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The dielectric and ferroelectric behaviors of relaxor ferroelectrics over the ferroelectric transition
range are simulated using Monte Carlo simulation. The simulation is based on the Ginzburg–
Landau ferroelectric model lattice in which a random distribution of two types of defects~dopants!
which will suppress and enhance the local polarization, respectively, is assumed. The simulation
reveals an evolution of the ferroelectric transitions from a normal first-order mode toward a
diffusive mode, with increasing defect concentration. The simulated lattice configuration shows the
microdipole ordered clusters embedded in the matrix of paraelectric phase over a wide range of
temperature, a characteristic of relaxor ferroelectrics. The relaxor-like behaviors are confirmed by
the lattice free energy, dielectric susceptibility, and ferroelectric relaxation evaluated as a function
of the defect concentration. Finally, we present a qualitative comparison of our simulated results
with the simulation based on the coarse-grain model@C. C. Su, B. Vugmeister, and A. G.
Khachaturyan, J. Appl. Phys.90, 6345~2001!#. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1686899#

I. INTRODUCTION

Relaxor ferroelectrics~RFs! represent a class of ferro-
electric materials exhibiting abnormal dielectric and ferro-
electric properties.1,2 They show an excellent electrome-
chanical performance and high dielectric susceptibility
around the diffusive phase transition point, which are of spe-
cial interest for sensor and transducer applications, while
normal ferroelectrics~FEs! usually exhibit a sharp ferroelec-
tric transition at a certain temperature. Structurally, it is be-
lieved that RFs are disordered electric-dipole media in which
nanosized dipole ordered clusters are randomly embedded in
the matrix of nonpolar phase~paraelectric phase, PE! below
a certain temperature~typically 102 K).3–19A number of ex-
perimental and theoretical studies on the mechanism respon-
sible for the abnormal polarization characteristics in RFs
have been performed in the last several decades since the
compositional inhomogeneity model proposed by
Smolensky,4 although a widely accepted physical portrait has
not yet been available. The micromacro domain transition
model,3 the superparaelectric model,5 the dipole-glass
model,6 the order–disorder model7,8 and random-bond-

random-field model,9–11 among some other models are com-
monly employed to explain those experimentally observed
effects for various RFs.12–19

In the comprehensive understanding of the microscopic
characteristics of RFs, the concept of defect is basically im-
portant. It can also be viewed as a kind of compositional or
structural inhomogeneity. As is well known, those mostly
interested RFs are doped perovskite oxides in which special
types of crystal defects are believed to be responsible for the
observed relaxor behaviors.2,14–19These defects can be either
impurity atoms distributed randomly in the lattice or off-
center dopant ions which generate the so-called internal ran-
dom fields or random bonds, or even a frustration of long-
range ordering state due to some reasons.2 Therefore, the
local polarization may be suppressed or enhanced by these
defects, depending on the types of interaction between these
defects and the lattice. The role of these defects is considered
in the theoretical models mentioned above in direct or indi-
rect manner. For example, in the compositional inhomogene-
ity model, the defects may be impurity atom or dopant ion.19

For the former, the impurity atoms in the lattice are viewed
as disordered~random! static defects coupled locally with
the transformational mode which is responsible for a stable
dipole. Therefore, the defects may suppress the magnitude of
local dipoles from site to site. For the latter, a model was
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proposed by Vugmeister and Glinchuk2 where a highly po-
larizable paraelectric host lattice with a displacive dielectric
response to external electric fieldE is considered. If this
lattice is doped by off-center dopants, a local dipole will
form and the local dopant may occupy one of the crystallo-
graphically equivalent off-center sites around the unit cell
center, and the resultant dipole moment may align along one
of the equivalent vectors. Such an off-center displacement
may lead to an enhancement of local dipole moment.

From the above picture on the role of defects in RFs, one
may argue that RFs can be virtually viewed as originating
from a random doping of the two types of defects into a
normal FE lattice, although it could be difficult to clearly
identify the type of doping which can certainly enhance or
suppress the local polar moment. Quite a few models men-
tioned above are based on this argument and they introduced
a random field into the polar interactions considered in the
original models. Recently, this idea was once more adopted
by Semenovskaya and Khachaturyan20 in the Ginzburg–
Landau thermodynamic description of the FE lattice with
impurity-induced defects and subsequently by the same
group in the coarse-grain description of the Ginzburg–
Landau theory.19 They included the effect of local dipole
fluctuations induced by impurity ions and dopants in the
Landau free energy. In addition, these models represent a
realistic description of multi-domained FE lattice in which
the dipole–dipole interaction, domain wall energy, and even
long-range elastic energy are taken into account,21–24 while
these interactions have been less considered in other models.
Therefore, it would be interesting to apply the Ginzburg–
Landau model to study the dipole configuration, the dielec-
tric and ferroelectric behaviors in a FE lattice doped with
various defects. In a previous work, we employed this model
to study the relaxation of dielectric and ferroelectric behav-
iors observed in ferroelectric copolymers irradiated by high-
energy proton beams in which the irradiated sites were
viewed as induced defects suppressing the local
polarization.25 The simulated results show a satisfactory con-
sistency with the experiments.

In this article, we would like to perform a Monte Carlo
~MC! simulation on the dipole configuration and dielectric
behaviors in a defected Ginzburg–Landau model lattice in
which both types of defects mentioned above are assumed to
exist in a disordered configuration. We shall show a gradual
evolution of the lattice from normal FE pattern to a coexist-
ence of micropolar regions and nonpolar matrix. It is shown
that the simulated dielectric susceptibility and polarization
relaxation reproduce the main characteristics of RFs. We
shall also perform a qualitative comparison of our simulated
results with the simulation based on coarse-grain model of
Su, Vugmeister, and Khachaturyan.19

II. MODEL AND ALGORITHM OF SIMULATION

A. Model

Our MC simulation starts from a two-dimensional~2D!
L3L lattice with periodic boundary conditions, where the

PE phase takes the square configuration and the FE phase the
rectangular one. On each lattice sitei an electric dipole~po-
lar! is imposed with its moment vectorP5(Px ,Py), where
Px and Py are the two components alongx axis andy axis
respectively, and their magnitude is allowed to change in
order to minimize the lattice free energy. Although it was
identified that for some RF systems the thermally activated
flips of the dipoles may not be the unique mechanism with
which the system undergoes the dielectric relaxation over the
phase transition range, we still assume this mechanism to be
the unique one because the other possible one, such as po-
larization resonance, cannot be dominant unless the tempera-
ture is low.26 Furthermore, each moment vectorP is limited
to take four orientations@0.61# and@61.0# while its magni-
tude is allowed to take any value within~0.1!. This limitation
refers to the tetragonal structure of typical ferroelectric
BaTiO3 .23 It should be noted here that the coarse-grain
model by Su and co-workers represents an updated descrip-
tion of the domain structure of RFs, and the extensive three-
dimensional~3D! simulation based on this model indeed re-
veals the major features of RFs in terms of both
microstructure and dielectric behaviors. Here in this article
we give our attention to the configuration of electric dipoles
in RFs. Although there is no quantitative comparison be-
tween our simulation and the 3D simulation,19 a qualitative
consistence between them will be revealed.

As proposed by Semenovskaya and Khachaturyan,20 we
consider several free energy terms which will determine the
dipole configuration in the lattice. They include the Landau
free energy, the dipole–dipole Coulomb interaction, and the
gradient energy accounting for the domain wall inhomoge-
neity. For normal FEs, the long-range elastic interaction can-
not be neglected, but it is not essential for RFs if one adopts
the picture of microdipole ordered clusters embedded in the
nonpolar matrix. For a dipole of momentP at sitei in a 2D
lattice, the Landau free energy can be written as

F,d~Pi !5A1~Px
21Py

2!1A11~Px
41Py

4!1A12Px
2Py

2

1A111~Px
61Py

6!, ~1!

where subscripti refers to lattice sitei, A1 , A11, A12, and
A111 are the free energy coefficients, respectively. For normal
FEs,A1.0 favors a stable or metastable paraelectric phase
while a first-order ferroelectric transition will occur ifA1

,0.
The domain wall gradient energy for a sitei and its

neighborj can be written as20,23

Fgr~Pi , j !5
1

2
@G11~Px,x

2 1Py,y
2 !1G12Px,xPy,y

1G44~Px,y1Py,x!
21G448 ~Px,y2Py,x!

2#,

~2!

wherePi , j5]Pi /]xj . Since parametersG11, G12, G44, and
G448 are all positive, in most cases this free energy term is
positive, favoring a uniformly parallel alignment of dipoles.
In addition, a generic choice ofG11, G12, G44, andG448 may
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result in anisotropic domain wall energy. The dipole–dipole
Coulomb interaction for sitei and its neighborsj has the
following form in the SI unit:23

Fdi~Pi !5
1

8p«0x (̂
j &

F P~r i !•P~r j !

ur i2r j u3

2
3@P~r i !•~r i2r j !#@P~r j !•~r i2r j !#

ur i2r j u5
G , ~3!

where «0 and x are the vacuum susceptibility and relative
dielectric susceptibility, respectively,^ j & represents a sum-
mation over all sites within a separation radiusR centered at
site i, parametersr i , r j , P(r i) and P(r j ) here should be
vectors,r i andr j are the coordinates of sitesi and j, respec-
tively. In a strict sense,R should be infinite but an effective
cutoff at R58 is taken in our simulation without losing
much accuracy. A minimization ofFdi favors the head-to-tail
alignment of dipoles. The energy for an antiparallel dipole
alignment between two neighboring rows is slightly lower
than that for a parallel alignment between the two rows. By
an appropriate choice of parametersG11, G12, G44, and
G448 , the system prefers a ferroelectric transition upon a low-
ering of temperature.

Finally, the electrostatic energy induced by an external
electric field is

FE~Pi !52Pi•E, ~4!

whereE is the external electric field, andPi andE are vec-
tors. In our simulation, vectorE takes the@1.0# direction. The
total free energy counting all of these interactions for sitei is

Fi~Pi !5F,d1Fgr1Fdi1FE . ~5!

Now we consider the effect of defects. It may be argued
that a doping of these defects not only influences on the
Landau free energyF,d but also the other three termsFgr and
Fdi . However, the latter two terms are related to the dipole–
dipole interactions and then are the resultant effects. The
randomly distributed defects lead to a spatial distribution for
the coefficientsA1 , A11, A12, andA111 in the Landau free
energy Eq.~1!. It was assumed that onlyA1 is affected by the
defects and the other three coefficients remain unchanged.
That is20

A1~r i !5A101bm•C~r i !,
~6!

A105a~T2T0!, a.0,

wherea.0 is a materials constant,T is temperature,A10 is
the coefficientA1 in Eq. ~1!, T0 is the critical temperature for
a normal FE crystal with first-order phase transition features.
Here we do not identify the difference betweenT0 and the
Curie pointTc because we do not focus on the critical phe-
nomena associated with the FE transitions;C(r ) is the con-
centration of both types of defects,bm is the coefficient char-
acterizing the effect of defects onT0 , and it may be positive
or negative, depending on the type of defects considered. We
consider two types of defects: typeI which can enhance the
local dipole moment (bm,0) and typeII that will suppress
the moment (bm.0). We define a parameterCp within @0.1#

to partition the defects into the two types. There are totally
Cp•C•L2 type I defects and (12Cp)•C•L2 type II defects
in the lattice.

B. Algorithm of simulation

As mentioned above, we assume that the dielectric and
ferroelectric relaxation is uniquely determined by the ther-
mally activated flip sequence. Thus the MC simulation is
performed via the kinetic Metropolis algorithm. The simula-
tion procedure is described below. For the initial lattice, each
site is assigned a dipole with its moment magnitudeP taken
randomly within ~0,1!, and its orientation being one of the
four states:@61.0# and @0.61#, respectively. At the same
time, whether a defect to be chosen to attach this site is
determined by comparing a random numberR1 with C. If
R1,C, this site is attached with a defect and is not other-
wise. Then second random numberR2 is generated to deter-
mine the type of this defect. IfR2,Cp , this defect belongs
to type I, and to type II otherwise. The degree of order of
both the moment enhancement and suppression is chosen
randomly within@0.5bm ,bm#.

The simulation begins at an extremely high temperature
kT512.0 wherek is the Boltzmann constant and will be
omitted later for convenience, and thenT decreases step by
step during the simulation (T053.0 is chosen!. At each tem-
perature step, a sitei is chosen at random,F,d , Fgr , Fdi , and
FE are calculated, respectively, to obtainFi . This site is then
assigned another dipole with its magnitude and orientation
taken randomly to simulate the dipole flip. Subsequently,Fi

is calculated again to compare with the value ofFi before the
assigned flip, and the difference ofFi after and before the
assigned flip isDFi . A probability p is calculated from the
Metropolis algorithm

p5exp~DFi /kT!. ~7!

A third random numberR3 is generated and compared with
p. If R3,p, the assigned flip is performed and rejected oth-
erwise. Then one cycle of simulation is completed and a new
cycle is initiated until a given number of cycles has been
completed. The time of simulation is scaled by the Monte
Carlo step~mcs! and one mcs representsL3L cycles de-
scribed above. In our simulation, the initial 600 mcs runs are
done and then the configuration averaging is performed over
the subsequent 2500 mcs. The lattice saved in the last run is
chosen as the initial lattice for the next temperature step, and
the simulation is done with the same algorithm. The data
presented below represent an averaging over four runs with
different seeds for random number generator.

For the thermally activated dipole flips, under an exter-
nal ac-electric fieldE of frequencyv and amplitudeE0 , the
dielectric susceptibilityx is defined as19

x85
K

NT K (
i

N
1

11~v•t/v0!nL ,

~8!

x95
K

NT K (
i

N
v•t/v0

11~v•t/v0!nL ,
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where ^ & represents the configuration averaging,n is the
frequency dispersion exponent which depends on the system
to be studied and we follow the Debye model and taken
52, x8 andx9 are the real and imaginary parts ofx, v0 is the
polariton frequency which is a material constant,t is the
averaged time for dipole switching from one state to another,
N5L2 andK is a temperature-dependent constant. For RFs,
the lattice is inhomogeneous onceC.0, timet becomes site
dependent and it can be expressed in the Arrhenius form19

t5t0•t85t00exp~2F,d /kT!•t8, ~9!

wheret0 is the characteristic flip time for a noninteracting
system, which is actually determined by the energy barrier
referring to the Landau free energyF,d in the mean-field
approximation,t00 is the pre-exponential factor which scales
the characteristic time for lattice vibration. IfF,d,0, it
means that this dipole is in a stable state and its flip becomes
relatively difficult. Here,t0051.0 andt8 is the averaged in-
versely number of flips for the dipole at sitei per mcs. The
free energy and lattice parameters used in the simulation are
chosen and the dimensionless normalization of them is done
following the work by Hu and Chen on the dynamics of
domain switching in BaTiO3 system.23 Such a choice is
somewhat arbitrary since we are not focusing on any realistic
system in a quantitative sense. These parameters are given in
Table I.

III. RESULTS OF SIMULATION AND DISCUSSION

A. Dipole configuration

We first study the evolution of the dipole configuration
with increasing defect concentrationC (Cp50.3). In Fig. 1
we show the snapshot lattices for a normal FE lattice at sev-
eral temperatures, where the length and direction of the ar-
rows represent the magnitude and orientation of the dipole
moment. For a highT55.0@T0 , as shown in Fig. 1~a!, the
moment of all dipoles is very small and their alignment is
totally disordered, a typical configuration for a paraelectric
phase. AsT is close toT0 @T53.5, Fig. 1~b!#, the dipole
moment is still small and no long-range dipole order is
found, either.

OnceT is below T0 , the ferroelectric phase transitions
occur and the disordered dipole alignment evolves into a
long-range ordered structure. A clear ferroelectric multi-
domain configuration is formed, with the well-predicted
head-to-tail dipole alignment and preferred 90° domain
walls, as shown in Fig. 1~c!, where one sees the moment
magnitude become much bigger than the PE phase. Those
dipoles on the domain walls are still small in moment and

their alignment remains partially disordered. At a lowT (T
51.0), the degree of disordering on the walls is significantly
suppressed and an almost perfect multi-domain lattice is ob-
served.

FIG. 1. Simulated snapshot dipole configuration at various temperatures~T!
for a normal ferroelectric lattice.

TABLE I. System parameters used in the simulation.

Parameter Value Parameter Value Parameter Value

T0 3.0 a 1.0 A11 20.5
A12 9.0 A111 0.8 G11 1.0
G14 0.2 G44 1.0 L 40
E0 0.20 Cp 0.3 v ~mcs21! 0.01
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When the defects are doped into the lattice (C.0), one
sees quite different lattice configurations, as shown in Fig. 2
for C50.5. Because the lattice is doped with two types of
defects, we indeed find that there are some small-sized areas

in which the dipole alignment is ordered atT@T0 (T
55.0), i.e., some local clusters of ordered dipoles form at a
temperature much higher thanT0 . As T53.5, slightly above
T0 , this clustering tendency becomes more significant, as
shown by the circled areas in Fig. 2~b!. The number and size
of the clusters increase with decreasingT. On the other hand,
as T is below T0 , however, we do not see a perfect long-
range ordered dipole configuration, while the lattice still con-
sists of clustered areas of ordered dipoles embedded in the
matrix of paraelectric phase. With further decreasing ofT, a
gradual growth and coalescence of these ordered clusters is
observed, and a normal ferroelectric configuration can be
predicted at a very low temperature.

Obviously, all features described above are well evi-
denced for RFs in which nanopolar clusters are embedded in
the PE matrix over a wide range of temperature both above
and belowT0 . The feature of diffusive phase transitions is
clearly reproduced, indicating that the present model works
well in describing the microstructure of RFs. Here, it should
be mentioned that in Fig. 2 the long-range ordered configu-
ration is already well developed asT falls down toT51.0
@Fig. 2~d!#, at which the well-defined domain pattern can be
identified although there still are some small dipole-
disordered zones inside the domains. This configuration can
be viewed as the frozen one, which reflects somehow the
freezing behavior of relaxor ferroelectrics with decreasing
temperature.18 To further confirm this feature, we simulate
the evolution of dipole configuration asC50.9, as shown in
Fig. 3. We can see that the FE phase transitions become even
broader. While quite a number of relatively bigger dipole-
ordered clusters can be seen atT55.0 and 3.5, no well-
defined domain is available even whenT is as low asT
51.0. That is to say that whenC is bigger, the ferroelectric
transitions cannot be completed unlessT is lower. Given
the temperature, the biggerC is, the smaller the ordered clus-
ters are.

B. Dielectric susceptibility

We present in Figs. 4~a! and 4~b! the evaluated dielectric
susceptibility~real and imaginary partsx8 andx9! as a func-
tion of T for lattices of different defect concentrations. Look-
ing at the behaviors of the real part, the lattice atC50 ex-
hibits a typical FE transition characterized with the sharp
peak of x8 at the transition point. Here it should be men-
tioned that the dielectric peak remains finite although the
transition is first ordered, due to the limited lattice size and
multi-domained structure. Correspondingly, the imaginary
part also shows a peak at the transition point. With increasing
defect concentration, one sees a remarkable broadening of
the dielectric peak around the transition point and the peak
position also shifts slightly toward the low-T side. Over the
high temperature range (T.T0), x8 decreases slightly with
increasingC, while over the lowT range (T,T0) it in-
creases significantly withC. This result may partially explain
why the relaxor materials show a higher dielectric suscepti-
bility than the normal FEs. The imaginary partx9 does not
show largeC dependency over the high-T range, but it in-
creases, too, with increasingC over the low-T range, the

FIG. 2. Simulated snapshot dipole configuration at various temperatures~T!
for a defective lattice ofC50.5. The circles indicate the local ordered dipole
clusters.

4286 J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 Wang et al.



more remarkable whenT is lower. As C is extremely big
~C50.9!, which means almost all lattice sites are occupied
by the two types of defects, no peak forx9 all around the
transition point can be observed and it increases monoto-

nously with decreasing temperature. This behavior has never
been observed experimentally and its significance is under
doubt ~to be discussed below!.

The significantly broadening behavior ofx8 is the major
characteristic of RFs whose microstructures are featured by
the simulated configurations shown in Figs. 2 and 3. To un-
derstand the susceptibility enhancement atT,T0 , one may
consult Eq.~8! and we focus on the real partx8. It depends
mainly on termt0;exp(2F,d /kT) and t8. For t0 , given a
temperatureT, as the first-order approximation, one has
F,d;@A1•(T2T0)1bm•C(122Cp)#P2 where F,d is the
averaged value over the whole lattice. SoF,d increases with
increasingC andt0 becomes shorter asC is bigger. On the
other hand,t8 would be shorter if a site is attached with a
type II defect and longer for a type I defect. On the average
sense,t8 becomes shorter sinceCp50.3,0.5. Therefore
(t0•t8) is smaller whenC is bigger, resulting in largerx8
andx9 whenT is belowT0 . WhenT.T0 , the energy barrier
for dipole flip is zero and thust0 can be viewed as a con-
stant. However, those sites with the type I defects would
need a longer time to realize the dipole flip because of the
larger dipole momentP, thust8 will become longer whenC
is bigger. Therefore, aboveT0 one is shown a lower suscep-
tibility for a lattice of biggerC.

For the diffusive phase transitions, the two parameters
associated with the susceptibility peak, i.e., the peak position
Tm and heightxm8 , as a function of the defect concentration
C, is interesting. The evaluatedTm andxm8 are presented in
Fig. 4~c!. Both parameters show a roughly linear decreasing
with increasingC, indicating a significant suppression of the
sharpness of the ferroelectric transition by the doped defects
induced to the lattice.

C. Dynamic response of polarization

The excellent electromechanical performance of RFs is
believed to originate from the flexible dynamic switching of
the dipoles under external electric field, relative to the rela-
tively worse dynamic response of the normal FEs of long-
range dipole order.27 We evaluate the static polarization com-
ponentPx of the lattice averaged over about 2500 periods of
the ac-electric field and the results are presented in Fig. 5
wherePx is plotted as a function of temperature. With de-
creasingT, Px increases gradually untilT;T0 , and then
begins to fall down whenT is belowT0 . This peak pattern
reflects the strong fluctuations of ordering of the dipole mo-
ment during the phase transitions. What is interesting here is
the dependence ofPx below the peak position on the defect
concentrationC. It is easily understood that for a normal FE
of multi-domain structure, the residual polarization at lowT
under a small-signal field must be very close to zero, as
shown in Fig. 5 asC50.0. As C increases, one sees the
residual polarization also increase and reach up to;0.05 as
C50.50. This remarkable residual polarization allows us to
argue that the microordered dipole clusters as shown in Figs.
2~c! and 2~d! are more flexible in responding to the external
field than the long-range ordered domain shown in Figs. 1~c!
and 1~d!, because for the latter any dipole flip is seriously
bonded by the dipole–dipole interaction and the domain wall

FIG. 3. Simulated snapshot dipole configuration at various temperatures~T!
for a defective lattice ofC50.9. The circles indicate the local ordered dipole
clusters.
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energy, while for the former the clusters have no neighboring
resistance on their boundaries.

As C is bigger, the volume fraction of the ordered dipole
clusters becomes lower and thus the componentPx is
smaller, too, because the averaging is over the whole lattice.

The flexible dynamic response effect in RFs as revealed
above can no longer be reflected by parameterPx .

D. Dependence of free energy terms on defect
concentration

We also study the free energy terms,F,d , Fdi , andFgr

as a function ofT for the lattices of different values ofC, and
the results are shown in Fig. 6. It is shown that the behavior
of F,d as a function ofT can be divided into two regions:
T.T0 and T,T0 . In the two regionsF,d changes linearly
with T, with the slope atT,T0 larger than that atT.T0 .
The whole curve shifts downward with increasingC. The
two well-separated regions atC50.0 become hardly identi-
fiable from each other with increasingC. To qualitatively
understand these behaviors, we again look at Eq.~1!. Be-
cause there are two types of defects doped into the lattice, as
a rough approximation, we neglect the fourth-order and
higher order terms and writeF,d as

F,d'aP2
2T1@ ubmu•C~12Cp!2aT0#P2

21aP1
2T

2~ ubmu•C•Cp1aT0!P1
2

'aP1
2T2~ ubmu•C•Cp1aT0!P1

2, ~10!

whereP1 andP2 are the averaged dipole moment for those
sites doped with type I and type II defects, respectively. Ob-

FIG. 4. Simulated dielectric susceptibility as a function of temperatures for
lattices of different defect concentrations numerically labeled.~a! Real part
x8 and~b! imaginary partx9. ~c! Evaluated temperatureTm for the dielectric
susceptibility~x8! peak and the peak heightxm8 as a function of concentra-
tion C. The exponentn52 is taken for the simulation@Eq. ~8!#.

FIG. 5. Simulated polarization componentPx averaged over the whole lat-
tice as a function of temperatureT at different concentrationC.

FIG. 6. Evaluated free energy termsF,d , Fdi , and Fgr as a function of
temperatureT for lattices of different concentrationC.
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viously, P1@P2;0.0. It is clearly seen thatF,d is a linear
function ofT as long asP1 does not change much. In fact, in
the case ofC50, except from the transition pointT0 which
is site dependent in the case ofC.0, P1 does not change
remarkably above and belowT0 , respectively, but atT,T0

it is larger than that atT.T0 , thus the slope ofF,d(T) at
T,T0 is, of course, bigger than that atT.T0 . As C.0, the
change ofP is gradual over a wide range of temperature and
the two linear regions atC50 are smeared gradually, too. As
for the downshift of theF,d2T curve, Eq.~10! shows that
the increasingC results in this effect, and basically, one can
predict a linear dependence of the shift onC.

The behaviors of termsFdi andFgr as a function ofT as
various values ofC, shown in Figs. 6~b! and 6~c!, are easily
understood. ForFdi , we look at the dependence onC below
T0 , as shown in Fig. 6~b!. Take the case ofC50 as a refer-
ence. Once the FE transition occurs, the dipole ordering
leads to a rapid decrease ofFdi . The introduction of the
defects gives rise to the disordering of the dipole alignment
on the one hand, and a slight reduction of the dipole moment
on the other. Both effects will increaseFdi . At C50.9, one
cannot observe the transition anymore.

For the gradient energyFgr , it is always positive and its
magnitude is determined by the degree of disorder of dipole
alignment, i.e., the difference in moment and orientation be-
tween sitei and its four neighbors. The very weak dipole
ordering sequence aboveT0 with decreasingT is reflected by
the decreasing ofFgr with decreasingT, as shown in Fig.
6~c!. As C increases, the very small averaged dipole moment
aboveT0 is enhanced due toCp50.3, leading to a slight
upward shift ofFgr . At C50, the rapid decrease ofFgr at a
temperature slightly belowT0 is ascribed to the ferroelectric
transition wherePi j in Eq. ~3! is sharply reduced due to the
first-order dipole ordering. This effect will be weakened by
the introduced defects, since the defect-induced inhomoge-
neity enhancesPi j . Thus,Fgr increases with increasingC.

IV. COMPARISON AND REMARKS

As mentioned above, the extensive MC simulation in a
3D lattice based on the coarse-grain model by Su and
co-workers19 reproduced quite well the major features of
RFs. A qualitative consistency of our simulation with the
coarse-grain model simulation is identified. In terms of the
microstructure of RFs, both simulations reveal a picture of
ferroelectric nano-sized polar-ordered regions embedded in
the matrix of paraelectric phase due to the defect effect. The
gradual or ‘‘diffuse’’ phase transition feature whenC in-
creases is revealed in both simulations. Our simulation
started from a disordered dipole configuration, which pro-
duces a nonzero but very small average macroscopic dipole
moment for lattices of differentC at low T range, as shown
in Fig. 5, which coincides with the simulation of Su and
co-workers19 while the peaks appearing during the phase
transitions in Fig. 5 are induced by the small ac-electric field.
In fact, from the dipole configurations shown in Figs. 1–3, it
is shown that each dipole in the ordered clusters increases in
magnitude with decreasing temperature, although the lattice
averaged dipole moment remains quite small even at lowT.

The freezing effect of the dipole flip at lowT is also identi-
fied if one refers to the dipole configurations shown in Figs.
1–3. We did not simulate the configuration evolution from an
ordered initial lattice, but it can be predicted that such a
simulation will produce similar results as revealed in the
coarse-grain model.

Furthermore, looking at the dielectric constant as a func-
tion of T, one is shown that the coarse-model of Su and
co-workers19 reveals a diffusive frequency dispersion of the
dielectric constant for RFs in comparison with normal ferro-
electrics. This diffusing frequency dispersion behavior can
be indirectly reflected in our simulated results shown in Figs.
4 and 5, where the significantly broadening dielectric con-
stant@Fig. 4~a!# and dipole momentPx ~Fig. 5! as a function
of temperature, with increasing defect concentrationC, are
indicated. Therefore, we are shown that our simulation is
qualitatively consistent with the coarse-grain model and the
associated MC simulation.19

The main properties of RFs have been reproduced as
shown above by using the Ginzburg–Landau model for a
defective lattice. We are shown that this model reproduces
the coexistence of the microdipole-ordered regions and PE
phase, and the diffusive phase transition behaviors for dielec-
tric susceptibility and domain switching as well. Compared
to other models for RFs, the Ginzburg–Landau model repre-
sents one of the realistic descriptions of FE phase transitions.
It takes into account the main interactions for ferroelectric
systems. In fact, this model has been very successful in de-
scribing the details of 90° and 180° domain structures which
represent the most complicated issue in the physics of ferro-
electrics. Therefore, together with the work of Semen-
ovskaya and Khachaturyan, the present investigation is an
important extension of the Ginzburg–Landau model to the
relaxor ferroelectrics.

However, it is still too early to claim a realistic and
quantitative calculation of the dielectric and ferroelectric
properties for real RFs using this model and associated simu-
lation algorithms. The main challenges can be summarized
as follows. First, the significant frequency dependence of the
dielectric susceptibility for RFs cannot be reasonably repro-
duced by this model, although this inconsistence may be as-
cribed to the definition of the susceptibility Eq.~8! which is
based on unique characteristic time for dielectric relaxation,
as assumed in the Debye model. The frequency dispersion of
dielectric susceptibility of RFs was extensively studied ex-
perimentally and different models were proposed for differ-
ent RFs. In fact, with the definition Eq.~8! wheren52, the
simulated frequency dispersion is much more significant than
that experimentally revealed.28 Second, the Ginzburg–
Landau model assumes that the thermally activated dipole
flip is the unique mechanism for the dielectric relaxation.
This assumption was recently criticized and it was claimed
that the low temperature resonance response is important for
the dielectric relaxation in the dipole-ordered regions.26

Third, one may argue that the four allowed states of the
dipole orientation as imposed over the whole temperature
range is not reasonable. For the long-range ordered state well
below T0 in the rectangle lattice, this assumption is accept-
able, while the number of allowed states may be more than
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four aboveT0 and during the phase transitions. A bigger
number of states will result in a higher dielectric susceptibil-
ity because parametert8 is shorter. Finally, the disorder–
order phenomenon as often identified for the typical RFs
cannot be predicted by the present model. The essence of this
effect seems still unclear in the framework of the Ginzburg–
Landau model. These issues are studied in the ongoing work
and will be reported elsewhere.

V. CONCLUSION

In conclusion, we have investigated in detail the dielec-
tric and ferroelectric relaxation of a mode relaxor system
doped with two types of defects by Monte Carlo simulation
technique. The mode lattice is based on the Ginzburg–
Landau model of first-order phase transitions and the two
types of defects are assumed to play a role of enhancing and
suppressing the local dipole moment, respectively. It has
been revealed that with increasing defect concentration the
simulated dipole configuration evolves from the normal
ferroelectric lattice to the relaxor ferroelectric one in which
the microregions of ordered-dipole clusters are embedded in
the matrix of paraelectric phase. The simulated dielectric
susceptibility as a function of temperature shows signifi-
cantly diffusive characters and its value in the ferroelectric
ordering state increases with the increasing defect concentra-
tion. The flexible dynamic response of the dipoles to the
external ac-electric field with the normal ferroelectrics as ref-
erence has been demonstrated. A qualitative consistency be-
tween the present simulation and the coarse-grain model
simulation is shown.
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