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We develop methods for performing smoothing computations in general state-space models. The methods rely on a particle representation

of the filtering distributions, and their evolution through time using sequential importance sampling and resampling ideas. In particular,

novel techniques are presented for generation of sample realizations of historical state sequences. This is carried out in a forward-filtering

backward-smoothing procedure that can be viewed as the nonlinear, non-Gaussian counterpart of standard Kalman filter-based simulation

smoothers in the linear Gaussian case. Convergence in the mean squared error sense of the smoothed trajectories is proved, showing the

validity of our proposed method. The methods are tested in a substantial application for the processing of speech signals represented by

a time-varying autoregression and parameterized in terms of time-varying partial correlation coefficients, comparing the results of our

algorithm with those from a simple smoother based on the filtered trajectories.
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1. INTRODUCTION

In this article we develop Monte Carlo methods for smooth-

ing in general state-space models. To fix notation, consider

the standard Markovian state-space model (West and Harrison

1997)

xt+1 ∼ f (xt+1|xt) (state evolution density),

yt+1 ∼ g(yt+1|xt+1) (observation density),

where {xt } are unobserved states of the system, {yt } are ob-

servations made over some time interval t ∈ {1,2, . . . , T }, and

f (·|·) and g(·|·) are prespecified state evolution and observation

densities, which may be non-Gaussian and involve nonlinearity.

It is assumed throughout that the required distributions can be

represented by density functions, and that both f (·|·) and g(·|·)

can be evaluated for any valid states and observations xt and yt ;

xt and yt may both be vectors. We assume that the process {xt }

is Markov, generated according to the foregoing state evolution,

and that the observation process {yt } is independent conditional

on the state process {xt }. Hence an expression for the joint dis-

tribution of states and observations can be obtained directly by

the probability chain rule,

p(x1 : t , y1 : t ) = f (x1)

(
t∏

i=2

f (xi |xi−1)

)(
t∏

i=1

g(yi |xi)

)
,

where f (x1) is the distribution of the initial state. Here

x1 : t = (x1, . . . , xt) and y1 : t = (y1, . . . , yt ) denote collections

of observations and states from time 1 through t . In proving

the validity of our proposed smoothing algorithm, a more for-

mal definition of the state-space model is needed; we present

this in Appendix A.

A primary concern in many state-space inference problems

is sequential estimation of the filtering distribution p(xt |y1 : t ).

Updating the filtering density can be done in principle using the

standard filtering recursions

p(xt+1|y1 : t ) =

∫
p(xt |y1 : t )f (xt+1|xt ) dxt
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and

p(xt+1|y1 : t+1) =
g(yt+1|xt+1)p(xt+1|y1 : t )

p(yt+1|y1 : t )
.

Similarly, smoothing can be performed recursively backward

in time using the smoothing formula

p(xt |y1 : T ) =

∫
p(xt+1|y1 : T )

p(xt |y1 : t )f (xt+1|xt)

p(xt+1|y1 : t )
dxt+1.

Inference in general state-space models has been revolution-

ized over the past decade by the introduction of cheap and mas-

sive computational resources and the consequent development

and widespread application of Monte Carlo methods. In batch-

based scenarios, Markov chain Monte Carlo (MCMC) methods

have been widely used, and various powerful tools have been

developed and proven in application (see, e.g., Carlin, Polson,

and Stoffer 1992; Carter and Kohn 1994; Shephard 1994;

Shephard and Pitt 1997; De Jong 1997; Aguilar, Huerta, Prado,

and West 1999, Aguilar and West 1998, 2000; Pitt and Shephard

1999b). However, constructing an effective MCMC sampler

in models with significant degrees of nonlinearity and non-

Gaussianity is not always straightforward. Specifically, in these

cases it can be hard to construct effective proposal distributions,

either over collections of states simultaneously or even for sin-

gle states conditional on all others. The danger then is that the

MCMC will be slowly mixing and may never converge to the

target distribution within realistic time scales.

Alternative Monte Carlo strategies based on sequential im-

portance sampling, known generically as particle filters, have

been rapidly emerging in areas such as target tracking for radar,

communications, econometrics, and computer vision (West

1993; Gordon, Salmond, and Smith 1993; Kitagawa 1996; Liu

and Chen 1998; Doucet, Godsill, and Andrieu 2000; Liu and

West 2001; Pitt and Shephard 1999a; West and Harrison 1997;

Doucet, De Freitas, and Gordon 2001). These methods allow

propagation of completely general target filtering distributions

through time using combinations of importance sampling, re-

sampling and local MCMC moves. The methods have been

proven for many examples, including highly nonlinear models

that are not easily implemented using standard MCMC.
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In particle filtering methods, the filtering density is approxi-

mated with an empirical distribution formed from point masses,

or particles,

p(xt |y1 : t ) ≈

N∑

i=1

w
(i)
t δ

x
(i)
t

(xt ),

N∑

i=1

w
(i)
t = 1, w

(i)
t ≥ 0,

(1)

where δ is the Dirac delta function and w
(i)
t is a weight attached

to particle x
(i)
t . Particles at time t can be updated efficiently to

particles at time t + 1 using importance sampling and resam-

pling methods.

The theory of particle filtering is now quite well devel-

oped. For example, the empirical measure of (1) converges al-

most surely to the distribution associated with p(xt |y1 : t ) for

all t > 0 as N → ∞ under quite mild conditions on the state-

space model. Moreover, rates of convergence to 0 have been

established for expectations of mean squared error of func-

tionals with respect to this filtering density. Hence particle

filters are rigorously validated as a means for tracking the dis-

tribution of, and estimating the value of a hidden state over

time. Some recent advances in convergence analysis have been

given by Del Moral (1998), Crisan, Del Moral, and Lyons

(1999), Crisan and Lyons (1999), Crisan and Doucet (2000),

and Crisan (2001).

Although particle filtering theory and practice are now quite

well established, smoothing aspects are less well established.

Existing approaches to smoothing with particle filters have

been aimed at approximating the individual marginal smooth-

ing densities p(xt |y1 : T ), using either the two-filter formula

(Kitagawa 1996) or forward filtering–backward smoothing

(Doucet et al. 2000; Hürzeler and Künsch 1998). In many ap-

plications these marginal distributions are of limited interest,

because investigations of historical states generally focus on

trajectories and hence require consideration of collections of

states together. For cases where a single “best” estimate for

the smoothed trajectory is required, Godsill, Doucet, and West

(2001) provided a sequential methodology for maximum a pos-

teriori (MAP) sequence estimation based on dynamic program-

ming and the Viterbi algorithm. However, a single best estimate

is rarely appropriate in the Bayesian inference setting, espe-

cially when distributions are multimodal, and here we aim for

random generation of state sequences.

The new methods provide a completion of particle fil-

tering methodology that allows random generation of entire

historical trajectories drawn from the joint smoothing den-

sity p(x1 : t |y1 : t ). The method relies first on a forward-filtering

pass that generates and stores a particle-based approximation

to the filtering density at each time step. Then a backward

“simulation smoothing” pass is carried out to generate sam-

pled realizations from the smoothing density. The method can

be seen as the nonlinear/non-Gaussian analog of the forward-

filtering/backward-sampling algorithms developed for linear

Gaussian models and hidden Markov models (Carter and Kohn

1994; Frühwirth-Schnatter 1994; De Jong and Shephard 1995).

See also Hürzeler and Künsch (2001) for some recent relevant

work in the particle filter setting. The proposed method is quite

distinct from the MAP estimation procedure of Godsill, Doucet,

and West (2001) in which the forward particle filter is used sim-

ply to generate a grid of possible state values at each time point,

with the Viterbi algorithm used to trace out the most probable

state trajectory through that grid of state values.

The article is organized as follows. Section 2 describes

the basic particle filtering and smoothing framework. Section 3

introduces the proposed simulation smoother algorithm for gen-

eral state-space models, with a proof of convergence for the

new simulation smoother method deferred to the Appendix.

Section 4 evaluates the method for a standard nonlinear model

and Section 5 does so with an extensive application to speech

data analysis. Finally, Section 6 closes the article with some

discussion.

2. FILTERING AND SMOOTHING USING
SEQUENTIAL IMPORTANCE SAMPLING

In this section we review the standard procedure for filtering

and smoothing using sequential importance sampling. In prac-

tice this is found to be highly effective in the filtering mode, but,

as demonstrated in our simulations, it can give very poor results

in the smoothing mode. (See, e.g., Doucet et al. 2000, 2001, for

a detailed overview of these standard methods.) A more formal

description of the particle filter is given in the Appendix, includ-

ing a statement of the theorem required to prove the smoother

of the next section.

Suppose that we have at time t weighted particles {x
(i)
1 : t ,w

(i)
t ;

i = 1,2, . . . ,N}drawn from the smoothing densityp(x1 : t |y1 : t ).

We can consider this an empirical approximation for the density

made up of point masses,

p(x1 : t |y1 : t ) ≈

N∑

i=1

w
(i)
t δ

x
(i)
1 : t

(x1 : t ),

N∑

i=1

w
(i)
t = 1, w

(i)
t ≥ 0.

(2)

To update the smoothing density from time t to time t + 1,

factorize it as

p(x1 : t+1|y1 : t+1) = p(x1 : t |y1 : t ) ×
g(yt+1|xt+1)f (xt+1|xt)

p(yt+1|y1 : t )
,

where the denominator is constant for a given dataset. To pro-

ceed from time t to t + 1, we select trajectories from the

approximation (2). In the simplest case—[the “bootstrap” fil-

ter (Gordon et al. 1993; Kitagawa 1996)]—N trajectories are

drawn at random with replacement from {x
(i)
1 : t ; i = 1,2, . . . ,N}

with probabilities {w
(i)
t i = 1,2, . . . ,N}. In more sophisticated

schemes, some part-deterministic variance reduction selection

scheme is applied (Kitagawa 1996; Liu and Chen 1998; Doucet

et al. 2000; Carpenter, Clifford, and Fearnhead 1999). A new

state is then generated randomly from an importance distribu-

tion, q(xt+1|xt , yt+1), and appended to the corresponding tra-

jectory, xt . The importance weight is updated to

wt+1 ∝
g(yt+1|xt+1)f (xt+1|xt )

q(x t+1|xt , yt+1)
.

Other selection schemes aim to improve performance at future

time points by introducing a bias into the selection step. In these

cases an additional term is included in the weight expression to

allow for this bias. Examples of this include the most basic se-

quential imputation procedures of Liu and Chen (1995), where

selection is carried out only rarely and weights are updated in-

crementally throughout the filtering pass, and the auxiliary par-

ticle filtering approach of Pitt and Shephard (1999a), in which



158 Journal of the American Statistical Association, March 2004

a bias is intentionally introduced with the aim of boosting the

number of particles in useful regions of the state space. (For fur-

ther discussion of these issues, see Godsill and Clapp 2001.)

We call the smoothing methods described in this section

the “standard trajectory-based smoothing” method. Filtering is

obtained as a simple corollary of the smoothing technique by

discarding the past trajectories x1 : t once the update has been

made to t + 1. It is clear that the selection (or “resampling”)

procedure will lead to high levels of degeneracy in smoothed

trajectories using this method. This is demonstrated in later

simulations and motivates the development of novel smoothing

methods based on backward simulation in the next section.

3. SMOOTHING USING BACKWARD SIMULATION

The new method proposed here assumes that Bayesian fil-

tering has already been performed on the entire dataset, lead-

ing to an approximate representation of p(xt |y1 : t ) for each

time step t ∈ {1, . . . , T }, consisting of weighted particles

{x
(i)
t ,w

(i)
t ; i = 1,2, . . . ,N}. We note that the method is inde-

pendent of the precise filtering algorithm and that any particle

filtering scheme, whether deterministic or Monte Carlo, can be

used. Recall that the primary goal here is to obtain sample re-

alizations from the entire smoothing density to exemplify and

generate insight into the structure of the smoothing distribu-

tion for collections of past states together. This can be based on

the factorization

p(x1 : T |y1 : T ) = p(xT |y1 : T )

T −1∏

t=1

p(xt |xt+1 : T , y1 : T ), (3)

where, using the Markovian assumptions of the model, we can

write

p(xt |xt+1 : T , y1 : T ) = p(xt |xt+1, y1 : t )

=
p(xt |y1 : t )f (xt+1|xt)

p(xt+1|y1 : t )

∝ p(xt |y1 : t )f (xt+1|xt). (4)

Forward filtering generates a particulate approximation to

p(xt |y1 : t ). Because we have from the foregoing that p(xt |xt+1,

y1 : T ) ∝ p(xt |y1 : t )f (xt+1|xt), we immediately obtain the

modified particle approximation

p(xt |xt+1, y1 : T ) ≈

N∑

i=1

w
(i)
t |t+1δx

(i)
t

(xt ),

with modified weights

w
(i)
t |t+1 =

w
(i)
t f (xt+1|x

(i)
t )

∑N
j=1 w

(j)
t f (xt+1|x

(j)
t )

. (5)

This revised particulate distribution can now be used to

generate states successively in the reverse-time direction, con-

ditioning on future states. Specifically, given a random sam-

ple x̃t+1 : T drawn approximately from p(xt+1 : T |y1 : T ), take

one step back in time and sample x̃t from p(xt |̃xt+1, y1 : T ).

The pair (̃xt , x̃t+1 : T ) is then approximately a random realiza-

tion from p(xt : T |y1 : T ). Repeating this process sequentially

back over time produces the following general “smoother-

realization” algorithm:

Algorithm 1 (Sample realizations).

1. Choose x̃T = x
(i)
T with probability w

(i)
T .

2. For t = T − 1 to 1:

• Calculate w
(i)
t |t+1 ∝ w

(i)
t f (̃xt+1|x

(i)
t ) for each i =

1, . . . ,N .

• Choose x̃t = x
(i)
t with probability w

(i)
t |t+1.

3. x̃1 : T = (̃x1, x̃2, . . . , x̃T ) is an approximate realization

from p(x1 : T |y1 : T ).

Further independent realizations are obtained by repeat-

ing this procedure as many times as needed. The computa-

tional complexity for each realization is O(NT ), in contrast

with the O(N2T ) required for marginal smoothing procedures

(Kitagawa 1996; Doucet et al. 2000; Hürzeler and Künsch

1998); however, it should be realized that the computations in

our method are then repeated for each realization drawn.

In the Appendix we prove the convergence of the smoothed

realizations in terms of mean squared error for state estimation

as the number of particles tends to infinity.

4. EXAMPLE 1: A NONLINEAR TIME SERIES MODEL

The new methods are first demonstrated for a standard non-

linear time series model (Kitagawa 1996; West 1993; Gordon

et al. 1993). This model has been used extensively for testing

of numerical filtering techniques, and here we use it to show

the functionality and extended utility of the proposed smoother

compared with the other available techniques (Kitagawa 1996;

Doucet et al. 2000; Hürzeler and Künsch 1998).

The state-space equations are

xt =
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt

and

yt =
(xt )

2

20
+ wt ,

where vt ∼ N (0, σ 2
v ) and wt ∼ N (0, σ 2

w), and here σ 2
v = 10

and σ 2
w = 1 are considered fixed and known. The initial state

distribution is x1 ∼ N (0,10). The representation in terms of

densities f (xt |xt−1) and g(yt |xt ) is straightforward.

A typical dataset simulated from this model is shown in

Figure 1. Filtering is performed using a standard bootstrap par-

(a)

(b)

Figure 1. Simulated Data From the Nonlinear Time Series Model.

(a) Hidden state sequence xt; (b) observed data sequence yt.
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Figure 2. Filtering Density Estimates From the Particle Filter Output.

ticle filter (Gordon et al. 1993) with N = 10,000 particles.

Applying filtering to the same dataset as in Figure 1 shows clear

evidence for strong non-Gaussianity and multimodality in the

filtering distributions; see, for example, the density estimates

obtained from the particle filter output at times t = 64 and t = 3

in Figure 2.

Smoothing is carried out using the proposed smoother, draw-

ing 10,000 realizations from the smoothing density. A small

random selection of the smoothed trajectories drawn from

p(x1 : 100|y1 : 100) is shown in Figure 3. Now multimodality in

the smoothing distribution can be seen, with separated clus-

ters of trajectories visible in several parts of the time series.

Histogram estimates of the individual smoothing distribu-

tions p(xt |y1 : 100) are shown in Figure 4. The sampled real-

izations are useful in themselves, but they can also be used to

study and visualize in more detail the characteristics of the mul-

tivariate smoothing distribution. Note that this is a capability

well beyond that of Kitagawa (1996), Doucet et al. (2000), and

Hürzeler and Künsch (1998), which generate only the smoothed

marginals, p(xt |y1 : T ). Figures 5–8 show a selection of bi-

Figure 3. Smoothing Trajectories Drawn From p(x1 :100|y1 :100).

The true simulated states shown as “∗.”

Figure 4. Histogram Estimates of Smoothing Densities, p(xt|y1 :100),

Shown as Gray-Scale Intensities in the Vertical Direction. The true sim-

ulated states are shown as “∗.”

Figure 5. Kernel Density Estimate for p(x3 :4|y1 :100).

Figure 6. Scatterplot of Points Drawn From p(x3 :4|y1 :100).
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Figure 7. Kernel Density Estimate for p(x27 :28|y1 :100).

variate marginals estimated from p(x1 : 100|y1 : 100) using two-

dimensional scatterplots and kernel density estimates. The new

smoothing method allows visualization of multimodality and

complex interactions between states in a way that is not possible

with the existing (univariate) marginal smoothing techniques.

Repeated independent runs of the particle filter/smoother iden-

tified essentially identical features in the smoothing distribu-

tion, which gives us some confidence in the accuracy of the

results. Different types of interactions become important in the

smoothing density as the parameters of the model are changed.

For example, with σ 2
v = 1 and σ 2

w = 9, we expect the dynamics

of the state to play a more important role than in the previous

simulation. This is borne out by the computed smoothing den-

sities from a new set of simulations; see, for example, Figures

9 and 10, in which some diagonal structure is clearly present.

Higher-dimensional smoothing marginals can be studied using

three-dimensional visualization tools such as those available

in Matlab.

Figure 8. Scatterplot of Points Drawn From p(x27 :28|y1 :100).

Figure 9. Kernel Density Estimate for p(x50 :51|y1 :100), Using σ v
2 = 1

and σw
2 = 9.

5. EXAMPLE 2: APPLICATION TO SPEECH SIGNALS

REPRESENTED BY TIME–VARYING
AUTOREGRESSION MODELS

We now present a substantial application taken from the

field of speech processing and analysis. Speech signals are

inherently time-varying in nature, and any realistic represen-

tation thus should involve a model whose parameters evolve

over time. One such model is the time-varying autoregression

(TVAR) (Prado, West, and Krystal 1999; Kitagawa and Gersch

1996), in which the coefficients of a standard autoregression

are allowed to vary according to some probability law. These

models are of very wide utility and importance in engineering,

scientific, and socioeconomic applications, but are typically ap-

plied subject to severe restrictions on the models for time vari-

ation in autoregressive coefficients for analytic reasons. More

realistic models for patterns of variation over time in autore-

gressive parameters, and hence for the resulting “local” cor-

relation and spectral structures, lead to intractable models and

hence the need for simulation-based approximations, especially

in sequential analysis contexts.

Figure 10. Scatterplot of Points Drawn From p(x50 :51|y1 :100).
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Here we consider a nonlinear parameterization of the TVAR

model in terms of partial correlation (PARCOR) coefficients

(Friedlander 1982). This is especially relevant in acoustical

contexts, such as speech processing, because the PARCOR

coefficients can be regarded as the parameters of a linear

acoustical tube whose characteristics are time-varying. This

acoustical tube model can be regarded as an approximation

to the characteristics of the vocal tract (Proakis, Deller, and

Hansen 1993). By allowing the width parameters of the acousti-

cal tube model, and hence the instantaneous PARCOR coeffi-

cients, to vary over time, we can allow for the physical changes

that occur in the vocal tract shape as the speaker utters differ-

ent sounds. The nonlinear model implied by such a scheme is

not readily estimated using standard optimal techniques, such

as MCMC, or approximation methods, such as the extended

Kalman filter, owing to the strongly nonlinear nature of the

transformation between TVAR coefficients and instantaneous

PARCOR coefficients. Thus we see sequential Monte Carlo fil-

tering and smoothing as the method of choice in this case. A

related, although not identical, TVAR model has been consid-

ered in a different application by Kitagawa and Gersch (1996).

5.1 Model Specifications

A signal process {zt } is generated in the standard fashion

from a Gaussian distribution centered at the linear prediction

from the previous time step,

f
(
zt |zt−1 : t−P , at , σet

)
=N

(
P∑

i=1

at,izt−i, σ
2
et

)
.

Here at = (at,1, at,2, . . . , at,P )′ is the time-varying AR(P ) co-

efficient vector and σ 2
et

is the innovation variance at time t . Note

that both the AR coefficient vector and the innovation variance

are assumed to be time-varying, so we specify evolution models

for these as well. As noted earlier, the changes in AR coeffi-

cients over time will model changes in the vocal tract shape as

the speaker makes different utterances. Time variation in inno-

vation variance will model changes in the strength of the exci-

tation signal in the glottis. The speech signal {zt } is assumed

to be partially observed in additive independent Gaussian back-

ground noise, so that the observation process {yt} is generated

according to

g(yt |zt , σv) =N (zt , σ
2
v ),

where σ 2
v is here assumed to be constant and known, corre-

sponding to a fixed level of background noise in the environ-

ment that has been measured during a silent period. Although

some applications consider the environment to be noise-free,

we argue that in any speech setting there will always be a cer-

tain degree of noise, which should be modeled to capture the

true character of the unobserved signal {zt }.

Furthermore, this framework allows us to perform noise re-

duction for noisy speech signals, a task frequently required for

applications in mobile telephony and speech recognition, for

example. Note that the extension of our methods to the case of

time-varying and correlated observation noise is immediate.

For our simulations, a Gaussian first-order autoregression is

assumed for the log-standard deviation φet = log(σet ), namely

f
(
φet

∣∣φet−1
, σ 2

φe

)
=N

(
αφet−1

, σ 2
φe

)
,

where α is a positive constant just less than unity and σ 2
φe

is

a fixed hyperparameter.

The model now requires specification of the time variation in

the TVAR coefficient vector at itself. This is the main interest in

our application, because we wish to find a model that is phys-

ically meaningful for the application and easily interpretable.

Possibly the simplest choice of all, and that most common in

previous work (Prado et al. 1999; Kitagawa and Gersch 1996),

is a first-order Gaussian autoregression directly on the coeffi-

cients at ,

f (at |at−1, σ
2
a ) =N (βat−1, σ

2
a I).

More elaborate schemes of this sort are possible, such as

a higher-order autoregression involving AR coefficients from

further in the past or a nonidentity covariance matrix, the latter

being a key feature of such models for some authors and appli-

cations, as in the work of (and references cited by) Prado et al.

(1999) and West and Harrison (1997). However, models of this

form do not have a particularly strong physical interpretation

for acoustical systems such as speech. Moreover, an uncon-

strained TVAR exhibits large (“unstable”) oscillations inconsis-

tent with real speech data. Improved stability can be achieved

by ensuring that the instantaneous poles, that is, the roots of

the polynomial (1 −
∑P

i=1 at,iL
−i), lie strictly within the unit

circle. This can be achieved by constraining the autoregression

appropriately to have zero probability in the unstable region for

the coefficients. However, simulating such a condition is very

expensive using rejection sampling methods. A possible way to

achieve greater stability in the model would be to model the

roots directly (see Huerta and West (1999a, b) for the time-

invariant case). However, there are unresolved issues here of

dealing with complex roots that evolve into real roots and vice

versa (see Prado et al. 1999). These issues do not arise if one

works in the reflection coefficient or, equivalently, the partial

correlation (PARCOR) coefficient domain (Friedlander 1982).

Here the equivalent condition is that each reflection coefficient

must simply be constrained to the interval (−1,+1). The stan-

dard Levinson recursion is used to transform between at and

the reflection coefficients ρt . Many models are possible for the

time variation of ρt , including random walks based on beta dis-

tributions and inverse logit-transformed normal, and all would

be feasible in our sequential Monte Carlo framework. We have

chosen a simple truncated normal autoregression for discus-

sion here:

Random PARCOR model:

ft (ρt |ρt−1, σ
2
a ) ∝

{
N (βρt−1, σ

2
a I) if max{|ρt,i |} < 1

0 otherwise,
(6)

where β is a coefficient just less than 1. All of the simulations

reported in this article have used this model. As we have already

hinted, the TV-PARCOR framework is appealing not simply be-

cause of the ease of checking stability and evaluating the tran-

sition density, but also because a reflection coefficient model

has a strong physical interpretation in certain systems, notably

speech and other acoustic sounds, generated through tube-like

mechanisms.

The state-space model is now fully specified. The state vec-

tor is

xt =
(
zt : t−P+1, ρt , φet

)′
.
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The hyperparameters σ 2
a , α, β , σ 2

φe
, and σ 2

v are assumed to be

prespecified and fixed in all of the simulations. The initial state

probability is truncated Gaussian over the “stable” parameter

region for the model.

5.2 Filtering and Smoothing

The first step in analyzing the data is to perform a com-

plete forward sweep of a Monte Carlo filtering algorithm to

produce weighted particles {x
(i)
t ,w

(i)
t }Ni=1 for t = 1,2, . . . , T ,

drawn approximately according to P(dxt |y1 : t ). Because our

smoothing method is quite general and not tied to any par-

ticular filtering method, we do not consider all of the possi-

bilities in detail. We have experimented with various types of

Monte Carlo filter, adapted to our specific TVAR model, us-

ing the standard sequential importance sampling filter (Doucet

et al. 2000; Gordon et al. 1993; Liu and Chen 1998), the aux-

iliary particle filter (APF) (Pitt and Shephard 1999a), and

schemes that incorporate local MCMC moves to improve the

filtering approximation (MacEachern, Clyde, and Liu 1999;

Gilks and Berzuini 2000). We observe empirically a moderate

improvement in performance when the APF is used and note

that for some challenging cases, incorporating MCMC moves

is also worthwhile. The importance function that we use for the

unobserved state is the state transition density, modified such

that the current zt is simulated exactly from its full conditional

density, which is Gaussian, that is,

q(xt |xt−1, yt ) = p
(
zt |zt−1 : t−P , at , σet , yt

)

× f (ρt |ρt−1, σ
2
a )f

(
φet

∣∣φet−1
, σ 2

φe

)
.

(A full discussion of the relative merits of the various possi-

ble filtering schemes and importance functions applied to a re-

lated TVAR model can be found in Godsill and Clapp 2001.)

After the filtering pass, smoothing is then carried out using the

new method.

5.3 Results

A long section of noisy speech data is presented in Fig-

ure 11. The time-varying characteristics of the signal are clearly

evident, with data points 1–6,800 (approximately) represent-

ing the word “rewarded” and points 6,800–10,000 representing

Figure 11. Speech Data. .62 second of a U.S. male speaker saying

the words “rewarded by.” Sample rate, 16 kHz, resolution, 16-bit, from

the TIMIT speech database.

Figure 12. Noisy Speech Data, First 1,000 Data Points.

the word “by.” A filtering and smoothing analysis is performed

for the first 1,000 data points. A white Gaussian noise signal

with known standard deviation σv = .02 is added to the sig-

nal. The observed noisy data are shown in Figure 12. The other

fixed hyperparameters used were σa = .01, α = .99, β = 1,

and σφe = .001. These were determined empirically by trial

and error and by past experience with similar audio datasets

(Godsill and Rayner 1998). The TVAR model order was P = 4;

this was chosen in accordance with the findings of Vermaak,

Andrieu, Doucet, and Godsill (2002) and also gave the best re-

sults in subjective listening tests performed on the smoothed

signal estimates. The number of particles required will depend

on the dimensionality of the state vector, which can be quite

high in a model such as this, and also on the degree of posterior

uncertainty about those parameters. Again, for this model the

posterior distributions of parameters such as the TV-PARCOR

coefficients can be quite diffuse, requiring a large number of

particles for accurate representation. Filtering and smoothing

were carried out using a wide variety of particle numbers, rang-

ing from N = 100 up to N = 20,000. Filtered estimates of

quantities such as posterior mean parameter values were found

to become quite robust from one realization of the filter to an-

other provided that the number of particles exceeded 1,000.

The last 200 observed data points are shown in Figure 13.

Filtered means and 5/95 percentiles for the TV-PARCOR co-

Figure 13. Noisy Speech, t = 801, . . . ,1,000.



Godsill, Doucet, and West: Monte Carlo Smoothing for Nonlinear Time Series 163

Figure 14. Posterior Mean and 5/95 Percentiles for Filtered

TV-PARCOR Coefficient Estimates.

efficients are shown in Figure 14 for the last 200 data points,

by which time it is assumed that the effects of the Gaussian

initial state prior are negligible. The estimated trajectories are

quite random in nature, reflecting the uncertainty about their

value without the aid of retrospective smoothing. Similarly,

the filtered mean estimate for the signal process is shown

in Figure 15. Although some smoothing has occurred, it is fairly

clear that the resulting estimate has followed the shape of the

noisy signal too closely as a result of filtering without any ret-

rospective sequence analysis.

In comparison, smoothing computations were then per-

formed, using either our proposed backward sampling algo-

rithm from Section 3 or the standard filtered trajectory approach

outlined in Section 2. Figure 16 shows 10 realizations from

the smoothing density using our proposed smoother. Figure 17

shows 4 separate realizations plotted on top of the observed

noisy data, and Figure 18 shows the mean of 10 realizations

plotted with the observed data. These results demonstrate that

Figure 15. Filtered Speech, Estimated Posterior Mean (——), Noisy

Data (· · · · · ·).

Figure 16. Ten Realizations From the Smoothed Signal Process.

Figure 17. Four Realizations From the Smoothing Density for the Sig-

nal Process, With Noisy Data Shown by the Dotted Lines.

Figure 18. Average of 10 Realizations From the Smoothing Density

With Noisy Data Shown by the Dotted Line.
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Figure 19. Ten Realizations From the Smoothing Density for the

TV-PARCOR Coefficients.

good diversity is achieved by the backward sampling smoother

and that (visually) much-improved sequences are generated

when compared with the filtered mean estimates of Figure 15.

Realizations from the smoothing density for theTV-PARCOR

coefficients are given in Figure 19. A plausible degree of un-

certainty is indicated by this result, and this may be com-

pared with results obtained using the standard trajectory-based

smoother. To highlight the differences between our proposed

method, and the standard method, we smooth retrospectively

back to t = 600. Graphs of 10 realizations from the smooth-

ing density are presented in Figures 20 and 21, this time com-

paring our proposed method and the standard method. It is

clear that the standard method degenerates to a single trajectory

quite rapidly, whereas our proposed method achieves a plau-

sible degree of variability between sampled realizations right

back to t = 600. This is typical of the results that we have ob-

served over many different sections of the data. The proposed

method is always observed to improve on the standard method

Figure 20. Ten Realizations From the Smoothing Density for the

TV-PARCOR Coefficients Using the Proposed Simulation Smoothing

Method (N = 2,000).

Figure 21. Ten Realizations From the Smoothing Density for the

TV-PARCOR Coefficients Using the Standard Trajectory-Based Method

(N = 2,000).

when equal numbers of particles are used for the filtering pass.

Of course, our method can also degrade if the number of filtered

particles is too small to contain plausible smoothed trajectories.

An example of this is shown in Figure 22, which clearly in-

dicates that the trajectories generated are too tightly clustered

around a particular “modal” trajectory, and hence a misleading

inference about posterior uncertainty could be obtained. Never-

theless, the result is still visually improved compared with the

standard method for the same number of particles (Figure 23).

Finally, a filtering/smoothing pass was carried out on an en-

tire sentence of speech, lasting some 2.5 seconds. Results can

be auditioned by listening to the simulated signal trajectories.

An example of this can be found http://www-sigproc.eng.cam.

ac.uk/˜sjg/TV-PARCOR, where noisy speech and extracted

speech can be compared. The results are satisfactory, eliminat-

ing some of the high-frequency frame-based artefacts (“musical

Figure 22. Ten Realizations From the Smoothing Density for the

TV-PARCOR Coefficients Using the Proposed Simulation Smoothing

Method (N = 500).
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Figure 23. Ten Realizations From the Smoothing Density for the

TV-PARCOR Coefficients Using the Standard Trajectory-Based Method

(N = 500).

noise”) observed with standard speech-enhancement algo-

rithms, although the TVAR model causes some sibilance during

unvoiced consonant sounds, such as “ss.”

6. DISCUSSION

Recent years have seen a huge surge of interest in particle fil-

tering, motivated by practical problems of sequential analysis in

dynamic models in many areas of engineering, the natural sci-

ences, and socioeconomics (Doucet et al. 2001). Our work here

is not specific to any one algorithm and takes the established no-

tion of sequentially updated particulate representations of pos-

terior distributions in state-space models as the starting point

for smoothing. In speech processing as in other applications, it

is often critically important to “look back over time” for sev-

eral or many time steps to assess and evaluate how new data

revise the view of the recent past. Hence smoothing algorithms

are key, and our work here develops effective approaches that

apply regardless of the filtering method adopted.

We have developed and presented fairly simple and efficient

methods for generating sample realizations of joint smooth-

ing densities in a general model context. Smoothing has not

been stressed by earlier authors in the sequential simulation

literature, and where it has been studied, approaches have been

limited to approximating the time-specific marginal smoothing

distributions for individual states. We reiterate that this narrow

focus is limiting and potentially misleading in many applica-

tions. Investigations of patterns of changes in historical states

should focus on the joint trajectories of past states and hence

necessarily involve consideration of joint smoothing densities,

not simply the collection of marginals. Generating sample real-

izations is the most efficient, effective, and intuitive approach to

studying complicated multivariate joint distributions; hence our

focus on sampling algorithms for smoothing. This concept par-

allels that in forecasting, where studies of “sampled futures”

are critical exercises in any serious modeling-for-forecasting

activity.

There are research challenges in many aspects of the sequen-
tial simulation arena, including real needs for improved particle
filtering algorithms, and reconciliation of the several variants
of sequential importance sampling, resampling, and auxiliary
particle methods. The present article ignores issues of learning
on fixed model parameters in addition to time-varying states,
a broader problem also ignored by most other authors in the
field but critical in many applications, such as the challenging
multifactor models of Pitt and Shephard (1999b) and Aguilar
and West (2000). In our current work with TVAR models,
we are developing analyses for both parameters and states us-
ing the auxiliary particle plus methods of Liu and West (2001).
It should be noted that the smoothing methods developed and
illustrated here apply directly in this context as well, providing
a comprehensive smoothing algorithm.

APPENDIX: PROOF OF CONVERGENCE FOR THE

BACKWARD SIMULATION SMOOTHER

Here we specify a more formal measure-theoretic framework, given

as by Crisan (2001) and Crisan and Doucet (2000), for proof of conver-

gence. Let (�,F,P ) be a probability space on which two vector real-

valued stochastic processes X = {Xt , t ∈ N
∗} and Y = {Yt , t ∈ N

∗} are

defined; let nx and ny be the dimensions of the state space of X and Y .

The process X is unobserved, whereas the process Y is observed.

Let X be a Markov process with respect to the filtration Ft �

σ(Xs, Ys , s ∈ {1, . . . , t}) with initial distribution X1 ∼ f (dx1) and

transition kernel

f (dxt |xt−1) � P(Xt ∈ dxt |Xt−1 = xt−1). (A.1)

We assume that the observations are statistically independent given the

signal and that they satisfy

g(dyt |xt ) � P(Yt ∈ dyt |Xt = xt ). (A.2)

For the sake of simplicity, we assume that f (dxt |xt−1) and g(dyt |xt )

admit densities with respect to the Lebesgue measure; that is,

f (dxt |xt−1) = f (xt |xt−1) dxt and g(dyt |xt ) = g(yt |xt ) dyt , corre-

sponding to the densities f (·|·) and g(·|·) in the main text.

We use the following standard shorthand. If µ is a measure, then

ϕ is a function and K is a Markov kernel,

(µ,ϕ) �

∫
ϕ dµ,

µK(A) �

∫
µ(dx)K(A|x),

and

Kϕ(x) �

∫
K(dz|x)ϕ(z).

We also use the following notation:

πt |t−1(dxt ) � P(dxt |Y1 : t−1 = y1 : t−1)

and

πt |t (dxt ) � P(dxt |Y1 : t = y1 : t ) (the “filtering” measure).

The general particle filtering method described in Section 2 seeks

successively to approximate these two measures using randomly prop-

agated empirical measures.

More generally, we use the following shorthand for smoothing dis-

tributions:

πt1 : t2|t3

(
dxt1 : t2

)
� P

(
dxt1 : t2

∣∣Y1 : t3 = y1 : t3

)
.
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We define the weighted approximation to the filtering measure as

πN
t |t (dxt ) �

N∑

i=1

w
(i)
t δ

x
(i)
t

(dxt ), (A.3)

and the unweighted measure following resampling (selection) as

π ′
t |t

N
(dxt ) �

1

N

N∑

i=1

δ
x ′(i)

t
(dxt ). (A.4)

Similarly, P smoothed realizations generated using Algorithm 1

can be used to form an unweighted approximation to the joint den-

sity. These realizations are sampled according to the discrete approx-

imation πN
1 : t

of the true smoothing measure π1 : T . In Theorem A.2

we prove the convergence of this approximating measure to the true

smoothing measure πt : T |1 : T for any t ∈ {1,2, . . . , T }.

Define a (joint) measure ρt (dxt−1 : t ) � πt−1|t−1(dxt−1)q(dxt |

yt , xt−1), chosen such that it is absolutely continuous with respect

to πt−1 : t |t−1(dxt−1 : t ) and such that ht is the following (strictly pos-

itive) Radon–Nykodym derivative:

ht (yt , xt−1, xt ) ∝
πt−1 : t |t−1(dxt−1 : t )

ρt (dxt−1 : t )
.

We now state sufficient conditions for convergence of the particle

filter. Let B(Rn) be the space of bounded, Borel-measurable functions

on R
n and denote, for any ϕ ∈ B(Rn),

‖ϕ‖ � sup
x∈Rn

ϕ(x).

Assume from now on that the observation process is fixed to a given

observation record, Y1 : T = y1 : T . All subsequent convergence results

are presented on this basis.

Consider the following assumption.

Assumption A.1. πt−1 : t |t is absolutely continuous with respect

to ρt . Moreover, g(yt |xt )ht (yt , xt−1, xt ) is positive and bounded in

argument (xt−1, xt ) ∈ (Rnx )2.

The following theorem for the particle filter is then a direct conse-

quence of work of Crisan (2001) and Crisan and Doucet (2000).

Theorem A.1 (Crisan and Doucet 2000). Under Assumption A.1,

for all t > 0, there exists ct |t independent of N such that for any

φ ∈ B(Rnx ),

E
[(

(πN
t |t , φ) − (πt |t , φ)

)2]
≤ ct |t

‖φ‖2

N
,

where the expectation is over all realizations of the random particle

method.

Now define

f (x) � ‖f (x|·)‖

and consider the following assumption.

Assumption A.2. For any t ∈ (1, . . . , T ), we have

(
πt |T ,

(
f

πt |t−1

)2)
< ∞.

We can now state the main theorem concerning convergence of the

proposed simulation smoothing algorithm.

Theorem A.2. Under Assumptions A.1 and A.2, for all t ∈

(1, . . . , T ), there exists ct |T independent of N such that for any

φ ∈ B(RnxT )

E
[(

(πN
1 : T |T , φ) − (π1 : T |T , φ)

)2]
≤ c1|T

‖φ‖2

N
,

where c1|T can be computed using the backward recursion,

ct |T =

(
(ct+1|T )1/2 + 2(ct |t )

1/2

(
πt+1|T ,

(
f

πt+1|t

)2)1/2
)2

,

(A.5)

and ct |t is given by Theorem A.1.

Proof. We prove here that for any φt ∈ B(Rnx (T −t+1)), there ex-

ists ct |T independent of N such that

E
[(

(πN
t : T |T , φt ) − (πt : T |T , φt )

)2]
≤ ct |T

‖φt‖
2

N
.

The proof proceeds by induction. Theorem A.1 ensures that the re-

sult is true for t = T . Now, rewrite (πt : T |T , φt ) as

(πt : T |T , φt ) =

(
πt+1 : T |T ,

(πt |t , φtf )

πt |tf

)
.

Then decompose the error term (πN
t : T |T , φt ) − (πt : T |T , φt ) as

(πN
t : T |T , φt ) − (πt : T |T , φt )

=

(
(πN

t+1 : T |T − πt+1 : T |T ),
(πN

t |t
, φtf )

πN
t |t

f

)

+

(
πt+1 : T |T ,

(πN
t |t , φtf )(πt |t − πN

t |t , f )

(πN
t |t , f )πt+1|t

)

+

(
πt+1 : T |T ,

(πN
t |t − πt |t , φtf )

πt+1|t

)
. (A.6)

Then, by Minkowski’s inequality, we have

E
[
(πN

t : T |T , φt ) − (πt : T |T , φt )
]1/2

≤ E

[(
(πN

t+1 : T |T − πt+1 : T |T ),
(πN

t |t , φtf )

πN
t |tf

)2]1/2

+ E

[(
πt+1 : T |T ,

(πN
t |t , φtf )(πt |t − πN

t |t , f )

(πN
t |t , f )πt+1|t

)2]1/2

+ E

[(
πt+1 : T |T ,

(πN
t |t − πt |t , φtf )

πt+1|t

)2]1/2

. (A.7)

Consider now the three terms on the right side:

• First term. For any xt+1 : T , we have

∥∥∥∥
(πN

t |t , φtf )

πN
t |tf

∥∥∥∥ ≤ ‖φt‖.

Thus, using the induction hypothesis, we obtain

E

[(
(πN

t+1 : T |T − πt+1 : T |T ),
(πN

t |t
, φtf )

πN
t |t

f

)2]

≤ ct+1|T
‖φt‖

2

N
. (A.8)

• Second term. For any xt+1 : T , we have

∣∣∣∣
(πN

t |t , φtf )(πt |t − πN
t |t , φtf )

(πN
t |t , f )πt+1|t

∣∣∣∣ ≤
|(πt |t − πN

t |t , f )|

πt+1|t
‖φt‖.
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Thus

E

[(
πt+1 : T |T ,

(πN
t |t , φtf )(πt |t − πN

t |t , f )

(πN
t |t , f )πt+1|t

)2]

≤ E

[(
πt+1 : T |T ,

|(πt |t − πN
t |t , f )|

πt+1|t

)2]
‖φt‖

2

=
(
πt+1 : T |T ,π−2

t+1|t
E

(
(πt |t − πN

t |t , f )2
))

‖φt‖
2

(Jensen’s inequality).

By Theorem A.1 and Assumption A.2,

E
(
(πt |t − πN

t |t , f )2
)
≤ ct |t

f
2

N
,

and hence

E

[(
πt+1 : T |T ,

(πN
t |t

, φtf )(πt |t − πN
t |t

, f )

(πN
t |t , f )πt+1|t

)2]

≤
ct |t

N

(
πt+1|T ,

f
2

π2
t+1|t

)
‖φt‖

2. (A.9)

• Third term. We have

E

[(
πt+1 : T |T ,

(πN
t |t

− πt |t , φtf )

πt+1|t

)2]

≤ E

[(
πt+1 : T |T ,

(πN
t |t

− πt |t , φtf )2

π2
t+1|t

)]

(Jensen’s inequality)

=
(
πt+1 : T |T ,π−2

t+1|t
E

(
(πN

t |t − πt |t , φtf )2
))

.

By Theorem A.1 and Assumption A.2, we obtain

E
(
(πN

t |t − πt |t , φtf )2
)
≤

ct |t

N
f

2
‖φt‖

2,

so that

E

[(
πt+1 : T |T ,

(πN
t |t − πt |t , φtf )

πt+1|t

)2]

≤
ct |t

N

(
πt+1|T ,

f
2

π2
t+1|t

)
‖φt‖. (A.10)

The result follows by combining (A.6), (A.8), (A.9), and (A.10).

[Received ????. Revised ????.]
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