model. That 

is, we introduce a disorder parameter n, which vanishes for T<Tc and which 

does not vanish for T> Tc. In the classical XY-model, this parameter has been 

interpreted as the number density of vortices or more general disclinations. In 

the present quantum system, it is difficult to define clearly this disorder parameter. 

However, the physical mechanism of phase transitions is expected to be essentially 

the same. In fact, spin configurations of our simulations show a cluster jJrOjJerty 
near the "critical point", as shown in Fig. 14, which may correspond*1 to vortices in 

the classical systems. Thus, the number density of clusters may be taken as the 

disorder parameter. As in the phenomenological theory of spin-glasses/8) the free 

energy of this system may be expanded in a power series of m (magnetization 

density) as 

f(m,n) =F0 (n) +A(n)m'+B(n)m4 +···. (5 ·1) 

The expans10n coefficients may be expanded again m a povver senes of n as 

F 0 (n) =fo(T) +c(T)n+dn'+ .. , , 

L1(n) =A0 +an+ ... and B(n) =b+b1n+ .... (5. 2) 

Here, \Ye assume that A 0=0, only because results thus obtained are quite reason-

U o l! ·J U c· I 7 1 5 3 ~ 3 I ~ o 
0 0 31 ( 31310 r 

I))) j)]) ]) 0 Q ( 

ll Jl]] ll Jll40 0 0 1 0 0 0 0 31 

11 i 31 Jl )I 0 Jill G a 0 0 C 0 Jl 0 ;1 

0 0 l •J l' ll Cl ll 
0 ~ Co J u -,I ~ 0 

IJI Jl 01 Jl 010 '' 0 0 128 2731 Jl Jill 0 0 Jl 0 

Jl J: j] 31 li ]1 ll 0 c ·]' ;<;151131 ll ]) 31 •J ll 31 ,., ll 

I 31 l I l l ] I ~ ; I l I ; I 31 ) I 19 14 4 

I;) Jl 31 ]I Jl J131 ,<I ?9fJ l4i)f 

31 11 )I Jl .Jil' Jl il 'I 

ll 31 j ,., 31 ll 31 Jill Jl 313' 0 J ll 311'' 

(a) 2\11 = 432. 

Fig. 14. Typical spin configurations of the effective lattice: (a) knT=3.0J, (b) knT=2.25J, 
where each number in the figures represents states of five Ising spins corresponding to 
each real spin in the binary system: 0= CL L ~. L n, 31= (t, t, I, t, 1') or 12= CL t, t, Ln. 
A11 denotes the number of up spins in the real space. 

*1 K. Hirakawa has kindly informed the present authors his preliminary experimental data on 
K,CuF,(S=t) by neutron scattering, which seem to show the appearance of a new type of peak 
near T,, which might be relevant to vortices. 
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able. That is, this assumption represents the characteristic feature of the phase 

transition of the two-dimensional XY-model. Thus, we obtain 

(5·3) 

From the stability condition of the system and from the condition that m,=O for 

T>O, if follows further that 

(5° 4) 

By minimizing f(m, n) -hm with respect to m and n for a fixed magnetic field h, 

we obtain the following results: 

(i) m,=O for h = 0, 

(ii) n=-c(T)/(2d) for T>Tc and n=O for T<T" 
(iii) the critical point Tc is defined by c(Tc) =0; c(T) <O for 

T>Tc and c(T)>O for T<Tc. 

(iv) the susceptibility Xo is g1ven by Xo = 1/ [2an (T)], which diverges at Tc and 

is always infinite for T<T" 
( v) the specific heat shows the singularity of the form 

(j2 82 
C0~- -- [c(T)n+dn2 + ···]~--[c2 (T)/d(T)] 

8T 2 8T 2 

(5·5) 

where r and ({J are defined by 

(5·6) 

Consequently C0 is smooth near Tc up to its first derivative for 2r>cp + 3. This 

condition may be easily satisfied in the two-dimensional XY-model, because the 

value of r is believed to be very large8> in this system. This explains well our 

results from the Monte Carlo simulation. 

More microscopic explanations of this phenomenological theory will be giYen 111 

future. 
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