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S U M M A R Y

We present Monte Carlo solutions of the 3-D radiative transfer (RT) equations for energy

transport in elastic media with randomly fluctuating velocity and density. It includes mode

conversions from P- to S-wave energy and vice versa and considers angular-dependent scatter-

ing patterns following from the Born approximation. Synthesis of the space–time distribution

of seismic energy emitted from point sources with arbitrary radiation patterns can be achieved.

The method offers a unique way to model complete mean square envelopes of high-frequency

wavefields in the presence of random heterogeneity starting from the first P-wave onset until

the late S-wave coda.

Validation of the method is achieved through a comparison of mean square envelopes from

an isotropic P-wave radiation point source with full 3-D wavefield simulations for the whole

envelope shape and with the analytical Markov approximation for small lapse times. RT yields

accurate envelope shapes even for parameter ranges where strong and direction-dependent

scattering occurs. Peak amplitudes, envelope broadening and coda decay at long lapse times

are correctly modelled. A breakdown of RT with Born scattering coefficients only occurs in

the vicinity of a point source: waveform modelling shows that even for a pure compressional

source, some per cent of shear wave energy are generated by near-source scattering that are

not explained within the framework of Born approximation.

Key words: Computational seismology; Theoretical seismology; Wave scattering and diffu-

sion; Wave propagation.

1 I N T RO D U C T I O N

Short period wave propagation through the lithosphere results in

complex wave trains that are mainly composed of waves multiply

scattered at small-scale heterogeneities of the Earth medium. Often

it is useful to disregard phase information and focus on bandpass

filtered envelopes of recorded seismograms instead of the full wave-

forms, as envelopes are stable features that allow the retrieval of sta-

tistical parameters of the lithospheric heterogeneity where determin-

istic methods like tomography fail. Statistical parameters like rms

velocity and density fluctuation, correlation distance or scattering

attenuation are useful informations closely related to stratigraphy,

stress distribution, crack density, pore fluids etc.

One of the most general methods to describe energy transport in

scattering media is the radiative transfer theory (RTT). Originally, it

was used in atmospheric sciences to describe the scattering of light

in the atmosphere (Chandrasekar 1960). Only later it was intro-

duced phenomenologically into seismology. Aki & Chouet (1975)

proposed a single backscattering model to explain the generation of

the seismic coda by seismic wave scattering at the heterogeneous

structure of the Earth. Sato (1977) developed an isotropic single

scattering model for arbitrary source–receiver configurations. Later

Sato (1984) developed three-component envelope synthesis, based

on the single-scattering approximation with Born scattering coeffi-

cients in random elastic media. Wu (1985) presented a RT method

to separate scattering attenuation from intrinsic attenuation. Multi-

ple scattering models were developed, for example, by Zeng et al.

(1991), Hoshiba (1991) and Gusev & Abubakirov (1996). A strict

derivation of RT from the linear elastic wave equation in random

media could also be achieved (Rytov et al. 1987; Weaver 1990;

Ryzhik et al. 1996).

For some special cases approximate analytical solutions of the

RT equations exist, for example, for scalar waves and isotropic scat-

tering (Paaschens 1997), which have been applied to the interpreta-

tion of S-wave coda from local events (Sens-Schönfelder & Wegler

2006; Padhy et al. 2007). For long lapse times and/or strong multiple

scattering, RT approaches the diffusion equation. In more general

cases, however, numerical solutions of the RT equations have to

be considered. They are usually based on Monte Carlo schemes

where a random walk of energy particles through the heterogeneous

medium is realized. Each particle is moved along ballistic ray paths

between individual scattering events. Gusev & Abubakirov (1987)

and Hoshiba (1991) were among the first to use this method in

seismology. Yoshimoto (2000) simulated seismogram envelopes for
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Monte Carlo solutions of the 3-D RT equations 567

isotropic scattering and scalar waves in a background medium with

a velocity gradient with depth, which can be implemented by mov-

ing the particles along curved ray trajectories between scattering

events. Wegler et al. (2006) compared the performance of isotropic

and non-isotropic scattering approximations for scalar waves and

found that isotropic scattering yields considerable deviations in the

early parts of the coda. Margerin et al. (2000), for the first time, de-

veloped a Monte Carlo scheme for the full elastic vector wave case

in a medium with discrete scatterers, where conversions between P-

and S-wave modes are taken into account, and the S-wave polariza-

tion is taken care of with the help of the Stokes vector. Elastic RT

has been applied to deep mantle scattering (Margerin & Nolet 2003;

Shearer & Earle 2004).

Przybilla et al. (2006) proposed a RT scheme for elastic vec-

tor waves in 2-D continuous random media employing angular-

dependent scattering patterns described by Born scattering coef-

ficients (Sato & Fehler 1998). They tested the accuracy of envelope

shapes against averaged envelopes from full waveform modelling

with a finite-difference (FD) method and found that RT yields ac-

curate envelope shapes for a wide range of medium parameters,

including strong forward scattering cases.

In this paper we extend the 2-D method of Przybilla et al. (2006)

to three dimensions. We avoid introducing the Stokes vector and

instead use the polarization decomposed Born scattering coeffi-

cients to carry the polarization information of S-wave particles

across scattering events. The method enables us to model com-

plete three-component mean square envelopes in random media

with prescribed autocorrelation functions from the first P onset until

the late S coda. Thus, this method is more powerful than diffusion

approaches, which only model late S coda, and the Markov ap-

proximation, which is only valid around the ballistic direct wave

arrivals, and more accurate than multiple scattering methods with

isotropic scattering assumptions. We expect that by inverting com-

plete seismogram envelopes, we will get more reliable information

on the statistics of the propagation media than by using only scalar

approximation to model the S-wave envelopes.

Similarly to Przybilla et al. (2006), we demonstrate the accu-

racy of our approach by comparing it to average envelope shapes

from full 3-D elastic waveform modelling. We further compare the

pulse broadening effect for strong forward scattering with the newly

developed Markov approximation for vector waves (Sato 2007).

2 E L A S T I C R A D I AT I V E T R A N S F E R

T H E O RY

2.1 Basic equations

For a detailed derivation of RT equations from wave theory in ran-

dom media, we refer to Ryzhik et al. (1996). The key quantity in

this theory is the specific intensity I(x, k, t) of a wave at point x,

time t, moving in direction k. Here we introduce specific intensities

Ip and I s for P and S waves, respectively. Following Ryzhik et al.

(1996) the coupled elastic energy transfer equations for Ip and I s

can be written as

1

α0

∂ I P (x, k, t)

∂t
+ k · gradI P (x, k, t)

=
1

4π

∫

gpp

(

k, k′)I P
(

x, k′, t
)

dk′ − g0
pp I P (x, k, t)

+
1

4π

∫

gsp

(

k, k′)I S
(

x, k′, t
)

dk′ − g0
ps I P (x, k, t) + Q P (x, k, t)

1

β0

∂ I S (x, k, t)

∂t
+ k · gradI S (x, k, t)

=
1

4π

∫

gss

(

k, k′)I S
(

x, k′, t
)

dk′ − g0
ss I S (x, k, t)

+
1

4π

∫

gps

(

k, k′)I P
(

x, k′, t
)

dk′ − g0
sp I S (x, k, t) + QS(x, k, t) .

(1)

In eq. (1) unit wavenumber k denotes incident wave direction and

k′, any other direction. α0 and β 0 are the mean P and S velocities.

gij and gij
0 (i, j = P or S) are angular-dependent and total scattering

coefficients (see below), respectively. The left-hand side of eq. (1)

represents the total time derivative of intensities and describes the

intensity transport of P and S waves. The right-hand side contains

the intensity loss from the direction of propagation into all other

directions k′ through the total scattering coefficients gij
0, and the

intensity gain from all directions into the propagation direction k

through the integral over gij. Conversion scattering between P and S

energy is contained in gps and gsp and couples both equations. Q P,S

(x, k, t) represent sources of P and S waves.

The basic assumptions of RTT are: (1) fluctuations of the inho-

mogeneities are weak; (2) wavelength and correlation length of the

heterogeneities are of comparable size and (3) phases of waves from

different scattereres are independent of each other, that is, the energy

of scattered wave packets can be stacked (Rhyzhik et al. 1996). This

is often casted into the condition (kaε)2 ≪ 1 (Apresyan & Kravtsov

1996, p. 184; Gusev & Abubakirov 1996). Energy dissipation and

velocity dispersion are neglected in eq. (1).

2.2 Scattering coefficients

For determination of the scattering coefficients gij in eq. (1), we use

the random medium model with continuous velocity and density

fluctuations with respect to a constant background model α0, β 0

and density ρ 0. Here we use the assumption (e.g. Sato & Fehler

1998, p. 101) that P- and S-wave velocity fluctuations are propor-

tional to each other and that wave velocity and density follow a

linear relationship (Birch 1961). Then the number of independent

fractional fluctuations is reduced to one spatially stationary random

variable ξ (x):

δα

α0

=
δβ

β0

=
1

ν

δρ

ρ0

= ξ (x) . (2)

Useful values for ν are in the range 0.3–0.8. The statistics of the

medium is given by the autocorrelation function

R(x) = 〈ξ (x + x′)ξ (x′)〉, (3)

and variance

ε2 = R(0) = 〈ξ (x)2〉. (4)

The power spectrum of the medium at wavenumber m is obtained

by a Fourier transform of R as

P (m) =
∫ ∫ ∫

R (x)e−im·xdx. (5)

Coefficients gij describe single scattering interactions of wave

packets with the random heterogeneities and can be obtained within

the framework of Born approximation (e.g. Sato & Fehler 1998,

p. 95ff). Many previous RT solutions have assumed average,

direction-independent values for these coefficients. Although this

is a reasonable assumption in the Rayleigh scattering domain when

the correlation distance of heterogeneities is much smaller than the
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568 J. Przybilla and M. Korn

wavelength (ak ≪ 1), it becomes obsolete for correlation distance

larger than the wavelength (ak ≥ 1). In this case, scattering is dom-

inant in near to forward directions.

Here, we use the complete direction dependent Born scattering

coefficients as given by Sato & Fehler (1998). We repeat them for

completeness.

gpp (θ, ϕ) =
k4

s

4π

∣

∣X pp
r (θ, ϕ)

∣

∣

2
P

(

2ks

γ0

sin
θ

2

)

gps (θ, ϕ) =
k4

s

4πγ0

∣

∣X
ps

θ (θ, ϕ)
∣

∣

2
P

(

ks

γ0

√

1 + γ 2
0 − 2γ0 cos θ

)

gsp (θ, ϕ) =
γ0k4

s

4π

∣

∣X sp
r (θ, ϕ)

∣

∣

2
P

(

ks

γ0

√

1 + γ 2
0 − 2γ0 cos θ

)

(6)

gss (θ, ϕ) = gssθ (θ, ϕ) + gssϕ (θ, ϕ) ,

where gss is further split into two components orthogonal polariza-

tion:

gssϕ (θ, ϕ) =
k4

s

4π

∣

∣X ss
ϕ (θ, ϕ)

∣

∣

2
P

(

2ks sin
θ

2

)

gssθ (θ, ϕ) =
k4

s

4π

∣

∣X ss
θ (θ, ϕ)

∣

∣

2
P

(

2ks sin
θ

2

)

(7)

Here ks is the wavenumber of S waves and γ 0 = α0/β 0.

The basic radiation patterns Xij are given by

X pp
r (θ, ϕ) = γ −2

0

[

ν
(

cos θ + 2γ −2
0 sin2 θ − 1

)

− 2 + 4γ −2
0 sin2 θ

]

X
ps

θ (θ, ϕ) = − sin θ
[

ν
(

2γ −1
0 cos θ − 1

)

− 4γ −1
0 cos θ

]

X sp
r (θ, ϕ) = γ −2

0 sin θ cos ϕ
[

ν
(

1 − 2γ −1
0 cos θ

)

− 4γ −2
0 cos θ

]

X ss
θ (θ, ϕ) = cos ϕ [ν (cos θ − cos 2θ ) − 2 cos 2θ]

X ss
ϕ (θ, ϕ) = sin ϕ [ν (cos θ − 1) + 2 cos θ ] . (8)

See Fig. 1 for the definition of angles θ and ϕ in a local Cartesian

coordinate system, where the incident wave moves into x3-direction

and S-wave polarization is in x1-direction.

The average of gij over the solid angle gives the total scattering

coefficients gij
0 (e.g. Sato & Fehler 1998, p. 43).

2.3 Monte Carlo solution of radiative transfer equation

It is common practise to solve the RT equation by a Monte Carlo

method (e.g. Margerin et al. 2000; Yoshimoto 2000). Energy trans-

port is described by wave packets or particles emitted from the

source in direction k with linear polarization p. Each particle moves

along a ballistic path until it experiences a scattering event. Scatter-

ing changes the propagation direction and eventually the wave mode.

The average distance between two scattering events is determined

from mean free path lengths lp and ls.

Here we consider a P-wave source at the origin of a global Carte-

sian coordinate system (x, y ,z) with isotropic source radiation. Initial

Figure 1. Local Cartesian coordinate system (x1, x2, x3) with incident wave

direction k = e3 and scattering angles θ and ϕ. For incident P wave, polar-

ization is p = e3 and for incident S wave, p = e1.

direction k of the particles is determined by

k =

⎛

⎜

⎝

cos ϕ′ sin θ ′

sin ϕ′ sin θ ′

cos θ ′

⎞

⎟

⎠
(9)

with

θ ′ = arccos (1 − 2Z1) ,

ϕ′ = 2π Z2 , (10)

where Z 1,2 are uniform random numbers between 0 and 1, and p =
k. Different source characteristics could be obtained by appropriate

choice of Qp and Qs in eq. 1.

Mean free path length between two successive scattering interac-

tions is related to the total scattering coefficients as (Ryzhik et al.

1996)

lp =
(

g0
pp + g0

ps

)−1

ls =
(

g0
ssθ

+ g0
ssϕ

+ g0
sp

)−1

. (11)

Particles are moved in small time steps d t = ls/(10vp). Probability

P that scattering of a P or S particle takes place within dt is given

by

P(P, S) = 1 − exp(α0dt/ lP,S). (12)

When a scattering event takes place, the new wave mode is deter-

mined first. To keep complete polarization information, we distin-

guish between two S-wave modes with linear polarization perpen-

dicular to each other, which are denoted by angles θ and ϕ in the

local Cartesian coordinate system (Fig. 1).

Probabilities � for scattering between each mode are determined

from the total scattering coefficients and mean free paths as follows:

�P P = g0
pplp,

�P Sθ
= g0

pslp,

�S P = g0
spls,

�SSθ
= g0

ssθ
ls,

�SSϕ
= g0

ssϕ
ls . (13)
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Monte Carlo solutions of the 3-D RT equations 569
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THETA Component                                    
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Figure 2. Finite difference traces at 30 km distance from the source in an exponential random medium with ak = 3.14. The dashed vertical line indicates the

arrival time of a P wave travelling with the average velocity of the random medium.

Finally, scattering direction is determined from the angular-

dependent scattering coefficients (eq. 6). Probabilities of scattering

into angles θ , ϕ are given by (Modest 1993)

Z3 = 1 −
∫ θ

0

∫ 2π

0

gi j (θ ′, ϕ′)

g0
i j

sin θ ′ dθ ′ dϕ′

Z4 = 1 −
∫ ϕ

0

∫ π

0

gi j (θ ′, ϕ′)

g0
i j

sin θ ′ dθ ′ dϕ′,
(14)

where Z 3 and Z 4 are uniform random numbers. Eq. (14) have to

be solved numerically for angles θ , ϕ. This is done once at the

beginning of the calculations and the results are stored in tables to

speed up computing time. The integration steps �θ , �ϕ are chosen

such that each interval represents equal probability, for example,

∫ θ+�θ

θ

∫ 2π

0

gi j (θ ′, ϕ′)

g0
i j

sin θ ′ dθ ′ dϕ′ =
1

q
. (14a)

Here we use q = 10 000. Then the resolution is fine enough for

narrow indicatrices. For more details see Lux & Koblinger (1991)

and Margerin et al. (2000).

After the scattering process, the new propagation direction is

given by

k1 =

⎛

⎜

⎝

cos ϕ sin θ

sin ϕ sin θ

cos θ

⎞

⎟

⎠
(15)

and polarization is

pP = k1,

pSθ
=

⎛

⎜

⎝

cos θ cos ϕ

cos θ sin ϕ

− sin θ

⎞

⎟

⎠
,

pSϕ
=

⎛

⎜

⎝

− sin ϕ

cos ϕ

0

⎞

⎟

⎠

(16)

depending on the wave mode. Finally, these directions are rotated

back into the global coordinate system and carried with the particle

until the next scattering event.

All particles passing through the volume V of a spherical shell

with radius R and thickness dR contribute to the energy density at a

receiver point at distance R at their time of passage. An appropriate

value of dR depends on the mean free path with dR = vpdt for P

particles and dR = vS dt for S particles.

Total energy density at distance R and time ti is then given by the

number of particles passing through V at time step ti as

E(R, ti ) =
N (R, ti )

N0V
, (17)

where N 0 is the total number of particles in the simulation.

Component-resolved energy density is obtained from the polariza-

tion and propagation vectors carried with each particle.
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570 J. Przybilla and M. Korn

3 F I N I T E - D I F F E R E N C E S I M U L AT I O N S

I N 3 - D E L A S T I C M E D I A

3.1 Method

For the computation of theoretical waveforms of vector waves in 3-D

random media, we employ a FD technique based on a staggered-grid

approach for particle velocities and stresses in space–time domain.

The accuracy is second-order in time and fourth-order in space. We

use a parallel implementation of the scheme developed by Bohlen

(2002), which makes use of domain decomposition and runs on PC

clusters or on massive parallel supercomputers using the Message

Passing Interface (MPI) standard.

The size of the model is 76 × 76 × 76 km. Mean P and S velocities

are α0 = 6 km s−1, and β 0 = − 3.46 km s−1. A random fractional

velocity fluctuation ξ (x) with exponential ACF

Re(x) ≡ Re(r ) = 〈ξ (x′) ξ (x′ + x) 〉 = ε2e−r/a, (18)

or Gaussian ACF

Rg(x) ≡ Rg(r ) = 〈ξ (x′) ξ (x′ + x) 〉 = ε2e−r2/a2

, (19)

with r =
√

x2 + y2 + z2 is imposed on both P and S velocities.

Parameter ε is rms fractional fluctuation and a is correlation dis-

tance. Density perturbations are assumed to be totally correlated

with velocity fluctuations and ν = 0.8(see eq. 2).

A compressional source with isotropic radiation pattern is located

at the centre of the model. The time dependence of source stress is

given by

f (t) = sin (2π t/T ) −
1

2
sin (4π t/T ) 0 ≤ t ≤ T, (20)

where T is the duration of the wavelet. The far-field pulse shape is

then ufar(t) ∝ d f

dt
. Here we choose T = 0.5 s to obtain a wavelet with

a dominant frequency of about 3 Hz. The wavefield is recorded on

spheres at distances of 10, 20 and 30 km from the source. On each

sphere, receivers are separated by approximately 2.6 km from one

another. This yields a total number of 186, 745 and 1675 receivers

at the three distances. The spatial and temporal discretization in the

FD scheme is 0.1 km and 6 ms, respectively. This choice ensures

that the numerical errors remain small.

At the boundaries of the computational grid, exponential damping

(Cerjan et al. 1985) is applied to achieve non-reflecting boundaries.

Nevertheless, the presence of artificial boundaries introduces errors

by generating weak spurious reflections and suppressing backward

scattering from the area outside the grid. Due to the limitations in

computing resources these cannot be avoided by making the grid

larger.

Numerical simulations have been performed for correlation dis-

tances a of 1 and 3 km. This corresponds to ak = 3.14 and 9.42,

respectively, where k is S wavenumber at the dominant frequency.

Due to the limited propagation distance, we had to take a rather

large value of rms fluctuation ε = 10 per cent to generate significant

scattered energy. One simulation took about 3 hr wall clock time

on the IBM p690-Cluster JUMP at Forschungszentrum Jülich using

512 processing elements.

In Fig. 2, individual traces at 30 km distance from the source

are displayed for exponential ACF and ak = 3.14. Severe pulse

shape distortions and amplitude fluctuations are observed, together

with coda excitation in all three components. Note that traveltime

fluctuations of the first onset are clearly visible, and first arrivals

of the radial component sometimes travel faster than the average

velocity of the random medium. This effect is well known (e.g.

10–4

10–3

10–2

10–1

Homogeneous medium

10–4

10–3

10–2

10–1

R
M

S
 E

n
v
e
lo

p
e

10–4

10–3

10–2

10–1

0 5 10

Time (s)

Total 

Radial

Transverse 

Figure 3. Root mean squared (rms) envelopes from finite difference cal-

culations in a homogeneous medium. Note the shape of the P pulse, the

absence of energy at S arrival time and the appearance of a small transverse

component. Only one transverse component is shown, as the other one is

almost identical. Colours correspond to travel distances of 10 km (green),

20 km (red) and 30 km (blue).

Witte et al. 1996), but will not be present in RT envelopes as all

particles strictly move with the average velocity.

3.2 RMS envelopes

For the comparison with theoretical envelopes from RT and Markov

theory, the following data processing was done: rotation of original

components into radial and transverse components; stacking of the

C© 2008 The Authors, GJI, 173, 566–576
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Figure 4. The rms envelopes in a medium with exponential autocorrelation function, ε = 10 per cent, and correlation length a = 1 km (left) and 3 km (right).

The dashed lines are the RT envelopes; FD envelopes are plotted with solid lines.

squared single-component traces of all receivers at a fixed travel dis-

tance to obtain average MS envelopes; summing of all components

to obtain total MS envelope. For some comparisons, an additional

Gaussian bandpass filter has been applied as the first processing

step. This is explained later.

In Fig. 3, we show the rms envelopes obtained from a simulation

in a homogeneous medium. The envelope shape as u2
far is clearly

recognized in the total and radial components. The transverse com-

ponent, which theoretically should be zero, shows a small amplitude

of about 4 per cent and a distorted pulse shape. This is due to the

well-known effects of numerical grid dispersion and grid anisotropy

in the FD scheme, and gives an idea about the accuracy limit of the

numerical simulations. We note that there is only energy at the P

arrival time, and that the source does not emit any S waves.

Before comparing the envelopes obtained by RT or Markov the-

ory with the averaged FD envelopes, two more processing steps have

to be done. In FD, the outgoing wavelet has a pulse shape of finite

length whereas in the RT and Markov, a spike-like source time func-

tion is assumed. Before a quantitative comparison, RT and Markov

MS envelopes have to be convolved with the squared FD wavelet

u2
far (t).

The second difference is that during propagation through a ran-

dom medium, the wave fronts become distorted and exhibit travel-

time fluctuations. When averaging over many observation points as

was done in the FD calculations, one has the choice of either align-

ing the individual traces before stacking or not. The second choice,

which we use here, yields a pulse broadening in the resulting enve-

lope, which is additional to the broadening observed in individual

traces in the case of strong forward scattering. To take this into

account, we may use the wandering effect (Lee & Jokipii 1975;

Sato & Fehler 1998). It serves as an additional convolution operator

for the RT and Markov envelopes. The wandering effect is given

as

w (r, t) =
v0

√

2π A(0)r
e

−
v2
0

r2

2A(0)r , (21)
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Figure 5. Same as Fig. 4, but with 10 per cent additional S energy emitted by the RT source.

where r is propagation distance and A is the longitudinal integral of

the ACF (Sato & Fehler 1998):

A (x = 0, z) ≡
∫ ∞

0

R(x = 0, z) dz =

{√
πε2a Gaussian

2ε2a Exponential
. (22)

Strictly speaking, the application of eq. (21) is only correct for

the time interval of the direct wave arrival, but we found that there

is little effect on the later parts of the envelope due to their smooth

behaviour with time.

It is worth mentioning that the wandering effect should not be

used if single trace envelopes are compared with RT or Markov

simulations or if traces have been time aligned before stacking.

4 M O N T E C A R L O V E R S U S F D

E N V E L O P E S

In Fig. 4, the comparison between total, radial and transverse compo-

nent rms envelopes obtained from RT and FD simulations is shown

for a random medium with exponential ACF and ε = 0.1. Corre-

lation distance is 1 km (left-hand side) and 3 km (right-hand side)

resulting in values of ak = 3.14 and 9.42, respectively. This covers

the range of moderate to strong forward scattering where the angu-

lar dependence of the scattering coefficients becomes increasingly

important. For larger ak values the pulse broadening due to forward

scattering becomes larger and the later coda generated by multiple

large-angle scattering becomes smaller. In all simulations we show

only one transverse component, as the other is practically identical,

as can be expected. MS envelopes from RT have been convolved

with the squared source signal and the wandering effect.

In both cases, the results of RT and FD agree reasonably well in

amplitude and pulse shape around the P-wave arrival and also in

the later part of the coda. A slightly higher decay rate of the FD

envelopes can be explained by the finite dimension of the numerical

model. Once the initial wave front hits the boundaries, it is absorbed

and further large-angle and backscattering is suppressed resulting

in some missing energy at late times in the FD coda.

The main difference between FD and RT occurs around 3, 6 and 9

s at distances 10, 20 and 30 km, respectively, in the transverse (and
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Figure 6. Same as Fig. 4, but for a medium with Gaussian ACF. An additional Gaussian bandpass filter with central frequency of 3 Hz and bandwidth of 1 Hz

has been applied to the finite-difference waveforms before stack. Left: ak = 3.14, center: ak = 9.42, right: ak = 9.42 and 4 per cent of S energy radiation in

RT.

total) component, where a clear secondary arrival is observed in the

FD results that is also present but much smaller in the RT envelopes.

For ak = 3.14, the P-wave peak on the transverse component is

considerably smaller in FD than in RT. This effect is seen best at the

smallest distance and diminishes with increasing distance. It points

to some deficiency in the Born scattering coefficients used in RT.

There are several cases where the Born approximation breaks

down. Born scattering coefficients are derived for a plane wave

front incident upon a scattering volume of finite size (see Fig. 1),

and they represent a far-field approximation of the scattered wave.

Both assumptions may be violated if the mean free path between two

successive scattering events becomes short, for example, for strong

forward scattering. In this case, we would expect to find differences

in pulse broadening and peak delay around the arrival time of the

ballistic wave between FD and RT, but this is not observed.

Another explanation is that the initial spherical wave front has its

largest curvature and highest amplitudes close to the source, result-

ing in different phase relations between individual scattering points

in this volume. Moreover, the effective wave leaving the source vol-

ume into one specific direction is composed not only of the direct

wave front but also of backscattered waves from parts of the original

wave front moving in different directions. Therefore, we expect a

breakdown of the angular pattern of the Born coefficients within

a small distance from the source. The most notable effect will be

that some shear wave energy is generated near the source, which

propagates outwards in all directions. This is what we observe in

the FD simulations.

In order to verify that it is indeed a near-source effect, we repeated

the RT simulations with a modified source that radiates some addi-

tional S energy. Fig. 5 shows that if the source isotropically radiates

about 10 per cent S wave energy, the FD envelopes can be matched

with high accuracy. We emphasize that this does not mean that S

energy is really generated by the source, as a similar S peak does

not exist in the homogeneous medium case (Fig. 3), but that it is

an effect of the medium heterogeneity, that produces some ‘appar-

ent’ S-wave radiation not explained within the framework of RT and

Born scattering coefficients.

In Fig. 6 the comparison for the same set of parameters is shown

in a Gaussian medium. The individual FD waveforms have been

bandpass filtered before the stack with a Gaussian bandpass filter,

1 Hz bandwidth, to make the envelopes more representative for

a small frequency band around the central frequency of 3 Hz. In

general, we find similar results as for the exponential medium, in-

cluding the S-wave generation close to the source. Coda energy is
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Figure 7. RT (solid purple lines) and Markov (dashed light blue lines) envelopes in a Gaussian medium with ε = 0.1 and ak = 3.14. In (a) the raw rms envelopes

are plotted, in (b) envelopes are convolved with the wandering effect w(r,t) (eq. 21) and the squared signal u: u(t) = (d f /.dt)2(see eq. 20). FD envelopes are

plotted in for reference (olive lines).

much smaller than in exponential media; for ak = 9.42, the coda

almost disappears. For ak = 3.14, coda are somewhat higher in FD

than in RT. This discrepancy becomes smaller with increasing lapse

time and distance from the source. A similar observation has been

made previously by Przybilla et al. (2006) in the 2-D case. Without

the bandpass filter mentioned above, the FD coda amplitude would

have been even larger. In the right-hand panel of Fig. 6, we added

4 per cent of S energy radiation from the RT source. The shape of

FD envelopes is then matched reasonably well.

5 C O M PA R I S O N W I T H M A R KOV

T H E O RY F O R V E C T O R WAV E S

5.1 Markov approximation

If the wavelength is much shorter than the characteristic scale of

medium heterogeneity, scattering is dominant in a small angle in

the forward direction. In this case, the Markov approximation is

a powerful method to directly simulate wave envelopes in random

media. Recently, Sato (2007) and Sato & Korn (2007) derived an-

alytical solutions for envelope synthesis of vector-wave envelopes

in random elastic media with Gaussian ACF for isotropic radiation

from a point source in two and three dimensions.

In 3-D, the intensity spectral density of P waves, Î0, is obtained

as (Sato 2007)

Î0 (r, t, ωc) =
π

8tMr 2
H

(

t −
r

α0

) ∞
∑

n=1

(−1)n+1 n2
[

e
− π2(t−r/α0)

4tM

]n2

.

(23)

Here, tM =
√

πε2r 2/(2α0a) is the characteristic time, r is travel

distance, ωc is central angular frequency. The radial-component in-

tensity spectral density is given by

Îr0 (r, t, ωc) =
[

1 − 4
α0

r

(

t −
r

α0

)]

Î0 (r, t, ωc) (24)

and the transverse-component intensity spectral density by

Ît0 (r, t, ωc) = 2
α0

r

(

t −
r

α0

)

Î0 (r, t, ωc) . (25)

These quantities can be directly equated to MS envelopes, band-

pass filtered around ωc without the wandering effect (eq. 21).

5.2 Comparison of numerical results

In Figs 7 and 8, we show rms envelopes obtained from RT (solid,

purple) and Markov theory (dashed, light blue) for enlarged time
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Figure 8. RT (solid purple lines) and Markov (dashed light blue lines) envelopes in a Gaussian medium with ε = 0.1 and ak = 9.42. In (a) the raw rms envelopes

are plotted, in (b) envelopes are convolved with the wandering effect w(r,t) (eq. 21) and the squared signal u: u(t) = (d f /.dt)2 (see eq. 20). FD envelopes are

plotted for reference (olive lines).

windows around the first arrival. Figs 7(a) and 8(a) contain the

raw RT and Markov envelopes without any further processing. In

Figs 7(b) and 8(b), the envelopes are convolved with the squared

source wavelet and the wandering effect, as previously described.

We only show the Gaussian medium, as there is no analytical so-

lution of the Markov approximation available for other types of

autocorrelation functions.

For large ak =9.42 Markov theory should deliver exact envelopes.

In Fig. 8, there is almost perfect agreement between RT and Markov

envelopes in all components except for the coda portion that is not

contained in the Markov approximation. Maximum amplitude, peak

decay with increasing distance and pulse broadening are correctly

modelled by RT. Comparing Figs 8(a) and (b), the smoothing effect

of the convolution operators for signal shape and wandering effect

is clearly recognized. For reference, the FD envelopes are plotted in

olive. All three results agree very well in Fig. 8(b).

For ak = 3.14 (Fig. 7a), the results look different. The match be-

tween RT and Markov deteriorates considerably both in pulse shape,

which is broader in the Markov envelope, and in the peak arrival

time, which is more delayed. The picture does not change much if

wandering effect and signal width are taken into account (Fig. 7b).

Although the pulse shapes of RT and Markov become more similar,

there is still a clear discrepancy in the time of the maximum ampli-

tude and in the shape and amplitude of the transverse component.

The agreement between RT and FD is much better than between

Markov and FD in Fig. 7(b). This clearly points to failure of the

Markov approximation for small ak. We conclude that Markov ap-

proximation is only useful if ak ≥ 5–8, that is, correlation length is

larger than one wavelength.

6 C O N C L U S I O N S

We have developed a Monte Carlo scheme for energy transport in

3-D elastic media including P and S mode conversions. It is based

on the angular-dependent scattering coefficients obtained within the

Born weak scattering approximation. In contrast to similar schemes,

it does not use the concept of Stokes vector but carries polarization

information of S energy by using linear polarization decomposition

of the scattering coefficients. This renders the numerical scheme

quite intuitive. Moreover, layer boundaries with deterministic re-

flection and transmission, can be readily introduced by using sim-

ple energy reflection and transmission coefficients. It also seems
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576 J. Przybilla and M. Korn

straightforward to implement multiple body-to-surface wave scat-

tering and vice versa, if appropriate single-scattering coefficients

are available. They have been recently published by Maeda et al.

(2008).

The direction dependence of scattering becomes important if the

product ak of wavenumber and correlation distance becomes larger

than 1. Then small angle scattering around the forward direction

dominates, resulting in typical effects like pulse broadening and

delay of the peak amplitude. Comparison of our newly developed

Monte Carlo scheme with modelling of the full 3-D elastic wave-

fields clearly shows that RT remains valid up to at least ak ≈ 10. It

therefore offers a unique way to model complete mean square en-

velopes of high-frequency wavefields in the presence of small-scale

random heterogeneity starting from the first P onset until the late

S-wave coda and for a wide range of correlation distances. A similar

result has been found for the 2-D case by Przybilla et al. (2006).

A second comparison was performed against the newly developed

analytical Markov approximation for vector waves in Gaussian ran-

dom media (Sato 2007). It clearly showed that Markov approxima-

tion is only valid at high ka and quickly breaks down if ka becomes

smaller than about 5–8. For the first time, we give an estimation for

the limit of Markov approximation, which is based on comparison

with full 3-D waveform modelling using FD.

While most of the smaller deviations between RT and FD en-

velopes can be explained by inaccuracies of the FD method like

grid dispersion, anisotropy, artificial model boundaries, insufficient

averaging, etc., there remains one important discrepancy. The FD

simulations show some amount of S energy propagating away from

the source that is not present either in RT or in Markov. This points

to a breakdown of the approximation inherent to the derivation of

the Born scattering coefficients in the vicinity of a point source.

Our numerical results show that such near-source effects can cause

effective shear energy radiation in the order of a few per cent

(≤10 per cent) of the P energy. We expect similar effects also for

point sources with angular-dependent radiation patterns. This will

require further theoretical and numerical investigations.
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