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ABSTRACT 

One-dimensional (1D) materials such as various kinds of 
nanowires and nanotubes have attracted considerable attention 
due to their potential applications in electronic and energy 
conversion devices. The thermal transport phenomena in these 
nanowires and nanotubes could be significantly different from 
that in bulk material due to boundary scattering, phonon 
dispersion relation change, and quantum confinement. It is very 
important to understand the thermal transport phenomena in 
these materials so that we can apply them in the thermal design 
of microelectronic, photonic, and energy conversion devices. 
While intensive experimental efforts are being carried out to 
investigate the thermal transport in nanowires and nanotube, an 
accurate numerical prediction can help the understanding of 
phonon scattering mechanisms, which is of fundamental 
theoretical significance. A Monte Carlo simulation was 
developed and applied to investigate phonon transport in single 
crystalline Si nanowires. The Phonon-phonon Normal (N) and 
Umklapp (U) scattering processes were modeled with a genetic 
algorithm to satisfy both the energy and the momentum 
conservation. The scattering rates of N and U scattering 
processes were given from the first perturbation theory. 
Ballistic phonon transport was modeled with the code and the 
numerical results fit the theoretical prediction very well. The 
thermal conductivity of bulk Si was then simulated and good 
agreement was achieved with the experimental data. Si 
nanowire thermal conductivity was then studied and compared 
with some recent experimental results. In order to study the 
confinement effects on phonon transport in nanowires, two 
different phonon dispersions, one based on bulk Si and the 
 

other solved from the elastic wave theory for nanowires, were 
adopted in the simulation. The discrepancy from the 
simulations based on different phonon dispersions increases as 
the nanowire diameter decreases, which suggests that the 
confinement effect is significant when the nanowire diameter 
goes down to tens nanometer range. It was found that the U 
scattering probability engaged in Si nanowires was increased 
from that in bulk Si due to the decrease of the frequency gap 
between different modes and the reduced phonon group 
velocity. Simulation results suggest that the dispersion relation 
for nanowire solved from the elasticity theory should be used to 
evaluate nanowire thermal conductivity as the nanowire 
diameter reduced to tens nanometer  

 
INTRODUCTION 

In recent years, low-dimensional structures have 
attracted much attention for their potential application in 
thermoelectric devices. The performance of thermoelectric 
devices depends on the figure of merit ZT, given by  

)/( 2
TKTZT ρα=   (1) 

where TKT ,,, ρα are the Seebeck coefficient, 
absolute temperature, electrical resistivity and total thermal 
conductivity, respectively. For a material to have a high ZT, 
one requires a high thermoelectric power α  (Seebeck 
coefficient), a low electrical resistvity and a low thermal 
conductivity. A material with a figure of merit of around 1.0 
was first reported over four decades ago, but since then, little 
progress has been made in finding new materials with enhanced 
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ZT values at room temperature [1]. A big challenge to enhance 
the ZT value is to decrease the thermal conductivity and at the 
same time not to produce a deterioration of electronic transport. 
Nanostructures such as nanowires and quantum wells provide a 
promising method for the enhancement of ZT through 
controlling the phonon and electron transport [2].  

Phonon transport at the nanoscale differs from that at the 
macro- and microscale for several fundamental reasons. One is 
that size confinement changes the phonon dispersion relation.  
This change causes the phonon group velocity to differ from 
that in bulk material. A more complicated problem is that the 
phonon scattering rate also differs from that in bulk material 
[3]. This affects the phonon mean free path, which in turn 
changes the lattice thermal conductivity of the nanostructure. In 
addition, as the size of the nanostructure decreases below the 
phonon mean free path and starts to approach the wavelength of 
the dominant phonon, λ , the validity of phonon particle 
transport theory becomes questionable and wave theory should 
be applied to interpret heat transport in nanostructures.  So far 
there are two distinct methods for the analysis of heat 
conduction in nanowires. Those include the solution of the 
Boltzmann transport equation (BTE) and the molecular 
dynamics simulation method. Based on the lifetime assumption 
and accounting for the modified nanowire acoustic phonon 
dispersion relation, it is possible to predict nanowire thermal 
conductivity [4-8] from the solution of the BTE. Because great 
simplifications must be introduced to produce a closed form 
solution, the results usually deviate greatly from experimental 
findings. Certain assumptions lead to erroneous explanations of 
particular phenomena [9]. The molecular dynamics simulation 
method uses Newton’s second law to describe the movement of 
a large number of atoms in the nanowire.  Thermal 
conductivity can be extracted from averaging the positions and 
velocities of the atoms [10]. However, this method is limited by 
the knowledge of interatomic potential and computation ability.  

In this paper, the Monte Carlo simulation method is used to 
trace the phonon movement in a Si nanowire. Three phonon 
scattering, boundary scattering and impurity scattering 
processes are considered. A genetic algorithm is used to 
guarantee energy and wave-vector conservation conditions for 
N and U scattering. Bulk silicon and silicon nanowire thermal 
conductivities are calculated. Simulation results agree well with 
that from previous investigations and experimental results. 

II.  OVERVIEW OF MONTE CARLO METHOD 
The Boltzmann equation for phonon transport in the 

presence of a temperature gradient is written as  
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where is the group velocity, , (3) gV
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N  is the distribution function, K
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 is the phonon wavevector, 
T  is local temperature,  is the phonon frequency, and ω
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 is the rate of change of  due to collision. On the 

left side of equation (2)  can be replaced by , the 
equilibrium Planck distribution. Consequently equation (3) can 
be read as  
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where 
1)/exp(
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Tk
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  (5) 

h is the Planck constant divided by π2 ,  is the 

Boltzmann constant, and  is the function describing 

the scattering rate from state 

Bk
),( 'KKΦ

'K  to state K , which depends 
on the phonon frequency and polarization.  

Equation (4) is a nonlinear integro-differential equation. 
Without simplification the formulation is difficult to solve. This 
difficulty can be avoided by using the Monte Carlo method.  
This method does not consider equation (4) directly but instead 
follows a large number of phonons in a three-dimensional space 
subjected to a temperature gradient to simulate thermal 
properties. The simulation starts with all of the phonons in 
given initial conditions with the appropriate sampled frequency, 
group velocity, wavevector and polarization, after which the 
duration of the free flight is set and all of the phonons move 
linearly from the initial to new positions such that 

tVrr igii ∆+= ,,0

rrr
   (6) 

where ii rr ,0, rr
are the phonon’s new and initial position 

respectively, and t∆ is the free flight time. The free flight time 
is kept constant during the simulation. If the phonon encounters 
a boundary during free flight, it is reflected as described in the 
next section.  Following the free flight, scattering mechanisms 
are imposed. Each phonon has its own unique lifetime Tτ  
based on its frequency, polarization, impurity scattering time 
scale and local temperature [6]. , the probability that a 
phonon has already lived for the free flight time 

)(tP
t∆  without 

being scattered, decreases in time such that  

T

P
t
P

τ
−=

∂
∂

   (7) 

and after the free flight time, the probability of scattering is 
)/exp(1 TtP τ∆−−= .  (8) 

To impose a statistical scattering mechanism on the 
phonons, a random number R is generated. If PR < , the 
phonon will be scattered and replaced by a new phonon of a 
different state. This new state is determined using the genetic 
algorithm described below. Then the new phonon begins its 
new free flight. If PR > , the phonon will continue its free 
flight with its state unchanged. For long enough simulation 
times, the system equilibrates and the final results can be 
extracted through averaging over a fixed time step. 

III. Scattering mechanisms 
During phonon transport, phonon scattering usually 

involves either boundary collisions, impurity scattering, or 
three phonon inelastic interactions.  Boundary collisions play 
an important role in thermal resistance as the structure size 
decreases to the nanoscale. When a phonon strikes the structure 
wall, a random number is first drawn. If this random number is 
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less than a prescribed specular parameter , the phonon is 
specularly reflected using the relation [12] 

d

nnsss iir
rrrrr

•+= 2     (9) 

where ri ss rr , are the direction vectors of the incident and 

reflected phonon. If the random number is larger than , the 
phonon is reflected diffusely at the surface. Its direction is 
selected according to the following relation 

d

nttsr
rrrr

θ+ϕθ+ϕθ= cossinsincossin 21  (10) 

where 12cos,2 12 −== RR θπϕ ,  are random 

numbers,  is the unit surface normal, and  are unit 
surface tangents which must be perpendicular to each other 
such that 

21 , RR
nr 21 , tt

rr

ntt rrr
=× 21      (11) 

Impurity scattering contributes greatly to thermal 
resistance at low temperatures. The time scale for scattering by 
impurities is expressed using a simple model by Vincenti and 
Kruger [11] 

41 ωτ ii B=−      (12) 

where  is a constant. Three phonon interactions include 
both normal (N) and Umklapp scattering processes.  For 
silicon, the inverse lifetimes are as follows [6] 
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Equation (13) is the inverse lifetime for the longitudinal 
phonons to engage in the N and U scattering processes. For the 
transverse phonons Eq. (14) shows that the U scattering 
processes would not begin until , where 12ω≥ω 12ω  is the 
transverse branch frequency corresponding to 

. Peierls[13] showed that N processes 
contribute to thermal resistance by transferring momentum 
from one group of modes, where resistance (R) processes 
(Umklapp or impurity processes) are weak, to other modes 
where R processes are strong. This effect is particularly 
important for point defect scattering, since the scattering 
probability is strongly frequency dependent. The total phonon 
lifetime in Eqs. (12-14) can thus be constructed using the 
Matthiesen rule: 

5.0/ max =KK
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where  

UiR τττ
111

+=     (16) 

Callaway [5] assumed that N processes relax towards a 
quasiequilibrium distribution, i.e., one shifted in momentum 
space, while R processes tend to restore true equilibrium. The 
shift of the quasiequilibrium distribution is chosen so that N 
 

processes conserve momentum in the aggregate. The displaced 
Planck distribution can be written as [5] 
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where λ

v
 is a constant vector in the direction of the 

temperature gradient. Based on the Callaway model, Armstrong 
proposed a two fluid model to make additional corrections [14] 
but equation (17) is appropriate for the Monte Carlo simulation. 
Using formula (17), the departure of the phonon occupation 
number from thermal equilibrium at small vector interval can 
be written as  
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The three phonon interactions obey the energy 
conservation and momentum conservation laws: 

321 KKK ↔+      
      (19) 

GKKK +↔+ 321     (20) 

321 ω=ω+ω      (21) 

where  is the reciprocal lattice vector. Eq. (19) represents 
momentum conservation for normal processes while Eq. (20) 
represents momentum conservation for Umklapp processes. In 
order to satisfy equations (18-21) simultaneously, a genetic 
algorithm is introduced to conserve momentum and energy: 
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Here  is the number of phonons to be scattered, 

 are the new phonon’s x, y and z direction 

wave vectors and frequency, and are the 

corresponding phonon state quantities before scattering.  

and are residuals of the wave vector and frequency, and in 
our algorithm they are set as 0.001. In the optimization process, 
the new quantities can be set to zero to represent a phonon 
deleted from the simulation domain. An N-type scattering 
process should satisfy conditions (22) and (23), while an R 
process should satisfy conditions (23) only. The genetic 
algorithm is operated as follows: 

cN
''

,
'
,

'
, ,,, iiziyix KKK ω
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1r
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1. Scattered phonons: Put all of the scattered phonons in a 

group, },...,1{ ci NisS == , where  is the number cN
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of the phonons to be scattered in a time step.  
represents the phonon to be scattered. 

is

2. Initialization: Generate an initial set  
of individuals according to local temperature and equation 
(17), where in every individual there are phonons 
produced. Set the initial set as father generation. 

},...,,{ 21 nfffF =

cN

3. Reproduction: Based on the father generation, reproduce 
the offspring generation . In this step 
a crossover operation is used to produce the offspring 
generation. The crossover operation produces the 
offspring by randomly exchanging individuals between 
the father generation. For example, we can use to 
represent a father generation, and 0,1 to represent the 
individual phonons such that 

},...,,{ 21 nsssS =

21, ff

⎩
⎨
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=
=

]1,0,0,0,...,0,1,0,1[
]1,0,1,1,...,0,1,0,0[

2

1

f
f

. From the father generation, 

an offspring can be produced by exchanging the 
underlined phonons and retaining the others so that 

 is produced. 

is

]1,0,0,1,...,0,1,0,0[=is
4.  Initial evaluation: Evaluate all individuals and calculate 

their fitness according to equations (17), (18), (22) and 
(23).  

5. Selection: Choose the best individual . SFfbest ∪∈
6. Mutation: From the best individual generate a set of n/2 

mutants: }2/,...,2,1)(:{ ' nismutsM besti === . In 
this operation, n/2 phonons will be selected randomly 
according to the equilibrium distribution. For example, if 

]0,0,1,1,...,0,1,0,0[=is , after the mutation operation 

 will be produced. ]0,1,0,0,...,0,1,0,0[' =is
7. Generate new generation: Evaluate the fitness of the 

individuals in M and select individuals from 
according to their fitness to generate a new 

generation 

n
FSM ,,

F , i.e. . )( FSMF ∪∪⊂
8. Evaluation: Evaluate all individuals in F and calculate 

their fitness. 
9. Terminate check: If at least one of the individuals has 

achieved the predefined fitness, stop and return the best 
individual. Otherwise, continue with step 3. 

In this algorithm the optimization object is to satisfy 
 for U scattering processes or 001.01 <r 001.021 <+ rr  

for N scattering processes. Impurity scattering processes are 
disposed in the same way as the U scattering process. The N 
and U scattering processes are treated in different steps, but all 
of the phonons engaged in the same scattering processes are 
considered together to satisfy the energy conservation and 
momentum conservation law. Although this is an approximate 
method to handle the three-phonon interactions, it is still a time 
consuming algorithm.  
 

V. Numerical results 
A silicon nanowire is simulated by the Monte Carlo 

method using the algorithm described above. The structure of 
the silicon nanowire is shown in Fig.1. The cross section of the 
nanowire is a square of dimension a. The bulk dispersion 
relation for silicon shown in Fig. 2 is adopted for this model.  

 

 
Figure 1. Structure of Si nanowire 
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Figure.2 Dispersion relation for Si 

Figure 3 gives the temperature profile for the case of 
ballistic transport. At low temperature if the impurity and 
boundary scattering processes are not taken into account the 
phonons will transport without engaging in any scattering 
processes and their mean free path will be infinite. In this case 
there is no thermal resistance and the temperature remains 
constant according to the following formula  

 
2/)( 444

RL TTT +=    (24) 

Where  stand for the temperature at the two 
ends. From Fig. 3 it can be found that the numerical results 
agree well with the above formula. 
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Figure 3 Temperature distribution under ballistic condition in a 
Si nanowire,  correspond to the temperature on the left 

and right ends, and 
RL TT ,

*T  is given by equation (24) 
If the prescribed value is set as 1.0, the boundary 

surfaces are perfectly smooth and diffuse scattering off 
boundaries does not arise. All of the phonons are specularly 

d
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reflected when they hit the walls. In this case the thermal 
conductivity of the nanowire is equal to the bulk thermal 
conductivity. Figure 4 illustrates the thermal conductivity of 
bulk Si as a function of temperature. The numerical results for a 
nanowire with agree well with previous experimental 
results[6] for temperatures greater than 150 K, demonstrating 
that the Monte Carlo simulation method works well at those 
temperatures. For , the Monte Carlo results deviate 
from the experimental data. Experimental conductivities are 
limited by grain size in the sample. The polycrystallinity of the 
bulk sample is why thermal conductivity goes down at low 
temperatures even though the sample is supposed to be 
‘infinite’. The MC calculation neglects the boundary scattering 
process, which is dominant below 25K.  This explains the 
increase of simulated thermal conductivity toward infinity 
shown in Figure 4. In order to match experimental results for Si 
nanowires, the parameter d , which describes the boundary 
scattering process probability, is calibrated.  
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Figure 4. Thermal conductivity of bulk Si at different 

temperatures (the word Experiment is misspelled in Fig 4) 
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Figure 5. Thermal conductivity of Si nanowires with 

different diameters 
Figure 5 illustrates the thermal conductivity 

temperature dependence of Si nanowires with different 
diameters. The three solid lines stand for MC simulation 
results for thermal conductivity of nanowires with diameter 
115 nm, 37 nm and 22 nm respectively. The dots represent 
experimental results. The experimental setup was described 
in another paper[16]. The MC simulation results agree well 
at low temperature with the experimental results for 
nanowire with diameter 37nm and 115 nm. The position of 
the peak thermal conductivity for the nanowires is displaced 
to higher temperatures as compared with bulk material at 
25K, and it decreases with nanowire dimension. This is 
attributed to the boundary scattering process. An interesting 
 

phenomenon is that with decreasing nanowire diameter, the 
deviation point  between the MC simulation and the 
experimental results appears earlier on the temperature axis. 
The deviation begins at T=130K, 100K and 40 K for 
nanowire diameters 115nm, 37nm and 22nm, respectively. 
This deviation is not likely caused by the handling of 
boundary scattering in the MC simulation; as discussed 
earlier, MC simulations show good agreement with 
experiment at low temperatures where boundary scattering 
dominates.  When the temperature is over 40K, the N and 
U scattering processes appear.  It is postulated here that N 
and U scattering processes in the nanowire differ from those 
in bulk material. In order to verify this idea, closed form 
solutions for nanowire are used to calculate the thermal 
conductivity. The calculation procedure is similar to that 
introduced in reference [17].  
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where V is the phonon equivalent group velocity, 
 is the resistive scattering rate, and T is 

the temperature. In formula (25), two types of parameters are 
used to calculate nanowire thermal conductivity. One set is 
from bulk Si and the other set is obtained according to the 
phonon dispersion relation of nanowire.  

1111 −−−− ++= IBUC ττττ

The Umklapp scattering rate for a nanowire [18] is read  
as 
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where γ is the Grüneisen parameter,  is the sound 

velocity, and 

v
)(),( jii NN ωωω +   are the equilibrium 

occupations of mode . Formula (26) describes the 
relaxation rate of a combining U process as described in 
equation (20).

ji KK ,

'''' /)( qqvg ∂∂= ω  is the group velocity at 

 in the longitudinal mode in the principal 

directionand. The factor  is the area of the momentum 

space of the interacting mode with the reference mode 

. In order to obtain the scattering rate for the U process at 

mode of , all of the possible interacting channels must be 
taken into account, then those scattering rates should be 
summed together.  
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Figure 6 Thermal conductivity of nanowire obtained from 

different parameters 
 Figure 6 gives the thermal conductivity for different 

diameter nanowire by the closed form solutions under 
different parameter. With increasing of nanowire diameter, 
the two curves run together. When the diameter is below 
100nm, a clear difference can be observed. This can be 
explained according to formula (25). The thermal 
conductivity is proportional to the lifetime and is inversely 
proportional to the phonon group velocity. The equivalent 
phonon group velocity for nanowire is smaller than that for 
bulk material and the phonon lifetime evaluated from (26) is 
also smaller than that obtained by the formula for bulk 
material. The latter effect is stronger, however, so the net 
result is that nanowire thermal conductivity is reduced 
relative to that calculated from the formula for bulk material 
thermal conductivity.  

In conclusion, the Monte Carlo simulation method is used 
in conjunction with a genetic algorithm to simulate phonon 
transport in a nanowire. The investigation shows that MC 
results for nanowires with diameter 37 nm or above agree well 
at low temperature with the experimental results. For nanowire 
diameters below 37nm, the nanowire phonon dispersion 
relation should be used to predict lattice thermal conductivity. 
An interesting point is that the MC method accounts for 
acoustic phonon dispersion in each phonon movement. With 
the phonon scattering rate known, the thermal conductivity of a 
 

 

nanowire can be calculated precisely from its phonon 
dispersion relation.Put nomenclature here. 
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