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Monte Carlo simulation of uncoupled continuous-time random walks yielding a

stochastic solution of the space-time fractional diffusion equation
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We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time
random walks with a Lévy α-stable distribution of jumps in space and a Mittag-Leffler distribution
of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differ-
ential equation with fractional derivatives both in space and in time. The one-parameter Mittag-
Leffler function is the natural survival probability leading to time-fractional diffusion equations.
Transformation methods for Mittag-Leffler random variables were found later than the well-known
transformation method by Chambers, Mallows, and Stuck for Lévy α-stable random variables and
so far have not received as much attention; nor have they been used together with the latter in spite
of their mathematical relationship due to the geometric stability of the Mittag-Leffler distribution.
Combining the two methods, we obtain an accurate approximation of space- and time-fractional
diffusion processes almost as easy and fast to compute as for standard diffusion processes.

PACS numbers: 02.50.Ng, 02.70.Tt, 02.70.Uu, 05.70.Ln

I. INTRODUCTION

Continuous-time random walks (CTRWs) and frac-
tional diffusion equations (FDEs), or fractional Fokker-
Planck equations, have received increasing attention.
Metzler and Klafter reviewed analytical and numerical
methods to solve fractional equations of diffusive type
[1]. In Refs. 2, 3, 4, 5, 6, 7, 8, 9, 10, applications and
enhancements of these techniques were presented. The
relevance of fractional calculus in the phenomenologi-
cal description of anomalous diffusion has been discussed
within applications of statistical mechanics in physics,
chemistry and biology [11, 12, 13, 14, 15, 16, 17] as well
as finance [18, 19, 20, 21, 22]; even human travel and the
spreading of epidemics were modeled with fractional dif-
fusion [23]. A direct Monte Carlo approach to fractional
Fokker-Planck dynamics through the underlying CTRW
requires random numbers drawn from the Mittag-Leffler
distribution. Since sampling the latter was considered
troublesome, different schemes to avoid it were proposed.
One possibility consists in replacing it with the Pareto
distribution—i.e., its asymptotic power-law approxima-
tion for t → ∞ [24]; however, as the authors point out,
this is limited to long times and an index β not close to
1. A more general alternative is based on subordination
[25, 26, 27]. Here we present a straightforward Monte
Carlo method for the efficient simulation of uncoupled
CTRWs using an inversion formula for the Mittag-Leffler
distribution and apply it to compute approximate solu-
tions of the Cauchy problem for a generalized diffusion
equation that has fractional space and time derivatives.

∗Electronic address: fulger@staff.uni-marburg.de
†Electronic address: enrico.scalas@mfn.unipmn.it;

URL: www.mfn.unipmn.it/∼scalas
‡Corresponding author.guido@staff.uni-marburg.de;

II. THEORY

A. Continuous-time random walks

A CTRW [28] is a pure jump process; it consists of a se-
quence of independent identically distributed (i.i.d.) ran-
dom jumps (events) ξi separated by i.i.d. random waiting
times τi,

tn =

n∑

i=1

τi , τi ∈ R+, (1)

so that the position at time t ∈ [tn, tn+1) is given by

x(t) =

n∑

i=1

ξi, ξi ∈ R. (2)

A realization of the process is a piecewise constant func-
tion resulting from a sequence of up or down steps with
different height and depth; see Fig. 1. Jumps are assumed
to happen instantaneously or at least in negligible time.
In general, jumps and waiting times depend on each other
and they can be described by a joint probability density
ϕ(ξ, τ). The latter appears in the integral equation giv-
ing the probability density p(x, t) for the process being
in position x at time t, conditioned on the fact that it
was in position x = 0 at time t = 0:

p(x, t) = δ(x)Ψ(t) +

∫ +∞

−∞

dξ

∫ t

0

dτ ϕ(ξ, τ) p(x − ξ, t− τ).

(3)
Here the initial condition x(0) = 0 is contained implicitly
in the first term δ(x)Ψ(t), where we find the complemen-
tary cumulative distribution function (survival function)

Ψ(t) = 1 −
∫ +∞

−∞

dξ

∫ t

0

dτ ϕ(ξ, τ). (4)

Recently, one of the authors of this paper presented an
analytical solution of the integral equation in the uncou-
pled case—i.e., when ϕ(ξ, τ) = λ(ξ)ψ(τ), where λ(ξ) is
the jump marginal density and ψ(τ) is the waiting time

http://arXiv.org/abs/0707.2582v2
mailto:fulger@staff.uni-marburg.de
mailto:enrico.scalas@mfn.unipmn.it
www.mfn.unipmn.it/~scalas
mailto:guido@staff.uni-marburg.de
www.staff.uni-marburg.de/~germano
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FIG. 1: (Color online) Sample paths of CTRWs with scale

parameters γt = 0.001, γx = γ
β/α
t , and different choices of α

and β. With smaller α the jumps become larger; with smaller
β the waiting times become longer.

B. Fractional diffusion equation

The well-known standard diffusion equation

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t), (5)

u(x, 0+) = δ(x), x ∈ R, t ∈ R+,

can be generalized to the space-time fractional diffusion
equation

∂β

∂tβ
u(x, t) = D

∂α

∂|x|α u(x, t) (6)

u(x, 0+) = δ(x), x ∈ R, t ∈ R+,

where, for 0 < α ≤ 2, ∂α/∂|x|α denotes the symmetric
Riesz-Feller operator of symbol −|κα| and, for 0 < β ≤ 1,
∂β/∂tβ is the Caputo derivative [29, 30, 31]. Without loss
of generality, we assume D = 1; a different value would
just mean a scale transformation of space and/or time
units. u(x, t) ≥ 0 is the Green function of the FDE,

u(x, t) = t−β/αW (x/tβ/α; α, β), (7)

with the scaling function

W (ξ; α, β) = F−1
κ [Eβ(−|κ|α)] (ξ). (8)

Eβ(z) is the one-parameter Mittag-Leffler function [32],

Eβ(z) =

∞∑

n=0

zn

Γ(βn+ 1)
, z ∈ C, (9)

with

Eβ(−tβ) = L−1
s

[
sβ−1

1 + sβ

]
(t), t ∈ R+. (10)

F and L denote the Fourier and Laplace transforms:

f̂(κ) = Fx[f(x)](κ) =

∫ +∞

−∞

f(x)eiκx dx, (11)

f̃(s) = Lt[f(t)](s) =

∫ ∞

f(t)e−st dt, s ∈ C. (12)

For t ∈ R and β = 1, the Mittag-Leffler function with ar-
gument −tβ reduces to a standard exponential decay e−t;
when 0 < β < 1, the Mittag-Leffler function is approxi-
mated for small values of t by a stretched exponential de-
cay (Weibull function) exp(−tβ/a), where a = Γ(β + 1),
and for large values of t by a power law bt−β, where
b = Γ(β) sin(βπ)/π; see Fig. 2. The Mittag-Leffler dis-
tribution is an important example of fat-tailed waiting
times; it arises as the natural survival probability leading
to time-fractional diffusion equations. There is increasing
evidence for physical phenomena [33, 34, 35] and human
activities [36, 37, 38] that do not follow either exponential
or, equivalently, Poissonian statistics.
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FIG. 2: (Color online) The Mittag-Leffler complementary cu-
mulative distribution function sampled from Eq. (20) (circles)
and computed analytically (solid line) [39], as well as its ap-
proximations for t → 0 (Weibull function, long dashes) and
t → ∞ (power law, short dashes).

Equations (7) and (8) can be obtained by Fourier-
Laplace transformation of the FDE, recalling the defi-
nition of the fractional derivatives used in Eq. (6).

The space-fractional derivative of order α ∈ (0, 2] is
defined according to Riesz [40]:

dα

d|x|α f(x) = F−1
κ

[
−|κ|αf̂(κ)

]
(x). (13)

For α = 2 this reduces to the usual second order deriva-
tive. For α < 2 the following equation holds:

dαf(x)

d|x|α =
Γ(α+1)

π
sin

απ

2

∫ ∞

0

f(x+ξ)−2f(x)+f(x−ξ)
ξα+1

dξ.

(14)
The time-fractional derivative of order β ∈ (0, 1] is

defined according to Caputo [41, 42]:

dβ

dtβ
f(t) = L−1

s

[
sβ f̃(s) − sβ−1f(0+)

]
(t). (15)

For β = 1 this reduces to the usual first order derivative.
For β < 1 the following equation holds:

dβf(t)

dtβ
=

1

Γ(1 − β)

[
d

dt

∫ t

0

f(τ)

(t− τ)β
dτ − f(0+)

tβ

]
, (16)

where f(0+) is the initial condition. For α = 2 and β = 1,
the standard diffusion equation, Eq. (5), is recovered.

It is inevitable to solve numerically a FDE in the most
general case, also known as fractional Fokker-Planck
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equation, which may include space- and time-dependent
diffusion and drift terms. Possible approaches are the
direct calculation of the integrals in Eqs. (14) and (16)
[43], finite-difference methods [44, 45, 46], and stochastic
methods [5, 9, 24, 26, 27]. All of them are complicated,
the latter ones mainly because of the supposedly cum-
bersome generation of Mittag-Leffler random numbers.
While this problem has been often worked around in the
past, we show how to overcome it, obtaining a fast and
accurate method for the Monte Carlo solution of FDEs
via uncoupled CTRWs. As a benchmark, we focus our
attention on the Cauchy problem defined in Eq. (6), for
which an analytical solution given by Eqs. (7) and (8) is
available.

C. Link between continuous-time random walks

and the fractional diffusion equation

The link between CTRWs and time-fractional diffu-
sion was discussed rigorously in Ref. 47 in terms of the
generalized Mittag-Leffler function Eβ,β(−τβ).

In order to approximate the Green function in Eq. (7),
it is sufficient to simulate CTRWs whose jumps are dis-
tributed according to the symmetric Lévy α-stable prob-
ability density (which reduces to a Gaussian for α = 2)

Lα(ξ) = F−1
κ [exp (−|γxκ|α)] (ξ) (17)

and whose waiting times have the probability density

ψβ(τ) = − d

dτ
Eβ

(
−(τ/γt)

β
)
, (18)

where Eβ(z) is the one-parameter Mittag-Leffler function
given by Eq. (9). Then a weak-limit approximation of the
Green function is obtained by rescaling waiting times by

a constant γt and jumps by a constant γx = γ
β/α
t , let-

ting γt (and as a consequence γx) vanish, and plotting
the histogram for the probability density pγx,γt

(x, t; α, β)
of finding position x at time t for the rescaled process.
This probability density weakly converges to the Green
function u(x, t; α, β). Weak convergence means that for
x = 0 a singularity is always present in pγx,γt

(x, t; α, β)
at x = 0 for any finite value of γt and γx. This singular-
ity is the term δ(x)Ψ(t) in Eq. (3) with Ψ(t) = Eβ(−tβ).
In the case α = 2 and β = 1 the CTRWs are normal
compound Poisson processes (NCPPs) and, in the diffu-
sive limit, one recovers the Green function for the stan-
dard diffusion equation, Eq. (5)—i.e., the Wiener pro-
cess. This procedure is justified in Refs. 8 and 29. In the
latter reference, one can also find a theoretical justifica-
tion for the Monte Carlo procedure where waiting times
are generated according to a power-law distribution; a
more complete treatment has been given in Ref. 25.

III. TRANSFORMATION FORMULAS FOR

NON UNIFORM RANDOM NUMBERS

The usual methods for generating random numbers
with a specific probability density are transformation,
also called inversion because it requires the inverse cu-
mulative distribution function [48], and von Neumann
rejection [49]. While the latter is more general, the for-
mer is usually faster when it is available.

A. Symmetric Lévy α-stable probability

distribution

The symmetric Lévy α-stable probability density
Lα(ξ) for the jumps, Eq. (17), can be calculated by series
expansion, which we do not report here, by direct inte-
gration [50, 51] or by numerical Fourier transform [52].
These methods produce a pointwise representation of the
density on a finite interval that can be used for rejection,
most efficiently with a lookup table and interpolation.
More convenient is the following transformation method
by Chambers, Mallows, and Stuck [53]:

ξα = γx

(
− logu cosφ

cos((1 − α)φ)

)1−1/α
sin(αφ)

cosφ
, (19)

where φ = π(v − 1/2), u, v ∈ (0, 1) are independent uni-
form random numbers, γx is the scale parameter, and
ξα is a symmetric Lévy α-stable random number. For
α = 2, Eq. (19) reduces to ξ2 = 2γx

√
− logu sinφ, i.e.

the Box-Muller method for Gaussian deviates. The other
two notable limit cases are the Cauchy distribution, with
α = 1 and ξ1 = γx tanφ, and the Lévy distribution, with
α = 1/2 and ξ1/2 = −γx tanφ/(2 log u cosφ).

B. One-parameter Mittag-Leffler probability

distribution

The probability density ψβ(τ) for the waiting times,
Eq. (18), can be computed as a power series from the
definition of the one-parameter Mittag-Leffler function,
Eq. (9), leading to a pointwise representation on a fi-
nite interval; random numbers can then be produced
by rejection, again with a lookup table and interpola-
tion. Though CTRW sample paths with a Mittag-Leffler
waiting time distribution have appeared in the literature
[25, 26, 27, 54], so far it has not been recognized in this
context that inversion formulas analogous to Eq. (19) are
available [55, 56, 57, 58, 59, 60, 61, 62]. The most conve-
nient expression is due to Kozubowski and Rachev [58]:

τβ = −γt log u

(
sin(βπ)

tan(βπv)
− cos(βπ)

)1/β

, (20)

where u, v ∈ (0, 1) are independent uniform random num-
bers, γt is the scale parameter, and τβ is a Mittag-
Leffler random number. For β = 1, Eq. (20) reduces
to the inversion formula for the exponential distribution:
τ1 = −γt log u. Equation (20) and equivalent forms stem
from mixture representations of a Mittag-Leffler random
variable through an exponential and a stable random
variable. The oldest representation is [55, 61]

τβ = τ
1/β
1 ξβ,1, (21)

where ξβ,1 is a skew Lévy α-stable random number inde-
pendent of τ1, with index α = β, skewness parameter 1,
and scale factor γx = 1/8. A more recent representation
is [56, 57]

τβ = τ1 ξ
±1/β
1+ , (22)

where ξ1+ is a positive random number distributed ac-
cording to a Cauchy distribution L1+(ξ) with scale pa-
rameter γx = sin(βπ), location parameter δ = − cos(βπ),
and normalization on R : ( ) = ( ) for 0.
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The connection of Mittag-Leffler to stable random vari-
ables can be obtained in the framework of the theory of
geometric stable distributions. A random variable ξ is
stable if and only if, for all n ∈ N i.i.d. copies of it,
ξ1, . . . , ξn, there exist constants an ∈ R+ and bn ∈ R such
that the scaled and shifted sum an(ξ1 + · · ·+ ξn)+ bn has
the same distribution as ξ. A Mittag-Leffler random vari-
able is not stable, but it is geometric stable [63]; i.e., it is
the weak limit for p→ 0 of the appropriately scaled and
shifted geometric random sum a(p)[τ1 + · · ·+τν(p)]+b(p)
of suitable i.i.d. random variables τi, where ν(p) is a geo-
metric random variable indepedent of each τi, with mean
1/p, p ∈ (0, 1), and a geometric probability distribution

P (ν(p) = n) = p(1 − p)n−1, n ∈ N. (23)

A random variable is geometric stable if and only if its

characteristic function ψ̂(κ) is related to the character-

istic function λ̂(κ) of a stable random variable by the
equation [64]

ψ̂(κ) =
1

1 − log λ̂(κ)
. (24)

With this one-to-one correspondence, a parametrization
of a geometric stable probability density ψ(x) can be es-
tablished from a parametrization of the corresponding
stable probability density λ(x). Geometric random sums
of symmetric τi yield the class of Linnik distributions (a
generalization of the Laplace distribution 1

2e
−|t|), while

positive τi yield the class of Mittag-Leffler distributions
(as already seen, a generalization of the exponential dis-
tribution e−t, t ≥ 0). In particular, the Mittag-Leffler
distribution can be written as a mixture of exponential
distributions [41, 60]:

Eβ(−tβ) =

∫ ∞

0

exp(−µt)g(µ) dµ, (25)

with a weight

g(µ) =
1

π

sin(βπ)

µ1+β + 2 cos(βπ)µ + µ1−β
(26)

given by g(µ)dµ = L1+(µβ)dµβ , where L1+(ξ) is the
probability density of ξ1+ in Eq. (22) introduced be-
fore. Equations (25) and (26) express Eq. (22) in terms
of density functions. The inverse cumulative distribu-
tion of L1+(ξ) yields the transformation formula for ξ1+
appearing as the argument of the power function in
Eq. (20) [58, 59]. Alternatively, the inversion formula
ξ1 = γx tanφ + δ for L1(ξ), see Eq. (19), can be substi-
tuted into Eq. (22), provided negative values of ξ1 are
discarded.

An older equivalent form of Eq. (20) was obtained sub-
stituting an inversion formula for ξβ,1 [65] into Eq. (21)
[55, 61]. A similar result can be reached using a general
transformation formula for skew Lévy α-stable random
numbers [53], of which Eq. (19) is a special case with
skewness parameter 0. Both ways require three indepen-
dent uniform random numbers and more transcendent
functions than Eq. (20), making the latter slightly more
appealing from a numerical point of view.

IV. NUMERICAL RESULTS

Examples of CTRWs generated according to the de-
scribed procedure—i.e., Eqs. (1), (2), (19) and (20)—are

α β γt n̄ tCPU/sec

2.0 1.0 0.010 200 337

2.0 1.0 0.001 2000 3362

1.7 0.8 0.010 74 437

1.7 0.8 0.001 470 2895

TABLE I: Average number n̄ of jumps per run and total CPU
time tCPU in seconds for 107 runs with t ∈ [0, 2] on a 2.2 GHz
AMD Athlon 64 X2 Dual-Core with Fedora Core 4 Linux, us-
ing the ran1 uniform random number generator [67] and the
Intel C++ compiler version 9.1 with the -O3 -static optimiza-
tion options.

shown in Fig. 1. The complementary cumulative distri-
bution function (survival function) of random numbers
obtained through Eq. (20) is checked against its analytic
value [39] and its approximations for t → 0 and t → ∞
in Fig. 2, where a log-log scale and logarithmic binning
[66] is used. Timings are reported in Table I and Ref. 62.

The advantage of Eq. (20) is that Mittag-Leffler devi-
ates are generated with a simple and elegant procedure
and no accuracy losses due to truncation of the power se-
ries in Eq. (9) or truncation of the density function to a fi-
nite interval as necessary in the rejection method. The ef-
fects of the truncation of the jump density in Lévy flights
are analyzed in Ref. 68, whereas no study is available for
truncation effects on Mittag-Leffler deviates. Together
with Eq. (19), a scheme is obtained that yields sample
paths for a CTRW with a Lévy jump marginal density
and a Mittag-Leffler waiting time marginal density at a
speed comparable to that of a NCPP: Though each point
for a generic CTRW takes about 3.6 times more than for
a NCPP, fewer points are necessary (see n̄ in Table I) be-
cause the waiting times are longer. The latter reference
reports also that if Lévy and Mittag-Leffler random num-
bers are produced by rejection, computing the values of
the probability density functions simple-mindedly with a
series expansion every time they are needed, rather than
just once at the beginning to set up a lookup table, for
Lévy deviates the procedure takes 400 times longer than
with Eq. (19) and for Mittag-Leffler deviates it takes 5000
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FIG. 3: (Color online) Decay of the probability density
pγx,γt

(x, t; α, β) with α = 1.7, β = 0.8, γt = 0.1, and

γx = γ
β/α
t . The crest at x = 0 is the survival func-

tion Ψ(t) = Eβ

`

−(t/γt)
β

´

= P (0+, t) − P (0−, t), where

P (x, t) =
R x

p(u, t) du.
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FIG. 4: (Color online) Convergence of tβ/αpγx,γt
(x, t; α, β)

to the scaling function W (x/tβ/α; α, β), Eq. (8), at t = 2 for
selected values of α and β. The curves are shown in a time-
independent way as scaling plots and appear in the same or-
der from bottom to top as reported in the legend—i.e., with
decreasing γt. The curve with the smallest γt is almost in-
distinguishable from its theoretical limit W (solid black line).
However, in spite of the impression that may arise from the
few terms and the ranges chosen here, in general the function
sequences are not monotonic. The scale parameters γx and
γt tend to 0 as γα

x = γβ
t . The central peak decreases when

the ratio t/γt becomes larger, as is evident in Fig. 3.

times longer than with Eq. (20). Because of the slow con-
vergence of the power series in Eq. (9), up to 200 terms
are necessary to achieve an acceptable accuracy, and each
term is computationally expensive because of the Γ func-
tion. Of course these are extreme figures on the other
end of the efficiency scale meant to show how wide the
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FIG. 5: (Color online) Convergence of maxx 6=0 |pγx,γt
(x, t;

α, β) − u(x, t; α, β)| for selected values of α and β when

γx, γt → 0 with γα
x = γβ

t .

latter can be; there are smarter ways to compute both
the Lévy and Mittag-Leffler [39, 42] probability densities.

Using many CTRW realizations, histograms can be
built that give the evolution of p(x, t) with initial con-
dition p(x, 0) = δ(x), as displayed in Fig. 3. Accord-
ing to Eq. (3), the initial condition evolves as δ(x)Ψ(t);
i.e., it is visible as a spike at x = 0 that decays as t
evolves. The mass of the spike is Ψ(t) = Eβ

(
−(t/γt)

β
)
.

In Fig. 3 this feature appears as a crest. Figure 4 shows
how histograms built with CTRWs converge to the Green
function, Eq. (7), of the FDE for decreasing values of

the scale parameters γt and γx = γ
β/α
t . To evaluate

the scaling function in Eq. (8) needed for Eq. (7), we
used standard algorithms for Eβ(−tβ) [36, 39, 42], in-
cluding the fast Fourier transform. In Fig. 5 we plot
maxx 6=0 |pγx,γt

(x, t; α, β) − u(x, t; α, β)| as a function of

vanishing γt with γx = γ
β/α
t . A rigorous analysis of con-

vergence bounds is beyond the scope of this paper.

V. CONCLUSIONS

The use of Mittag-Leffler random numbers generated
according to Eq. (20) in combination with Lévy random
numbers generated according to Eq. (19) is very useful
in the Monte Carlo simulation of uncoupled continuous-
time random walks. In the hydrodynamic limit, ap-
propriately rescaled uncoupled continuous-time random
walks with a one-parameter Mittag-Leffler distribution of
waiting times and a symmetric Lévy α-stable distribution
of jumps in space yield the Green function of the Cauchy
problem for a space-time fractional diffusion equation;
we verified this for Eq. (6), which has an analytical so-
lution, Eq. (7), as a benchmark for more difficult cases
where the diffusion and drift terms depend on space and
time. We have shown that the computational effort for
a fractional diffusion process is almost as small as for a
standard diffusion process. It is true that in the same
fluid limit the Green function can be obtained too by
Monte Carlo sampling of just the asymptotic power-law
tail approximations of the Lévy and Mittag-Leffler prob-
ability distributions, at least when the indices α and β
are not close to 2 and 1, respectively. However, the neat
transformation formulas given by Eqs. (19) and (20) are
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numerically so convenient that there is no good reason for
resorting to the asymptotic approximations. Moreover,
we think that, in applications, continuous-time random
walks are seen as a more fundamental model than frac-
tional diffusion equations, and sample paths will be gen-
erated without taking the scale parameters γx and γt to
the diffusive limit, by using the approach presented in
this paper.
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