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Monte Carlo Simulations for Spinodal Decomposition
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This paper addresses the phenomenon of spinodal decomposition for the Cahn�
Hilliard equation. Namely, we are interested in why most solutions to the
Cahn�Hilliard equation which start near a homogeneous equilibrium u0#+ in
the spinodal interval exhibit phase separation with a characteristic wavelength
when exiting a ball of radius R in a Hilbert space centered at u0 . There are two
mathematical explanations for spinodal decomposition, due to Grant and to
Maier-Paape and Wanner. In this paper, we numerically compare these two
mathematical approaches. In fact, we are able to synthesize the understanding
we gain from our numerics with the approach of Maier-Paape and Wanner,
leading to a better understanding of the underlying mechanism for this behavior.
With this new approach, we can explain spinodal decomposition for a longer
time and larger radius than either of the previous two approaches. A rigorous
mathematical explanation is contained in a separate paper. Our approach is to
use Monte Carlo simulations to examine the dependence of R, the radius to
which spinodal decomposition occurs, as a function of the parameter = of the
governing equation. We give a description of the dominating regions on the
surface of the ball by estimating certain densities of the distributions of the exit
points. We observe, and can show rigorously, that the behavior of most solutions
originating near the equilibrium is determined completely by the linearization
for an unexpectedly long time. We explain the mechanism for this unexpectedly
linear behavior, and show that for some exceptional solutions this cannot be
observed. We also describe the dynamics of these exceptional solutions.

KEY WORDS: Cahn�Hilliard equation; spinodal decomposition; phase sepa-
ration; exit distributions; density estimation; Monte Carlo method; Galerkin
approximation.
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1. INTRODUCTION

The Cahn�Hilliard equation has proved to be an excellent model for
several physical phenomena occurring in binary alloys. One particularly
intriguing phenomenon is spinodal decomposition:(5, 16, 19) If a homogeneous
high-temperature mixture of two metallic components is rapidly quenched
to a certain lower temperature, then a sudden phase separation sets in. The
mixture quickly becomes inhomogeneous and forms a fine-grained struc-
ture, more or less alternating between the two alloy components.

In order to describe this phase separation process (as well as other
phenomena) Cahn and Hilliard(3, 6) proposed the fourth-order parabolic
partial differential equation

ut=&2(=22u+ f (u)) in 0
(1)

�u
�&

=
�2u
�&

=0 on �0.

Here 0/Rn is a bounded domain in Rn with sufficiently smooth bound-
ary, n # [1, 2, 3], and the function & f is the derivative of a double-well
potential F, the standard example being the cubic function f (u)=u&u3

with double-well potential F(u)=(u2&1)2�4. Furthermore, = is a small
positive parameter modeling interaction length. In this formulation, the
variable u represents the concentration of one of the two components of the
alloy, subject to an affine transformation such that the concentrations 0 or
1 correspond to u being &1 or 1, respectively. The Cahn�Hilliard equation
is mass-conserving, i.e., the total concentration �0 u dx remains constant
along any solution u. Moreover, (1) is an H&1(0)-gradient system with
respect to the van der Waals free energy functional

E=[u] :=|
0 \

=2

2
} |{u|2+F(u)+ dx (2)

where F is the primitive of & f as mentioned above. [See Fife.(13)]
Every constant function u0#+ is a stationary solution of (1). Further-

more, this equilibrium is unstable if + is contained in the spinodal interval.
This is the (usually connected) set of all + # R such that f $(+)>0. Thus, if
+ lies in the spinodal interval, any orbit originating near u0 is likely to be
driven away��and explaining precisely how this happens lies at the heart of
explaining the phenomenon of spinodal decomposition.

There have been many works in the physics literature dealing with
spinodal decomposition and how it is modeled by the Cahn�Hilliard equa-
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tion. We refer the reader to Cahn, (4, 5) Hilliard, (16) Langer, (19) Elder, Desai, (9)

Elder, Rogers, Desai, (10) and Hyde et al., (18) just to name a few. Also, there
exist numerous papers on numerical simulations of the Cahn�Hilliard
equation, see for example Elliott, French, (12) Elliott, (11) Copetti, Elliott, (8)

Copetti, (7) and Bai et al.(1, 2)

Mathematical treatments of spinodal decomposition in the Cahn�
Hilliard equation have appeared only recently. See Grant, (14) Maier-Paape
and Wanner.(20, 21) Since spinodal decomposition is concerned with solu-
tions of (1) originating near the homogeneous equilibrium u0#+, it is not
surprising that both of the above approaches crucially rely on the proper-
ties of the linearization of (1) at u0 , i.e., the linear equation

vt=A= v :=&2(=22v+ f $(+) v) in 0
(3)

�v
�&

=
�2v
�&

=0 on �0.

We consider this linearization applied to the affine subspace of functions,
with fixed mass, which obey the equation boundary conditions. More
precisely, define

X :={v # L2(0) : |
0

v dx=0= (4)

and

D(A=) :=[v # X & H 4(0) : �v��&(x)=�2v��&(x)=0, x # �0] (5)

where H 4(0)/L2(0) denotes the space of functions with four weak
derivatives in L2(0). It is possible to show that with this domain, the linear
operator A= is self-adjoint. The spectrum of A= consists of real eigenvalues
*1, =�*2, =� } } } � &� with corresponding eigenfunctions .1, = , .2, = ,... . To
further describe these eigenvalues, let 0<}1�}2� } } } � +� and �1 , �2 ,...
denote the eigenvalues and eigenfunctions of the operator &2: X � X sub-
ject to Neumann boundary conditions. Then the eigenvalues *i, = of A= are
obtained by ordering the numbers

*� i, = :=}i ( f $(+)&=2}i ), i # N (5)

See Fig. 1. The eigenfunctions .i, = are obtained from the eigenfunctions �i

through this ordering process in the obvious way, and form a complete
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Fig. 1. Eigenvalues of the linearization A= .

L2(0)-orthogonal set in X. Moreover, the largest eigenvalue *1, = is of the
order

*1, =t*max
= :=

f $(+)2

4=2 , and *1, =�*max
= , (6)

as in Maier-Paape, Wanner(20) and Fig. 1. The strongest unstable direc-
tions are the ones corresponding to }kr f $(+)�(2=2), and one would expect
that most solutions of (3) originating near 0 will be driven away in some
of these unstable directions.

In order to deduce results about the dynamics of the nonlinear Cahn�
Hilliard equation from the above linearization, Grant(14) and Maier-Paape,
Wanner(20, 21) employed a dynamical approach. It is known that (1)
generates a nonlinear semiflow T=(t), t�0, on the affine space ++X 1�2,
where X 1�2 denotes the Hilbert space

X 1�2 :=[v # H2(0) & X : �v��&=0 on �0] (7)

H2(0)/L2(0) is the Hilbert space of functions with two weak derivatives
in L2(0). The constant function u0#+ is an equilibrium point for T= , and
the linearization of T= at u0 is given by the analytic semigroup S= generated
by A= .

Using the above setting, Grant(14) described spinodal decomposition for
one-dimensional domains 0. Fig. 2 gives an example of an orbit exhibiting
spinodal decomposition. Roughly speaking, Grant showed that for generic
small = most solutions of (1) starting in a sufficiently small neighborhood
U= of u0#+ closely follow a strongly unstable one-dimensional manifold
for a long time. This unstable manifold is tangent to the eigenfunction .1, =
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Fig. 2. Spinodal decomposition in one space dimension, ==0.04.

of the largest eigenvalue *1, = , which is simple for generic values of =. Grant
also proved that the two branches of the strongly unstable manifold con-
verge to periodic equilibrium points of (1), whose period is proportional to
= as = � 0 and whose L�-norm is bounded away from 0. Thus, these equi-
libria can be interpreted as spinodally decomposed states. Over time, most
solutions originating in U= grow near the spinodally decomposed states.
Thus these orbits exhibit spinodal decomposition.

Unfortunately, for higher-dimensional domains Grant's approach
predicts evolution of most orbits towards regular patterns which are not
observed in practice. Maier-Paape and Wanner(20, 21) pointed out that this
discrepancy is due to the fact that the size of the neighborhood U= in
Grant's result is of the order exp(&c�=). Since = models interaction length,
an effect which occurs on the atomic level, it is extremely small. The actual
size of = depends on the specific materials. To achieve material independent
results, one considers the asymptotic behavior as = � 0. Thus, the behavior
of solutions described by Grant cannot be observed in the physical system.
To address this, Maier-Paape and Wanner proposed a different approach
for explaining spinodal decomposition, which applies to higher-dimen-
sional domains 0 as well. They also consider solutions of (1) starting in a
small neighborhood U= of the homogeneous equilibrium u0#+. This time
however, the size of U= is proportional to =dim 0. It is proved in refs. 20 and
21 that most solutions of (1) originating in U= exit a larger neighborhood
V=#U= close to a dominating linear subspace Y= . This subspace is spanned
by the eigenfunctions corresponding to a small percentage of the largest
eigenvalues of A= , hence its dimension is proportional to =&dim 0. Further-
more, the functions in Y= exhibit exactly the spinodally decomposed pat-
terns that can be observed in experiments.
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Yet, although the approach by Maier-Paape and Wanner predicts the
correct patterns observed in spinodal decomposition, their result is still not
optimal. The size of the neighborhood V= is of the same order as the size
of U= , namely proportional to =dim 0<<1. In practice however, the patterns
they predict are observed until the maximum norm of the solution is of
order 1.

In this paper we use extensive numerical simulations to investigate the
range of validity of the above two approaches��leading to a surprising
observation. It turns out that most solutions of (1) stay close to the solu-
tions of the linearized equation with the same initial conditions for con-
siderably larger neighborhoods V= than the ones obtained in ref. 21. In fact,
it remains valid for sizes for which one would normally expect fully non-
linear behavior of (1). Moreover, we are able to identify and describe the
delicate mechanism which is responsible for this exceptional behavior.
Spinodal decomposition is a result of the fact that with high probability,
solutions of (1) originating near u0#+ are pushed into a region of phase
space in which the behavior of the Cahn�Hilliard equation is essentially
linear. Linear behavior persists until the maximum norm of the solution
reaches a certain threshold radius, independent of =. More precisely, we
state the following conjecture for the one-dimensional Cahn�Hilliard equa-
tion.

Conjecture 1.1 (Unexpectedly linear behavior). Consider
solutions u and v of (1) and (3), respectively, starting at the same initial con-
dition in a ball of radius r in ++X 1�2 around u0#+. Pick a small constant d.
Then with high probability, the relative difference &u&v&H 2(0) �&v&H 2(0)

between the linear and nonlinear solutions is less than d up to norm
&u&H 2(0)rC } =&2, where C is independent of =.

For a partial proof of this conjecture (for one, two, and three space
dimensions), we refer the reader to Sander, Wanner.(22) This conjecture is
stated for the mathematically natural H 2(0)-norm, rather than the physical
L�(0)-norm. Our numerical simulations indicate that the relative distance
between the linear and nonlinear solutions stays small up to order one with
respect to = in the L�(0)-norm. For further results relating these two
norms, see ref. 21.

This paper is organized as follows. In Section 2 we use Monte Carlo
simulations for one-dimensional domains 0 to obtain a precise picture of
where most solutions starting in U= exit V= . This is done for balls V= of dif-
ferent sizes. It shows that for most solutions originating in U= , the range of
validity of the linear regime is much larger than one would expect. In addi-
tion, we conclude that even in one space dimension, the dimension of the
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exit set from V= grows as = � 0. The numerical method and basic setting for
our simulations is described in Subsection 2.1. In the following two subsec-
tions, we describe regions on the exit balls in terms of the Fourier coef-
ficients of the solutions at the time of exit. In Subsection 2.2, the mean
value and standard deviation of the Fourier coefficients are shown for
various exit balls and = values. Subsection 2.3 contains estimates for the
corresponding density functions.

Further investigations of the unexpectedly linear behavior are con-
tained in Section 3. In Subsection 3.1, we numerically determine the size of
the maximal ball V= for which the behavior of most solutions originating
in U= is linear. We also describe the mechanism responsible for this. Sub-
section 3.2 shows that the previous results are of a probabilistic rather than
deterministic nature, i.e., there are solutions which do not exhibit the above
kind of linear behavior. We describe the dynamics of these exceptional
solutions. Some concluding remarks are contained in Section 4.

2. THE MONTE CARLO SIMULATIONS

2.1. Basic Setup

In order to compare and test the validity of the approaches to
spinodal decomposition by Grant(14) and Maier-Paape, Wanner(20, 21) we
perform the following Monte Carlo simulation. Fix the parameter = in the
Cahn�Hilliard equation, fix an initial total mass + in the spinodal interval,
as well as two radii 0<r<R. Now randomly choose an initial condition
us in the ball U= :=Br(u0) of radius r (with respect to the H 2(0)-norm)
around the homogeneous equilibrium u0#+. Follow the solution of the
Cahn�Hilliard equation (1) starting in us until it exits the ball V= :=BR(u0)
at a first exit point ue . This procedure defines a map

ER(us) :=ue # �V= (8)

on a suitable subset of U= ; namely the set of all initial conditions leading
to orbits which leave V= .

Now choose the initial conditions us uniformly in U= , in a way which
we make precise later. Then the above-defined map ER defines an exit dis-
tribution on the boundary of V= , which contains all the information about
the preferred exit region from V= . We now describe this measure on the
infinite-dimensional set �V= .

As we point out in the introduction, the natural phase space of the
abstract evolution equation associated with (1) is the affine space ++X 1�2.
For the sake of simplicity, let us assume from now on that +=0. The
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general case can be reduced to this special situation via a suitable variable
transformation, see Maier-Paape, Wanner.(21) Furthermore, let us consider
the norm & }&

*
on the Hilbert space X 1�2 defined by

&u&
*

:=(&u&2
L2(0)+&2u&2

L2(0))
1�2

and let �k , k # N, denote the eigenfunctions of &2 defined in the introduc-
tion. If we set

.~ k :=
1

- 1+}2
k

} �k , k # N (9)

then .~ k is the eigenfunction of A= corresponding to the eigenvalue *� k, = ,
cf. (5). Moreover, the set .~ k , k # N, is a complete orthonormal set in X 1�2

with respect to the scalar product ( } , } )
*

induced by & }&
*

.
According to Maier-Paape, Wanner(20, 21) the exit distribution defined

above is concentrated near a dominating subspace, which is generated by
a suitable subset of these eigenfunctions. Therefore, it seems reasonable to
describe the functions in X 1�2 in terms of their Fourier coefficients with
respect to the eigenfunctions .~ k , where k # N. Figure 3 shows the evolution
of the Fourier modes of the orbit in Fig. 2. (In these diagrams, the k th
Fourier coefficient is plotted as a function of k using a polygonal path.)
For any us # U= such that ER(us) is defined as in (8), let ck, R(us) # R denote
its k th Fourier coefficient, i.e., let

ck, R(us) :=(ER(us), .~ k)
*

(10)

Fig. 3. Evolution of the Fourier modes for the orbit depicted in Fig. 2, ==0.04.
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Then

ER(us)= :
�

k=1

ck, R(us) .~ k

and we obtain an equivalent description of the exit points in terms of real
sequences.

Thus, choosing the initial conditions us uniformly in U= induces an exit
distribution on the set of sequences, as well as one-dimensional exit distribu-
tions for the Fourier modes ck, R , k # N. These one-dimensional distributions
can be used to analyze the approaches due to Grant and Maier-Paape,
Wanner. For example, the results by Maier-Paape and Wanner(20, 21) imply
that as long as r and R are proportional to =dim 0, the distribution of the
k th Fourier mode ck, R is concentrated at 0, unless the corresponding
eigenvalue *� k, = is close to *max

= . Likewise, for one-dimensional domains 0,
Grant's result predicts that for odd f and +=0 the distribution of ck, R is
concentrated at two points \#k , where #k , k # N, denote the Fourier coef-
ficients of the intersection point of V= with the one-dimensional strongly
unstable manifold at u0 . In fact, our simulations show that a third point of
view is more appropriate. Namely, it turns out that the correct way to
think of dominating modes versus non-dominating modes is with respect to
the linearized behavior��even though we consider a nonlinear equation.

For 0=(0, 1) we present detailed information on the distributions of
the Fourier modes ck, R in the following two subsections. This is achieved
numerically by employing a Monte Carlo simulation, where we use ran-
domly chosen initial conditions near the equilibrium. Similar to Bai et
al.(2, 1) we approximate the one-dimensional Cahn�Hilliard equation (1)
with a standard Galerkin spectral method. For sufficiently large integers N
we seek approximations uN(t) to the solutions of the Cahn�Hilliard equa-
tion in the finite-dimensional space

XN :=span[.~ 1 ,..., .~ N ]

i.e., which are of the form

uN= :
N

k=1

ak .~ k , ak # R (11)

Note that for 0=(0, 1) we have }k=k2?2 and �k(x)=- 2 } cos k?x, so
that

.~ k(x)=
- 2

- 1+k4?4
} cos k?x, for k # N
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To deduce the ordinary differential equations governing the evolution of
the Fourier coefficients ak , one has to evaluate the right-hand side of (1)
at uN given above, and then project the result onto the space XN using
X 1�2-orthogonal projections. Since the .~ k are orthonormal in X 1�2, this
amounts to determining the Fourier series representation of the right-hand
side with respect to the .~ k , and then discarding the part of the series
corresponding to Fourier modes greater than N. Inserting the expression
(11) into the right-hand side of the Cahn�Hilliard equation we get with
f� (u) := f (u)& f $(+) u the identity

(&2(=22uN+ f (uN )), .~ k)=(=22uN+ f (uN ), &2.~ k)

=}k } (=22uN+ f $(+) uN+ f� (uN ), .~ k)

=}k( f $(+)&=2}k) } (uN , .~ k)+}k } ( f� (uN ), .~ k)

for k=1,..., N, where ( } , } ) denotes the standard L2(0)-scalar product.
Together with the fact that (uN , .~ k)=ak } (.~ k , .~ k)=ak �(1+}2

k) one easily
determines the ordinary differential equation for the coefficient ak as

a* k=}k( f $(+)&=2}k) } ak+}k(1+}2
k) } |

0
f� (a1.~ 1+ } } } +aN .~ N ) .~ k dx

(12)

where k=1,..., N. For a fixed starting radius r, and exit radius R, we
choose initial conditions uniformly in (u0+XN ) & Br(u0) (uniform with
respect to the Lebesgue measure on the finite-dimensional space XN ), and
look at the probability distribution for the solutions of the above equation
when they reach distance R from the equilibrium u0 . For sufficiently large N,
the solutions of the system (12) will approximate the solutions of the
Cahn�Hilliard equation (1) via (11). For more details we refer the reader
to Bai et al.(2, 1) or Stuart. (24)

Before closing this subsection, let us add a few comments about our
specific implementation for solving (12), where we consider the special case
0=(0, 1), +=0, and f (u)=u&u3. Since we have to perform a large num-
ber of simulations in order to get reliable information on the exit distribu-
tions, a fast routine for evaluating the right-hand side of (12) is crucial.
Obviously, the computationally most expensive part of determining the
right-hand side is the calculation of the Fourier coefficients of the non-
linearity f� (uN ). This can be done efficiently using fast Fourier transforms.
In fact, since we use the special nonlinearity f� (u)=&u3 for our simula-
tions, our implementation actually provides a fast way for calculating the
Fourier coefficients exactly. Finally, the ordinary differential equation (12)
is solved using an embedded Runge�Kutta scheme with step size control.
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2.2. Mode Distributions

In this and the following subsection, we present the results of our simula-
tions. In order to get a good idea of how the Fourier modes ck, R(us) of the
exit points ER(us) are distributed, we perform 10,000 simulations each for
two values of = using various radii R. More specifically, we consider
==0.04 and ==0.02. In the first case, we choose 10,000 initial conditions
us randomly in the ball Br(0) & XN/X 1�2 for r=0.03 and N=20. (Here
and in the following, distances in X 1�2 are always measured with respect to
the norm & }&

*
defined above.) Then we compute the corresponding solu-

tions of (1) and determine the exit points ER(us) for R=1, 5, 10, 30,
and 60. In the case ==0.02 we choose r=0.01, N=50, and consider the
exit radii R=1, 10, 100, 200, and 500, again for 10,000 initial conditions
us chosen uniformly in the ball Br(0) & XN .

In order to get some first information on the range of validity of the
mathematical results by Grant and Maier-Paape, Wanner, we concentrate
in this subsection on describing how mean value and standard deviation of
the random variables |ck, R | develop as R increases. The reason for con-
sidering the absolute value |ck, R | instead of just ck, R is twofold. First, due
to the symmetric setting that we use for our simulations, the mean value
of ck, R is always 0. Also, since we would like to get information on the
dominance of certain modes, considering the absolute value seems more
appropriate.

These results are depicted in Figs. 4 and 5 for ==0.04 and ==0.02,
respectively. In each subdiagram the horizontal axis represents the index k
of the Fourier mode ck, R . The solid polygon line shows the mean values of

Fig. 4. Mode distribution parameters at different exit balls, ==0.04. The diagrams proceed
left to right for growing radii R.
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Fig. 5. Mode distribution parameters at different exit balls, ==0.02. The diagrams proceed
left to right for growing radii R.

|ck, R |, the vertical intervals indicate the corresponding standard deviations.
The diagram in the upper left hand corner of each figure corresponds to the
distribution of the initial conditions in Br(0) & XN , the following diagrams
consider the exit distributions for increasing values of R as given above.

Looking at Figs. 4 and 5 one can immediately draw the following two
conclusions. First of all, up to large radii R there is only a finite number
of dominating modes, which actually seems to decrease with growing
radius R. For ==0.04 these are modes 4 through 7, for ==0.02 modes 8
through 13 seem to dominate. All the remaining modes are close to 0 upon
exiting the ball BR(0). Secondly, the standard deviations of the distribution
of |ck, R | for the dominating modes is large, indicating a large range of
probable values for |ck, R |. Thus, our simulations show that for the initial
condition ball radii r chosen above, one does not observe the result proved
by Grant,(14) since it would imply extremely small standard deviations for
all k. Rather, we obtain large standard deviations, indicating that the set of
preferred exit points is higher-dimensional.

While the above observations were already conjectured by Maier-
Paape and Wanner, (20, 21) our simulations indicate that (1) exhibits other
surprising behavior as well. Recall that in ref. 21 it was shown that for r
and R proportional to =dim 0 the subspace Y= generated by the dominating
eigenfunctions determines the behavior of most solutions starting in Br(0)
upon exit from BR(0). Our simulations indicate that this dominance can be
observed up to considerably larger radii, namely Rr30 for ==0.04, and
Rr100 for ==0.02. Note in particular that these values of R are increasing
for decreasing =. In addition, up to these unexpectedly large radii R, the
temporal evolution of the Fourier coefficients resembles what one would
expect from the linearized equation (3) in a striking way: The higher modes
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converge to 0 exponentially fast, whereas the modes corresponding to
positive eigenvalues *� k, =>0 grow with exponential rate *� k, = .

At this point the reader might wonder why we claim that the size of
the radii R is unexpected. To see this, consider a function u # X 1�2, given by
u(x)=6x2&4x3&1. One can easily check that &u&

*
r6.96, well inside the

ball of radius thirty in which we observe almost linear behavior. Now let
A=u :=&2(=22u+u) as before, and define F(u) :=2(u3). Then the right-
hand side of (1) is given by A=u+F(u), with A=u denoting the linear and
F(u) the nonlinear part. Furthermore, for ==0.04 we obtain

&F(u)&L2(0, 1)r2.47 } &A=u&L2(0, 1) , &F(u)&
*

r186.34 } &A=u&
*

.

In other words, even for values of R=&u&
*

which are considerably smaller
than the values given in the last paragraph, one expects the nonlinear part
F(u) to dominate the linear behavior. Thus, one would not expect Figs. 4
and 5 to be as close to the linear case as they are.

To close this subsection, let us add some remarks about the onset of
truly nonlinear behavior. According to Figs. 4 and 5 nonlinear behavior
can be observed for large values of R in a specific way: In addition to the
first bump of nontrivial eigenmodes, a secondary bump forms at higher
modes. If k0 denotes the mode lying in the center of the first bump, the
secondary forms around mode 3k0 . We think that this is a resonance effect
due to the specific form of our cubic nonlinearity. Furthermore, we expect
analogous behavior can be observed for two-dimensional domains 0,
in contrast to the numerical simulations of Copetti and Elliott.(7, 8) Their
spatial discretization may not have been fine enough to capture this
phenomenon.

2.3. Density Estimates

The last subsection gives a first look at the distributions of the Fourier
modes via estimating mean value and standard deviation of the variables
|ck, R |. Now we want to obtain more detailed information on the actual dis-
tributions. For some fixed values of k and R, we know that ck, R # [&R, R].
We want to get accurate information on the probability of ck, R being in an
arbitrary subset I/[&R, R]. This information is coded in the associated
density function dk, R : [&R, R] � R+

0 in the following way: For any
measurable subset I/[&R, R] the probability that the random variable
ck, R takes values in I is given by the integral

|
I

dk, R(x) dx
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Thus, the density functions dk, R completely describe the exit distributions
of the Fourier modes ck, R .

There are many ways to obtain good estimates for the density functions
of probability measures from Monte Carlo simulations, cf. for example
Silverman(23) or Ha� rdle.(15) We employ the nonparametric kernel estimation
technique, which can be described as follows. Assume that our simulations
produce n specific realizations Zk , k=1,..., n, of the random variable ck, R .
Fix a kernel function K, i.e., a non-negative function K: R � R+

0 which is
symmetric around 0 and satisfies ��

&� K(t) dt=1. Next, choose a positive
smoothing parameter h, and define the rescaled kernels Kh by Kh(x) :=
K(x�h)�h, x # R. Then the kernel density estimator d� k, R for the unknown
density dk, R is defined as

d� k, R(x) :=
1
n

} :
n

k=1

Kh(x&Zk)=
1

nh
} :

n

k=1

K \x&Zk

h +
In other words, the estimator d� k, R is obtained by centering a rescaled
kernel Kh at each observation Zk , and then averaging over these functions.

The choice of the kernel K is somewhat arbitrary, but some canonical
choices can be found in Silverman(23) or Ha� rdle.(15) For our simulations we
choose the triweight kernel which is given by K(t) :=35�32 } (1&t2)3 for
|t|�1, and K(t)=0 elsewhere. For this choice the density estimator d� k, R

is always a C2-function. Furthermore, choosing the ``correct'' smoothing
parameter h is crucial. For extremely small h the estimate d� k, R will be noisy
and show large fluctuations. On the other hand, for extremely large values
of h one obtains a flat estimate d� k, R whose shape is roughly the shape of
the kernel function, more or less independent of the data samples Zk .

Our implementation of the above technique follows Ha� rdle.(15) He
describes the method of WARPing which significantly reduces the com-
putational cost of the implementation. Furthermore, we use a suggestion
due to Silverman(23) to take into account the bounded support and the
symmetry of the distributions of the ck, R . For more details we refer the
reader to the above literature.

In Figs. 6 and 7 several density estimators are depicted. These are
obtained from the simulations described in the last subsection. For ==0.04
Fig. 6 contains estimators for the density functions dk, R for R=1 and
k=1,..., 9. Likewise, Fig. 7 shows estimators for ==0.02, R=1, and
k=7,..., 15. In both cases the density functions are given by the solid lines.
Furthermore, we choose the smoothing parameter h=0.05. According to
these diagrams, we can roughly divide the modes into the following three
categories:
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Fig. 6. Density functions of selected modes at R=1, ==0.04. Solid lines correspond to the
nonlinear Cahn�Hilliard equation, dotted lines to the linear.

v Vanishing modes: Upon exit from the ball BR(0), these modes vanish
almost surely, i.e., the exit measure is a Dirac measure at 0. Thus, the den-
sity estimator is (almost) equal to the scaled kernel Kh . See modes 1, 2, 8,
9 in Fig. 6, as well as modes 7, 15 in Fig. 7.

v Transitional modes: These modes are likely to be close to zero, but
exiting the ball BR(0) with a nonzero value definitely has positive probability.
See modes 3, 4, 7 in Fig. 6, as well as modes 8, 9, 13, 14 in Fig. 7.

Fig. 7. Density functions of selected modes at R=1, ==0.02. Solid lines correspond to the
nonlinear Cahn�Hilliard equation, dotted lines to the linear.
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v Dominating modes: When exiting the ball BR(0), these modes basically
can take any value in the interval [&R, R]. See modes 5, 6 in Fig. 6, as
well as modes 10, 11, 12 in Fig. 7.

Although we did not present the corresponding density estimators, the
remaining modes all belong to the first category, i.e., they vanish almost
surely. Moreover, the estimators obtained for larger values of R are similar
to the ones depicted in Figs. 6 and 7��except the ones corresponding to
modes in the secondary bump. However, since these are not important in
our discussion, they are omitted.

Due to the inherent information loss through projection onto one-
dimensional subspaces of X 1�2, the one-dimensional density functions from
Figs. 6 and 7 can not give an accurate description of the geometry of the
preferred exit set. Yet, they can provide some intuition. To that end, let us
consider the uniform probability measure on the boundary SN&1 of the
unit ball in RN. Projecting this measure to one of the coordinate axes
furnishes a probability measure &N on [&1, 1]. It can easily be shown that
this measure has a density function sN given by

sN(x) :=cN } (1&x2) (N&3)�2, x # (&1, 1)

with normalizing factor cN=1 (N�2)�(- ? } 1 ((N&1)�2)).
Now consider the density estimators for modes 5 and 6 in Fig. 6. Both

of these graphs resemble the graph of the function s2(x)=1�(? } - 1&x2).
This suggests that if we project the preferred exit set from B1(0) for ==0.04
onto the two-dimensional subspace of X 1�2 spanned by the 5 th and 6 th
eigenmode, we would see something resembling the circle S1. In fact, by
estimating the density function for the distribution of the vector
(c5, 1(us), c6, 1(us)) # R2 from our simulations, this statement can be verified,
i.e., the preferred exit set from B1(0)/X 1�2 for ==0.04 is close to a one-
dimensional closed curve. Similar considerations could be used to describe
the preferred exit set for ==0.02 from our simulations, but we refrain from
doing that.

Finally, let us come back to the discussion of the last subsection,
where we conjecture that up to unexpectedly large radii R the solutions of
the nonlinear Cahn�Hilliard equation (1) behave like the corresponding
solutions of the linearized equation. Completely analogous to the simula-
tions for (1), we also performed simulations for the linearized equation.
The corresponding density estimators are depicted in Figs. 6 and 7 as dotted
lines. The agreement of these estimators with the ones for the nonlinear
equation is striking, and further backs our conjecture stated in the intro-
duction.
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3. UNEXPECTEDLY LINEAR BEHAVIOR

3.1. Validity of the Linear Regime

Although the simulations presented in the last section have been used
to compare the mathematical explanations of spinodal decomposition due
to Grant(14) and Maier-Paape, Wanner, (20, 21) we learn something new. The
simulations indicate that up to large radii R, the nonlinear Cahn�Hilliard
equation seems to behave like its linearization, though as we argued by
means of a simple example in Subsection 2.2 this is not at all what one
would expect. Nonetheless, in this subsection we provide numerical
evidence for the occurrence of this unexpectedly linear behavior, thus back-
ing our Conjecture 1.1. Furthermore, we briefly describe the mechanism
responsible for this. A rigorous mathematical explanation will be given in
the forthcoming paper.(22)

As in the last section, we fix an initial radius r. Let 0< p<<1 be fixed;
this will be interpreted as maximal error tolerance. Randomly pick an initial
condition us # Br(0) & XN , and compute the solutions u and v of equations
(1) and (3) originating in us . For every *>r, compute the first intersection
points of u and v with B*(0), and denote them by u* and v* , respectively.
Finally, let R denote the first radius such that the relative error of uR and
vR is equal to p, i.e., such that

&uR&vR &
*

&vR&
*

= p

In other words, we determine up to which radius R the orbits of (1) and
(3) originating in us stay close to each other in a relative way.

The left diagram in Fig. 8 shows the results of 100 simulations of this
type for each of five different =-values. In each simulation we choose
r=0.01 (with respect to & }&

*
) and p=0.005, and the diagram depicts the

Fig. 8. Dependence of the maximal radius R on = with respect to & }&
*

(left) and the
L�(0, 1)-norm (right), relative error 0.50.
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obtained values of R plotted against =. Thus, the radius up to which linear
and nonlinear solutions differ by less than 0.50 grows as = � 0, and in fact
is considerably larger than one would expect.

In order to deduce quantitative results about the nature of this
growth, we use a least squares fit to estimate the parameters C

*
and :

*
in

the polynomial function

R=C
*

} =:
*

from the above data. These values are given by

C
*

=0.0287 and :
*

=&1.9182

and led to the formulation of Conjecture 1.1. Note that this asymptotic
behavior of R does not contradict the fact that most orbits originating near
u0#0 will approach profiles with values in the interval [&1, 1]. Rather, it
indicates that the orbits develop high curvature terms, since those are of
course incorporated in the norm & }&

*
.

Nonetheless, it is important to know the maximum norms of uR and vR ,
when their relative error is equal to 0.50. For the above simulations, this
information is shown in the right diagram of Fig. 8, where the maximum
norm &uR &L�(0, 1) is plotted against =. This diagram indicates that as long
as the maximum norm of u lies below a certain =-independent threshold,
the relative error of u and v is small. As before, we use a least squares fit
to estimate the parameters C� and :� in

&uR&L�(0, 1)=C� } =:�

and this furnishes

C�=0.0731 and :�=&0.0580

In other words, the simulations shown in Fig. 8 indicate the validity of our
Conjecture 1.1.

Yet, in view of the example given in Subsection 2.2 these results are
surprising. In the remainder of this subsection we therefore describe the
mechanism which is responsible for this unexpected behavior. Consider
again the domain 0=(0, 1), and let Wk/X 1�2 denote the one-dimensional
subspace generated by the k th eigenfunction .~ k , or equivalently, by
�k(x)=- 2 } cos k?x. Let A=u=&2(=22u+u) and F(u)=2(u3) denote the
linear and nonlinear parts of the right-hand side of the Cahn�Hilliard
equation (1) for f (u)=u&u3. For every k # N and u # Wk , we can
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explicitly compute both A=u and F(u), and therefore also the L2(0, 1)-
norms of these functions. This yields

&F(u)&L2(0, 1)

&A= u&L2(0, 1)

=
3 - 10

2
}

&u&2

*
(1+}2

k) } |1&=2}k |
(13)

for all k # N and u # Wk with A=u{0.
In order to get a first idea about the relative size of F(u) versus A=u

we consider the one-dimensional subspaces Wk with *� k, ={0 as test direc-
tions. Choose a small positive number p>0. Then (13) implies for every
k # N such that *� k, ={0, and every u # Wk "[0] that

&F(u)&L2(0, 1)

&A= u&L2(0, 1)

� p if and only if &u&
*

�
- 2p

- 3 - 10
} - (1+}2

k) } |1&=2}k |

(14)

Thus, on the subspace W1 the nonlinearity is considerably smaller than the
linear part only as long as we have

&u&
*

�4.55 } - p } - |1&=2?2|

Since the right-hand side of this inequality is of order =0 as = � 0, this again
makes the result stated in Conjecture 1.1 appear surprising.

However, the situation is completely different if we consider subspaces
Wk which are contained in the dominating subspace Y= , spanned by the
eigenfunctions corresponding to the largest eigenvalues. We define Y= as in
refs. 20 and 21 to be the subspace spanned by eigenfunctions .~ k such that
the associated eigenvalues introduced in (6) satisfy *� k, =�# } *max

= , for some
0<#<1. Thus, the corresponding }k have the property

c1

=2 �}k�
c2

=2

for two constants 0<c1<c2<1. Then (14) implies that on every Wk/Y=

the nonlinear part F(u) is considerably smaller than A=u as long as

&u&
*

�
- 2p

- 3 - 10
} - (c2

1+=4) } (1&c2) } =&2

i.e., until &u&
*

reaches the order =&2, for = � 0.
The above calculations show that on certain subsets of the dominating

space Y= the linear part A= u dominates the nonlinear part F(u) up to sur-
prisingly large values of &u&

*
. In fact, although this is not at all obvious,
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it turns out that this statement remains valid on all of Y= , and even in a
suitable neighborhood of the dominating subspace. However, as indicated
by the numerical results from the beginning of this subsection, the order of
the admissible values of &u&

*
will be smaller than =&2, due to nonlinear

superposition effects. See the forthcoming paper Sander, Wanner.(22)

We finally are in a position to describe the unexpectedly linear
behavior. Due to Maier-Paape, Wanner, (20, 21) most solutions of the Cahn�
Hilliard equation (1) originating in a small neighborhood U= of the
homogeneous equilibrium u0#+ exit a larger neighborhood V= close to
some dominating subspace Y= . Furthermore, up to that point the behavior
of the orbits is close to the linear behavior. But now the orbits enter a part
of the phase space which is invariant with respect to the linearized equation
(3), and where the nonlinear part is considerably smaller than the linear
part. Thus, the solutions of the nonlinear equation (1) closely follow the
linear orbits, until their norms exceed the threshold mentioned in Conjec-
ture 1.1. In other words, the linearization drives most orbits into a part of
phase space, where it can sustain its influence for much longer than normally
possible. Sander, Wanner(22) contains the version of this conjecture which
we are able to rigorously prove.

3.2. Eventually Linear Solutions

While the discussion of the last subsection explains why most solutions
of (1) exhibit almost linear behavior for a long time, it also indicates that
for certain initial conditions nonlinear behavior should set in much earlier.
In this subsection we verify the existence of these exceptional initial condi-
tions numerically. Moreover, we describe the evolution of these orbits.

Due to the discussion of the last subsection one expects that nonlinear
behavior sets in early if an orbit of (1) is close to the subspace W1 spanned
by .~ 1 or �1 . Figure 9 contains the results obtained from following the orbit
u of the Cahn�Hilliard equation originating at us=0.01 } .~ 1 for ==0.02.
For this, we decompose the phase space X 1�2=X +�X &, where X + is a
dominating subspace Y= generated by the eigenfunctions .k, = correspond-
ing to eigenvalues *k, =�

3
4 } *max

= , and let X & be generated by the remaining
eigenfunctions. The solid line in the upper left diagram depicts the first part
of the curve [(&u&(t)&

*
, &u+(t)&

*
): t�0] for the above orbit u, while the

dotted line depicts the corresponding curve for the linear solution v of (3)
originating in us . The two curves remain close to each other until &u(t)&

*
reaches the value 0.018, then they diverge. Thus, the nonlinear solution u
remains close to the linear solution v only for a short time. This can also
be seen in the lower left diagram, where the relative error &u&v&

*
�&v&

*
is
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Fig. 9. Temporal evolution of the Cahn�Hilliard equation and its linearization starting at
us=0.01 } .~ 1 for ==0.02 in the X &�X +�coordinates (upper diagrams), and corresponding
relative errors (lower diagrams).

plotted against the norm &u&
*

. By the time &u&
*

reaches 0.02, the relative
error is already bigger than 200.

The behavior of the orbits u and v described in the last paragraph is
what we expect. Nonetheless, the nonlinear orbit u exhibits linear behavior
up to large radii as well. To see this, let u� s denote the point on the orbit
of u satisfying the identity &u� s&

*
=0.0185. This point is marked by a small

star in the upper left diagram of Fig. 9. Moreover, let v� denote the solu-
tion of (3) originating in u� s . We claim that u and v� remain close up to
large radii, analogous to the last subsection. This is indicated in the upper
right diagram of Fig. 9. Again, the solid line depicts part of the curve
[(&u&(t)&

*
, &u+(t)&

*
): t�0] for u, the dotted line shows the corresponding

curve for v, and the dashed line represents the new linear solution v� .
Although the nonlinear solution visibly deviates from v� , the difference in
X &-direction is relatively small if compared to the norm of u. This can also
be seen in the lower right diagram, where the relative error &u&v� &

*
�&v� &

*
is plotted against the norm &u&

*
. Even when the norm &u&

*
reaches 80, the

relative error is only 10.
The above computations indicate that even for certain initial condi-

tions which are not close to the dominating subspace Y==X +, orbits
exhibit linear behavior up to large radii. However, in this case an orbit u
does not remain close to the linear solution v originating at the initial con-
dition us . Rather, due to resonance effects caused by the nonlinearity, the
orbit u quickly develops a nontrivial X +-part, say for u(t� )=u� s . Then u
remains close to the linear solution starting at u� s for a long time. In other
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words, the early onset of nonlinear behavior merely serves as a mechanism
for selecting a different linear solution which then describes the behavior of
the nonlinear orbit up to large radii. But once this selection has taken
place, the effect of the nonlinearity dies out again.

We close this subsection with a remark on the probability for observing
the different orbit behaviors. As mentioned at the end of Subsection 3.1,
a combination of the results of Maier-Paape, Wanner(21) with the results in
Sander, Wanner(22) will show that most orbits originating near the
homogeneous equilibrium u0#+ will remain close to the corresponding
linear solution up to large radii. In this context, most has to be interpreted
as with probability close to 1. Yet there is still a positive, albeit small, prob-
ability for observing different behavior, namely the one described in this
subsection. Of course there are also solutions which do not fall into either
of the above two categories. But we conjecture that the set of initial condi-
tions near u0 leading to solutions showing linear or eventually linear
behavior in the above sense is prevalent, as defined in Hunt, Sauer, and
Yorke.(17) This would explain why qualitatively, only one kind of behavior
is observed inside the spinodal region.

4. CONCLUSIONS

We have performed extensive numerical simulations to gain better
insight into the range of validity of existing mathematical explanations for
spinodal decomposition. Besides testing the approaches due to Grant(14)

and Maier-Paape, Wanner(20, 21) we also discover new phenomena. Namely,
the behavior of solutions of the Cahn�Hilliard equation (1) originating
near the homogeneous equilibrium u0#+ can be divided into three
categories:

v Unexpectedly linear behavior: Solutions of (1) which start near a
dominating subspace Y= as introduced in Maier-Paape, Wanner(20) will
remain close to the corresponding linear solutions up to extremely large
radii. A quantitative statement of this behavior based on our simulations is
Conjecture 1.1.

v Eventually linear behavior: These are solutions which experience the
influence of the nonlinearity in (1) already at small radii and therefore do
not stay close to the corresponding linear solution. But caused by the non-
linear effect they quickly select a different linear solution and stay close to
it up to large radii, similar to the first category.

v Truly nonlinear behavior: This category contains all the remaining
solutions originating near u0#+, such as certain unstable invariant
manifolds tangent to non-dominating eigendirections.
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In the forthcoming paper Sander, Wanner(22) we address solutions of
the first category. We show that most solutions belong to this category.
This, along with our conjecture that the first two kinds of solutions are
prevalent, would imply that spinodal decomposition actually occurs
``almost surely.''
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