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Monte Carlo simulations of surface reactions 

R.M. Nieminen, A.EJ. Jansen* 

Laboratory of Physics, Helsinki UniversiG' of Technology, FIN-02150 Espoo, Finland 

Abstract 

Numerical simulations based on the Monte Carlo method offer a powerful approach for detailed studies of complex reaction 

sequences, such as those associated with heterogeneous catalysis. In this article, we summarize some of the recent work based 

on discrete models for irreversible surface reactions. Particular emphasis is placed on kinetic phase transitions, bistability, and 

oscillatory (nonstationary) reactions. In addition to discussing some of the fundamental aspects of nonequilibrium kinetics, we 

show through specific examples that explicit Monte Carlo simulations can transcend traditional approaches based on rate- 

equation methods, in particular those invoking the mean-field approximation. This is particularly the case when local 

correlations and fluctuations among the reactants are important. 

Kevwords: Monte Carlo simulation; Surface reaction; Kinetics 

I. Introduct ion 

From the point of view of statistical physics, hetero- 

geneous catalysis under typical flow conditions is a 

prime example of a system whose macroscopic steady 

state is not described by thermal equilibrium [1]. The 

reactive steady state is characterized by macroscopic 

averages slowly varying in time, and yet the prob- 

ability of observing a given microscopic state of the 

system is not determined by the Boltzmann distribu- 

tion. 

There is considerable current interest in understand- 

ing the behavior of such systems, which in fact are 

quite common in nature. Such systems are usually 

open and subject to external driving forces. Examples 

of physical systems in this class include Rayleigh- 
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Benard convection [2], nonlinear optical materials [3], 

biological models for the spreading of diseases and 

bacterial colonia [4], self-organized criticality [5], 

traffic flow models [6], spinodal decomposition [7[, 

etc. 

Among the generic features of such nonequilibrium 

steady-state systems is that they can undergo a 'phase 

transition', meaning that the macroscopic variables 

(such as the yield of a chemical reaction) may undergo 

a singular change when the rates of the various 

microscopic processes are smoothly changed. A 

first-order transition signifies a jump, for example, 

in the coverage of a reactant on the catalyst surface. A 

higher-order transition implies a continuous change in 

the coverage but singularities in higher-order correla- 

tion functions, e.g. the mean-square density. However, 

unlike in systems in thermal equilibrium one cannot 

relate these quantities to derivatives of the free energy. 

The absence of thermodynamic equilibrium in such 

systems means that it is possible to find steady states 
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varying on several length or time scales. The spatio- 

temporal behavior can be periodic, quasiperiodic, or 

even chaotic. The steady state may thus exhibit spatial 

modulations, possibly coupled to temporal waves to 

produce reaction waves and fronts. For example, there 

is an extensive literature on catalytic surface reactions 

with temporal and spatial oscillations, including CO 

oxidation on Pt-group metals [8-10], NO-CO reac- 

tions on Pt and Pd [11-13], and oxidation of Ha on Pt 

[14,15]. 

The straightforward method to characterize and 

model nonequilibrium systems is to define a set of 

rules with associated probabilities for how the system 

evolves in its phase space from one configuration to 

another, and then describe the system in terms of so- 

called rate equations. For heterogeneous catalysis the 

phase space is spanned by the positions that can be 

occupied by the various chemical species present in 

the reaction system. The rules and probabilities would 

model the various reaction steps: adsorption, dissocia- 

tion, surface diffusion, reactions, desorption of reac- 

tion products, etc. Such dynamical rules can 

incorporate the knowledge of the individual reaction 

steps and substrate properties obtained from several 

surface science studies. 

The dynamical behavior of the system can then be 

formulated in terms of a Master Equation for the rate 

of change of the probabilities of observing each 

microstate. The Master Equation depends on para- 

meters (rate constants) that can be derived from 

microscopic rules and probabilities; they replace such 

intensive variables as temperature and chemical 

potential familiar from equilibrium systems. Since 

the microscopic rates usually do not obey detailed 

balance in nonequilibrium systems, one cannot in 

general determine the steady-state probability distri- 

butions. 

A popular simplification to be invoked for such 

systems and the relevant rate equations is the mean- 

field approximation, where one replaces the time- 

varying quantities by their temporal averages and/or 

spatially fluctuating quantities by their mean values 

[16]. Such mean-field models then lead to kinetic 

equations, which, even though usually nonlinear 

and coupled, are at least amenable to numerical solu- 

tions; often even analytical solution is possible. How- 

ever, it is clear that such models may miss some or all 

of the more intricate properties of the nonequilibrium 

steady-state system. Moreover, such sets of stiff dif- 

ferential equations can have serious nonphysical 

instabilities. 

For surface processes such as heterogeneous cata- 

lysis, the mean-field approach usually invokes Lang- 

muir's adsorption model and rate equations based on 

the law of mass action [17,18]. These are written in 

terms of (partial) differential equations involving the 

reactant concentrations on the surface and in the gas 

phase. They may also invoke the convection due to 

concentration and thermal gradients. The time evolu- 

tion of the set of equations is then studied as the rate 

coefficients are varied. Of particular fundamental 

interest are then the unusual solutions such as oscil- 

latory and chaotic behavior that the solutions may 

show. 

Mean-field theory implicitly assumes that coarse- 

grained averages, say, for surface concentrations, can 

be obtained accurately from averaged rate equations 

that ignore any local correlations. However, in surface 

catalysis it is obvious that local correlations can be 

important. The reactions can only take place between 

surface atoms or molecules in contact. Likewise, sur- 

face impurities can block sites, inhibit reactivity in 

their vicinity (poisoning) or locally increase the reac- 

tion rate (promotion). Reactants can be spatially seg- 

regated under the influence of high reaction rates so 

that the relevant reaction speed has little to do with the 

macroscopically averaged concentrations. 

By now there is substantial evidence for the 'anom- 

alous kinetics' [19] arising from the important role of 

local correlations and fluctuations. Further complexity 

is added by the existence of precursor states and lateral 

interactions, both adding to the complexity of the 

kinetics of surface rate processes [20]. It then becomes 

necessary to go beyond the mean-field type 

approaches for a proper understanding of the system, 

including its steady-state behavior and possible phase 

transitions. 

In this article, we summarize some of the recent 

work on nonequilibrium kinetics of heterogeneous 

catalysis. Rather than covering the vast literature on 

rate equation modeling, we mainly focus on direct 

Monte-Carlo-type simulations of surface reactions. 

The Monte Carlo method is vastly popular in 

equilibrium statistical physics [21], where the Boltz- 

mannian phase space density can be effectively 

sampled through the Metropolis algorithm. The 
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method can readily be generalized to the nonequili- 

brium case. 

Through comparison with rate equation 

approaches, we point out some of the unexpected 

and nontrivial generic features of selected model 

systems to underline the importance of local correla- 

tions in producing interesting temporal and spatial 

behavior. These features elucidate such effects as 

bistability between poisoning and reactivity, the asso- 

ciated critical properties, effects of diffusion, deso- 

rption and lateral interactions, effects of substrate 

instabilities, and mechanisms for oscillatory behavior. 

We will not attempt at a comprehensive review, but 

rather focus on a few examples, taken mainly from our 

own published work. 

The basic ideas of Monte Carlo simulation of 

relevant lattice models are summarized in Section 2, 

where particular emphasis is placed on the interpreta- 

tion of time scales in dynamical simulations. Two 

classes of model systems are discussed in Section 3. 

The first class includes the Ziff-Gulari-Barshad 

(ZGB) model for dimer-monomer reactions with its 

several extensions [22]. The ZGB-models are simple 

yet nontrivial descriptions of catalytic surface reac- 

tions, and isolate the salient features of large classes of 

reaction systems. The second class of model systems 

discussed in Section 3 is built around the Lotka model, 

which enables one to critically evaluate approximate 

theories of chemical kinetics [23]. Here the temporal 

behavior of reaction system is of particular interest. 

In addition to outlining some of the fundamental 

questions we also demonstrate the utility of Monte 

Carlo simulations as a practical tool for modeling and 

analyzing complex reaction systems. Monte Carlo 

simulation schemes are in general straightforward 

to implement, and they offer a powerful alternative 

to kinetic equation modeling. It will be emphasized 

that the local surface geometries and boundary con- 

ditions can be adopted in a straightforward manner 

through discrete lattice-gas-type models. Complicated 

reaction sequences are conceptually easily handled in 

terms of the local rules and associated probabilities. 

Lateral interactions between adatoms can be incorpo- 

rated in a transparent way. 

We discuss two explicit examples in Section 4. The 

first is the modeling of temperature-programmed des- 

orption (TPD) [24,25]. Special attention is paid to 

temporal behavior and lateral interactions. As the 

second example, we discuss in some detail the mod- 

eling of CO hydrogenation on model catalysts [26]. 

Building alternative models for the fairly complicated 

reaction sequence and comparing against experimen- 

tal yield curves makes it possible to identify the 

important mechanisms and the bottlenecks controlling 

the overall efficiency and product distributions. 

2. Monte Carlo simulation methods 

Various stochastic (Monte Carlo~ simulation meth- 

ods can be used to investigate surface reactions. Most 

of the techniques utilize the lattice-gas model, where 

the surface region is described by a discrete, regular 

two- or three-dimensional array of lattice sites. The 

reactant atoms and molecules occupy the sites, and are 

added to the system from a reservoir of the gas phase. 

The atoms and molecules adsorb, dissociate, diffuse, 

react and desorb according to the corresponding prob- 

abilities and rules. Mathematically, each grid point has 

a label that stands for the occupation of the corre- 

sponding site. The occupation numbers are succes- 

sively updated according to the reaction rules and 

rates. The system evolves dynamically, and may or 

may not eventually reach a quasi-equilibrium steady 

state. The updating can take place sequentially in 

various ways, or in parallel as in a cellular automaton. 

We outline here the most frequently used updating 

methods and comment on their interpretation. 

The simplest method is as follows. First a lattice site 

is chosen randomly. All possible reaction steps are 

checked to see which ones are possible at that site. The 

reactions may, of course, involve neighboring sites. 

The occupation numbers are then changed according 

to the possible reactions with probabilities that reflect 

the rate constants. 

Then the next site is chosen. After each site has been 

visited on an average once, a Monte Carlo time step 

has been completed. The full simulation consists of a 

large number of such steps. The total physical time is 

expressed in the number of Monte Carlo steps. 

This method is popular in particular for cases where 

one is interested in reaction systems under steady-state 

conditions. Then in fact the actual route how the quasi- 

equilibrium has been reached does not matter. Exam- 

ples of Monte Carlo simulations using this method are 

given in Section 4. 
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For systems that do vary in time, it is not clear how 

to determine uniquely the probabilities with which one 

chooses the reaction steps. Fichthorn and Weinberg 

[27] have discussed the dynamical interpretation of 

standard Monte Carlo methods used to obtain statis- 

tical averages. They have derived conditions under 

which the evolution of the system during a Monte 

Carlo simulation corresponds to real-time evolution. 

Let each possible reaction step i have a rate constant ki. 

If there are Ni reactions of type i that can occur 

independently, then a time lapse 

In r 
At - (1) 

fjNikj 

is generated, where r is a uniform random deviate 

with 0<r<l. The following steps are then repeated: ( I ) 

time is increased by At; (2) the system is changed 

with reaction i occurring with the probability Niki/ 

,~jNjkj; (3) after the reaction step has been completed 

the numbers Ni are updated. Sometimes the determi- 

nation of At is simplified by using the average step 

size 

1 

A t  = kTjNjkj" (2) 

It is not clear how important the errors that this 

approximation introduces are. 

The method of Fichthorn and Weinberg can be 

justified for systems in equilibrium. It is often assumed 

that it is also correct for nonequilibrium cases. The 

method does not explicitly specify how to obtain the 

rate constants ki. Meng and Weinberg [28] have 

extended the method to simulate TPD experiments, 

a topic discussed at greater length in Section 4. They 

assume that the rate constants change only negligibly 

in the interval At and that values (at the temperature) 

of the starting instant of At can be used. It is clear. 

however, that the rate constants do change with time. 

Consequently At----1/SjNjkj will be systematically too 

large. This is particularly the case in the beginning of 

the simulation when the rate constants are small. 

The temporal evolution of lattice-gas models is 

quite generally described by the Master Equation [25]: 

dP{sl} 
dt - [W{s,}{s/}P{~,,} - W{s,,}{~,}P{s,}] (3) 

in statistical physics literature. Here si stands for the 

occupation of site i, { s~} denotes the occupations of all 

sites, i.e the configuration of the system. P{s,} is the 

probability to find the system in configuration {si}, 

and W{~/}{s,} is the transition probability per unit time 

for the process that changes the system from config- 

uration {si} to configuration {s/] .  The transition 

probabilities are the microscopic analogs of rate con- 

stants. It is important that this equation describes the 

evolution in real time, and it should not be confused 

with the Master Equation of the dynamical interpreta- 

tion of standard Monte Carlo methods. In fact, the 

above equation can be derived from first principles. 

In thermal equilibrium, the derivation yields 

expression for the transition probabilities of the famil- 

iar form 

where Z~Eac t denotes the activation free energy for the 

microscopic reaction step in question. This means that 

the transition probabilities can be determined in prin- 

ciple using quantum chemical methods. 

There are a number of methods for approximate 

solving of the Master Equation, and for some systems 

it is even possible to solve it exactly. Here we are 

naturally interested in solving it using stochastic 

(Monte Carlo) methods. If the transition probabilities 

are time-independent, one method is equivalent 

to that of Fichthorn and Weinberg [27,29,30]. We 

have 

In r 
At = (5) 

S{~,} W{~,,~{s,} ' 

and the reaction that changes {si} to { s / }  should be 

chosen with the probability W{s/}{s,} /~{~, ,}  W{s,'}{s,}. 

Alternatively it is possible to determine a time step 

At{~/}{s3 for each reaction [25] as 

In r 
/~t~s,,}{~,~ - W~s,,}{s,} (6) 

The reaction that occurs first is the one with the 

smallest time step. This method is somewhat less 

efficient than the previous one, but has the advantage 

that in can be extended to situations where the transi- 

tion probabilities are explicitly time-dependent. For 

example, in TPD simulations with linear time depen- 

dence for temperature analytical expressions can be 

derived for At{s/l{,,} (see Section 4 below). 
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3. Simple systems 

There is no fundamental difference between the 

systems of this section and those of the next. Yet there 

are good reasons to treat them separately. We call the 

systems of this section 'simple', because it is possible 

to obtain highly accurate numerical results by using 

Monte Carlo simulations, while one can also apply 

many approximate theories and test them in detail. 

There need be nothing simple about the behavior of 

simple systems. They show kinetic phase transitions, 

bifurcations, oscillations, chaos, etc. In fact, they are 

often also used to isolate some specific behavior and to 

determine the mechanisms that causes it. This know- 

ledge can then be used to interpret the behavior of 

more complex systems. 

The systems that are treated in this section are not 

the simplest one can imagine. Unimolecular reactions, 

like monatomic desorption and adsorption, can often 

be treated exactly using simple analytical methods 

[25,311. Exact results can also be obtained for some 

bimolecular reactions, e.g., 1D models of annihilation 

and coagulation [32]. Here we will discuss the Ziff- 

Gulari-Barshad model and the Lotka model. For these 

systems there are few analytical results, and Monte 

Carlo simulations have to be used to obtain results that 

are numerically exact. One should also emphasize that 

the focus in this section is in discussing the nontrivial 

generic features of such models rather than in model- 

ing specific surface reactions in detail. 

3.1. The Z i f f -Gu lar i -Barshad  model  and some 

extensions 

The Ziff-Gulari-Barshad model (ZGB-model) 

describes the oxidation of CO on a catalytic surface. 

In its original form it contains only three reactions 

I22]: 

CO(gas) + • ~ CO(ads), (7) 

Q(gas)  + 2* ~ 20(ads), (8) 

CO(ads) + O(ads) ~ CO2 + 2,. (9) 

Here * represents a vacant site, and the two sites 

involved in the last two reactions are nearest neigh- 

bors. The sites are assumed to form a regular lattice, 

for example a square grid. The formation of CO2 is 

assumed to occur immediately after a CO and an 

oxygen atom become adsorbed on neighboring sites. 

The adsorption of CO and 02 can have a finite rate 

constant. 

Fig. l shows the main result of Monte Carlo simu- 

lations of the ZGB-model [22]. The CO2 production is 

clearly not a simple function of the rate constants; 

there is even a discontinuity. The parameter y is 

defined as the fraction of all molecules in the gas 

phase that are CO molecules, and we assume that 

sticking coefficients are equal to unity. We can dis- 

tinguish three ranges. If y<yl~0.3873~=0.O001 [33] 

the CO pressure is low compared to the 02 pressure. 

As a consequence the surface is completely covered 

by oxygen, and no CO2 is produced. For 

yl<y<y2=0.52560±0,00001 [34] the CO adsorption 

is competitive with oxygen adsorption, and the CO2 

production increases with CO pressure. The transition 

at Yl is a second-order (continuous) kinetic phase 

transition. For Y>Y2 the 02 pressure is low compared 

to the CO pressure, we have CO poisoning, and again 

no CO2 is produced. The kinetic phase transition at Y2 

is first order, because the CO2 production rate changes 

discontinuously. Once the reaction conditions have 

been defined by fixing the single parameter y, the 

phase diagram is uniquely defined. 

In the original ZGB-model the poisoned states 

remain stable once they have formed, as there is no 

reaction to remove adsorbates after the surface has 

become completely covered by either CO or oxygen, 

i.e. no desorption. Thus by sweeping the reaction 

conditions the system can find itself in the 'wrong' 

state, i.e. exhibit bistable or hysteretic behavior. As 

will be shown below, this so-called multiplicity plays a 

role in some mechanisms that cause oscillations. 

Before describing extensions of the original ZGB- 

model, we would like to present the results one obtains 

by applying macroscopic rate equations [35]. In the 

mean-field approximation, the rate equations for the 

CO and O coverages are given by 

dOco 
- yO, - 4KOcoOo, (10) 

dt 

d0o = 2(1 - 3,)02 - 4KOcoOo, ( 11 ) 
dt 

where K is the rate constant for the oxidation step 

( K - - ~ c ) ,  and the coefficient 4 is for a square grid. 

Time has been scaled to simplify the coefficients of the 

adsorption terms. Although the form of these equa- 
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Fig. 1. The CO2 production in the ZGB-model as a function of the CO fraction y according to the Monte Carlo simulations (solid line), and 
according to the macroscopic rate equations (dashed line). 

tions is obvious, a comparison with the Monte 

Carlo results is only possible when the coefficients 

of  the coverages on the right-hand-side are expressed 

in terms of  the same parameters that are used 

in Monte Carlo. This can be done if one bases 

the Monte Carlo simulations on a real-time 

Master Equation, and derives the rate equations 

from this [25,36]. One needs to introduce, 

however, the approximation that the adsorbates are 

randomly distributed. For the comparison of  steady- 

state values, temporal scaling is obviously not impor- 

tant. 

Fig. 1 also shows the CO2 production as a function 

of  y from the macroscopic mean-field rate equations. 

The equations have two or four equilibrium points, 

where the time derivative of  the coverages vanish. The 

CO-poisoned state and the O-poisoned state corre- 

spond to equilibrium points for any y. For 

y < y2' = 2 /3  there are also two reactive states (i.e. 

CO2 producing states). However, the O-poisoned state 

is unstable, as is one of  the reactive states. At y2  p there 

is a saddle-node bifurcation at which the reactive 

states annihilate and the system moves to the CO- 

poisoned state [37,38]. 

There are two obvious discrepancies between the 

macroscopic rate equations and the Monte Carlo 

results. There is a O-poisoned state in Monte Carlo, 

and the values of  Y2 and y2 p differ substantially. The 

range in which there is a stable reactive state is grossly 

overestimated by the mean-field rate equations. Visua- 

lization of  the reactive state in Monte Carlo reveals the 

origin of  the discrepancies. The adsorbates are not 

randomly distributed, but form well-separated CO and 

oxygen islands. This allows for nonzero coverages of  

CO and oxygen in the reactive state, whereas the 

macroscopic rate equations predict that 0 c o = 0  or 

0 o = 0  always, because K--~oc (note that KO¢o, respec- 

tively, KOo need not be zero). 

Although the macroscopic rate equations written in 

the mean-field form have serious defects, they are 

computationally much less time consuming than the 

Monte Carlo simulations. Therefore, it is tempting to 

seek ways to go beyond the mean-field approximation 

(while retaining the computational efficiency) by 
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including correlations in the occupation of the surface 

sites [39,40]. Instead of Eqs. (10) and (11) one then 

has 

dO¢o 
- 3'0. - 4K(CO O), (12) 

dt 

d0o 
d~-= 2(1 - y ) ( * * )  - 4 K ( C O  O), (13) 

where (CO O) is the probability that at an arbitrary 

horizontal pair of neighboring sites the left site is 

occupied by CO and the right by O, and (**) is the 

probability that both are vacant. These and similar 

quantities are called two-point probabilities (in gen- 

eral N-point probabilities) [39], or distributions [40]. 

Assuming that only nearest-neighbor reactions take 

place (as in the original ZGB-model), Eqs. (12) and 

(13) are exact. One can introduce higher-order dis- 

tributions (defined in an obvious way) to write down 

hierarchical equations for the occupation prob- 

abilities. For example, 

[ *] d(COO}=y(*O)+~(l-y) {CO * * > + < C O  * 
at > 

--K(COO)-Kf(OCO0)+(O C%)] 
-K[(COOCO)+(C O C2> ]. (14) 

These equations, which depend on three-point distri- 

butions, are exact as well. However, we see the 

problem with this approach. We have to introduce 

distributions depending on the occupation of more and 

more sites. In fact, we get an infinite hierarchy of rate 

equations [39], which must be terminated by expres- 

sing an N-site distribution in terms of lower-order 

o n e s .  

The mean-field approximation is the simplest 

such termination. It expresses all distributions as 

products of coverages; in particular, ( C O 0 )  

= 0co0o and ( * * ) =  02~. This leads to the macro- 

scopic rate Eqs. (10) and (11) we have seen before. 

Approximations that use distributions of two sites 

or more are called cluster approximations. Well- 

known from the Ising model [41,42] is the Kirkwood 

approximation [43], based on the idea of approximat- 

ing a three-point distribution as product of two-point 

ones. It is given by 

(XYZ) = (XY)(YZ)(X.Z) 
0x 0v 0z ( 15 ) 

where the dot in the last distribution means that the 

central site can be occupied by anything. This approx- 

imation has the drawback that it violates sum rules like 

Z ( X Y Z )  = (XY). (16) 
Z 

It is, therefore, sometimes better to use another pro- 

duct approximation [23,44] 

(XYZ) -- (XY)[YZ / (17) 
0v 

This approximation fulfills at least the sum rules with 

summation over X and Z. This is appropriate for 

clusters where X and Z are not neighbors, but not 

for the triangular clusters that one has on hexagonal 

grids. Mai et al. have applied the cluster approxima- 

tion to the ZGB-model, and have found a clear 

improvement with respect to the mean-field approx- 

imation [40]. 

Apart from the fact that one expects cluster approx- 

imations to be more accurate than the mean-field 

approximation there are some other aspects that 

deserve attention. There is, of course, the practical 

problem that, as the number of differential equations 

increases, it becomes harder to determine the steady 

states. More important is that qualitatively different 

behavior may be obtained. If we use only equations for 

0co and 0o. i.e., only two differential equations, as in 

the mean-field theory, it can be shown that the steady 

state can only be an equilibrium point or a limit cycle 

[37]. For Eqs. (10) and (11) it has even been shown 

that the steady state is an equilibrium point, which 

means that there can be no oscillations in the context 

of mean-field theory 145 I. With more than two differ- 

ential equations, i.e. beyond mean-field theory, much 

more complex behavior, including chaotic, becomes 

possible. We would like to point to what seems to be a 

very fundamental problem with these equations, how- 

ever. Oscillations and chaotic behavior are a conse- 

quence of nonlinearity. In the hierarchy of exact 

equations nonlinearity is hidden in the higher-order 

terms. Thus the approximation used to truncate the 

hierarchy affects the consequences of the nonlinearity, 
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and the results depend even qualitatively on the 

approximation used. This makes the specific interpre- 

tations of nonlinearity somewhat suspect. 

There exist various extensions of the original ZGB- 

model, most of which have been added to make it 

more realistic in describing catalytic surface reactions. 

Processes that have been added include desorption of 

CO and 02 [40,46-58], diffusion of the adsorbates 

[45-47,52,59-63], an Eley-Rideal mechanism for the 

oxidation step [51,64], and physisorption of the reac- 

tants [50,64,65]. The reactions have been modified to 

include lateral effects [46,66-68], and the rate con- 

stant of the oxidation step has been made finite 

[46,47,56,57,63,69]. The surface has been modified 

by blocking sites to model poisoning by lead [70] or 

alloying [71]. In order to obtain oscillations the 

oxygen adsorption has been made dependent on the 

CO coverage [72]. The reconstruction of the surface 

has been added [73] and an inert adsorbate has been 

introduced [36]. We will make a few remarks about 

some of these extensions, and then take a closer look at 

the effect of an inert adsorbate. 

The diffusion of the adsorbates is interesting, 

because it has implications for our evaluation of the 

approximations that we have discussed before. One 

would expect that if the diffusion is much faster than 

the other reactions that the adsorbates will be distri- 

buted homogeneously over the surface, and that the 

mean-field approximation will give accurate results. 

According to some authors this is indeed the case 

[47,61 ]. However, there are indications that even in the 

limit of infinitely fast diffusion the mean-field 

approach is not quantitatively correct [32]. Monte 

Carlo results show that the first-order transition should 

shift to higher values of y and the second-order 

transition to lower values of y when diffusion is 

included. Within the mean-field theory, the first-order 

transition seems to shift only to about 

y=0.5951 ±0.0002 and y=2/3 is only a spinodal point 

[62]. The reason for the difference is that mean-field 

theory neglects fluctuations as well as local correla- 

tions. 

The most important effect of desorption is that it 

allows the system to get out off the states where the 

surface is poisoned by CO or oxygen. It does this by 

creating vacancies where the other adsorbate can 

adsorb. This is important for the existence of oscilla- 

tions as will be shown below. Another effect is that the 

reactive state is stable at higher values of y. If the rate 

constant for desorption is above some critical value, 

the first-order transition becomes second order [55]. 

If an inert adsorbate is included that only adsorbs 

and desorbs, but does not participate in the oxidation, 

then it is possible that the system oscillates [36]. This 

can be seen in Fig. 2. The explanation for this effect is 

as follows. The rate constants for CO and 02 adsorp- 

tion should be such that only the reactive state is stable 

when there is no inert adsorbate on the surface. If we 

increase the coverage 0x of the inert adsorbate the 

adsorption is suppressed. As 02 needs two sites its 

adsorption is reduced most, which destabilizes the 

reactive state. Hence there will be a transition to 

the CO-poisoned state at a certain coverage of the 

inert adsorbate. CO desorption must thus be included 

to avoid the surface becoming completely covered by 

CO. Starting from the CO-poisoned state and reducing 

0x by the desorption of X will lead to a transition back 

to the reactive state at some other value of 0x. Fig. 3 

shows the hysteresis curve that can result. If  the 

adsorption and desorption of the inert adsorbate is 

slow, the oxidation will always be in a quasi-steady 

state. It is possible, however, that there is no stable 

steady state for the whole process. As a consequence, 

the attempt of the system to reach a steady state for 0x 

leads to oscillations (see Fig. 3). 

It is very interesting to visualize the adlayer at 

different points of the oscillatory cycle. Some snap- 

shots are shown in Fig. 4. When the system is in the 

reactive state there are CO and oxygen islands. The 

CO islands are small. They have to grow to make the 

transition to the CO-poisoned state possible, which 

they do by configuring themselves in such a way that 

the inert adsorbate forms a carapace that shields them 

from oxygen. The transition from the CO-poisoned to 

the reactive state occurs when a small hole is formed 

via CO desorption in the CO layer, where oxygen can 

then adsorb. The hole is enlarged very rapidly, and a 

reaction front moves over the whole surface. This fast 

process forms the synchronization mechanism that 

makes the oscillations global. 

3.2. The Lotka model 

As has been mentioned before, simple systems can 

be used to study the essential properties of a real 

system by isolating them, or to study approximate 
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Fig. 4. Snapshots of the adlayer at different moments during one cycle of oscillation, obtained from a Monte Carlo simulation with a 64x64 

square grid. The CO molecules are depicted by crosses and O atoms by open circles. The closed circles depict the inert adsorbate X. The 

reactive state is shown in (a), and the CO-poisoned state in (c). The transition from the reactive to the CO-poisoned state is shown in (b), and 

the backward transition in (d). For details of the transition probabilities in the Monte Carlo simulation, see Ref. [36]. 

theories of chemical kinetics. The ZGB-model is 

mainly an example of the former kind, whereas the 

Lotka model is more an example of the latter. It too 

consists of just three reactions [23,74]: 

A(gas) + * ---* A(ads), (18) 

B(ads) --~ B(gas) ÷ , ,  (19) 

A(ads) ÷ B(ads) -~ 2B(ads). (20) 

In the last autocatalytic step A and B have to be nearest 

neighbors, and the step is infinitely fast. It is con- 

venient to scale time so that the rate constant of the A 

adsorption equals ( and that of the B desorption 1 - ¢  

with 0 < ( < 1 ,  so that the whole process is a function of 

just one parameter. We will mainly present results for 
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two-dimensional square grids, but some results for a 

one-dimensional and a three-dimensional cubic grid 

will be presented as well [74]. 

This system has been studied first by Mai et al. [23]. 

They concluded that the mean-field approximation to 

the rate equations gives incorrect values for the cov- 

erages of A and B, and that it even fails to predict the 

behavior of the model qualitatively; the Monte Carlo 

simulations show oscillations, whereas mean-field 

predicts a stable equilibrium point and a saddle point. 

Better values are obtained for the coverages within a 

cluster approximation, but also that approximation 

does not predict oscillations. It is thus instructive to 

study the oscillations more closely. 

The mean-field approximation to the rate equations 

describing the Lotka model reads 

d0A 
= ~0, -- 4KOAOB, (21) 

dt 

d0B 
- -  (1 - ~)0B + 4KOAOB. (22) 

dt 

For the rate constant of  the autocatalytic step K--~ec 

holds. The equations above are written for a square 

grid, which explains the coefficient 4 [25,36]. The 

equilibrium points of these equations are 0A= 1, Oa=O, 

and OA=(/4K,  O B = ( 4 K - ( ) / 4 K .  The A poisoned state 

corresponds to the saddle point, so that the system will 

evolve to 0A=0, ( B = (  in the limit K - - ~ .  Fig. 5 

compares this result with the Monte Carlo results. 

We see that especially the value for 0A is completely 

incorrectly given by the mean-field approximation. 

The reason for this we have already seen in the ZGB- 

model. The fast autocatalytic step causes one of  the 

coverages to be zero in the mean-field theory, whereas 

in the simulation isolated A and B islands can be 

formed. 

The same figure shows also the results of  a cluster 

approximation. The rate equations for the coverages 

and the two-site distributions are given by 

d0A 
-- ~0, -- 4K(AB), (23) 

dt 

dOB 

dt 
- (1 --()0B +4K(AB} ,  (24) 

0.5 

0 4  

0.3 
t ~  

o 0 2  

0.1 ...-" 

0 - 

0 0.1 0.2 0.3 0.4 
zeta 

Fig. 5. The average coverages of A and B as a function of ~ determined by the mean-field approximation (dashed lines), the cluster 
approximation (solid lines), and Monte Carlo simulations (symbols). The coverage of B is an increasing function of (, whereas the coverage of 
A is a decreasing function. 
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d(AB) 

dt 

d(AA) 

dz 

d(BB) 

dt 

- -  - ( (B, )  + 3K(AAB) - 3K(BAB) - K<AB) 

(25) 

(26) 

- ( 1  - ( ) ( A B ) ,  

- -  -- 2((A*) + 6K(AAB), 

- 2K(AB) + 6K(BAB) - 2(1 - ()(BB). 

(27) 

Here (XY) is the probability to find an Y to the right of 

an X at an arbitrary horizontal pair of neighboring 

sites. We have used 

X y 
( X Y ) = ( Y X ) = ( ) = ( X  )' 

and we have assumed that the three-site distributions 

are the same for straight and bent triplets of sites. 

Other two-site distributions than the ones found above 

can be determined by sum rules. We decouple the 

equations above by [23,44]: 

(AAB / _ (AA)(AB) 
0A ' (28) 

(AB)2 (29) 
(BAB/ ---- 0A 

The steady state is then given by 

4( 2 -- 5(  + 1 

0A = 3 12(2 _ 1 1 ( +  11' (30) 

( + 2  
0B = 4(  12(2 _ 11( + 11 (31) 

if ( <  1/4 and 0A=0, 0B=( if (_> 1/4 both in the limit 

K--~cc, which is better than the mean-field result, but 

there are clearly still differences with the simulations 

results. 

Mai et al. have argued that distributions with AB 

pairs should not be approximated [40]. In the limit 

K---~ec they become zero, but multiplied by K they 

may have some finite value. Instead rate equations of 

these so-called virtual distributions should be used to 

derive exact relations that express them in terms of 

nonvirtual distributions. Only the latter should be 

approximated. The results improve slightly with 

respect to Eqs. (30) and (31), but the difference 

vanishes in the limit (--,0. In fact the best agreement 

with the Monte Carlo simulations was obtained with 

the simple scheme (AAB)=0A(AB) and (BAB) 

=0B(AB/. 

The rate Eq. (23) and (24) are exact, but when taken 

alone seem not useful because of the presence of the 

term with (AB). We can, however, eliminate this 

distribution and arrive at the following exact relation 

for a steady state [74]: 

0A q- ~0B = 1. (32) 

When there are oscillations this relation still holds, 

provided we interpret the coverages as time-averaged 

coverages. This relation is an important guide to study 

the behavior of the Lotka model in the limit (--~0. 

Fig. 6 shows how the coverages change as a func- 

tion of time. We see clearly periodic oscillations. 

These had already been seen by Mai et al. [23]. Their 

correlation analysis predicted a Hopf-bifurcation from 

a stable equilibrium point to a limit cycle [3?]. The 

Monte Carlo simulations do not show such a bifurca- 

tion, however. One only finds that the amplitude of the 

oscillations become smaller when ( increases for a 

fixed grid size [74]. 

The amplitude of the oscillations also decreases 

when the grid size increases. This has been attributed 

by Mai et al. to the stochastic nature of the simulations 

[23]. Our interpretation is, on the other hand, that we 

are dealing with local oscillations, which are insuffi- 

ciently coupled to yield global oscillations. This can 

be shown by doing simulations on a large grid and 

looking at only a small part of it. The results show that 

the amplitude of the oscillations in the small part is the 

same as the amplitude in a simulation with a small 

grid. When the local oscillations are not coupled they 

will oscillate out of phase, which leads to destructive 

interference and reduction of amplitude. Another 

indication that one sees essentially the same oscilla- 

tions independent of grid size is that the power spectra 

of all simulations with the same ( are identical except 

for a scaling of the peak heights. 

The fact that the amplitude of the oscillations 

increases when ( becomes smaller indicates that the 

synchronization mechanism that couples the local 

oscillations becomes more effective. The question 

therefore arises if there is a point at which the oscilla- 

tions do become global. To answer this question we 

need information on the origin of the oscillations. We 

note in Fig. 6 that the oscillations consist of a sudden 
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Fig. 6. The coverages of A (solid line) and B (dotted line) as a function of time. The data have been obtained from a Monte Carlo simulation 

of the Lotka model with (=0.05 on a 2048×2048 grid. 

increase of 0B and a corresponding decrease of 0A, 
followed by a smooth decrease of 0B and a smooth 

increase of 0A. The fact that the sudden increase of 0B 

and the decrease of 0A are equal in size points to an 

avalanche of A+B---*2B reactions as the cause of the 

oscillations. The decrease of 0B is simply B desorp- 

tion. As can be derived from Eq. (24) this decrease is 

exponential. The increase of 0A is A adsorption, which 

has a more complicated time dependence, because the 

number of vacant sites changes due to A adsorption 

and B desorption. 

The amplitude of the oscillations will increase when 

the size of the avalanches increases. We can define two 

average avalanche sizes. The average size (S)ads per A 

adsorption is given by 

N. 

(S)ads = Z SPads (S), (33) 
s~0 

where Pads(s) is the probability that an adsorption of A 

is immediately followed by an avalanche of size s. An 

avalanche of size s=0 means an adsorption of A on a 

site without neighboring B. As each A that adsorbs 

will disappear by participating in an avalanche that 

transforms it into a B, we have 

{S)ads = 1. (34) 

Alternatively, one can look only at real avalanches; 

i.e., of size larger or equal to one, The average size 

(S)ava of these is given by 

,)c 

(S)ava = Z sPava(S), (35)  

s=l 

where Pava(S) is the probability that an avalanche has 

size s. This probability is proportional to Pads(s). The 

proportionality constant can be derived from the nor- 

malization. We have Es=0~ Pads(S) = 1 and ~,~1 

Pava(S) = l, which leads to 

Pads(S) 
Pava (s)  - -  (36) 

1 - Paas(O) 

From this we immediately get 

l 

(S)ava -- 1 -- Pads(0) (37) 

If ( is small, 0~ is small as well, and we may assume 

that all B's are well separated. In that case 
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Fig. 7. Size distributions of avalanches in which A's are converted into B's. The data have been obtained from a Monte Carlo simulation of the 

Lotka model with (=0.05, 0.07, 0.11, 0.15, and 0.20 on a 2048x2048 grid. 

O ,  - 40B 
Pads(O) O, 

SO that 

(38) 

O, 1 - - (  
(S)ava ~--- 40B 4 (  (39)  

In the last step we have used Eq. (32). From this we 

see that for (---~0 the avalanche size diverges, which 

leads to global oscillations. 

It is also quite interesting to take a closer look at the 

distribution of  the size of  the avalanches itself. It is 

clear that, if the size distribution is exponential (i.e. 

Pava(S)~exp(-s/cr)), then /s),va will be finite. This is 

not the case if we have a power law Pava(S)O~s - T  with 

T<2. Fig. 7 shows that we have indeed such a power 

law. Discrepancies at small s have no effect on the 

divergence of  (S)ava. Those at large s are a conse- 

quence of  a finite grid size, insufficient statistics 

due to a finite simulation time, and the fact that (s),va 

only diverges for (---~0. The power law is, however, 

clearly visible. The exponent seems even independent 

on  ~. 

The dimension two can be identified as the upper 

critical dimension for the Lotka model. Indeed, simu- 

lations on a three-dimensional cubic grid also show 

local oscillations for all (. On the other hand, simula- 

tions in one dimension show no oscillations. Instead 

one has a kinetic phase transition at (c~0.24, above 

which 0A<I and below which 0A=I.  At and above the 

critical dimension critical exponents can be obtained 

from the mean-field approximation [75]. That this is 

indeed the case can be seen with the help of  Eq. (32). 

Mean field predicts that 0BOX(, SO that according to 

Eq. (32) 0A need not become one at (=0 .  For dimen- 

sions two and three, 0A<I for (--~(c (=0), and 0B~X( as 

can be seen from the simulations. For dimension one 

OA---+I for (---~(c and OBO(((--(c ) with/3>1. 

3.3. Comments on oscillations 

A mean-field approach for, say, a chemical reaction 

involving two species (and thus two coupled nonlinear 

rate equations) can often lead to bistability. The pre- 

sence of  a third degree of  freedom then allows a 

feedback path, which can lead to oscillations, quasi- 
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periodic or even chaotic solutions. In heterogeneous 

catalysis, the third degree of freedom can arise for 

several reasons. Known examples are the variations of 

the reactant adsorption rates due to adsorbate-induced 

surface reconstructions [8-10], adsorption to subsur- 

face sites [761, and the blocking of adsorption sites 

through an inert adsorbate (discussed above). Other 

mechanisms are the coupling of the surface processes 

to pressure or temperature variations in the gas phase 

[77,781. 

As elaborated above, while mean-field theory can in 

some cases give a qualitative way to discuss the 

dynamical transitions, it is usually quantitatively in- 

accurate. For example, mean-field theory can seriously 

overestimate the range of parameters where such 

effects occur. It can also turn a first-degree transition 

to a second-order one [79]. 

Bistability and oscillations can be regarded as to 

arise from a competition between two attractive fixed 

points in the phase space of the system. In mean-field 

theory the transition from one point to another occurs 

when the point looses its attractivity. However, in 

equilibrium statistical mechanics the (meta)stability 

of a phase in the coexistence region is governed by the 

rate of fluctuations. They nucleate a small region of 

the other phase and allow it to grow. Thus the region in 

parameter space where dynamical effects are observed 

is diminished when spatial fluctuations are included. 

As a specific example, let us consider the case of 

CO oxidation on Pd and Pt surfaces. Several mechan- 

isms for causing oscillations in this type of reactions 

have been suggested in the literature. For Pt surfaces, 

the oscillations observed at low pressures have been 

ascribed to changes in the oxygen sticking coefficient 

induced by surface reconstruction. At higher pressures 

oxide formation has been postulated as the dominant 

mechanism [80]. Stable oscillations and period dou- 

bling have been observed on Pd( 1 1 0) [81]. They have 

been tentatively associated with the penetration of 

chemisorbed oxygen to the Pd bulk, experimentally 

proven by Ladas et al. [82]. Another experiment on Pd 

has shown none of the spatial structures observed for 

CO on Pt, presumably due to the homogenizing effect 

of gas-phase coupling [83]. A mean-field theory with 

subsurface oxygen changing the sticking coefficient of 

gas-phase oxygen reproduces the oscillations and the 

bifurcation. Successful modeling of the oscillations 

has been conducted by Imbihl et al. [77,84], and 

spatiotemporal patterns were shown to exist in this 

system [85]. There is also the observation that CO 

adsorption may trigger surface reconstruction on Pd, 

which may thus play a role as on Pt [86]. The mean- 

field theory results in oscillations between two non- 

oscillating steady states, while the observations indi- 

cate switching between two oscillating states. Thus 

there might be additional feedback mechanisms in 

producing the oscillations. 

The question of the origin and nature of the oscil- 

latory reactions is a complex one. In particular, the 

role of local correlations and fluctuations in affecting 

the stability, shape and period of oscillalions is far 

from clear. It appears that careful and extensive Monte 

Carlo simulations are necessary to uncover the subtle- 

ties of oscillatory surface reactions. 

4. Applications to realistic systems 

4.1. Temperature-programmed desorption spectra 

TPD is a very elegant method to determine kinetic 

parameters of surface processes, but, although the 

experiment is conceptually very simple, the interpre- 

tation of the spectra often is not. A nice review with 

older Monte Carlo work on TPD has been written by 

Lombardo and Bell [24]. The drawback of the work 

presented in that review is the fact that the time 

dependence of the simulations is not correct. The 

explicit time dependence is especially important for 

simulating TPD, because without a correct temporal 

scaling spectra taken with different heating rates 

cannot be compared. The problem of the correct time 

dependence in Monte Carlo simulations of TPD has 

first been addressed by Meng and Weinberg [28] 

following a more general study by Fichthorn and 

Weinberg [27]. We have developed a method in which 

times, at which reactions occur, are generated accord- 

ing to a probability distribution for them [25]. For 

time-independent reaction rate constants this is a well- 

known and simple method [29,30]. The probability 

distributions are exponentials. In TPD the rate con- 

stants are no longer constant, and the probability 

distributions are more complicated. 

Monatomic desorption without lateral interactions 

is a simple process; the TPD spectrum can even be 

calculated analytically [25]. When lateral interactions 
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Fig. 8. TPD spectra showing the desorption rate (in units of the 
number of Xe atoms per second per site) as a function of the 
temperature (in K) for heating rate B=I K s -1. The dots are results 
directly from the MC simulations, and the lines connect MC results 
with the same initial coverage. The five curves are from left to right 
for initial coverage 0.598, 0.698, 0.806, 0.906 and 1.000. 
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Fig. 9. TPD spectra showing the desorption rate (in units of the 
number of K atoms/CO molecules per second per site) as a function 
of the temperature (in K) for heating rate B=2.5 K s ~. The dots 
are results directly from the MC simulations, and the lines connect 
MC results with the same initial coverage. The curve with just one 
peak is CO, and the curve with two peaks is potassium. 

are included the interpretation of  the TPD spectra 

becomes difficult. Experimental ly the spectra of  

Xe/Pt(1 1 1) seem of  order zero [87], with the order 

of  the process signifying the power-law coverage 

dependence of  the desorption rate. It is determined 

as the logarithmic derivative of  the rate with respect to 

the coverage. A molecular  dynamics study suggested 

that for Xe on Pt the low order of  the process might be 

caused by attractive X e - X e  interactions [88]. A Monte 

Carlo study on the influence of  attractive interactions 

on TPD spectra showed that even small interactions 

can change the apparent order of  the desorption sub- 

stantially, and can even make it negative [89]. The 

results of  a Monte Carlo simulation of  Xe/Pt( l  1 1) is 

shown in Fig. 8. 

A comparison with experiments indicates that the 

situation is more complicated than one would expect. 

Lateral interactions have two effects. First, they deter- 

mine the structure of  the adlayer. Attractive interac- 

tions lead to island formation at low temperatures. 

Second, they determine the rate of  desorption, which 

will be dependent on the number of  neighbors. If  the 

second effect is negligible, the first is irrelevant. If  the 

first effect is negligible and the adsorbates are dis- 

tributed randomly over the surface, the second effect 

changes the order maximally.  In Xe/Pt(1 1 1) both 

effects are present. The net result is that the order 

of  the desorption is about zero, and some short-range 

order can be observed [89]. 

A nice example of  the power of Monte Carlo 

simulations is the prediction that repulsive lateral 

interactions can lead to mult iple-peak spectra [24]. 

This is because, after adsorbates with many neighbors 

have desorbed, the remaining adsorbates have few 

neighbors and are bound to the surface stronger, 

and will only desorb at much higher temperatures. 

A combination of  attractive and repulsive interactions 

is found in K+CO/Co(0  0 0 1) [90]. The simulated 

spectra shown in Fig. 9 show two potassium peaks and 

one CO peak at the same temperature as the higher 
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potassium peak. The explanation for the spectra is that 

the K-K interaction is repulsive, which leads to two 

peaks. The reason why the CO peak and one potassium 

peak are at the same temperature is that there is an 

attractive K-CO interaction. Desorption of one adsor- 

bate decreases the activation energy for desorption of 

the other, so that it desorbs following immediately the 

desorption of the first. 

TPD experiments with reactions occurring on the 

surface are often called temperature-programmed 

reaction experiments. An example is the reduction 

of NO on Rh(1 1 1 ) [91 ]. At low temperatures NO is 

stable, but when the temperature is increased it dis- 

sociates. At low initial coverages only desorption on 

N2 and 02 is observed, At high initial coverages, 

however, also NO is seen. Simulated spectra are 

shown in Fig. 10. The reason why not all NO dis- 

sociates is that at high coverages oxygen and nitrogen 

atoms that have been formed block sites for further 

dissociation. The system, however, is more complex 

than that. There are strong repulsive lateral interac- 

tions that limit the number of neighboring sites that 

can be occupied, and which are known to lead to 

complicated adlayer structures for Ni(1 l l) [92-94]. 

In the simulations we have tried to describe only the 

short-range order correctly. This is sufficient even to 

get the correct TPD spectrum of N2. There is a second- 

order peak as one expects, but also a peak at lower 

temperature which seems first-order. This peak is 

caused by the nitrogen atoms that are formed 

from NO that only dissociates after sites become 

vacant because of NO desorption. These atoms are 

formed next to nitrogen atoms that originate from NO 

that has dissociated at low temperatures. This reduces 

the order for N2 desorption by one. The simulated 

spectra in Fig. 10 agree well with the experimental 

spectra. 

4.2. CO hydrogenation on model catalysts 

While the focus of Monte Carlo techniques in 

simulations of surface reactions has mainly been in 

their generic critical and kinetic behavior, the method 

is a potentially powerful tool in detailed studies of 

complex reaction systems. When combined with 

experimental studies, the techniques can uncover 

the key microscopic factors controlling the overall 

reactivity and product distributions. The techniques 

are flexible; new reaction steps, surface structures and 

ensemble effects can easily be incorporated. Promis- 

ing results have been reported, for example, for CO 

oxidation on Pt [9], for NO-CO reactions on Pd and Pt 

[95], as well as in an earlier study of N2 chemisorption 

on Ru [96], 

As a specific example, we discuss here the complex 

case of CO hydrogenation on cobalt [26,97]. This 

reaction has been studied experimentally, and data 

on the product distributions as a function of the partial 

reactant pressures is available [98,99]. The main 

reaction steps are the adsorption of reactants, either 

molecular or dissociative, the diffusion of hydrogen, 

the sequence of hydrocarbon reactions and water 

formation, and the desorption of reaction products. 

The most striking feature of the experiments is the 

negative slope of the methane production rate as a 

function of the CO partial pressure (see Fig. 13 

below). 

The catalyst surface is modeled by a hexagonal 

lattice to model the (0 0 0 1) face of a h.c.p, or the 

(1 1 l) face of an f.c.c, metal. Different lattice sites for 

C, O and their compounds (site A) and for H (site B) 

are assumed, as schematically shown in Fig. 11. An 

essential feature is that CO and H2 do not compete for 

the same sites - a conclusion necessary for obtaining a 

reactive steady state for a wide range of partial pres- 

sures (as in experiments) rather than saturating the 

surface with CO or H. 

The simulations are carried out under constant 

pressure conditions, so that the total pressure of the 

mixture is scaled to one by adding an inert fill-up 

component, such as gaseous Ar. The partial pressures 

of CO and Hz are then the essential variables. Indeed, 

the dependence of the turnover on the CO partial 

pressure is the major challenge, as the dependence 

on H2 partial pressure can quite easily be reproduced 

for quite a large set of parameter values. 

Hydrogen is assumed to adsorb dissociatively, and 

thus requires two neighboring B sites. CO adsorbs to 

an A site, and can dissociate with a finite probability if 

there is an adjacent vacant A site. In the basic algo- 

rithm (see Fig. 12), no CO desorption or diffusion is 

allowed, while hydrogen can diffuse. These assump- 

tions can easily be altered and new steps included (see 

below). 

The surface reactions are modeled by invoking the 

carbide mechanism. It contains four features: 
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Fig. 11. A schematic picture of the catalytic CO hydrogenation reaction. The adsorption sites for CO (light small circles) form a hexagonal 
lattice. Between the CO sites there is an adsorption site for hydrogen (full small circles). Argon atoms, which are used as a fill-up gas to keep 
the total pressure constant, axe not shown. 
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Fig, 12. The main simulation loop for CO hydrogenation. The numbers of atoms/molecules reacting or diffusing (Nr, Nd) is calculated from 
the binomial distribution using the number of corresponding species on the surface (NO and the corresponding reaction probability per unit 
time. 

(1) Methane  is fo rmed  via  s tepwise hydrogena t ion  

o f  carbon through neares t -ne ighbor  react ions 

C(ads)  + H(ads)  ~ CH(ads)  + , ,  (40) 

CH(ads )  + H(ads)  ---+ CHz(ads)  + *, (41) 

CH2(ads)  + H(ads)  --~ CH3(ads)  + *, (42) 

CH3(ads)  + H(ads)  ---+ CH4(gas)  + 2 * .  (43) 

Methane  desorbs immedia te ly  f rom the surface. 

(2) Hydrocarbon  chains grow by addi t ion o f  CH2 

groups to the alkyl species 
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CnH2n+l (ads) + CH2(ads) ~ Cn+lH2n+3(ads) + *. 

(44) 

(3) The hydrocarbon chains terminate through 

either by a-hydrogenation 

CnH2,~+I (ads) + H(ads) ~ CnH2n+2(gas) + 2 *. 

(45) 

producing alkanes, or by/3-dehydrogenation 

CnH2,+l (ads) --* CnH2,(gas) + H(ads), (46) 

producing alkenes. In the latter case the adsorbed 

hydrogen remains on the A-site until it participates 

with further reactions with its neighbor or diffuses to a 

new B-site. 

(4) Water is formed from the adsorbed hydrogen 

and oxygen. 

O(ads) + H(ads) ~ OH(ads) + *, (47) 

OH(ads) + H(ads) ~ H20(gas) + 2 *. (48) 

Each surface reaction has an associated reaction 

probability, which now can be varied to identify the 

rate-limiting steps. To facilitate the simulation, a set of 

default values for the parameters is specified and the 

effects of various mechanisms are then simulated 

individually. The simulations usually start from an 

empty lattice with 100×100 A-sites and periodic 

boundary conditions. Typically a few million time 

steps are used to obtain steady states; the product 

distributions and coverages are then obtained by aver- 

aging over another few million time steps. 

During the simulation runs, surface reactions can be 

initiated by any change in the configuration of the 

adsorption sites, for example through adsorption or 

diffusion. This can then trigger an avalanche of reac- 

tions on the surface. Because every reaction involves 

at least one A site, the changed sites are stored and 

the reaction followed until it stops either by running 

out of suitable nearest-neighbor reactive pairs or by 

'getting stuck' at a low-probability reaction step. In 

the latter case, it will continue later with a given 

probability. 

Once the model has been specified, one can system- 

atically scan the available phase space and sort out the 

relevant, qualitative features of the reaction system. 

By varying the parameters systematically in the 

Monte Carlo simulations and comparing with experi- 

mental product distributions, it is possible to draw 

several conclusion on the Fischer-Tropsch synthesis 

on cobalt: 

1. H and CO occupy different adsorption sites. 

2. The rate-limiting step is c~-hydrogenation. 

3. Hydrogen diffuses fast, 

4. The rate for r-dehydrogenation is lower than that 

for a-hydrogenation. 

5. The hydrocarbon chain growth is slow compared to 

the majority of surface reactions. 

6. The potential barrier for CO dissociation is low. 

7. Water removal is relatively fast. 

Fig. 13 shows a comparison between the results of 

Monte Carlo simulations outlined above and the 

experimental turnover rates when the CO partial 

pressure in the reaction chamber is varied. The Monte 

Carlo simulations of this section work with Monte 

Carlo instead of real time, so a scaling of the rate 

constants has been done so that the simulation time 

unit can be connected to real physical time. The 

simulation results show partial pressure dependencies 

similar to those observed in the experiments, espe- 

cially for methane and ethene. While there is fair 

overall agreement between the simulations and the 

experiments, some discrepancies remain. The selec- 

tivity towards methane is too small, and there are some 

systematic deviations of the rate of formation of longer 

chains, especially at low CO pressures. 

This suggests the idea of introducing additional 

aspects into the Monte Carlo model. These include 

the reduction of CoO 

CO(ads) + Co ---+ C(ads) + CoO, (49) 

CoO + H(ads) --+ Co + OH(ads), (50) 

instead of or in addition to CO dissociation on the 

surface. The latter equation is expected to be slow, and 

when replacing the first step of water formation could 

become another rate-limiting step. Other possible new 

features include the reverse reaction (CH(ads) disso- 

ciation) 

CH(ads) + • --~ C(ads) ÷ H(ads), (51) 

and desorption of CO and/or H from the surface. 

Recently, Liu et al. have extended the Monte Carlo 

simulations to contain these additional features [100]. 

They conclude that, as first suggested by the experi- 

mental work of Lahtinen et al. [99], CoO reduction 

does indeed increase the selectivity towards producing 
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Fig. 13. Comparison of the partial pressure dependencies between the simulated hydrocarbon formation and the experimental data at 525 K 

and 101 kPa [98,99]. The fraction of ethene in the C2 products (top) and the turnover rates of C1-C4 hydrocarbons (main chart) are shown as a 

function of CO and H2 partial pressure. The simulated results are shown by solid lines and the markers denote experimental points: ethene 

fraction (open circles), C1 (closed circles), C2 (diamonds), C3 (triangles), and C4 (squares). The simulated data is normalized by a factor to 

connect the simulation timestep to real time. The probabilities for c~- and, /3-hydrogenation are 10 5 and 10 -6, respectively. The unit time 

probability for chain growth is 10 4 and that for hydrogen diffusion 10 -3. The effective relative sticking coefficients for CO and H~ are 0.08 

and 1.0, respectively. From Ref. [26]. 

methane while maintaining the negative slope of the 

CO partial pressure dependence. It blocks the hydro- 

carbon chain growth and curbs hydrogen adsorption, 

thus increasing the selectivity towards methane. While 

additional experimental studies to confirm the pre- 

sence of this step are called for, it seems quite possible 

that it plays a role. On the other hand, the dissociation 

of CH(ads) and the desorption of either CO or H do not 

seem to be important for understanding the product 

distributions. 

The detailed studies of the complex problem of CO 

hydrogenation on a cobalt catalyst demonstrate the 

value of Monte Carlo simulations for analyzing the 

irreversible kinetics of nonequilibrium steady states 

such as those encountered in heterogeneous catalysis. 

Model building is straightforward and flexible. The 

major limitations arise from computational limita- 

tions. Proper attention should be placed to finite-size 

effects, especially when considering absolute reactiv- 

ities, critical properties or oscillatory behavior. Com- 

plicated reaction sequences with several rate-limiting 

steps can also become very time-consuming. In this 

case algorithms modified from the straightforward 

sequential Monte Carlo methods can be considered. 

One interesting possibility is to combine mean-field 

and lattice-gas type treatments in a hybrid scheme. 

Tammaro et al. [101] have introduced such techniques 

to study spatiotemporal behavior in a system with 

coexisting immobile and highly mobile reactants. 

5. F u t u r e  d i r e c t i o n s  

The Monte Carlo simulations for discrete, irrever- 

sible nonequilibrium systems as described above 

offer a conceptually simple yet powerful method to 

study complex phenomena. With computer power 

rapidly becoming ever more affordable, such simula- 
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tion tools can be extended to cover wide classes of 

phenomena. 

From the statistical physics point of view, however, 

much remains to be done to solidify the basis of 

understanding the behavior of such systems. For 

example, the classification of nonequilibrium phase 

transitions is far from complete. The critical behavior 

of several kinetic model falls into the category of 

directed percolation or equivalently Reggeon field 

theory [102]. Variants of this basic model include 

several adsorption-reaction models [ 103-106], kinetic 

Ising models [42,107], and the driven diffusive lattice 

gas [108]. The question then immediately arises as 

what are the key factors affecting the critical behavior: 

conservation laws, internal symmetries of the model, 

or details of reaction laws? What role does the spatial 

dimensionality play? It is obvious that sophisticated 

analytic methods such as those based on field theory 

are needed to ultimately clarify the picture of uni- 

versality classes for nonequilibrium phase transitions. 

Another important consideration is the behavior of 

the systems at larger length and time scales. While 

simulations are constantly improving, the efficiency of 

these techniques will always be ultimately limited by 

the necessity to very large lattice sizes either to reduce 

statistical noise or to attack the behavior at a scale 

much larger than the microscopic (atomic) scale. 

Indeed, a potentially serious limitation of the techni- 

ques discussed above is the computational difficulty in 

dealing with multiple and vastly varying length and 

time scales. 

In this respect, the simulations would obviously be 

much more effective if one could coarse-grain the 

system and treat regions of adsorption sites on the 

surface as a single collective coordinate. This would 

greatly facilitate the examination of both the large- 

length scale and low-frequency dynamic behavior of 

the models. 

One possibility to carry out such coarse-graining 

near a phase transition is to apply renormalization- 

group analysis to the Master Equation. Near the phase 

transition, the relaxation rate to towards the steady 

state is governed by the smallest eigenvalue of steady 

state equation and the system size. Thus the relevant 

critical exponents can be found through the behavior 

of the low-lying modes of densities and correlation 

functions as a function of system size. The challenge is 

thus basically a numerical renormalization-group 

analysis of the Master Equation, now in the context 

of a nonequilibrium system. 

For several problems in heterogeneous catalysis, the 

flow conditions in the reactor and on the surface are 

crucial. Again, one can imagine coupling the reactant 

flows to the surface reactivity through coarse-graining. 

A 'mesoscopic' area of the surface (say, 100x 100 

sites) would be assigned values of the macroscopic 

variables of gas pressures, velocities and temperature. 

The steady-state reaction conditions for this cell 

would then be determined through the Monte Carlo 

procedures discussed in the previous chapters. More- 

over, to account for the macroscopic fluid flow the cell 

would be coupled to similarly defined neighboring 

cells. The coupling would be made by invoking the 

lattice-gas or cellular-automaton implementations of 

fluid dynamics [109]. One would then have concep- 

tually similar schemes for describing both the reactiv- 

ities of the cells at the surface and the fluid dynamics 

in the chamber. The physical time scales for the two 

are obviously very different. However, they can be 

computationally handled by intervening Monte Carlo 

runs for the two subsystems. Reactive flows can also 

be easily implemented to obtain a global description of 

the reactor [110]. While such schemes have not yet 

been attempted, the recent progress in lattice-gas 

models for complicated flow problems make this 

approach interesting as well. 

One possibility to improve the efficiency of Monte 

Carlo simulation methods is to exploit the inherent 

parallelism in the problem also in its computational 

implementation. Parallel machines are becoming 

increasingly more popular and promise true upwards 

scalability in their performance. The potential success 

of efficiently implementing the simulation techniques 

discussed above to parallel computer architectures 

hinges on the possibility of mapping the Monte Carlo 

models to cellular automata with local dynamical 

rules. Individual cells or groups of cells could then 

be assigned to different processors, which would only 

communicate with their neighbors. 

There have been several efforts to simulate surface 

reactions with cellular automaton techniques. These 

include studies of the ZGB-model [111,112], includ- 

ing CO diffusion [113] and NH3 formation [114]. 

However, it is important to design the algorithm so 

that the stoichiometry and/or kinetic rules are cor- 

rectly preserved, as the results, in particular the critical 
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proper t i es ,  s eem to d e p e n d  on  the  ac tua l  i m p l e m e n t a -  

t ion.  

As  a f inal  r emark ,  one  can  list  the  l o n g - s t a n d i n g  

hope  o f  b e i n g  able  to i n d e p e n d e n t l y  d e t e r m i n e  the  

mic ro scop i c  p robab i l i t i e s  e m b e d d e d  in the  M o n t e  

Car lo  s cheme ,  e i the r  f r o m  e lec t ron ic  s t ruc ture  ca lcu-  

la t ions  or  f r o m  separa te  su r f ace - sc i ence  expe r imen t s ,  

S u c h  a capab i l i t y  w o u l d  o b v i o u s l y  r educe  the  n u m b e r  

of  u n k n o w n  p a r a m e t e r s  and  wou ld  he lp  in iden t i fy ing  

the i m p o r t a n t  r eac t ion  m e c h a n i s m s  and  the  g lobal  

bo t t l enecks .  However ,  quan t i t a t ive  ca l cu la t ions  o f  

r eac t ion  ra tes  and  ac t iva ted  p rocesses  are no to r ious ly  

diff icult .  A l t h o u g h  some  ca l cu la t ions  o f  ra te  cons t an t s  

o f  surface  r eac t ions  h a v e  b e e n  p u b l i s h e d  [115,116] ,  at 

th is  po in t  one  usua l ly  has  to sett le w i th  re la t ive ly  c rude  

es t imates .  
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