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Monte Carlo Studies in Item Response Theory
Michael Harwell, Clement A. Stone, Tse-Chi Hsu, and Levent Kirisci

University of Pittsburgh

Monte carlo studies are being used in item response
theory (IRT) to provide information about how validly
these methods can be applied to realistic datasets (e.g.,
small numbers of examinees and multidimensional

data). This paper describes the conditions under which
monte carlo studies are appropriate in IRT-based re-
search, the kinds of problems these techniques have
been applied to, available computer programs for gen-
erating item responses and estimating item and exam-
inee parameters, and the importance of conceptualizing
these studies as statistical sampling experiments that
should be subject to the same principles of experimen-
tal design and data analysis that pertain to empirical
studies. The number of replications that should be used
in these studies is also addressed. Index terms: analy-
sis of variance, experimental design, item response
theory, monte carlo techniques, multiple regression.

Item response theory (IRT) is an important and
popular methodology for modeling item response
data that have applicability to numerous measure-
ment problems. The enthusiasm for IRT, however,
has been tempered by the realization that the valid-
ity with which these methods can be applied to re-
alistic datasets (e.g., small numbers of items and
examinees, multidimensional data) is often poorly
documented. Increasingly, monte carlo (MC) tech-
niques in which data are simulated are being used
to study how validly IRT-based methods can be ap-
plied. For example, for the period 1994-1995, ap-
proximately one-fourth to one-third of the articles
in the~ourn~ls~4pplied Psychological Measurement
(APM), Psychometrika, and the Journal of Educa-
tional Measurement (JEM) used MC techniques.

The popularity of IRT MC studies, coupled with
the desire for the results of such studies to be used

by measurement professionals, suggests a need for a

comprehensive source that describes what MC stud-
ies are, a rationale for using these studies in girt, and

guidelines for properly designing and executing a
MC study and analyzing the results. Unfortunately,
there has been no single source of information about
IRT MC studies to consult; although books on these
techniques are available, they are devoted to solving
statistical rather than measurement problems. This

paper was designed to fill this gap.
First, a definition of a MC study is offered and a

description of a typical MC study in IRT is provided.
Next, references are provided for readers desiring
an introduction to these techniques, followed by a
brief history of these procedures. The conditions
under which a Mac approach is appropriate are out-
lined, along with some advantages and limitations
of these techniques. The results of a survey of IRT
articles in three prominent measurement journals
are reported to illustrate the variety of problems to
which these techniques have been applied.

Following the advice of several authors (e.g.,
Hoaglin & Andrews, 1975; Naylor, Balintfy, Burdick,
& Chu, 1968; Spence, 1983), the description of the

design and implementation of an IRT MC study treats
these studies as statistical sampling experiments that
should be subject to the same guidelines and prin-
ciples that pertain to empirical studies. Spence cap-
tured the importance of this perspective: .

The Monte Carlo experiment is a designed
experiment and, as such, is capable of dis-

playing the same virtues and vices to be found
in designed experiments in more familiar set-

tings. Bad design, sloppy execution, and in-

ept analysis lead to the same kinds of diffi-
culties in the world of computer simulation

as they do in the laboratory. (p. 406)
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Finally, some implications for using MC techniques
in IRT -based research in the future are presented.

Monte Carlo Studies

The term &dquo;monte carlo&dquo; is frequently used when
random numbers are generated in stochastic simula-
tion (Naylor et al., 1968), although such studies are
really statistical sampling experiments with an un-

derlying model whose results are used to address
research questions. [Rubinstein (19 1, p. 3) describes
the role of models in 1~~ studies.] MC studies are in

many ways mirror images of empirical studies with
one key difference: The data are simulated using a

computer program.

A Typical Monte Carlo Study in IRT

A typical IRT Mac study might proceed as follows:
1. One or more research questions that define the

purpose of the study are specified. For example,
&dquo;How accurate are parameter estimates for a two-

parameter logistic model (2PLM) when the num-
bers of items and examinees are varied and

different prior distributions for the item param-
eters are specified?&dquo;

2. The conditions to be studied are delineated. This

includes the independent variables, such as the
numbers of examinees and items, and the depen-
dent (outcome) variables, which are used to mea-
sure the effects of the independent variables.

3. An appropriate experimental design is specified.
4. Item response data are generated following an

underlying model, such as the 2PLM, subject to
the conditions studied.

5. Parameters are estimated using the simulated
item responses.

6. Outcomes that measure the effect of the condi-

tions being modeled are compared (e.g., median
standard error for estimated discrimination pa-
rameters across ~c items).

7. This process is replicated times for each cell
in the design, producing R outcomes per cell.

8. Then outcomes are analyzed using both descrip-
tive and inferential methods. Inferential analyses
are guided by the research questions and the ex-
perimental design. For example, use of a facto-
rial design might suggest that analysis of variance

(ANOVA) should be used. The results from the de-

scriptive and inferential analyses provide evidence

concerning the research questions under investi-
gation.

General References for

Monte Carlo Techniques

Readers desiring general references forme tech-

niques will find this literature to be rather exten-
sive, and only references that are relatively well
known and have features that are particularly suit-
able for I1~~’-b~sed research are mentioned here.

Some useful references are Hammersley & Hands-

comb (1964), Rubinstein ( 19~ 1 ), and Ripley (1987).
These texts cover the definitions, objectives, and
limitations of MC techniques, random number gen-
eration, testing of random numbers, variance reduc-
tion methods, and selected applications. Readers
desiring a brief treatment may find it sufficient to
read Chapter 11 of Lehman & Bailey (1968) and

Hartley’s Chapter 2 in Enslein, Ralston, & Wilf

(1977); those interested in the mechanics of gener-
ating random numbers should find De Vroye (1986)
and Newman & Odell ( 1971 ) helpful. For readers
interested in the application of these methods to IRT,
the article by Wilcox (1988) is a good introduction.

Some texts are written with applications to spe-
cific fields. For example, the texts by Smith (1975)
and Naylor et al. (1968) are intended for econo-
metricians, and the text by Lewis & Orav (1989)
for engineers. In the absence of a text specifically
written for psychometricians, the text by Naylor et
al. is recommended. Even though the text is rela-

tively old, most of the discussion about the plan-
ning and design of statistical sampling experiments
is applicable to IRT-based research.

A Brief History of Monte Carlo Techniques

The history of MC techniques can be divided into
three periods. The first can be called pre-IVIC and cov-
ers the time before the term was used. During this

period, these techniques were not really considered
formal methods of research, yet they made signifi-
cant contributions to the study of statistical problems.
For example, statistical sampling experiments fig-
ured prominently in the discovery of the distribu-
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tions of the correlation coefficient and t by Student
in 1908, as cited in Hammersley & Handscomb

( 1964).
The term -&dquo;monte carlo&dquo; was first used by Me-

tropolis & Ulam (1949), which may be considered
the beginning of the second period. These techniques
were used as a research tool during World War II in
their study of problems related to the atomic bomb,
and were popularized by researchers in the immedi-
ate post-war years (von Neumann & Ulam, 1949).
The third period of MC methods began in the late
1960s and the early 1970s when high-speed com-

puters became accessible to many researchers, and
these studies became a popular method of research
for statistical problems.

When Is a Monte Carlo Study
Appropriate in IRT?

The conditions under which a MC study would
be appropriate are summarized in the publication
policy of Psychometrika (Psychometric Society,
1979): e

Monte Carlo studies should be employed only
if the information cannot reasonably be ob-
tained in other ways. The following are prob-
ably the most common situations in psycho-
metrics where the method may be appropriate:
(a) Determination of sampling distribution of
test statistics, or comparisons of estimators,
in situations where analytic results are diffi-
cult to obtain, e.g., when the robustness of a
test statistic is investigated.
(b) Comparison of several algorithms avail-
able to perform the same function, or the
evaluation of a single algorithm. It is very
important that the objectives and limitations
of such studies be carefully and explicitly
considered. (pp. 133-134)

Thus, a MC study should be considered if a prob-
lem cannot be solved analytically, and should be

performed only after a compelling rationale for us-
ing these techniques has been offered.

and Limitations
of I~~nt~ Carlo Studies

The popularity of MC studies in t1~’r-bascd re-

search should not be taken as evidence that these

techniques are methodological panaceas; to the con-

trary, their success depends in large part on the skills
of the researcher performing the study. Still, it is

possible to list some general advantages and limi-
tations of these studies (Lehmann & Bailey, 1968;
Naylor et al., 1968).

Perhaps the most compelling advantage is that Mac
studies can often be conducted when an analytic so-
lution for a problem does not exist or is impractical
because of its complexity. As suggested by Psycho-
metrika’s publication policy, research questions
should ideally be solved in a precise analytic or math-
ematical way, similar to the way that analytic meth-
ods are sometimes used to study the properties of
statistical tests (c.g., Box, 1954; Rogosa, 1980). These
methods deduce from postulates and are exact in the
sense that if a set of underlying assumptions is true,
the results are highly generalizable because they in-
volve no uncertainty. However, the results may be
of little value if the assumptions underlying an ana-

lytic solution are unrealistic.
For example, suppose that it was necessary that

estimated standard errors for discrimination param-
eters in a dichotomous 2PLM be less than .15. How

many examinees would be needed to achieve this

for a given number of test items if the prior vari-
ance of the distribution of discrimination param-
eters doubled? Would the needed number of

examinees be the same for the 2PLM versus the three-

parameter logistic model (3PLM) and for a 10-item
versus a 15-item test, and what would be the effect

(if any) of a skewed trait (0) distribution on the stan-
dard errors? Solutions to these kinds of questions
can be quite useful and ideally would involve no

uncertainty; unfortunately, analytic solutions to

questions such as these in IRT are typically very dif-
ficult or simply impossible.

Alternatively, an experiment could be con-
ducted to provide information about the conditions
needed to produce standard errors less than .15.

Experiments use a process of induction, study one
behavior or phenomenon in realistic settings, and

produce results of quality that depend heavily on
the size of the sampling error and whose gener-
alizability depend on the representativeness of the
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sample. A statistical sampling experiment (i.e., a
MC study) satisfies these conditions.

Other advantages ofMC studies include the capa-
bility of specifying and manipulating values of pa-
rameters and studying the effects of several factors
at one time. Also, MC studies are sometimes the fair-
est way of comparing alternative actions and may be
less expensive than studies involving humans.

But researchers should not uncritically turn to
MC studies, because indiscriminate use of these tech-

niques may produce misleading results or results
with little utility. One limitation of these studies is
that the usefulness of the results is highly depen-
dent on how realistic the conditions modeled are

(e.g., assumed distribution of the parameters or
data). Another drawback is that the quality of the
random number generator is difficult to assess, es-

pecially for a long series of numbers. Mac results
may also vary depending on the number of replica-
tions used and the numerical precision of the com-

puter (Stone, 1993).

The Use of Monte Carlo Studies in IRT

Applications of MC techniques in IRT have typi-
cally involved one or more of the following: (1)
evaluating estimation procedures or parameter re-
covery, (2) evaluating the statistical properties of
an IRT-based statistic (e.g., a goodness-of-fit mea-
sure), or (3) comparing methodologies used in con-

junction with IRT (e.g., differential item functioning
or multidimensionality assessment). All involve

generating random samples using an assumed model
for the purpose of comparing results when the
&dquo;truth&dquo; is known. However, Types 1 and 2 involve

generating and analyzing empirical sampling dis-
tributions, whereas Type 3 involves generating data
and comparing the extent to which methodologies
detect manipulated characteristics in the data.

To document the problems to which MC studies
have been applied, 26 published studies using these

techniques, either exclusively or partially, and ap-
pearing in APM, Psychometrika, or JEM between
1981 and 1991 inclusive, were identified, classi-
fied, and tabulated according to the nature of the

problem investigated. Studies that used MC tech-

niques partially were those that relied on either

simulated data or empirical data, whereas studies
classified as using 1~c techniques exclusively re-
lied entirely on simulated data. Studies in the two

problem areas with the highest frequencies were
further examined, classified, and tabulated accord-

ing to problem characteristics and how well they
satisfied standards for evaluating MC studies adapted
from Psychometrika (Psychometric Society, 1979)
and Hoaglin & Andrews (1975). The purpose was
to illustrate the problems to which MC studies have
been applied and to evaluate how well these stud-
ies were conducted. The standards used in evaluat-

ing theMC studies assessed whether (1) the problem
could be solved analytically, (2) the study was a
minor extension of existing results, (3) an appro-
priate experimental design and analysis of MC re-
sults was used, (4) locally-written software or
modifications of public software were properly
documented, (5) the results depended on the start-

ing values for iterative parameter estimation meth-
ods, and (6) the choice of distributional assumptions
and independent variables and their values were
realistic.

Problems Investigated With
Monte Carlo Techniques

Table 1 reports frequencies of a sample ofiRT Mac
studies classified according to the journals that pub-
lished the study and the problems studied. ~~1~ pub-
lished most of the studies; Psychometrika and JEM

published about equal numbers of MC studies. The
two problem areas with the highest frequencies were

parameter estimation and dimensionality.

Parameter Estimation

Research characteristics of the 26 parameter es-

timation studies reported in Table 2 indicate that
the focus has been on relatively short tests (e.g., z
25 items) and a range of examinee sample sizes (N)
and IRT models. The various criterion variables used,

[e.g., the root mean square deviation (RMSD), de-
fined as the square root of the average of the squared
deviations between estimated and true parameter
values], were used with approximately the same

frequency. Maximum likelihood estimation and its
variations were used most frequently to estimate
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Table 1

Frequencies of Studies in APM, Psychometrika (PSY), and JEM’
Classificd According to Major Research 1’roblean Areas

parameters, and Bayesian estimation was rarely
used. 11 studies used Mac techniques exclusively and
15 partially. Virtually all of the studies that sampled
item discrimination (a) or difficulty (b) parameters
assumed a normal or uniform distribution for these

parameters.
Most of the parameter estimation studies failed

to satisfy two or more of the standards (Table 3).
For example, 8 studies that used locally developed
computer programs to generate item responses and
estimate parameters failed to provide any documen-
tation supporting the adequacy of those programs.
16 of these studies also used unreplicated designs
and simplistic data analyses. Unreplicated designs
are particularly vulnerable to the effects of sam-

pling error associated with simulating data, which

may affect the validity of the results (Hauck &
Anderson, 1984; Stone, 1992). Finally, 20 of the
26 studies failed to provide any evidence that the
selection of particular 0 distributions and item pa-
rameters was realistic.

I1i ensi&reg;n~lity

17 studies dealing with dimensionality were ex-
amined, most of which investigated methods for de-
tecting multidimensionality (9 studies) or studied the
effect of multidimensional data when unidimensional

models were used (6 studies; see Table 4). Once

again, several studies failed to satisfy two or more of
the standards for evaluating Mac studies (Table 5).

For example, only one of the studies (5%) provided
an adequate description of the experimental design
(compared to 12% of the parameter recovery studies
in Table 3), and only 4 (24%) documented the ad-

equacy of the random number generators or other

computer resources (compared to 38% of the param-
eter recovery studies). In addition, 12 (71%) of these
studies used an unreplicated design (compared to
61 % of the parameter recovery studies). On the

whole, the studies involving multidimensionality did
a slightly poorer job of satisfying the Psychometrika
and Hoaglin and Andrews standards than the param-
eter recovery studies.

Major Steps in Implementing an
I T Monte Carlo Study

Naylor et al. (1968) described several steps for

implementing MC studies. Adapted to IRT, these steps
include (1) formulating the problem; (2) designing
the study, which includes specification of the inde-

pendent and dependent variables, the experimental
design, the number of replications, and the IRT model;
(3) writing or identifying and validating computer
programs to generate item responses and to estimate

parameters; and (4) analyzing the Mac results.

Formulating the Problem

Formulating a proper research problem is critical
in any research endeavor and MC studies are no ex-

ception. The researcher must determine the problem
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Table 2

Frequencies of 26 Parameter Estimation Studies Classified According to Research
Characteristics (11’LM = One-Parameter Logistic M&reg;del)

to be investigated, the questions to be asked, the hy-
potheses to be tested, and the effects to be measured.
Accepted principles governing these activities in

empirical studies should be used (e.g., Babbie, 1989).
In general, the formulation of research questions re-
lies heavily on knowledge of a literature; the hypoth-
eses to be tested represent an operationalization of
the research questions; and the effects to be mea-
sured must be sensitive to the variables being ma-
nipulated.

For example, Harwell & Janosky (1991) stud-
ied the effect of varying prior variances of the dis-
tribution of a on item parameter estimation for

different test lengths and Ns using the BILOG com-

puter program (Mislevy & Bock, 1986). They re-

ported that the IRT literature offered little guidance
in this area, and hypothesized that smaller prior

variances would require fewer examinees to obtain
stable parameter estimates and that this phenom-
enon would be more pronounced for shorter tests.
Because this question could not be answered ana-

lytically, a Mac study was used to provide specific
values of the number of examinees and the prior
variance needed to produce stable parameter esti-
mates. They used the RMSD as the dependent vari-
able because it was expected to be sensitive to the
effects of the variables being manipulated. The sur-

vey of published IRT studies summarized in Tables
2 and 4 provides other examples of problems that
have been investigated, hypotheses that have been
tested, and effects that have been measured.

Designing a Monte Carlo Study

A recurring theme in empirical research is the
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Table 3

26 Parameter Estimation Studies Classified According to Frequency of Satisfying
Psychometrika and Hoaglin Andrews (1975) Standards for Evaluating Monte Carlo Studies

importance of carefully designing all aspects of the
study to allow hypotheses to be properly tested and
research questions to be properly answered. Such
studies are marked by efficient modeling of varia-
tion in the dependent variable, straightforward esti-
mation and testing of effects with widely available
computer programs, and an evaluation of the threats
to internal and external validity (Cook & Campbell,
1979). Carefully designed 1~c studies will have these
same desirable characteristics.

Issues related to the design of the MC study in-
clude selecting the independent and dependent vari-
ables, the experimental design, the number of repli-
cations, and the IRT model. The overarching goal of
these choices is to maximize the generalizability and

replicability of the results.

Selecting the Independent
Variables and Their Values

The research questions should dictate the inde-

pendent variables to be included in the simulation as
well as suggest values of these variables, which are
discrete and typically represent fixed effects. In the
Harwell & Janosky ( 1991 ) study, N, test length, and

prior variance served as independent variables. Val-
ues for these variables were suggested by the research

questions, which focused on smalls and short tests,
and previous work in this area.

Model parameters also represent an independent
variable in abc study, although they are rarely treated
as such. These parameters are often represented as
equally spaced values across a fixed range or as esti-
mates from a previously calibrated test, implying a
fixed effect. Random sampling off nd b values from

specified distributions, however, identifies item pa-
rameters as a random effect. An advantage of ran-

domly selecting model parameters is that some

generalizability is obtained, although it is possible
to obtain unusual combinations of parameters. In any
event, a justification must be provided for the values
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Table 4

Frequencies of 17 Dimensionality Studies Classified According to
____ 

Research Characteristics (MD = Multidimensional)

of the independent variables that are selected.
Researchers also must consider the relationship

between the number of independent variables, the
efficiency of the study, and the interpretability of the
results. As the number of variables increases, the
breadth of the study increases but more time is needed
to perform the simulation. For example, the Harwell
& Janosky (1991) study involved a 6 x 2 x 5 fully-
crossed design, which would require 60, 600, and
6,000 BILOG analyses with 1, 10, and 100 replica-
tions, respectively. If a fourth independent variable
was added with W levels, the number of analyses
would increase by a factor of W. Advances in com-

puting speed and power imply that the issue of effi-

ciency is perhaps not as critical as it once was, but
the computer time needed to estimate model param-
eters for replicated studies can still be substantial.
Moreover, as noted by Naylor et al. (1968), if too

many variables are included the interpretation of their

joint effect may be difficult.

Selecting an Experimental Design

The nature of the independent variables frequently

suggests an appropriate experimental design. For
example, for a small number of independent vari-
ables with relatively few values, a factorial design
may be appropriate. In general, selection of an ap-
propriate experimental design for a Mac study should
take the goals and computing resources of the study
into account. Careful selection of a design also helps
to delineate the analyses of the MC results that are

permissible (Lewis & Orav, 1989).
In the Harwell & Janosky (1991) study, the ma-

nipulated variables were N, test length, and vari-
ance of the prior distribution of a, which served as
independent variables in a completely between-sub-

jects factorial design. A MC study by Yen (1987)
typifies another useful experimental design. Yen

compared the BILOG and LOGIST (Wingersky,
Barton, & Lord, 1982) item analysis programs on,
among other things, CPU time, for combinations of
various test lengths and 0 distributions. This, too,
could be represented as a factorial design, but one
in which test length and 0 distribution served as

between-subjects factors and item analysis program
as a within-subjects factor.
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Table 5

17 Dimensionality Studies Classified According to Frequency of Satisfying Psychometrika
and Hoaglin & Andrews (1975) Standards for Evaluating Monte Carlo Studies

Selecting Variable

The problem specification should also delineate
a class of appropriate dependent variables with which
to measure the effects of the manipulated variables.
These variables must be sensitive to the independent
variables being manipulated, but it is also useful if
they are in a form (or can be transformed to a form)
that simplifies inferential analyses of the results.

For example, studies evaluating parameter esti-
mation procedures have typically used dependent
variables reflecting the success of parameter recov-

ery, such as therms (e.g., Harwell & Janosky, 1991;
Kim, Cohen, Baker, Subkoviak, & Leonard, 1994;
Stone, 1992). An advantage of the RMSD is that it
can be transformed (using a log transformation) so
that, if the variables used to compute the RMSD are

normally distributed, it has an approximate normal
distribution, which is useful for inferential analyses.
In studies comparing IRT-based methodologies de-

signed to detect characteristics of a test (e.g., dimen-

sionality), or differentially functioning items (DIF)
or persons [e.g., appropriateness measures (Levine
& Rubin, 1979)], percentages reflecting detection
rates can be used as outcomes. Of course, multiple
criterion variables in IRT MC studies are desirable be-

cause they can provide complementary evidence of
the effect of an independent variable (e.g., RMSD and
the correlation between true and estimated param-

eters) although, as noted by Naylor et al. (1968), too

many outcome measures may decrease the efficiency
of the study and increase the occurrence of chance
differences.

The correlation between estimated and true pa-
rameters is also used as a criterion variable in MC

studies. An advantage of using correlations is that
variables with different metrics can be correlated to

provide evidence about the factors being manipu-
lated ; for example, the correlation between estimated

parameter values and their standard errors. A disad-

vantage is that these correlations only reflect the rank
ordering of the variables being correlated and, as
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such, produce only relative evidence of the effects
of the independent variables. For example, a corre-
lation of .9 between true and estimated a parameters
implies that, on average, true a values that exceed
the mean of the true as are associated with estimated

a values that are above their mean. But that does not

guarantee that the true and estimated values will
be close in value, nor is it clear how much better the
estimation is for a correlation between true and esti-

mated values of, for example, .8 versus .9. Finally,
the assumptions underlying valid interpretations of
these correlations (e.g., linearity, homoscedasticity,
no truncation or outliers) may not be routinely satis-
fied when these indexes are used.

Selecting the Number of Replications

The number of replications in a MC study is the
analogue of sample size, and criteria used to guide
sample size selection in empirical studies apply to
MC studies. In IRT research, the number of replica-
tions is influenced by the purpose of the MC study,
by the desire to minimize the sampling variance of
the estimated parameters, and by the need for sta-
tistical tests of MC results to have adequate power
to detect effects of interest.

The purpose of the study has an important effect
on the number of replications selected. For example,
a parameter recovery study in which the significance
of a statistic is tested must generate empirical sam-
pling distributions for the statistics. Thus, a fairly
large number of replications may be needed (e.g.,
500). However, when comparing IRT-based meth-

odologies (e.g., comparing the number of DIFF items

correctly detected by competing methods), empiri-
cal sampling distributions are not necessarily ob-
tained and a small number of replications may be
sufficient (e.g., 10).

Replications and precision. The number of rep-
lications also has a direct influence on the preci-
sion of estimated parameters-larger samples (i.e.,
more replications) produce parameter estimates with
less sampling variance. The statisticians
attach to minimizing sampling variance is reflected
in the fact that MC studies in statistics typically use
several thousand replications (Harwell, Rubinstein,
Hayes, & Olds, 1992). Unfortunately, iRT-basedMc

research has lagged behind, typically using no rep-
lications (e.g., Hambleton, Jones, & Rogers, 1993;
Harwell & Janosky, 1991; Hulin, Lissak, &
Drasgow, 1982; Qualls & Ansley, 1985; Yen, 1987).
The danger in using no replications is that the sam-

pling variance will be large enough to seriously bias
the parameter estimates, reducing the reliability and

credibility of the results.

Among the techniques available to reduce the
variance of estimated parameters (see Hammersly
& Handscombe, 1964; Lewis & Orav, 1989), in-

creasing the number of replications is particularly
attractive. The advantages of replicated over unrep-
licated IRT MC studies are the same as those that

accrue in empirical studies; that is, aggregating re-
sults over replications produces more stable and
reliable results. For example, consider a parameter
recovery study in which estimated and true param-
eters are to be compared. When no replications are
used, the only information available is from a single
parameter estimate, and summary statistics such as
the RMSD can only be calculated across the estimated

parameters (e.g., across the set of test items). The

equation for computing the RMSD for estimated a

parameters aggregated across n items is

where cii is the estimated parameter and at is the true
parameter The RMSD values can be compared across
the experimental conditions to assess the degree to
which the factors affect parameter recovery.

In replicated studies, parameter recovery is gen-
erally assessed by comparing the difference between
an item parameter estimate and the corresponding
parameter value across replications. Gifford &
Swaminathan (1990) demonstrated that the mean

squared difference for any particular item parameter
across ~° &reg; 1, 2, ..., R replications can be separated
into two components--one reflecting bias in estima-
tion and the other the variance of the estimates across

replications. With respect to a, this may be expressed
as
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where ~i is the mean of the estimated a parameters
for the ith item across replications. The expres-
sion to the immediate right of the equal sign re-
flects estimation bias. This index provides evidence
of the effect on parameter estimation of the condi-
tions being modeled, with smaller values of this
index suggesting little effect. The right-most term
in Equation 2 reflects the variance of the estimates
across replications and functions as an empirical
error variance. Smaller values of this index suggest
that the estimates are fairly stable and hence reli-
able, whereas larger values serve as a warning that
the estimates may be unreliable. The components
of Equation 2 are correlated in the sense that pa-
rameter estimates showing little bias would also be

likely to show little variance over replications (i.e.,
estimates are close to parameters), whereas a large
bias would be expected to be accompanied by a
larger variance (estimates are not close to param-
eters). Both components of Equation 2 are impor-
tant in assessing parameter recovery, and can only
be distinguished in replicated studies.

Replications and power. Finally, the number of

replications should be selected so that the power of
statistical tests used to analyze mc results is large
enough to detect effects of interest. Stone (1q93) ~sed
a two-step procedure to study the relationship be-
tween number of replications and power. First, a MC

study was used to investigate the effects of multiple
replications with N (N = z0, 5009 1,000), test length
(~, = 10, 20, 30), and assumed distribution of 6 (17 =

normal, skewed, platykurtic) as factors. He also in-

vestigated the effects of analyzing the results for each
item (item level) or aggregated across items (test
level). A fixed effects, completely between-subjects
factorial design was used, and the RMSD was the de-

pendent variable. Stone used a 2PLM and specified
the cm and b values for each item. Then, R &reg; 10 item

response datasets were simulated for each condition.

Graphical displays of the resulting RMSD values were
followed by an ANOVA of these values to determine
which effects were significant. The magnitude of sig-

nificant effects was estimated using the squared cor-
relation ratio, computed as the ratio of the sum of
squares (ss) of an effect to the total Ss. (The log of
the RMSD values was used in the ANOVA to better

satisfy the assumption of normality).
In the second step, the 92S obtained from Stone’s

MC study were used to estimate the power of the
ANOVA F test to detect particular effects across dif-
ferent numbers of replications (~ = 10, 25, 50, 100)
using the e~piri~~l ~2s as effect size estimates. The
computer program STAT-POWER (Bavry, was
used to estimate power for a = .05, the degrees of
freedom (df) for the effect, the total number of cells
in the design (27), and the n2 statistic from Stone’s
analysis. This procedure allowed changes in the

power of the ANOVA F test across R to be examined.

Table 6 reports these analyses separately for a and b
for both item and test levels. Power was calculated

only for effects that were significant at p < .01 in

Stone’s original analysis of the RMSD values. The

’Q2s reported in Table 6 are from Stone’s study.
Consider the power of the F test to detect the main

effect of N at the test level for a. For all values ~f f2,
the power was 1.0, which is not too surprising given
the fairly large 112 ol’.42. The power to detect the test
length (L) x distribution (D) interaction with r~2 -
.02, however, was much lower for R = 10 (.77) than
for R > 25 ( 1.0). Thus, it would be necessary to use at
least 25 replications to have good power to detect
this effect. More interaction effects were also detected

for the bs than for the as, probably because the RMSD
values showed less variability for the bs than for the
as. That is, estimated bs were typically more stable
than estimated as, and the bs exhibited stronger and

fairly unambiguous relationships with many effects

(e.g., N). For the test level power analysis, the power
of the F test to detect relationships between the RMSD
for the as and various effects was sometimes less

than that for the bs, as suggested by the nonstatis-

tically significant results f&reg;r th~ 1V x D ~nd ~l x ~ x D
interactions. Although the a and b parameters had
similar and quite small 712 values for these interac-
tions, only the effects for the b parameters were sta-

tistically significant.
The relationship between power and the num-

ber of replications was also explored for increas-
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Table 6
Statistical Power of the Analyses of Monte Carlo Results as a Function of the Number of Replications for N, L, and D

ingly extreme as and bs and larger values &reg;f lZ at

the item level. Table 6 shows that for ~c = .83, for

example, the power of the F test to detect this ef-
fect was the same (1.0) f&reg;r R > 25. For = 1.9, how-

ever, power values varied across number of replica-
tions. The main effect for L and the L x D interac-

tion showed poor power (< .45) for 10 or 25 repli-
cations, and good power (.78) for 50 replications.
For cm = 3.0 and li~ = 250, the power to detect a dis-

tribution effect (not reported in Table 6) was .29,
.53, .72, .84, and .92 for R = 100, 200, 300, 400,
and 500, respectively. Likewise, the power to de-
tect a distribution effect for b = -2.18 was .66, .93,
.99, 1.0, and 1.0 across the same values of R (also
not reported in Table 6). These results suggest that
at least 500 replications may be needed in order to
detect the effects of manipulated factors when ex-
treme parameter values (e.g., cm = 3.0) are combined
with less than ideal data conditions.

Increasing the number of replications to 500

may not be necessary when 1V ~a~d L are sufficiently
large; less than 100 replications may be adequate
under such conditions. One strategy is to use vary-

ing numbers of replications in the study, using
fewer replications for conditions in which there
are no estimation problems and more for condi-
tions in which estimation problems occur. A re-
lated approach to minimizing is to fix a value of
R x l~ and then use values for N and R that pro-
duce this value. For ~x~rnpl~, if I2 x t~l were set to
25,000, combining R = 25, 50, 100, and 200 with
hl &reg; 1,000, 500, 250, and 125, respectively, would
produce the desired 25,000.

Thus, the number of replications needed to reli-

ably detect effects in mc results is higher when (1)
an empirical sampling distribution is needed (e.g., to
investigate the properties of a statistic or significance
test), (2) interest centers on item level analyses in
which sampling variances may be large, (3) the ef-
fects increase in complexity (e.g., interactions ver-
sus main effects), and (4) model parameters become
more extreme (e.~.9 ~ = 3.0 vs. a = .83). Clearly, more
research in this area is needed before there is a de-

finitive answer concerning the number of replica-
tions that should be used, given the purpose and
conditions of a particular 1~C study. Based on the
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available evidence, however, a minimum of 25 rep-
lications for MC studies in IRT-based research is rec-

ommended.

Formulating the T~~th~~ ~tl~~l Model

Another design-related issue is selecting the
model that will govern data generation. The model
refers to the abstract representation or description
of the process being simulated. Thus, the mathemati-
cal model is that underlying data generation.

Selection of an TROT model is, of course, dictated

by the specification of the problem. Although IRT
models have a common form (Baker, 1992, chap. 2),
they vary in how they are implemented according to
the nature of the problem. For example, parameter
recovery studies for the 2PLM would naturally use
this as the underlying mathematical model in the

study (e.g., Drasgow, 1989; Harwell & Janosky,
1991; Reise & Yu, 1990). Similar comments hold
for other IRT-based research settings that use t~’r

models whose implementation depends on the na-
ture of the problem; for example, studies of equating
methods (e.g., Baker & Al-l~arr~i, 1991; Skaggs &
Lissitz, 1988), dimensionality (e.g., Ackerman, 1989;
Nandakumar, 1991), perse~r~litem goodness of fit

(e.g., Holt & Macready, 1989; Mcl~inl~y ~ Mills,
1985), adaptive testing/computerized testing (e.g., De
Ayala, Dodd, & Koch, 1990)9 test speededness (e.g.,
Oshima, 1994), and criterion-referenced assessment

(e.g., Plake & Kane, 1991 ). A particularly large class
of modeling problems involves DIF in which the
model underlying data generation must be justified
with regard to the number of DIF items, the param-
eters that will reflect DIF and the degree of DIP,
whether group differences are modeled, and how the

matching criteria should be calculated (e.g., Candell
& Drasgow, 1988; Gifford & Swaminathan, 1990;

McCauley & Mendoza, 1985; Zwick, Donoghue, &
Grima, 1993).

Writing and or
Selecting Computer Programs

IRT MC studies often use different computer pro-
grams to generate data, estimate model parameters,
and calculate outcomes such as the RMSD. For ex-

ample, Harwell & Janosky ( 1991 ) used the GENIRV

computer program (Baker, 1989) to generate di-
chotomous item response data following a 2PLM,
BILOG to estimate IRT model parameters, and a lo-

developed program to compute ~l~ts~s. Effi-

ciency concerns often require that, to the extent
possible, these programs be integrated, in which
case knowledge of a common purpose programming
language such as FORTRAN or PASCAL is helpful.

Each component of the computer program must
be evaluated for accuracy. Naylor et al. (1968) posed
two questions in this regard:

First, how well do the simulated values of
the ... output variables compare with known
historical data.... Second, how accurate are
the simulation models predictions of the be-
havior of the actual system in future time

periods? (p. 21)
In the context of IRT MC studies, the first question
concerns both the validity of the model or process
that is being simulated and the validity of the gen-
erated values. In most cases, the process of respond-
ing to items is inherent in the IRT model being
studied and therefore need not be validated. Still, if
the process is intended to reflect data conditions

observed in practice, such as DIF or test speededness,
it is important that evidence of this be provided.
Documenting the validity of the generated values
requires verifying that the program produces the
correct numbers.

Naylor et al.’s (1968) question about predicting
future behavior has received surprisingly little at-
tention in published IRT MC studies. Essentially, this
is concerned with how well the simulation results

stand up over time in empirical studies. For example,
the results of Harwell & Janosky (1991) suggested
that a small prior variance for has leads to stable

parameter estimates with only N = 150. Validation
evidence here might take the form of results from

empirical studies that stable estimates were obtained
under these conditions. This kind of validation evi-

dence is more difficult to obtain than, for example,
evidence of model-data fit, but it is more critical.

Generating Item Responses

Generating item responses begins with a numeri-
cal seed to initiate the generation of random num-
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bers, which are translated to response probabilities
and then to discrete responses. These steps typi-
cally occur within the same computer program.

Choice of seed values. Data generation is ini-
tiated by a number or seed value provided by the
user when prompted, or supplied by the data gen-
eration program (usually using the computer’s in-
ternal clock). The advantage of a user-supplied
number is that it is easy to reproduce the same item

responses later, perhaps as a check on the software.
This is also true for clock time if this number is

reported; however, to do this requires saving the
binary version of clock time.

An important issue in the choice of seed values
relates to the sampling error that inevitably accom-
panies the generation of random numbers. As noted
earlier, in IRT parameter estimation this increases the
variance in parameter estimates. One technique to
reduce chance variation is to use common item pa-
rameters and common seed values whenever pos-
sible in generating datasets. For example, if item
responses for 20- and 30-item tests were to be gen-

erated, the model parameters used for the 20-item
case could serve as the model parameters for the first

20 items of the 30-item case, and the seed used to

initiate the simulation of item responses would be

the same for both test lengths. This lowers the &dquo;noise&dquo;
in the simulated data and helps to minimize the ef-
fects of random error on the parameter estimates; but
these data then are dependent, making inferential

analyses of the MC results more complex.
Another technique is to simulate a large number of

responses and then randomly sample from this popu-
lation, with each sample serving as a replication. For
example, suppose 10 replications were to be gener-
ated for a 30-item test and N = 200. Rather than us-

ing multiple seeds to generate 10 datasets reflecting
the responses of 200 examinees to 30 items, a single
seed could be used to generate a dataset containing
the responses of N = 1,000 to 30 items; 10 samples
of size 200 then would be randomly sampled. Using
one seed as opposed to 10 should help minimize ran-
dom error. Using different model parameters for the
20- and 30-item cases and different seed values elimi-

nates the dependency in the responses but would be
expected to increase the random error compared to

using the same model parameters and seed value.
The preferred method is to simulate all of the needed
datasets using different model parameters but a com-
mon seed value.

G~~~r°c~ta.~~ ~~a~~&reg;m numbers. dis-
tributed random numbers are the most frequently
generated, and congruential generators are the most

widely used for producing uniform random num-
bers (Lewis & Orav, 1989). A congruential genera-
tor makes use of modular arithmetic in producing
random integers that depend only on the previous
integer. The random integers extend from 0 to a
number m, which is typically defined in the ran-
dom number generation software. The integers run-

ning from 0 through m constitute a cycle and the

length of a cycle is known as its period. Dividing
the randomly generated integers by the modulus m

produces (0,1) uniform variates (Lewis & Orav,
1989, p. ’~5).

The literature describing the statistical proper-
ties and efficiency of congruential generators indi-
cates that they demonstrate sufficiently long period
lengths (i.~.9 the length between repeated sequences
of random numbers) and produce results with de-
sirable statistical characteristics, such as random-
ness (Newman & Odell, 1971; Ripley, 1987).
Standard-normal variates are widely used in mc
studies and are usually generated by transforn-

ing uniform random numbers to a N(0,1) form.

Among the algorithms available to perform this
transformation, the Box-Muller (1958) algorithm,
Marsaglia’s (1964) polar method, and the ratio-of-
uniforms method seem to do equally well (Ripley,
1987).

Table 7 summarizes several available computer
packages for generating random numbers from a

specific distribution. These computer packages are
not specific to IRT, and additional software would
have to be used to generate the desired item re-

sponses. To help organize the information in this
table, readers might wish to follow the suggestions
of Ripley (1987) for selecting a data generation al-

gorithm :
(a) The method should be easy to understand
and to program... (b) The programs produced
should be compact... (c) The final code should
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execute reasonably rapidly... (d) The algo-
rithms will be used with pseudo-random num-
bers and should not accentuate their defi-

ciencies. (p. 53)
For example, the computer program MINITAB

(1989) might be used to generate uniformly distrib-
uted random numbers that are subsequently trans-
lated into standard-normal deviates that serve as 0

parameters. MINITAB is widely known and easy to
understand and use, whereas other programs are

perhaps less well known and more difficult to use

[e.g., LISREL (Joreskog & Sorbom, 1989)].
The IMSL (~s~, Inc., 1989) collection of FORTRAN

subroutines appears to be the most pack-
age in terms of variety of random number genera-
tors, but the user must develop a program that

incorporates the necessary routines. MINITAB offers

a wide selection of univariate distributions; however,
SAS (SAS Institute Inc., 1988), SPSS Windows (SPSS
Inc., 1993), and SYSTAT (SYSTAT Inc., 1991) offer,

by comparison, fewer subroutines for generating
data. An often overlooked feature of the microcom-

puter version of LISREL (J6reskog & S6rbom, 1989)
is the availability of routines for generating multi-
variate non-normal distributions. With the exception
of SYSTAT, which is available only on microcomput-
ers, the other programs are available for both main-

frame computers and microcomputers.
In addition to the software packages and subrou-

tines mentioned above, there are collections of sub-
routines for random number generation provided in
textbooks. Press, Flannery, Teukolsky, & Vetterling
(1986), for example, provided routines to generate
random numbers in PASCAL and FORTRAN.

Table 7

Software Packages for Generating Various Distributions
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The accuracy of randomly generated numbers

depends on the random number generator and the
computer that is used: It is strongly recommended
that researchers test the generator and document its

capabilities (Hauck & Anderson, 1984; Hoaglin &
Andrews, 1975). Even well-known generators, such
as those associated with IMSL, should be tested to

ensure their adequacy for a particular application.
Locally developed generators, however, require ex-
tensive testing and documentation, and the absence
of this information means that the credibility of the

study may be suspect. Tests of the adequacy of ran-
dom number generators include the Kolmogorov-
Smirnov and Cramer-von-Mises goodness-of-fit
procedures, the serial and up-and-down tests, the gap
and maximum tests, and a test for randomness

(Rubinstein, 1981). However, Wilcox (1988) cau-
tioned researchers to not expect a sequence of ran-
dom numbers to pass all tests and to not use the same

sequence more than once.

Transforming random numbers into item re-

sponses. Initially, a vector of N 0 values is gener-
ated by sampling from a specified distribution for a

given number of examinees. These Os are often
sampled from a N(O, 1) distribution for studies involv-

ing unidimensional IRT. models, or from a multivari-
ate normal distribution with various values for the

intercorrelations for a study involving multidimen-
sional IRT models (non-normal distributions can also
be used).

Table 8 compares several computer programs for

generating item response data on various character-
istics. [Kirisci, Hsu, & Furqon (1993) provided a de-
tailed comparison of the performance of the
DATAGEN, GENIRV, and ITMNGR programs listed in

Table 8.] The advantage of these programs over those
in Table 7 is that conditions particular to IRT have
been incorporated into the algorithms. For example,
the 3PLM has been incorporated into the programs in
Table 8 and can be used to produce responses fol-

lowing this model, with a few commands. However,
the programs in Table 8 do not generate skewed or

platykurtic distributions in either the univariate or
multivariate cases, whereas the programs in Table 7

can be used to generate N(0,1) variates that can be
transformed to univariate and multivariate non-nor-

mal distributions using procedures described by
Fleishman (1978) and Vale & Maurelli (1983).

The N Os are used to produce an N x n x K - 1
matrix of response probabilities for N examinees, n
items, ~r~d I~ - 1 response categories for the test.
For example, in the case of a 3PLM with dichoto-
mous response data, the response probabilities
(Pi,Qi) are obtained from

where

P,(8.) is the probability of a correct response for the
ith item, conditional on the 0 of the jth exam-
inee,

ci represents a guessing parameter,
D represents a scaling constant that brings the lo-

gistic and normal ogives into agreement (Lord
& Novick, 1968, p. 400), and

Q;=1~-P.
The response probabilities are then translated into
discrete item responses by comparing the probabili-
ties with random numbers drawn from a uniform

distribution. In the dichotomous response case, if

the probability of a correct response for an exam-
inee to an item is greater than or equal to the ran-
dom number, then a 1 is typically assigned to that
item; otherwise a 0 is assigned. In the polytomous
response case, if the random number falls between

response category k and k + 1, the item response
k + 1 is assigned to the item. Rather than compar-
ing two boundaries to translate category response
probabilities into a polytomous response, cumula-
tive probabilities can also be used (Ankemann &
Stone, 1991). In all cases, the process is repeated
with different random numbers for each item and

for all examinees.

Examples of generating item responses. In the

Harwell & Janosky (1991) parameter recovery
study, unidimensional dichotomous response data

following a 2PLM were simulated for, among other
conditions, N = 500 examinees and n = 25 items.
The ccs and bs for each item were sampled at ran-
dom from a uniform and normal distribution, re-

spectively. Using GENIRV, the data generation con-
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sisted of creating a vector of 500 0 levels sampled
at random from a N(0,1) distribution. Next, a 500 x
25 matrix of response probabilities was created by
GENIRV by computing, for each simulated examinee,

)~(0j) using Equation 3 (with c = 0). Finally, each of
the ((0j) values in the 500 x 25 matrix was com-
pared to a randomly selected value from a uniform
distribution to generate a 1 (correct response) or 0
(incorrect response).

Ansley & Forsyth (1985) studied the effect on
estimation unidimensionalityparameter estimation assuming unidimensionality

when the data were multidimensional. Two-dimen-

sional (At = 2) dichotomous response data following
Sympson’s (1978) two-parameter multidimensional
IRT model (with c = .2) were generated for, among
other conditions, 1~ = 1,000 examinees and = 30

items. Initially, M x N 0 values were sampled at ran-
dom from a bivariate normal distribution with speci-
fied correlation between the two 0 variables. Next, a

1,000 x 30 matrix of response probabilities was cre-
ated using Sympson’s model by computing, for each
examinee, Pice) using selected as and ~s (each item
had two a parameters and two b parameters). Finally,
each oftheP¡(9) values in the 1,000 x 30 matrix was
compared to a randomly selected value from a uni-
form distribution to generate Is or Os.

The last example of generating item responses
involves DIF. Most MC studies define DIF as two

groups of examinees showing differences on item
parameters (or a function of item parameters) prior
to generating item responses. For example, Rudner,
Getson, & Knight (1980) altered the standard de-
viation of group differences on item parameters;
Swaminathan & Rogers (1990) simulated DIF by
varying the group item response functions; and
Candell & Drasgow (1988) and Furqon & Hsu

(1993) simulated DIF by increasing or decreasing
values of item parameters before generating item

responses for one group.
Each of these approaches has merit, but for il-

lustrative purposes, the procedure used by Furqon
& Hsu (1993) is presented in which data for two

groups of 500 examinees each were simulated for a

60-item test (12 items showed DIF) for a 3PLM with
c = .2. Data were simulated for each group sepa-

rately, and the a and b parameters were selected at

random from specified distributions. Initially, a
vector of 500 0 values for the first group were

sampled from a N(0,1) distribution, then another
500 0 values were sampled from a N(.5,1) distribu-
tion for the second group. A constant was then added
or subtracted to the a and b parameters for 12 items

for the first group to produce the desired DIF. The a
~d b parameters for the second group were not

modified. Next, a 500 x 60 matrix of response prob-
abilities was created and translated into item re-

sponses for each group using the procedure de-
scribed above.

The above examples illustrate that the procedure
for generating item responses is common to a vari-

ety of research problems in t~’r. This procedure can
be replicated to produce multiple datasets based on
the same conditions; that is, a new set of 0 values
can be generated and response probabilities com-

puted and translated, and so on.

Estimating Model Parameters

Once item response datasets have been gener-

ated, the next step may be to estimate the model

parameters. Comprehensive descriptions of various
estimation methods can be found in Baker (1987,
1992). Unlike other steps in implementing an IRT
MC study, the research questions may not dictate
the estimation method. Researchers can rely on
commercial item analysis programs, such as BILOG
or MULTILOG (Thissen, 1986) or XCALIBRE (Assess-
ment Systems Corporation, 1995), to estimate model
parameters or can write their own software. If the

latter method is used, it is critical that the adequacy
of the estimation algorithm be extensively docu-
mented. Validation evidence could take the form of

using the program to analyze a well-known dataset
such as the LSAT-6 data (Bock & Lieberman, 1970)
and comparing the results to published parameter
estimates, or analyzing item responses that show a
perfect fit with an item response function (i.e., the

empirical proportions of correct responses fall ex-
actly on the function), in which case the estimation

program should return the exact item parameters.
Two issues are especially pertinent in selecting or

writing an item analysis program to estimate param-
eters : The handling of starting values and non-con-
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vergent solutions. All of the estimation procedures
involve iterative algorithms and hence require start-
ing values for the parameters in the algorithm. Item

analysis programs have default starting values but
most offer users the option of specifying starting
values. In many cases these default values are suffi-

cient, particularly for well-structured datasets with a
large number of examinees (c.~., l~l = 1,000). If the

computer time needed to estimate model parameters
is excessive, one strategy is to use the parameter val-
ues as the starting values (assuming that comparing
estimation methods is not the purpose of the MC

study). Stone (1992) used parameters as starting val-
ues in an evaluation of the marginal maximum like-
lihood estimation procedures in MULTILOG, citing
Bock’s (1991) discussion that the choice of starting
values is not critical in the EM estimation algorithm.
However, it is important to establish that the solu-
tion is not dependent on particular starting values

(Mislevy, 1986).
A second issue is how nonconvergence is handled.

If the estimation algorithm fails to converge to a so-
lution in the MC study, researchers can (1) ignore the

nonconvergence but use the estimates only after a

large number of iterations were performed, (2) ex-
clude the estimates in the calculation of summary
statistics such as RMSDS, or (3) use a different esti-
mation algorithm [e.g., a fully Bayesian approach
(Mislevy, 1986)] to constrain values of the estimated

parameters. It is also important to equate the param-
eter estimates to the metric of the parameter values;
otherwise, the estimates may be biased (Baker, 1990).

Problems of poorly specified starting values and

nonconvergent solutions are likely to be more pro-
nounced with smaller datasets (c.~.,1V = 200 and a
40-item test) and more complex IRT models (e.g.,
the 3PLM). These problems can arise in both com-
mercial and locally-developed estimation programs.
The fully Bayesian approach can help to mediate
these difficulties by careful specification of prior
distributions and the parameters of these distribu-
tions (i.e., hyperpriors and hyperparameters). The
ASCAL program (Assessment Systems Corporation,
1988) implements a Bayesian modal approach to
IRT item parameter estimation. There is, however,
little evidence that a fully Bayesian approach pos-

sesses strong practical advantages over other esti-
mation methods (Kim et al., 1994).

the ~s~n9ts &reg;f ~ Monte Carlo Study

Based on the research questions and the experi-
mental design, statistical hypotheses and data analy-
sis procedures can be determined. As documented

by Hsu (1993), however, many MC studies do not
use any discernible experimental design-which can
have several negative consequences.

One is that analyses of MC results often consist

entirely of tabular summaries, simple descriptive sta-
tistics, or graphical presentations. This seems to be
an unreliable way of detecting important effects and
of estimating the magnitude of effects-a problem
that is exacerbated when the amount of reported data
is substantial. For example, Ansley & Forsyth (1985)
reported 144 values in four tables, Kim et al. (1994)
reported 240 values in three tables, Harwell &

Janosky (1991) reported 360 values in two tables,
and Yen (1987) reported 1,639 values in 10 tables.
Readers are left attempting to verify an author’s con-
clusions by looking at hundreds (and possibly thou-
sands) of values, which is a daunting task. Harwell
(1991) argued that this increases the chance that im-

portant effects will go undetected and that the mag-
nitude of effects will be misestimated; thus, the
solution is to use both descriptive and inferential

analyses.

Inferential of Monte Carlo Results

A variety of inferential analyses can be per-
formed, but regression and ANOVA methods are of-
ten suitable (Harwell, 1991 ). Naturally, if the inde-

pendent variables are nominal (e.g., item analysis
program) then ANOVA may be more appropriate,
whereas for metric variables (e.g., number of ex-

aminees) a regression approach may be preferred.
Regression methods are somewhat more attractive
because most independent variables in IR’T Mac stud-
ies are metric, and because nonlinear and hetero-

scedastic prediction models are available.
Still, there seems to be a preference for ANOVA

among IRT researchers (e.g., De Ayala, 1994;
Narayanan & Swaminathan, 1994; Rogers &
Swaminathan, 1993), perhaps because ofaprefer-
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ence for means over regression coefficients (of
course, under certain conditions the two procedures
yield the same results).

The population regression model can be written
as

and

(Timm, 1975, pp. 267-268). In Equation 4, T, rep-
resents the sth outcome (e.g., RMSD) that depends
on a set of T fixed predictor variables XS (s = 0, ...,
D, ~o is an intercept, OT represents a population re-
gression coefficient that captures the relationship
between a predictor variable and the outcome, Es is
an error term, and is is an observed outcome. The
estimated model is

Standard normal theory regression assumes that the
errors are independent in the sense that the gener-
ated data would be declared independent by a sta-
tistical test of independence; independence of the

T~s may be assumed by virtue of the random num-
ber generator. Inferential analyses also require that

the T,s be normally distributed (Timm, 1975, p. 267).
In addition to relying on the well-documented ro-
bustness of normal theory tests to non-normal dis-
tributions, it may be useful in some cases (and
necessary in others) to perform a nonlinear trans-
formation on the tss to increase the likelihood that
the normality assumption is approximately satisfied.

For example, rather than working with RMSD,
the log(RMSD) could be analyzed. A log transfor-
mation of a standard deviation results in values that,
if the values used to compute the RMSD (e.g., esti-
mated ca parameters) are themselves normally dis-
tributed, are asymptotically normally distributed
with a known mean and variance that depends on
the number of replications (Bartlett & Kendall,
1946). Heteroscedasticity can be handled with
weighted least squares, provided reasonable esti-
mates of the unknown variances are available. If

the assumptions of independence and normality are
tenable, the F test can be used to test whether there

is a relationship between the dependent variable and
the set of predictors. If transformations are unsuc-
cessful in reducing skewness in the dependent vari-
able, or if the distribution of this variable can only
be arbitrarily specified, nonparametric procedures
that do not require normality can be used (Harwell
& Serlin, 1989).

An example. Data from the Harwell & Janosky
(1991) study are used to illustrate regression and
ANOVA approaches to analyzing IRT MC results. Re-
call that Harwell and Janosky simulated dichotomous

response data using a 2PLM, estimated model param-
eters with BILOG, and compared the estimated as and
bs for each item to the true values using RMSD.

Relying on traditional descriptive methods,
Harwell and Janosky concluded that, for the cas and
bs, (1) when N > 250, the prior variance had little
effect on the accuracy of estimation for both 15-

and 25-item tests; (2) when N < 250 and a 15-item

test was used, the prior variance played a large role
in the quality of the estimation, with smaller prior
variances offering better accuracy; and (3) for a 25-
item test, the effect of the prior variance on the ac-

curacy of estimation was neutralized whcnN > 100.

These conclusions suggest a prior variance x N in-
teraction.

The design of this study, as noted earlier, was a
6 x 2 x 5 factorial with number of examinees (N),
test length (L), and prior variance (PV) serving as

independent variables and RMSD as the dependent
variable. The analysis of the Harwell and Janosky
results is complicated by the fact that the same ran-
dom seed was used for the 15- and 25-item cases;

however, for illustrative purposes the results for the
15- and 25-item tests were analyzed together. Only
results for the as are presented. A log-transforma-
tion of the RMSD, log(~~ts~), was used to increase
the likelihood of satisfying the assumption of nor-

mality needed in hypothesis testing. Because all
three independent variables were metric, a regres-
sion analysis was conducted. The results are re-

ported in Table 9.

Initially, a (main effects) model with the predic-
tors N, L, and PV was fit to the log(t~l~s~) values for
the as (Model la), followed by the three possible,
two-variable-at-a-time interaction predictors (Model
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Table 9

Regression df (dfR) and Sum of Squares (SSR)’
Residual df (clfE) and Sum of Squares (SSE)’

and h2 for the Estimated as of Harwell & Janosky
(1991), Under Several Main Effects (a) and
Main Effects Plus Interaction Models (b)

Note. All models were significant at p < .05.

*Indicates a significant difference between the main
effects and main effects + interactions models.

lb). Each predictor was centered to minimize colin-
earity problems. Because this study was not repli-
cated within cells, estimates of the highest-order
interaction could not be obtained. The results indi-

cated a strong relationship between log(RMSD) and
the prediction models, with the RZs suggesting that
this set of predictors was sensitive to variations in

log(RMSD) (although the contribution of the interac-
tions appeared to be modest). Note that the R 2S were

adjusted for the number of predictors (see Draper &

Smith, 19~ l, pp. 91-92). Thus, the accuracy of esti-

mating as in BILOG appeared to depend heavily on
these predictors. The estimated (standardized) slopes
bP~ &reg; -1.08 and bNX = -.69 suggests that these vari-
ables played especially prominent roles. (Each esti-
mated regression coefficient was tested using a =

.O 1.) The significant N x PV interaction term helped
to clarify the general conclusion of Harwell and

Janosky; that is, the effect of the prior variance on
estimation depended on N.

The regression analysis also indicated that this
interaction accounted for 4% of the variance of

log(RMSD), suggesting that this is probably not as
critical a factor in the accuracy of estimating as as

suggested by Harwell and Janosky. To extract addi-
tional information about the role of PV, which fig-
ured prominently in the conclusions of Harwell and

Janosky, Models la, lb, and 2 were repeated for ~1 >
250; Model 3 for IV < 250 and a 15-item test; and

Model 4 for ~l > 100 and a 25-item test (see Table 9).
For N > 250, PV accounted for 1 % of the variance

with bN~L =-2.97, bN= 1.35; for a 15-item test and N
< 250, PV accounted for 21% of the variance with

bpv = -1.62; for a 25-item test and N > 100, PV ac-
counted for 0% of the variance with bN = -1.19.

The results of Harwell and Janosky were also ana-

lyzed using completely between-subjects factorial
ANOVA. These results are reported in Table 10 and
are similar but not identical to the regression results.

Using a = .05 for each hypothesis tested, all seven
effects were significant. Among the interactions,
the two-way N x PV interaction effect accounted for

the most variance [112 = SS(NXPV)/SSTotal = 13%]. Fol-
lowing the advice of Rosnow & Rosenthal (1989),
a graph of the residual cell means (i.e., after remov-

ing variation due to the other interactions and the
main effects) suggested that smaller Ns need smaller

prior variances to maintain the accuracy of the esti-
mation, but for larger Ns the prior variance seems
less important. Tetrad contrasts could be tested in a

post hoc analysis to further clarify the nature of this
interaction (see Toothaker, 1991). The results of the

regression and ANOVA analyses of MC results gen-
erally supported all three conclusions of Harwell
and Janosky and extended the descriptive results

they reported.

Table 10

Results of ANOVA for the Estimated
as of Harwell & Janosky (1991)

Conclusions

The importance ~f 1~C techniques in IRT research
is likely to increase because of their ability to model
realistic data conditions and to compare competing
statistics or methodologies in ways not possible with

empirical data. Along with increases in desktop
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computing power, the flexibility of these techniques
makes them an increasingly attractive research tool.

Mac techniques will continue to make a contribu-
tion to important problems in IRT. Any problem in
which analytic solutions are unwieldy or impossible
is a good candidate for a MC study. The list is ex-
tensive, but a sampling of problems includes infor-
mation about the number of examinees necessary
to produce stable parameter estimates, the compari-
son of methodologies used in conjunction with IRT,
such as procedures designed to detect multidimen-

sionality and differential item functioning, and the
properties of goodness-of-fit tests. The litmus test
of the usefulness of the results of such studies will

be how realistically they model empirical problems.
In the future, replicated IRT Mac studies should

become the rule rather than the exception. These
studies also should be expected to use increasingly
sophisticated experimental designs and data analy-
ses and to expand the number of conditions mod-
eled. These advances should increase the value of

MC studies in IRT research.
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