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ABSTRACT 
 

Monte Carlo simulations combined with sudden death testing were used to compare resultant bearing lives to 
the calculated bearing life and the cumulative test time and calendar time relative to sequential and censored 
sequential testing. A total of 30 960 virtual 50-mm bore deep-groove ball bearings were evaluated in 33 different 
sudden death test configurations comprising 36, 72, and 144 bearings each. Variations in both life and Weibull slope 
were a function of the number of bearings failed independent of the test method used and not the total number of 
bearings tested. Variation in L10 life as a function of number of bearings failed were similar to variations in life 
obtained from sequentially failed real bearings and from Monte Carlo (virtual) testing of entire populations. 
Reductions up to 40 percent in bearing test time and calendar time can be achieved by testing to failure or the L50 
life and terminating all testing when the last of the predetermined bearing failures has occurred. Sudden death 
testing is not a more efficient method to reduce bearing test time or calendar time when compared to censored 
sequential testing. 

 
 
 

NOMENCLATURE 
 
CD dynamic load capacity, N (lbf) 
C censored or suspended test 
c stress-life exponent 
e Weibull slope 
h exponent 
j mean order number 
L life, number of stress cycles or hr 
L10 10-percent life or life at which 90 percent of a population survives, number of stress cycles or hr 
Lβ characteristic life or life at which 63.2 percent of population fails, number of stress cycles or hr 
m  total number of bearing testers used simultaneously  
N  life, number of stress cycles 
n number of bearings or number (m × r) of subgroups with a single failed bearing 
Peq equivalent radial load, N (lbf) 
p load-life exponent  
r number of failures or number of subgroups of m bearings 
S probability of survival, fraction or percent 
V  stressed volume, m3, (in.3) 
Zo depth to the orthogonal shearing stress 
ιo orthogonal shearing stress, GPa (ksi) 
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Subscripts 
i ith component or bearing 
ir inner race 
L lower limit 
n number of components 
or outer race 
re rolling elements 
sys system 
up upper limit 
 
Abbreviations 
calc calculated 
max maximum 
min  minimum 

 
Definitions 
calculated life   = The life obtained using the Lundberg-Palmgren life equations 
resultant life  = The life obtained from the Weibull analysis of bearing systems generated by a Monte  
  Carlo technique 

 
 

INTRODUCTION 
 
Predicting and experimentally validating rolling-element bearing life is a complex, time- consuming, and costly 

task. Many investigators believe that there is no alternative to testing an entire fixed population of components to 
failure when accurately determining the life of their product. Sudden death testing, however, is considered a 
technique by which product development test time is shortened by running concurrent tests and not necessarily 
running all of the tests to failure. The question becomes whether the reliability (accuracy and precision) of the 
resultant life is influenced by the chosen testing method. 

One needs to go back to the classic work of L.G. Johnson (1) to find early explanations of methods for reducing 
testing time. Johnson (1) identifies three methods for reducing test time. In the first method, more specimens are run 
simultaneously than are intended to fail. For example, Johnson points out that for a Weibull slope of 1.0, the median 
time to fail 10 out of 20 samples is significantly less than the median time required to fail 10 out of 10 samples. In 
fact, the first scenario will take 24 percent of the time it takes for the second. This is assuming that there are no 
replacements of failed specimens, all testers are the same, and all specimens are run simultaneously. Since the width 
of the confidence band is determined by the number of items failed and not the total number of specimens in a test 
(1), (2) the number failed is 10 in both cases. As a result, the only difference is that the 10 items having the lowest 
lives in a lot of 20 is plotted on a Weibull plot instead of all 10 specimens in a lot of 10 (1). Similar observations 
were made by Vlcek, Hendricks, and Zaretsky in (2). 

Johnson (1) describes sequential analysis as a second method of deciding if an improvement in life has been 
realized at any time during the test series based upon the performance of the latest element in a sequential group of 
failures. The total number of specimens needed to fail is not known in advance. The investigator decides after each 
failure whether or not additional testing is required. In this manner, the bare minimum number of runs needed to 
demonstrate an improvement or worsening of life is conducted. A method similar to this has been used extensively 
by Zaretsky et al. (3). An estimate of the 50-percent life (L50) is made and test bearings are then run on identical 
testers until this life is reached. As samples fail or are suspended at the L50 life, they are removed, and new samples 
are mounted and evaluated to the estimated L50. In this manner, at least 50 percent of the samples are typically failed 
out of the entire available population. In some cases, the L50 target may have to be adjusted as dictated by the 
number of failures encountered. 

Sudden death testing is the third method of reducing testing time described by Johnson (1). The total 
accumulated test time is reduced by not running all specimens to failure. The total number of specimens to be 
evaluated n is divided into equal-sized subgroups according to the number of available experimental testers. Thus, 
there are m specimens in each equal-sized subgroup, and there are a total of r subgroups (Table 1(a)). The total 
number of specimens evaluated n equals m times r.  

The specimens in each subgroup are fatigue tested identically and simultaneously on different testers. The first 
subgroup of specimens is run until the first failure occurs. At this point, the surviving specimens are suspended and 
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removed from testing. An equal set of new specimens numbering m samples is next tested until the first failure in 
that subpopulation. This process is repeated until one failure is generated for each of the subgroups. In the end,  
r failures are generated while (m − 1) × r samples are suspended (Table 1(b)). Thus, the total accumulative test time 
is the time to fail r specimen times the number of samples concurrently tested m, not the time for n failures. With 
correct analysis, reliability of the life predicted from r failures is assumed to be comparable to that obtained when 
failing the entire population. Some sudden death testing results are reported in (4)-(8). The issue remains as to 
whether life predictions from sudden death testing are equivalent to those obtained with sequentially failed data.  

It is time-consuming and cost prohibitive to rigorously examine the advantages of sudden death testing in the 
physical world. However, sudden death testing can be investigated by the generation of virtual bearing sets for 
evaluation to an extent that might not be possible with physical testing. Vlcek, Hendricks, and Zaretsky (2) have 
shown that computer modeling of bearing life based upon Monte Carlo assignment of bearing component median 
ranks, and probabilistic characteristics based upon Lundberg and Palmgren (9) results in reasonable engineering 
predictions of bearing life that are relatively easy to determine. These predictions compared favorably to the rolling-
element bearing data contained in (10), (11).  

The generation of virtual bearing lives demonstrated by Vlcek, Hendricks, and Zaretsky (2) can be used to 
generate bearing sets, which will then be distributed into combinations of sudden death testing matrices. In view of 
the aforementioned, it is the objectives of the work reported herein to compare, 1. the resultant bearing lives 
obtained using sudden death testing to the calculated bearing life, and 2. the cumulative test time and calendar time 
for sudden death testing relative to that for sequential testing methods. 

 
 

Table 1.—An n specimen matrix of r subgroups and m samples evaluated (testers in use).  
(a) Test matrix. (b) Failure matrix. (c) Test matrix example. (d) Failure matrix example. 
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PROCEDURE 
 

Bearing Life Analysis 
 
Bearing life testing is expensive and time-consuming. As a result, it is desirable to predict by calculation the life 

of a bearing with reasonable engineering certainty. In probabilistic life models, the bearing physical characteristics, 
applied load, operating profile, and environment determine the probability of failure, assuming that the life is 
represented by a known probability function. W. Weibull (12)–(14) was the first to suggest a reasonable way to 
estimate material fracture strength with such a probability function. Based upon the work of Weibull (12)–(14) and 
G. Lundberg and A. Palmgren (9) in 1947 showed that the probability of survival S could be expressed as a power 
function of the orthogonal shear stress ιo , life N, depth to the maximum orthogonal shear stress Zo, and stressed 
volume V. That is, 

 

 V
Z
N

S h
o

ec
oτ~ln 1  [1] 

 
From Eq. [1], Lundberg and Palmgren (9) derived the following relation: 
 

 [ ] p
eqD PCL /=10  [2] 

 
where CD, the basic dynamic load capacity, is defined as the load that a bearing can carry for one million inner-

race revolutions with a 90-percent probability of survival, Peq is the equivalent bearing load, and p is the load life 
exponent.  

Lundberg and Palmgren (9) first derived the relationship between individual component life and system life. A 
bearing is a system of multiple components each with a different life. As a result, the life of the system is different 
from the life of an individual component in the system. The system life can be expressed, to a first order, as 

 

 e
or

e
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where the life of the rolling element by inference is incorporated into the life of each raceway. In properly designed 
and operated rolling-elements bearings, fatigue of the cage or separator should not occur and, therefore, is not 
considered in determining bearing life and reliability. 

The work of E.V. Zaretsky (15) builds upon the work of Lundberg and Palmgren (9) where using Zaretsky’s 
rule (15)  

 
For radially loaded ball and roller bearings, the life of the rolling element set is equal to or greater than the life 
of the outer race. Let the life of the rolling element set be equal to that of the outer race.   

 
then with this assumption, Eq. [3] becomes 

 
 [1/L10]e = [1/Lir]e + 2[1/Lor]e [4] 
 

where orre LL =  
 
The life of a virtual bearing was calculated according to Lundberg and Palmgren (9) with a lubricant life factor 

from (15). The lives of the inner and outer races were recalculated together with the lives of the balls using Eq. [4].  
 

Bearing Type, Operating Conditions, and Calculated Lives 
 

The virtual bearings in this study were generated using physical bearing parameters. The bearings were a  
6010-size (50-mm bore) deep-groove ball bearing. The bearing dimensions and operating conditions are summarized in Table 
2. Operating conditions were assumed to be 10 000 rpm using an MIL−L−23699 (tetraester-based) lubricant at 135 °C  
(275 °F). The load applied to bearing was calculated to result in a maximum Hertz stress of 1.55 GPa (225 ksi) on the inner 
race of the bearing.  
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Table 2.—Bearing specifications, operating conditions, and  
calculated lives used in assembly and Monte Carlo  

sudden death testing. 
Bearing type Deep-groove ball bearing 

Bore size, mm 50 
Inner race 52 Curvatures, 

percent Outer race 52 
Ball diameter, mm (in.) 87.3 (11/32) 
Number of balls 14 
Contact angle, deg 0 
Load, N (lbs) 950 (215) radial 
Maximum Hertz stress, 
GPa (ksi) 1.55 (255) 

Lubricant type MIL–L–23699 
Inner race 7.62 x 10–2 (3) 
Outer race 7.62 x 10–2 (3) 

Surface 
finish, rms 
µm (µ in.) Balls 2.54 x 10–2 (1) 
Operating temperature,  
°C, (°F) 135 (275) 

Inner race 0.75 Lubricant 
life factors  Outer race 1.05 

Component L10 L50 Lβ 
Inner racea 9547 52123 72500 
Outer racea 38188 208448 290000 
Balla 38118 208448 290000 

Life, hrs 

Bearingb 6912 37729 47227 
Weibull slope, e 1.11 

aLife based on Zaretsky’s rule and lubricant life factor (15). 
bLife based on Lundberg-Palmgren equation (9) and  
  lubricant life factor (15). 

 
The lives of the bearing components and the bearing were calculated using a commercial bearing code, 

COBRA-EHL, incorporating the Lundberg-Palmgren (9) equations (Eqs. [1] and [2] and Zaretsky’s rule, Eq. [4]). 
For purposes of the life analysis, all life factors with the exception of the lubricant life factor were assumed to be 
equal to one since interest was primarily in the qualitative results. A lubricant life factor, however, was used as a 
function of lubricant film parameter from (15) for these operating conditions since its effect on the resulting lives of 
the inner and outer races can be different. Following Lundberg and Palmgren (9), the Weibull slope e was assumed 
to equal 1.11 for each of the bearing components in this study. This results in a near-exponential distribution of the 
bearing failure data. The resultant bearing L10 life was 6912 hr. 

Lundberg and Palmgren (9) incorporated into their analysis a method and distribution function for statistically 
describing the fatigue life of materials developed by Weibull (12) referred to as the two-parameter Weibull 
distribution function.  
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The characteristic lives (Lβ) calculated using Eq. [5] for the inner race, the balls, and the outer race were 72 490; 

289 000; and 289 000 hr, respectively.  
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Virtual bearing testing 
 

Whether the data is generated experimentally or analytically, the ultimate goal is to determine the life and 
characteristics of a larger population from a limited amount of data. Since exhaustive physical testing is 
economically prohibitive, and in some cases not physically possible, it is extremely desirable to mathematically 
model the life of a bearing. Probabilistic approaches are based upon the fact that material strength varies from 
sample to sample as a result of material inhomogeneities and manufacturing variability. The applied loads to a 
system are also variable as a result of operation loads, mission cycles, and environmental factors. As a result, 
component life is modeled as a statistical variable. If the applied load is known in terms of duty cycle together with 
the relevant bearing geometry and operating conditions, the probability of failure is determined assuming that the 
bearing life is represented by a known probability function.   

The life of virtual bearings consisting of multiple components was determined using the method demonstrated 
in Ref. (2). It was assumed that each bearing was assembled from three separate bins of components, with one bin 
containing 1000 inner rings, one 1000 rolling element sets, and one 1000 outer rings. The median ranks of the 
individual components were assigned and then virtual bearing assemblies were created using a Monte Carlo 
technique. The corresponding life of the bearing components were determined using Eq. [5]. The weakest link 
theory was applied, that is it was assumed that the life of the shortest-lived component of the system was the life of 
the system. A linear curve fit of these system lives results in a Weibull plot. Weibull parameters from the plot and 
Eq. [5] can be used to determine lives at any percentage of survivability. 

Vlcek, Hendricks, and Zaretsky (2) determined the L10 maximum limit and L10 minimum limit for the number 
of bearings failed using a Weibull-based Monte Carlo method. By fitting the resultant lives for different sized 
populations of failed bearings, equations were determined for both of these limits: 
 
 Max variation L10 life = calc L10 life (1 + 6n−0.6) [6a] 
 
 Min variation L10 life = calc L10 life (1 − 1.5n−0.33)   where r > 3   [6b] 
 
 Min L10 life = 0    where r < 3  [6c] 

 
These curves compared favorably with the 90-percent confidence limits of Johnson (1) at a Weibull slope of 1.5 

(2). Additionally, field bearing life data of Harris (10), (11) was compared to these limit curves, and most of the 
bearing lives fell within these bounds (2). The upper and lower limits are thus assumed to be reasonable bounds and 
are a function of only the number of bearings failed and the known characteristic life of the bearing. Equations [6a] 
to [6c] were determined from Monte Carlo simulation of testing all bearings to failure. 

 
Data Analysis 

 
There are multiple statistical methods for determining bearing life estimates from endurance data that for 

practical engineering purposes, give similar results. These methods differ significantly; however, in their level of 
complexity to apply and limitations to their application. For example, maximum likelihood estimates (MLE) of 
Weibull slope, characteristic life Lβ (life at which 63.2 percent of the specimens have failed), and L10 (life at which 
10 percent of the specimens have failed) can be found from an iterative process (16). Confidence limits can be 
placed upon these values using published tables that are appropriate for a limited number of testing configurations 
(6), (7). In general, extensive Monte Carlo simulations are required to generate additional entries for the tables found 
in the open literature. The relative likelihood method can also be employed to estimate statistical intervals (16). 
Linear regression least-square fits of mean order numbers assigned to experimental lives also result in estimations of 
Weibull slope, e, characteristic life, Lβ, and L10 life when plotted on Weibull paper. Confidence limits can be placed 
upon these values using the method of Johnson (1). For its relative ease of use and engineering application with 
comparable reliability, we have selected the linear regression least-square-fit method over that of maximum 
likelihood estimations for use in this study. 
 

Sudden Death Testing Techniques 
 
In sudden death testing, the total number of specimens to be evaluated is divided into equal subgroups that can 

be evaluated simultaneously. The first subgroup of specimens is run simultaneously until the first failure occurs. The 
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surviving tests for that subgroup are terminated (i.e., 
suspended), and new test specimens are mounted in 
the testers. This process is repeated until all of the 
subgroups of test specimens in the population have 
been screened.   

In this study, the technique developed by Vlcek, 
Hendricks, and Zaretsky (2) was used to generate 
virtual bearing sets that were then analyzed as if they 
were sudden death tested. Total populations with 36, 
72, and 144 deep-groove bearings were generated. 
The populations were then sequentially broken into 
subgroups representing all possible combinations of 
sudden death test series of (m × r), where m was the 
number of bearing testers used simultaneously and  
r was the number of sets of m bearings necessary to 
achieve the total number of bearings n in the total 
population. The total number of bearings  
n equals m times r. For example, if 36 bearings were 
to be evaluated, and there were 4 bearing fatigue 
testers available, the value of m would be 4 while the 
value of r would be 9; whereby n equals  

36[(m = 4) × (r = 9)] (Table 1(c)). For this example, the first four bearings were run simultaneously until the first 
failure occurred. The three surviving tests were suspended, and four new bearings were mounted. This process was 
repeated until 9 failures occurred, 1 from each of the sets of 4, with (m − 1) × r or 27 suspensions (Table 1(d)).  

These nine failures and their corresponding median ranks, one for each subgroup of size m, were then plotted on 
a Weibull plot. This sudden death line (SDL) represents the distribution of first failures in each subgroup. The SDL 
of each series was next shifted on its respective Weibull plot so that the curve represented the failures of the total 
population, not just that of one out of r bearings.  

Various methods exist for shifting the SDL line and finding the life of a total population n based upon sudden 
death testing data where only r failures are considered. The slope and characteristic life of the subpopulation 
generated during sudden death testing can be found from maximum likelihood estimators of Cohen (17) that are 
obtained from an iterative process. This life for r samples must be corrected to represent the life of the original 
population containing n samples. One way to achieve this, as reported by McCool (6), (7) is to multiply the 
subpopulation life estimator by the number of samples (m) in each equally sized subpopulation raised to the inverse 
of the slope estimator. Confidence limits can be placed upon these values for a limited number of cases provided in 
tables in the open literature or by extensive Monte Carlo simulations (6), (7). Houpert (4) also proposes a technique 
for determining the life of a larger population based upon a subpopulation determined from sudden death testing, but 
a comparison to our work is beyond the scope of this paper. 

For its simplicity of application and relative engineering reliability, we prefer a technique presented by Johnson 
(1) for shifting the SDL so that the life and characteristics of the larger bearing population (n) can be projected. 
Figure 1 is a generic Weibull plot that accompanies the following steps and includes many of the elements 
mentioned:  
 

Step 1⎯Plotting the subgroup of r failures on Weibull paper. To plot the failures, median ranks are assigned to 
the sequentially ordered lives. Median ranks were defined using  
 

 Median rank = (j − 0.3)/(r + 0.4) [7a] 
 

where j = 1, 2, 3, … r. For sudden death testing, the number of subsets r equals the number tested to failure. A 
discussion and comparison of median rank definitions are available in (4) and (18). The median ranks along 
with their corresponding lives are next plotted on Weibull paper. The locus of points is fitted with a linear 
curve. From the Weibull plot, the Weibull slope, L10 life, L50 life, and characteristic life, Lβ, are determined. 
This SDL represents the distribution of first failures at the median rank for one failure out of the number of 
samples (m) in each of the subgroups.  
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Step 2⎯Determining by how much the SDL must be shifted to accurately estimate the L10 life for the entire 
population. The median rank (Eq. [7a]) must be determined for the first failure out of the number of bearings 
simultaneously evaluated (m). In the above example, for a [(m = 4) × (r = 9)] test, the four simultaneous testers 
are stopped after the first test failure occurs, thus the mean order number j equals 1 and the subgroup size  
m equals 4 where it is assumed that in Eq. [7a], m equals r. The median rank for one out of four, found using 
Eq. [7b], is 0.1591. This is the value to which the SDL must be shifted (Figure 1). In general 

 
 First failure median rank (FFMR) = (1 − 0.3)/(m + 0.4) [7b] 

 
Step 3⎯Constructing the total population line (TPL) by shifting the SDL. At the L50 intersection of the SDL, a 
vertical line is drawn down to the median rank value determined in step 2. Through this point, a line is drawn 
parallel to the SDL created in step 1. The slopes of both lines are assumed to be equal. Figure 1 is a generic 
Weibull plot of the SDL and the shifted TPL representative of this technique.  
 
Step 4⎯Determining lives from the shifted TPL. The Weibull slope and lives are read directly from the TPL 
generated in step 3. Table 3 contains the Weibull slope, L10 life, L50 life, and characteristic life, Lβ , for a typical 
[(m = 4) × (r = 9)] sudden death test of a virtual deep-groove bearing. The values obtained from the SDL and 
the shifted TPL are provided.  

 
Table 3.—Comparison between lives obtained from  
Monte Carlo sudden death testing and that adjusted  

for total population. Number of failures, 9; number of 
bearings tested, 36; number of test rigs, 4; assumed  

Weibull slope, 1.11; resultant Weibull slope,  
1.033; bearing size and type, 50-mm bore  

deep-groove ball bearing. 
Bearing life, hrs Bearing  

population size L10 L50 Lβ 
Weibull 
slope, e 

Sudden death for 
9 failures 2354 14569 20772 1.033 

Adjusted for 
total population 
from sudden 
death 

9003 55729 79453 1.033 

Calculateda 
(actual) for total 
population 

6912 37729 47729 1.11 

aLife based on Zaretsky’s rule and lubricant life factor (15). 
 

This process was repeated for each of the 33 combinations reported in Table 4. For each sudden death test 
combination, 10 different sets of lives were generated and their respective SDL determined. The SDLs were shifted 
appropriately and the L10 lives determined from the TPL. The variation in the maximum and minimum L10 life with 
respect to the calculated L10 life and the maximum and minimum Weibull slopes for each of the 10 trial sets are 
reported in Table 4.  
 
 

RESULTS AND DISCUSSIONS 
 
Experimental testing will never be eliminated. Where appropriate and economical, physical testing is the 

method of choice. Sudden death testing techniques have been purported to have the potential to reduce test time and 
associated costs. An outstanding issue regarding sudden death testing is whether testing a large population but 
failing only a subset of specimens tested has advantages as compared to testing the entire bearing population to 
failure. It is not possible to examine this issue by physical testing. Because physical testing is limited and/or cost 
prohibitive, a Monte Carlo simulation based upon a known Weibull distribution has been demonstrated as a means 
of obtaining reasonable design limits (2). Merging these techniques has the potential to generate insightful data for 
test runs that might be impractical or impossible to otherwise run.  
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Some of the test combinations and total number of virtual bearings evaluated in this study are impractical to 
evaluate from a physical sense. For example, one would probably not run a total of 144 bearings using only 2 testers. 
The results of such extremes, however, are included for completeness. The table entries (Table 4) corresponding to 
those testing combinations that are of “engineering application interest” are presented in bold script. Comparison of 
the Monte Carlo generated results from this study to upper and lower limits previously correlated to experimental 
data in (2) provides confidence in the results of the sudden death testing technique. 
 

Table 4.—Summary of minimum and maximum variation from calculated L10 life and Weibull slope  
from Monte Carlo simulation of assembly of 50-mm bore deep-groove ball bearings evaluated  

in 33 different sudden death test configurations comprising 36, 72, and 144 bearings. 
(a) 36 bearings, 8 configurations 

Variation from calculated L10 life, 
percenta Variation in Weibull slope, eb No. of 

simultaneously 
operated testers 

No. of failures 
Minimumc Maximumc Minimumc Maximumc 

18 
12 
9 
6 
4 
3 
2 
1 

2 
3 
4 
6 
9 

12 
18 
36 

–89 
–92 
–39 
–37 
–41 
–55 
–47 
–58 

228 
303 
83 
53 

120 
86 
83 
67 

0.48 
0.32 
0.92 
0.57 
0.69 
0.73 
0.75 
0.83 

11.93 
3.02 
2.43 
2.43 
1.49 
1.54 
1.50 
1.21 

(b) 72 bearings, 11 configurations 
36 
24 
18 
12 
9 
8 
6 
4 
3 
2 
1 

2 
3 
4 
6 
8 
9 

12 
18 
24 
36 
72 

–88 
–65 
–51 
–57 
–10 
–32 
–26 
–36 
–68 
–33 
–32 

886 
192 
93 
84 
61 
58 
33 
43 

116 
68 
51 

0.39 
0.73 
0.54 
0.70 
0.70 
0.86 
0.78 
0.72 
0.75 
0.99 
0.98 

6.02 
5.58 
1.49 
1.42 
1.78 
1.30 
1.64 
1.28 
1.52 
1.32 
1.26 

(c) 144 bearings, 14 configurations 
72 
48 
36 
25 
18 
16 
12 
9 
8 
6 
4 
3 
2 
1 

2 
3 
4 
6 
8 
9 

12 
16 
18 
24 
36 
48 
72 

144 

–89 
–81 
–48 
–57 
–42 
–47 
–26 
–25 
–33 
–30 
–24 
–18 
–34 
–16 

55 
346 
330 
94 
67 

170 
66 
23 
50 
55 
39 
43 
25 
23 

1.26 
0.58 
0.61 
0.84 
0.82 
0.84 
0.88 
0.91 
0.78 
0.80 
0.90 
0.91 
0.93 
0.99 

9.03 
3.70 
1.21 
2.63 
2.61 
1.73 
1.67 
1.35 
1.61 
1.55 
1.25 
1.30 
1.31 
1.25 

aBased upon calculated L10 life of 6912 hours (from Table 1). 
bCompare to assumed Weibull slope of 1.11. 
cMaximum and minimum values of life do not necessarily correlate with maximum and minimum values of Weibull  
  slope. 
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Endurance Life Variation 
 

For each set of 10 trials for the 33 sudden death test combinations of 6010-size (50-mm bore) deep-groove 
bearings evaluated, the maximum and minimum L10 life was determined and compared to the calculated L10 life of 
6912 hr. The maximum and minimum values of the L10 lives as a percent of the calculated L10 life for each 
combination (m × r) of sudden death bearing tests with r bearing failures was determined as follows: 

 
 Max variation from calc L10 life = max L10 – calc L10  
  calc L10 
  × 100 percent [8a] 
 
 Min variation from calc L10 life = min L10 – calc L10 × 100 percent 
  calc L10  [8b] 
 
These variations are reported in Table 4 for each of the 33 combination of sudden death tests evaluated. 
 
The maximum and minimum L10 life from 10 trials of each of the 33 sudden death test configurations studied 

are plotted in Figure 2. Additionally, the L10 life bounding limits from (2) are shown. There were 9 possible 
combinations of sudden death test configurations for 36 bearings (Figure 2(a)), 11 possible combinations of test 
configurations for 72 (Figure 2(b)), and 14 possible combinations of test configurations for 144 (Figure 2(c)) deep-
groove ball bearings. In 29 out of the 33 possible test combinations, the L10 values fell within these upper and lower 
bounds established in (2). In three of the cases, the maximum L10 life value exceeded the upper bound. In all  
32 cases the minimum L10 life value fell on or above the minimum L10 life bound. In only one case did the minimum 
L10 life fall below the lower bound.  

The percent variation of the maximum predicted L10 life from that of the calculated life is re-plotted in the bar 
chart of Figure 3(a). The minimum values are shown in Figure 3(b). The variations in life are grouped according to 
the total number of bearings tested [n = {36, 72, 144}] and as a function of the number of bearings failed  
[r = {2, 3, 4, 6, 9, 12, 18, 36}] or the number of bearing testers simultaneously used. Some variations or scatter in 
the range between the percent variations obtained for different total numbers of bearings tested at the same number 
of failures are observed. For sudden death testing the percent variation in the resultant L10 life from that calculated is 
independent of the number of bearings tested and dependent only on the number of bearings failed. 

A curve fit of the variation in L10 life as a function of the number of bearings failed for the sudden death failed 
Monte Carlo data results in the following relation: 
 
 Max variation L10 life sudden death=calc L10 life (1+6r −0.6)  [9a] 
 
 Min variation L10 life sudden death=calc L10 life (1−1.2r−0.33)  [9b]  
 
where r equals the total number of bearings failed in sudden death testing. Equations [6a] and [9a] for sequential 
testing and sudden death testing, respectively, are equal. The minimum values obtained for sequential testing  
(Eq. [6b]) is 20 percentage points less than that obtained for sudden death testing (Eq. [9b]). For most engineering 
applications, this difference is negligible. Accordingly, from an engineering point of view, these two curve fits are 
equivalent. Since Eq. [9b] is a curve-fit of minimum L10 lives from populations of 36, 72, and 144 bearings failed, 
and this in turn is in agreement with the curve-fit for sequentially generated failures (Eq. [6b]), it can be concluded 
that the percent variation in life is a function of the number of failed bearings and not the total number of bearings 
evaluated. This observation is consistent with those of Vlcek, Hendricks, and Zaretsky (2) and Johnson (1). It can 
also be concluded that the determination of the life is independent of the method of obtaining the data, whether it is 
sequential or sudden death testing. 
 

Weibull Slope Variation 
 
Lundberg and Palmgren (9) assumed the value of the Weibull slope e in Eq. [5] to be 1.11. Experience has 

shown that most rolling-element bearing life data exhibit Weibull slopes between 1 and 2. For this analysis, a 
Weibull slope of 1.11 was assumed for all of the components for each bearing. This should theoretically result in a 
Weibull slope of 1.11 for the bearing system.  
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The results of the extremes in the Weibull slopes 
for each group of the 10 bearing trials of r bearing 
failures are summarized in Table 4. The maximum and 
minimum bearing lives are not necessarily associated 
with the same trials as the maximum and minimum 
values of the Weibull slopes.  

Vlcek, Hendricks, and Zaretsky (2) show that the 
relation between the number of bearings that failed 
and the limits of the Weibull slope is as follows: 

 
             Max Weibull slope = 1.2 + 5(lnr)−3          [10a] 

 
          Min Weibull slope = 1.11 – 0.95r−0.33              [10b] 

 
In this study, the Weibull slope extremes from  

10 trials of 33 combinations of sudden death testing 
are compared to the upper and lower limit bounds 
from (2). Figure 4 contains the Weibull slope e limits 
as well as the maximum and minimum Weibull slope e 
from 10 trials of each of the 33 sudden death test 
configurations studied. There were 9 possible 
combinations of test configurations for 36 bearings 
(Figure 4(a)), 11 possible combinations of test 
configurations for 72 (Figure 4(b)), and 14 possible 
combinations of test configurations for 144 (Figure 
4(c)) deep-groove bearings. In 21 out of the  
33 possible test combinations, the extreme values of 
the Weibull slope fell within in these upper and lower 
bounds. In 11 of the cases, the maximum Weibull 
slope exceeded the upper bound. Of the 33 minimum 
values generated, in only one case did the minimum 
Weibull slope fall below the lower bound. Most of the 
significant upper bound violations occurred for 30 or 
less failed bearings. 

 
Comparison of Bearing Test Time 

 
An examination of the data summarized in Table 

5 reveals that both in actual bearing test time and in 
calendar time, sudden death testing requires less time 
than sequential testing to failure an entire population 
of n bearings using the same number of testers 
simultaneously. However, where the number of 
bearings failed r is less than n, the reliability of the 
results, as measured by the extent of data variation, is 
poor as compared to testing the entire population n to 
failure. It was concluded that whether employing 
sudden death testing or sequential testing, the 
reliability of the data is a function of the number of 
bearings failed r and not the number of bearings tested 
n. If it is required to fail r number of specimens in 
order to obtain L10 estimates of desired reliability, the 
question remains whether it is advantageous in terms 
of testing or calendar time to fail (a) all specimens 
using sequential testing, (b) r of n specimens using m 
testers, or (c) some other variation of these schemes.  
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The Monte Carlo sudden death testing results summarized in Tables 4 and 5 incorporated up to 144 testers 
operating simultaneously. It is recognized by us that most test facilities generally will have less than nine testers of a 
particular kind and most likely not more than two to eight testers operating simultaneously. Since the reliability of 
the data is dependent on the number of failures generated r, the issue becomes what is the most time- and cost-
efficient way to utilize these assets. 

 
Table 5.—Effect of sudden death testing and sequential testing on bearing test time and calendar time for test  

completion of 50-mm bore deep-groove ball bearings evaluated in 33 different sudden death  
configurations comprising 36, 72, and 144 bearings. 
Sudden death testing Sequential testing No. of 

simultaneously 
operated 
testers 

Failure 
indexa 

Bearing test 
time, hrs.b 

Calendar 
time, hrs.c 

Failure 
indexa 

Bearing test 
time, hrs.b 

Calendar 
time, hrs.c 

(a) 36 bearings, 8 configurations 
18 
12 
9 
6 
4 
3 
2 
1 

2/36 
3/36 
4/36 
6/36 
9/36 

12/36 
18/36 

-- 

125.1 x 103 

243.8 
244.6 
363.6 
516.7 
580.4 
882.0 x 103 

-- 

7.0 x 103 

20.3 
27.2 
60.6 

129.2 
226.8 
441.0 x 103 

-- 

36/36 
 
 
 
 
 
 

36/36 

1813.3 x 103 

 
 
 
 
 
 

1813.3 x 103 

100.7 x 103 

151.1 
201.5 
302.2 
453.3 
604.4 
906.6 

1813.3 x 103 
(b) 72 bearings, 11 configurations 

32 
24 
18 
12 
9 
8 
6 
4 
3 
2 
1 

2/72 
3/72 
4/72 
6/72 
8/72 
9/72 

12/72 
18/72 
24/72 
36/72 

-- 

93.4 x 103 
246.2 
257.3 
393.5 
484.9 
535.6 
712.1 

1170.0 
1273.0 
1954.9 x 103 

-- 

2.6 x 103 

10.3 
14.3 
32.8 
53.9 
67.0 

118.7 
292.5 
424.3 
977.5 x 103 

-- 

72/72 
 
 
 
 
 
 
 
 
 

72/72 

3640.2 x 103 
 
 
 
 
 
 
 
 
 

3640.2 x 103 

101.1 x 103 
151.7 
202.2 
303.3 
404.5 
455.0 
606.7 
910.0 

1213.4 
1820.1 
3640.2 x 103 

(c) 144 bearings, 14 configurations 
72 
48 
36 
25 
18 
16 
12 
9 
8 
6 
4 
3 
2 
1 

2/144 
3/144 
4/144 
6/144 
8/144 
9/144 

12/144 
16/144 
18/144 
24/144 
36/144 
48/144 
72/144 

-- 

157.5 x 103 
271.2 
348.1 
458.7 
590.6 
633.5 
828.9 
985.9 

1047.8 
1463.4 
2189.7 
2652.9 
4008.0 x 103 

-- 

2.2 x 103 
5.7 
9.7 

18.3 
32.8 
39.6 
69.1 

109.5 
131.0 
243.9 
547.4 
884.3 

2004.0 x 103 
-- 

144/144 
 
 
 
 
 
 
 
 
 
 
 
 

144/144 

7129.9 x 103 

 
 
 
 
 
 
 
 
 
 
 
 

7129.9 x 103 

99.0 x 103 
148.5 
198.0 
285.1 
396.0 
445.5 
594.0 
792.0 
891.0 

1188.0 
1782.0 
2376.0 
3584.0 
7127.9 x 103 

aNumber of bearings failed out of number of bearings tested. 
bTotal bearing test time for all bearings tested. 
cTotal calendar time to test all the bearing based upon 100% tester utilization. 
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In the introduction to this paper, we discussed 
different testing techniques. Besides sudden death 
testing and sequential testing the entire population to 
failure using multiple testers, we also discussed  
(a) testing bearings to failure or the L50 life, 
whichever comes first and (b) testing to a 
predetermined number of failures r and then terminate 
all remaining tests. A combination of these test 
methods would be to sequentially test to failure or the 
L50 life, whichever comes first, and then terminate all 
testing when the predetermined number of failures  
r is achieved.  

For a predetermined number of failures r, the test 
method chosen dictates the number of bearings n to 
be tested. Where sequential testing to a predetermined 
number of failures r, the number of bearings required 
n equal r. For bearings tested to failure or the L50 life, 
whichever comes first, the number of bearings to be 
tested n equals 2r. Where testing is conducted to 
failure or the L50 life, whichever comes first, and then 
terminated when a predetermined number of failures r 
is achieved, the number of bearings to be tested n is 
equal to or less than 2r.  

For purposes of example, assume that the 
required number of failures to satisfy a required 
reliability is 9. From Table 5, the bearing test time 
and calendar time are obtained for sudden death 

testing and sequential testing as well as the failure index (the number of failures r out of those tested n) for 4 and 8 
testers, respectively, that are operated simultaneously. These data are summarized in Table 6. Additionally,  
10 Monte Carlo simulations were conducted using censored sequential testing where 4 and 8 testers run 
simultaneously to obtain 9 failures. For each group of testers under the column titled “Censored Sequential Testing,” 
the first line represents the maximum time required to obtain 9 failures out of 18 bearings tested where all bearings 
are run to failure or the L50 life, whichever comes first. The second line represents the minimum time from the  
10 Monte Carlo trials where testing was conducted to failure or the L50 life, whichever comes first, and then 
terminated when the 9 failures were obtained.  

The data from Table 6 are normalized to the bearing test time for sudden test testing for four testers in Figure 5. 
From these data it becomes apparent that sudden death testing requires more bearing test time and calendar time 
then just testing nine bearings sequentially to failure. However, it may be reasonably argued that the differences in 
time are not significant. It can further be argued that using sudden death testing assures the required number of 
failures while testing only nine bearings will not assure that nine bearings will fail, within a reasonable calendar 
time. 

Where censored sequential testing of all 18 bearings to failure or the L50 life to obtain nine failures is employed, 
there is a reduction of bearing test time and calendar time from those values obtained from sudden death testing. 
However, these reductions in time are not significant.  
 

Table 6.—Summary comparison of bearing and calendar time for various methods. 
Sudden death testing Sequential testing Censored sequential testing No. of 

simultaneous 
operated 
testers 

Failure 
index 

Bearing 
test time,  

hrs. 

Calendar
time, hrs. 

Failure
index 

Bearing 
test time, 

hrs. 

Calendar
time, hrs. 

Failure 
index 

Bearing 
test time,  

hrs. 

Calendar
time, hrs. 

4 9/36 
-- 

516.7 x 103 

-- 
129.2 x 103

-- 
9/9 

 
429.4 x 103 

-- 
516.7 x 103 9/18 

9/15 
479.6 x 103 
319.6 x 103 

119.9 x 103 
79.9 x 103 

8 9/72 
-- 

535.6 x 103 

-- 
67.0 x 103 

-- 
9/9 
-- 

429.4 x 103 

-- 
516.7 x 103 

-- 
9/18 
9/13 

516.7 x 103 
347.8 x 103 

60.0 x 103 
43.5 x 103 
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From Table 6 and Figure 5 it is apparent that reductions as much as 40 percent in both bearing test time and 
calendar time can be achieved when compared to sudden death testing by testing to failure or the L50 life, whichever 
comes first, and then terminating all testing when the last of the nine failures has occurred. Hence, for required test 
data reliability, sudden death testing is not a more efficient method to reduce bearing test time or calendar time as 
compared to sequential testing for a required reliability (accuracy and precision). 

These studies were conducted to provide guidance for endurance testing, planning, and execution. Optional test 
plans will depend on the constraints of a particular project such as relative costs of specimens and testing, number of 
specimens available, and project objectives.  

 
 

SUMMARY OF RESULTS 
 

Monte Carlo simulation combined with sudden death testing were used to compare resultant bearing lives to the 
calculated bearing life and the cumulative test and calendar test time relative to sequential and censored sequential 
testing. A total of 30 960 virtual bearings of 50-mm bore deep-groove ball bearings were evaluated in 33 different 
sudden death test configurations compromising 36, 72, and 144 bearings each. The resultant variations in life and 
Weibull slope were also compared to results obtained from Monte Carlo (virtual) testing of entire populations of up 
to 1000 bearings and to 51 sets of actual ball and roller bearing data. The following results were obtained: 

 
 
1. For sudden death testing and sequential testing, variations in both life and Weibull slope were a function of 

the number of bearings failed independent of the test method used and not the total number of bearings 
tested. Variations in L10 life as a function of number of bearings failed were similar to variations in life 
obtained from actual bearing data and from Monte Carlo (virtual) testing of entire populations. 

2. To achieve a predetermined number of failures for a required reliability, reductions as much as 40 percent 
in both bearing test time and calendar time can be achieved when compared to sudden death testing by 
testing to failure or the L50  life, whichever comes  first, and then terminating all testing when the last of the 
predetermined bearing failures has occurred. 

3. For required test data reliability, sudden death testing is not a more efficient method to reduce bearing test 
time or calendar time when compared to censored sequential testing. However, sudden death testing will 
assure that with reasonable certainty a predetermined number of failures will occur. 
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