Monte Carlo study of phase separation in aqueous protein solutions
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The binary liquid phase separation of aqueous solutiong-afystallins is utilized to gain insight

into the microscopic interactions between these proteins. The interactions are modeled by a
square-well potential with reduced rangeand depthe. A comparison is made between the
experimentally determined phase diagram and the results of a modified Monte Carlo procedure
which combines simulations with analytic techniques. The simplicity and economy of the procedure
make it practical to investigate the effect on the phase diagram of an essentially continuous variation
of A in the domain 1.05A=<2.40. The coexistence curves are calculated and are in good agreement
with the information available from previous standard Monte Carlo simulations conducted at a few
specific values of\. Analysis of the experimental data for the critical volume fractions of the
vy-crystallins permits the determination of the actual range of interaction appropriate for these
proteins. A comparison of the experimental and calculated widths of the coexistence curves suggests
a significant contribution from anisotropy in the real interaction potential ohtloeystallins. The
dependence of the critical volume fractigin and the reduced critical energy upon the reduced
range\ is also analyzed in the context of two “limiting” cases; mean field theory{(=) and the

Baxter adhesive sphere modal-{1). Mean field theory fails to describe both the valuefgfand

the width of the coexistence curve of thecrystallins. This is consistent with the observation that
mean field is no longer applicable whers 1.65. In the opposite cask— 1, the critical parameters

are obtained for ranges much shorter than those investigated in the literature. This allows a reliable
determination of the critical volume fraction in the adhesive sphere Ilimit,
$:(A=1)=0.266+-0.009. © 1996 American Institute of Physids$S0021-960606)50804-1

I. INTRODUCTION component liquid—vapor system. Beginning with the van der
Waals equation of staté,there has been a quest for an ana-
The liquid-liquid phase separation of protein solutionslytical equation of state for simple liquids. The general ap-
is of great interest because the factors which govern the cofproach is to assume a form for the intermolecular potential,
densation of protein into coexisting protein-poor and protein-almost always central and pairwise additive. One of the most
rich phases are believed to play a central role in severatommon selections is the square-well potential, since it is the
human diseases? The understanding of the location of the simplest model which includes both attractive and repulsive
phase boundaries and the strategies to shift them by modiffferces. At this stage, either one of two choices is mdijed
ing protein interactions are key elements in the search fotfundamental” statistical-mechanical equation, such as the
disease treatment. An important example of such a disease ercus—Yevick formuld? is invoked, from which a closed
cataract, where opacification of the eye lens results fromform solution for the equation of state is obtain@d® (i) A
alterations in the spatial distribution of the lens protéins. statistical-mechanical perturbation theory is used. Here, the
These alterations are known to be produced, in part, by thmain approach is to treat the attractive part of the potential
phase separation of the-crystallins, a family of monomeric being studied as a perturbation to the hard sphere model,
lens proteins.Several studiés® have investigated the phase which has only repulsive forcé$:°
separation in aqueous solutions of individual members of the  Though these theories provide a recipe for how to cal-
calf lens y-crystallin family. These experiments show that culate quantities of interest for phase separation, their com-
the y-crystallins may be divided into two groups, “high- plexity limits their utility when interpreting experimental re-
T.” proteins, such asy;, (o) and v (¥e), Which exhibit  sults. One way to overcome this difficulty, is to begin with a
high critical temperaturesT(~38 °C), and “low-T." pro- phenomenological thermodynamic expression for the Gibbs
teins, such asy;, () and yup (o), which exhibit low  free energy of the system. A simple analytic model, based on
critical temperaturesT,~5 °C). The critical volume frac- mean field theory, has been propd$&dto describe the
tions of all the y -crystallins are approximately the same phase separation phenomena of aqueous protein solutions.
$.=0.21+0.02. The coexistence curves are found to beAs we shall see in this paper, this model corresponds to a
upper consolute and very broad, as is observed in some cdbng-range square-well intermolecular potential.
loidal dispersions®!! Mixtures of y -crystallins have also Many Monte Carlo simulations have been made of sys-
been studied? tems which undergo phase separafibif> The most recent
From a theoretical point of view, the phase transition inof thes&*~2® have employed the so-called Gibbs ensemble
the protein—water solution is analogous to that of the singlélonte Carlo techniqué’?®The focus of many of these stud-
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ies is to examine the theory of critical phenomena for a va€an be represented by a central and pairwise interaction. For
riety of intermolecular potentials, including the square-wellconvenience, we will refer to the microscopic free enefgy
potential. In the recent study of Vegat al,?* the vapor— as simply the energy of the proteins.
liquid phase equilibria of square-well systems with hard- Now we proceed to make the model more specific. We
sphere cores were studied for the reduced range%.25, consider the proteins to be spheres, of diametewhile the
1.375, 1.5, 1.75, and 2. The critical points and the shapes afiater is taken to be a continuous backgroutitht is, the
the coexistence curvém terms of a critical exponentvere  size of the water molecules is taken to be small as compared
calculated. This information indicates that the interactiongo o). We assume that the effective potential enaxdy) for
between they -crystallins are short-ranged as expected. Thea pair of proteins whose centers are separated by a distance
results, however, are not detailed enough in the short-rangg is of the form of a square-well plus a hard core as given by
regime to interpret the phase diagram of these proteins. Eq. (2) below,

Therefore, in order to gain insight into the microscopic

interactions of the y-crystallins, we have developed our +oo, for r<c

Monte Carlo method to analyze the experimental observa- u(r)=4{ —¢, for o<r<io 2
tions of Broideet al.” We also explore the applicability of 0, for r=\o.

mean field models, such as that proposed by Bertral® ) ) )
and Taratuteet al,?° to aqueousy -crystallin solutions. To Here is the reduced range of the potential well anis

simplify the analysis, as well as to save computational timei,ts depth. With this potential, we can calculate the interaction
our Monte Carlo procedure uses theoretical extrapolatio®N€rgyEin, and hence the total ener@; as a function of
techniques, in addition to simulation, to calculate the quanYolume fraction and temperature. Note that for our particular
tities of interest, most importantly the chemical potential. Tochoice of potential, we can define the number of protein—
reconstruct the phase diagram of our model aqueous proteRfotein contactdNc,, as the number of protein pairs whose
solution, we fit the Monte Carlo results for the chemical C€nters are in the range<r <\ o from each other. Thus we
potential with an analytic expression. We then obtain theMay write the interaction energy as
coexistence curve by.a method analogous to the Ma_xwell Ei=— Ngore. 3)
equal areas construction for the van der Waals equation of
state?® Since the use of an analytic form for the chemical Of course Eq(3) assumes that there are no overlapping hard
potential neglects the contributions of critical fluctuations tocores in the configuration. If this is not the case and there are
the free energy of the system, our approach is unable tgverlaps therE,=o.
describe accurately the critical exponents. However, we are Once we have chosen an explicit form for the intermo-
interested in aspects of phase separation which are négcular potential of the system, we may use the Monte Carlo
strongly affected by the fluctuations; the critical temperaturesimulation procedure described in Sec. Il to obtain the ther-
T., the critical volume fractiong., and the shape of the modynamic properties of our system. Thus we can recon-
coexistence curve in regions relatively far from the critical Struct the phase diagram of our model agueous protein solu-
point. To check the accuracy of our method, especially neafion and compare it with the experimental results of Broide
the critical point, where the reliability of the method cannotet al.” This comparison is made in Sec. Il D.
be justifieda priori, in Sec. Ill B we compare our results
with those available from other Monte Carlo simulations.

To begin our analysis, let us consider a system containg coMPUTER SIMULATION
ing N, protein molecules andll,, water molecules. We may

write the microscopic free energig, of the protein—water The conditions for phase equilibrium in the protein—
solution as water solution are
E=Ejnt NuEy"+ NoEp™. (D pp(D)=wp(1l), @
This form of the microscopic free energy represents a  u,,(1)= u,(Il), (5

thermodynamic average of the energy of the system over all h d the chemical potentials of th tei
the positions of the water molecules and over the internal/1€"€ #p andu,, are the cheémical potentials ot the protein

degrees of freedom of the proteins. Thisgdepends solely _an_d water, respectively. Here | anc_J Il denote the two coex-
on the relative positions of the proteins. deé,'w is the isting  phases. We also write as a shorthand

_ | _ I .
average free energy per water molecule in a solution of purés() _“P(¢,’T) anf,j pp(ll) =pp(¢7,T) and similarly for
water(i.e., the chemical potential of one water molegwaad Hw . We letg’ and 4" be the protein volume fractions in the

| 1l i H
Eg"” is the average free energy of one protein molecule,t]\_’\r']0 ;;hases atnd W? ttikﬁg‘i; W'Fhocl;t IOfsd%{)g\tlavnerallty.
fixed in space, in a dilute water solution. The interaction € temperature ot the system Is denoted JoyWe may

energyE;,; results from the direct and indirete., through write Egs.(4) and(5) in an alternative form, namely

watey interactions between the proteins. The contribution of . (1)= u(1l), (6)
the water—water and protein—water interactions is indepen- W
dent of the positions of the proteins. HowevEr, depends f«b” (99
on the positions of the proteins and we will assume that it & p(T)d¢ 2 [p(D)+ (D] @)
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Here u=u,— yu,,, wherey=Q,/Q,,, is the ratio of AE®SL — et Eg,w_ YE%W, (13
the volume of one protein moleculél() to the volume of
one water molecule(},,). The volume fraction is defined as
$»=N,Q,/V, with V the total volume of the system. Equa-
tion (6) follows directly from Eqs(4) and (5). Equation(7) =Neo Np+1) = Neo( Np). (14)
is equivalent to the equal areas rule proposed by Maxtvell

for a pure fluid and can be derived by integrating by parts thelVe note t_hat Eq(13 Presupposes that the hard core of the
Gibbs—Duhem relationg(au/ )+ v(du,/dd) =0, from test protein does not overlap with any other hard core. In the

test_ ot i
¢' to ¢" and using Eqs(5) and (6). The quantityu repre- ¢3¢ of artl) OyerfﬁfE”es__oo' fSUbS;'tu“Qg th(li.)’) |r|1to Eq. |
sents the change in free energy due to the replacement of (11, we obtain the following form for the chemical potentia
water molecgles by one prptein molecule and itis the analog = uy+ Eg’W— 'yE\?V'W-f- KT[In ¢—In{exp(ve))], (15
of the chemical potential in a one component system. We

will call u “the effective chemical potential” to distinguish WNeree=e/kT Ihs the redu?ed energy. .
it from the protein or water chemical potentials. In Eq. (15) the ensemble average, representeetby, is

We can see that in order to use E(®.and(7) to study to be taken oveall attempts to add the test particle, both

the phase separation of the system, we need to know thtgose for which there are no hard core overlaps and those for
effective chemical potential as an analytic function of voI—Wh't‘é?t_hard core overlaps d(.) oceur. In Fhe . latter_ case
ume fraction and temperature. We shouid note that below th8E "~ and the corresponding exponential in H45)

critical temperaturd, the effective chemical potential, as an Should be set to zero. For example, for 0, which is the
analytic function of the volume fraction, has a region of "ard sphere limit, the quantifiexp(ve)) reduces to the ratio

negative slope. In this region, the system is unstable to mi9f the number of successful attempts to add a test particle to
croscopic fluctuations. At the critical temperature, this regionthe total numbgr of attempts. i i
reduces to a point with critical volume fractiah,. At the . Y& now introduce the reduced chemical potential
critical point, both the first and second derivatives of the#(¢:T), defined as

effective chemical potential with respect to volume fraction a=In ¢—In{exp ve)). (16)

are zero. Thus, the two equations

where v, the number of new contacts made by the test pro-
tein, is given by

We can see from Eq15) that u=kTa+ue+ Ep™'— yEg™ .
u Since the last three terms of this expression will cancel in

s o1 =0, ®) I§qs.(6) and(7), the phase diagra[n is determined entirely by
ere . In fact, we can replacg with x in Egs.(6) and (7). As
P a shorthand, we will refer t@. as the chemical potential. We
Py =0, (9  use Monte Carlo simulations to calculate the quantity
Po:Te (exp(e)).
determine the values op, and T.. The spinodal, which (it) We assume that the chemical potential may be rep-
marks the boundary between areas of the phase diagrafisented by an analytic form, which we use to explicitly
where the system is stable and unstable, is given by carry out the integration in Ed7). We will see in the next
section that the error introduced by this approach in the re-
‘9_/‘ ~0 (10) construction of the phase diagram is small, whereas the sav-
dp ings in computational time are great. We fit the Monte Carlo

According to Eqs(6)—(10), if u is known as a function results to the following expression far(¢,T):

of ¢ and T, then the whole phase diagram may be con- Mo
structed. By focusing our attention gn, we may simplify (T =frcd )+ 2 Ay(T)g". a7
the study of the phase separation phenomena as follows: =t
(i) We obtain the effective chemical potential, Here,
n(¢,Tg), as a function of volume fraction at a temperature )
T, aboveT,, by using Widom’s formul&? fes=In ¢—3+ T o (18)
— tes
#= ot KT In &= KT In(expt — ABEKT)). @ In Eq. (18), fics is the Carnahan—Starlifapproxima-
Here,( ) denotes a canonical ensemble average for théion for the chemical potential of an assembly of hard
system at constant volume and temperature &Bt*'is the  spheres. The\,(T) of Eq. (17) are temperature-dependent
change in the microscopic free energy of the system due tooefficients to be determined. The parameigis chosen so
the addition of a test particle. The standard part of the chemias to obtain a smooth representation of the chemical poten-
cal potential is given by, and it is independent of volume tial. If ny is too large, the fit tends to follow in detail the

fraction. statistical errors of the Monte Carlo simulation. On the other
For our particular system hand, for smalh, the systematic deviation of the fit from the
AECS=E(N,+ LNy~ )~ E(Np Ny (12) Monte Carlo results becomes large. We therefore typically

chooseny=4. Note that foru(¢,T) to have the correct high
Using Egs.(1) and(3) we obtain temperature behavioti.e., to reduce to the hard sphere
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limit), A,(T) must, to within the accuracy of the Carnahan—the coexisting phases at each temperature and hence obtain
Starling approximatiofiEq. (18)], tend to zero ag/kT—0.  the coexistence curve. In this way, we have calculated the
The form of the chemical potential, as given in ELj7), was  critical volume fractiong,., the reduced critical energy.,
chosen not only because it has the correct high temperatutbe spinodal and the coexistence curve, for a large number of
limit, but also because it properly reproduces the lpvbe-  square-well reduced rangasbetween 1.05 and 2.40.
havior and it conveniently reduces to the mean field theory  For the Monte Carlo simulation we randomly place our
result if we setng=1. particles inside a cube of unit volume with the usual periodic
We estimateT . by extrapolating the chemical potential, boundary conditiond? The hard core diameterr, of the
as explained below, downward in temperature until we find garticles was chosen to be in the range 0.14—0.18, so that we
point where both Eqg8) and(9) are satisfied. We perform have N=100-250 particles at the highest volume fractions
accurate Monte Carlo simulations at a temperatilie ¢=0.3-0.4 for which we perform the simulation. Note that
whereT, is within one percent above our estimafg, to  here$=3 wo°N. To generate a statistical ensemble of con-
find u(#,T1). We then use the extrapolation procedure de<igurations, the particles are displaced using a time-saving
scribed in the next paragraph to obtain a series of chemicahodification of the well-established NVT Metropolis
potential isotherms for temperatures beldw. Using these  schemé In our scheme, as in the Metropolis scheme, the
isotherms we are able to find the locations of the phaselisplacement of a particle is accepted unconditionally if the
boundaries without any further time-consuming simulationschange in the total energy of the systefE, due to the
To perform the temperature extrapolation, we expand th@isplacement, is negative and with probability
chemical potential at a temperatuig<T, in powers of  exp(-AE/KT) if AE is positive. From the ensemble so gen-
Ae=e;— €, with €;=€/kT; and e;=€/kT,. Here we take erated, we may calculate the quantitigsand (exp(e))
advantage of the fact that the chemical potentigl is a functioRyhich are needed in Eq$16) and (22) to obtain chemical
of temperature only through the reduced eneggyTo first  potential isotherms. The quantitgxp(ve)) is found through
order we have the addition of test particles to the system. To accumulate
statistically significant information on the average value of
(19) exp(ve), we must continue testing each configuration of the
o system until, on average, at least one successful attempt to
add a test particle is made. A successful attempt is one for
which the core of the test particle does not overlap with that
of any other particle. Thus, the addition of test particles not

~ " ou
w(p,To)=u(eh,Ty)+Ae—
Jde

By substituting Eq.(14) into the definition of the chemical
potential in Eq.(16), the derivativedu/de may be written as

o 1 ( agim only enables us to calculate the quantigxp(ve)), but also

— == , (200  provides information on acceptable new positions for the

ge €\ Ny v, T particles of the system. Using this information, in our
where E; is the average interaction energy of the systemSCheme we generate new members of the ense(ablele-
Using Eq.(3) we have scribed in the foIIOV\_n_ng parfigrap)fby moving particles to _

N N any acceptable position inside the simulation volume. This

Eini=—Ncore=— 3 Npﬁe, (21 should be contrasted with the standard choice for particle

- . ] displacement. Usually, the step size for particle displacement
HereNco, is the average number of protein—protein contact§s chosen in such a way that approximately half of the trial
and 7 is the average number of contacts per particle. Substizonfigurations are accepted. This is the rule of thumb to op-

tuting Eq.(21) into Eq. (20), we re-express Eq19) as timize the speed of evolution of the system. However, since
A A Ae 9 B we are only interested in the chemical potential, we may use
(e, To)=u(p,Ty)— > % [pn(h,T1)]. (22)  the same information for chemical potential tests and particle

repositioning. In this way the system evolves several times
The quantity (¢,T,) is also calculated during the Monte faster than in the standafdmall step sizealgorithm. Natu-
Carlo simulation at temperatufig . Note thatz is not equal  rally, the results of the two methods are the same. The use of
to (v), the ensemble average of the number of contacts madbe same information for chemical potential tests and particle
by the test particle, for the test particle is not in thermody-repositioning in no way biases the results; if we refrain from
namic equilibrium with the other particles in the system. calculating the chemical potential we simply have a Me-

Therefore, once we have performed the Monte Carldropolis equilibration algorithm.

simulation at temperatur€,, we constructu(¢,T,) by us- The fundamental cycle in our Monte Carlo simulation
ing Eq.(22). We have found empirically that we may reliably consists of the following sequence of stefi$:A particle is
employ our temperature expansion provided thate, is  selected at randonfii) An attempt is made to add a new test
less than ten percent. At each temperature we fit the Montparticle at a randomly chosen positidiii) If the attempt is
Carlo results for the chemical potenti@loth those obtained successful, the number of contacts made by the test particle
by direct simulation and those obtained from our extrapolais calculated(iv) For a successful attempt, or an unsuccess-
tion procedurgby Eq.(17) with the appropriate values of the ful one where the test particlenly overlaps with the single
coefficientsA,(T). Once we have an analytic representationparticle selected in stefp), the next configuration is created
for the chemical potential we use E@6) and(7) to calculate by moving the particle chosen in stép to the position of
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TABLE I. Results and parameters from the Monte Carlo simulations at 2.6 : : : : : |
different reduced ranges (A=« is the mean field limjt The quantities y
presented aréi) the critical volume fractiong,; (ii) the reduced critical 28l '_,,D“‘_
energx&c; (iii ) the average number of contacts per particle at the critical J— =
point 7. ; (iv) the number of successful attempts maglg, in units of 3.0k
10%; (v) the reduced energy at which the simulation is perforgdvi) the
diameter of the particles; (vii) the maximum number of particles used in 30k
the simulationM ,,,; and(vii) the maximum volume fractiorb ..
- — - ﬁ -3.4F
A ¢ € UB Kot € o Miax  Pmax
% 0.134 0.000 < 0.5 0000 0.16 178 0.38 -3.61
0 0.132 0.000 o 0.9 0.000 0.14 248 0.36
240 0140 0197 1551 1.0 0.95 0.16 140 0.30 -3.8r
2.40 0.140 0.197 15.64 47 0.196 0.14 208 0.30
220 0.135 0.263 11.81 29 0.260 0.14 228 0.33 401
220 0.135 0.262 1159 1.7 0260 0.16 140 0.30 40 | | | . | .
2.00 0.126 0.361 8.58 4.1 0357 0.14 218 0.31 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
2.00 0.126 0.359 8.45 3.0 0357 0.16 142 0.30
1.80 0.132 0.487 6.71 6.0 0480 0.16 148 0.32 ¢

1.80 0.129 0.483 6.46 7.7 0480 0.18 118 0.36
1.65 0.146 0.610 5.95 7.3 0.608 0.16 142 0.30
1.65 0.149 0.606 5.95 9.1 0.605 0.18 110 0.34
150 0.171 0.763 5.38 128 0.760 0.18 110 0.34
150 0.166 0.773 5.33 55 0.767 0.16 154 0.33
140 0.172 0.935 4.85 34 0930 0.14 218 0.31
140 0.173 0.922 4.72 206 0920 0.18 100 031
130 0.194 1.129 4.44 155 1.127 0.18 110 0.34
130 0.193 1.128 4.41 6.7 1127 018 110 0.34
1.25 0.205 1.269 4.27 215 1267 018 110 0.34

125 0206 1270 431 140 1267 0.18 100 0.31 -
120 0219 1449 417 55 1435 016 169 036 AS usual, the system was allowed to equilibrate before test-

120 0216 1.443 409 171 1435 018 110 o034 Ing forthe chemical potential. Extrapolation and fitting tech-
115 0227 1.693 391 107 1680 0.16 169 0.36 hiques were used, as explained previously, to obtain the
115 0227 1673 383 240 1660 018 110 0.34 phase diagram. It should be noted that the final determination
1-18 g-gii ;-ggg 2-2‘3‘ 21-2 ;812 8-12 ﬁg ggg of ¢, ande. is made by a small extrapolation of the results
105 0246 2667 316 1221 2650 018 125 0 ToM the thorough simulation carried out &f. Thus, sys-

1.05 0.273 2.665 3.42 814 2650 0.18 125 0.38 tematic errors in these quantltles are very small. The whole
procedure was repeated for a large number of reduced ranges
1.05=A=<2.40.

In the next section we present the results of our Monte
the test particle. This last move is accepted in the standar@arlo study.
way, i.e., it is accepted unconditionally if the change in en-
ergy due to the movedE, is negative and with probability |1 RESULTS AND DISCUSSION
exp(—AE/KT) if AE is positive.

We see that the test particle of st@p can be thought of
as simply a label for the position to which we are trying to We begin our discussion by illustrating our temperature
move the particle chosen in stép. By steps(i), (i), and  extrapolation method. In Fig. 1 we compare the direct Monte
(iv), we generate the members of the canonical ensembl€arlo results for the chemical potential with those obtained
Furthermore, during stefiii ), the test particle is also used to by extrapolation. The open symbols represent the simulation
calculate the chemical potential of the system by means afesults of the chemical potential far=1.25 at three differ-
Widom’s formula[see Eqs(11) and(16)]. The algorithm we  ent values of the reduced energy 1.318(triangles, 1.267
have outlined above is significantly faster than one in which(circles, and 1.216(squares The dashed lines are the
the evolution of the system, through small steps, is carriedthemical potentials obtained by extrapolating the chemical
out independently of the calculation of the chemical potenjotential ate=1.267 toe=1.318(coarse dashed lin@and to

FIG. 1. lllustration of the temperature expansion method\ferl.25. The
open symbols represent the Monte Carlo results for the chemical potential
for three different values of the reduced enetgyl.318(triangles, 1.267
(circles, and 1.216(squares The solid line is a fit to th&=1.267 Monte
Carlo results using Eq17) with ng=4. The dashed lines are the chemical
potentials obtained by extrapolating the=1.267 chemical potential to
€=1.318(coarse dashed lin@nd toe=1.216(fine dashed ling

A. Results of this study

tial. e=1.216(fine dashed lingusing Eq.(22). The solid line is
For a given reduced range, we performed our main the analytic fit of Eq(17) with ny=4 to thee=1.267 Monte
Monte Carlo simulation at a reduced ener@y=e/kT,, Carlo results. We see that the chemical potentials obtained by

within one percent below the reduced critical energy,extrapolating frome=1.267 to eithefe=1.318 ore=1.216
e.=¢€lkT,, as shown in Table I. The critical energy was (i.e., 4% of the original temperatuyeare in satisfactory
estimated from auxiliary simulations by using the tempera-agreement with those calculated directly &t 1.318 and
ture extrapolation method. Our main simulation was contin-e=1.216 by Monte Carlo simulation. We find similar agree-
ued until the statistical errors i were no greater than the ment between the simulation results and the extrapolation
uncertainties associated with the analytic fittofEq. (17)].  method over the whole range af studied, 1.05\=<2.40.
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-3.0 | | | | | T T T T T T
1.00 -
-3.1F
0.99r- B
-3.21-
ﬁ 0.98[ -
-3.3¢ 4 T/T,
0.97+ i
3.4 i
0.96 -
35 . | | | | i ! 1 ! ! !
: 0.10 0.15 0.20 0.25 0.30 0.35 0.10 0.15 0.20 0.25 0.30 0.35

FIG. 2. Reconstruction of the spinodal and the coexistence curve. The opdrlG. 3. Coexistence curves. The curves with progressively larger widths
circles are the Monte Carlo results for the chemical potential withl.25 represent the results obtained for the reduced rahgek8, 1.5, 1.25, and
and e=1.267. The isotherms which result from the temperature extrapola-l.1.

tion (from e=1.267 toe=1.317 in steps of 0.00%re shown as solid lines.

The coexisting points and spinodal points at each temperature are shown as

dashes and crosses, respectively. the simulation is performeds, the diameter of the particles,

M max, the maximum number of particles used in the simu-

This gives us confidence to use the extrapolation procedur@tion, andémay, the maximum volume fraction at which the

. . ) A ) . . . _ 3
in place of the many time-consuming simulations that wouldsimulation was carried outnote that ¢max=M a0 /6).
otherwise be required. For each reduced range presented in Table I, we show the

The coexisting volume fractions may then be determined€sults obtained with two different sets of simulation param-
from the chemical potential isotherms by applying E@. etgrs. Althqugh it is .difficult to evaluat priori the system-
and (7). The points which lie on the spinodal are given by &liC errors inherent in our method, we may estimajgoste-
Eq. (10). An example of the construction of the coexistence!0r! Our errors by using the variation in the values of the
curve and spinodal is shown in Fig. 2 for the case1.25. quantities of interest; the critical volume fractiah,, the
The open circles are the Monte Carlo results for the chemicdieduced critical energy., and the average number of con-
potential withA =1.25 ande=1.267. The isotherms which t&cts per particle at the critical poinf.. We see that these
result from the temperature extrapolatidrom e=1.267 to ~ duantities vary by no more than a few percent between the
¢=1.317 in steps of 0.005are shown as solid lines. The different runs for a given. _ . . _
coexisting points and spinodal points at each temperature are An.other source of systematic errors which we investi-
shown as dashes and crosses respectively. The coexisterf@ed is that brought about by our particular choice of fit to
curves so constructed are shown in Fig. 3 for the reducefa- (17). Different fits will result in different values for the
ranges\ =1.8,1.5,1.25, and 1.1. The coexistence curves petritical volume fraction and the critical temperature. In Table
come broader as the range of the interaction decreases, alldVe show the values o§. and e obtained using different
the corresponding critical volume fraction increases. values ofn, at three different ranges,=1.8, 1.3, and 1.1.

In Table | we list the results for a group of representative'Ve see that the variation ig. and ¢; due to the change in
Monte Carlo simulations for different values of the reducedno IS Of the order of the errors shown in Table I. Thus we
range,\. For each value ok listed in column 1, we present
in columns 2—-4 the corresponding results we obtained for
the critical volume fractionp., the critical reduced energy TABLE Il. Variation of the simulation results with the order of the chemical
%_CE e/kT., and the average number of contacts per particlepOtentIaI fit.o.
7¢, at the critical point. Note that all the results in the table ) be e
were obtained usingng=4. The manner in which we ob-

]
o

tained the results in the=c case will be discussed in Sec. 1:28 i 8:132 8:222
lnc. 1.80 5 0.132 0.484

To gain insight into the accuracy of the results, we varied 1.30 3 0.189 1.131
the conditions under which the simulations were made. We 1.30 4 0.194 1129
list in columns 5—9 of Table | the simulation parameters that 1-30 5 0.196 1132
we varied;K,y, the total number of successful attemfits 1'18 i 852411 g'ggg
units of 1¢) made during the testing of the chemical poten- 7 1 5 0245 2038

tial at each volume fraction, the reduced enekgy,at which
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FIG. 4. Comparison of the coexistence curves. The coexistence curves froff/G- 5. Variation of the critical volume fraction with the reduced range. Our

. : _ . ) . Its(solid circles are presented together with those of Hendembal.
our simulations ak =1.25(coarse dashed lin@nd 1.5(fine dashed lineare resu .
shown together with the coexisting points obtained by \Viegal. (Ref. 24 (Ref. 23 (open squaresVegaet al. (Ref. 29 (open triangles and Lomba

. - et al. (Ref. 26 (open circleg The solid line is a linear extrapolation of our
for the same rangetopen circles and squares, respectiyelote that L )
T*=KTle getp q pectiyell results ton=1. The dashed line is the mean field result.

conclude that, fomy=3, 4, or 5, our results are relatively the results forg., as obtaizr;ed by other Monte Carlo simu-
insensitive to the value af, chosen. However, we do find lations: (|)"Hendersor135 al™ use an NVT algorithmopen
that for n, below three the fit does not give an adequateSduares (i) Vegaet al™ use a Gibbs ensen;?le Monte Carlo
representation of the chemical potential, while fgrabove ~ Simulation(open trianglek (iii) Lombaet al™ use a Gibbs

five, the fit begins to follow the statistical errors of the simu-€nSeémble Monte Carlo simulation but choose a Yukawa po-
lation results. tential instead of a square-welbpen circles The corre-

sponding results for the reduced critical eneggyare shown

in Fig. 6. We have converted the Yukawa potential param-

eters into those of an equivalent square-well by taking the
In view of the nonorthodox nature of our calculational depth of the two potentials to be the same and requiring the

procedure, which involves analytic techniques as well ashigh temperature limit of the second virial coefficients to be

simulations, it is useful to compare our results with thoseequal. The Yukawa potential results of Lomegal?® illus-
available from conventional Monte Carlo simulations. We

present, in Fig. 4, the coexistence curves from our simula-
tions ath =1.25(coarse dashed linend 1.5(fine solid line,
together with the coexisting points for the same values of
N\ as obtained by Vegat al. (open circles and squares,
respectively.>* We can see that the agreement between the
two simulations is satisfactory, even though we extend our 2.0
coexistence curves to temperatures significantly below the
critical point. Note thafT* =kT/e. . 1.5

We believe that our approach provides a better way to &
estimate ¢. and €. than the conventional Monte Carlo
method. As can be seen from Fig. 4, the Gibbs ensemble
Monte Carlo simulations of two coexisting pha¥eare im-
practical to carry out close to the critical point. Therefore, the 0.51
critical parameters of those calculations must still be ob- i
tained from some form of extrapolation. Our simulations are P T R R TR R VI
carried out very close to the critical temperature allowing for -8 2 -1 0
a better estimation of, and ¢, . In(A-1)

In Figs. 5 and 6 we compare our deduced critical volume
fractions and reduced critical energies with those found b)FIG. 6. Variation of the critical reduced energy with the reduced range

: : ; . Our results(solid circles are presented together with those of Henderson
conventional Monte Carlo simulations. In Fig. 5, we showet al. (Ref. 22 (open squarasVegaet al. (Ref. 24 (open triangles and

our r95U|t§(30|id circles for the critical volume fragtio@c Lomba et al. (Ref. 26 (open circles The solid line is Eq.(29) with
as a function of the reduced range We also show in Fig. 5 7,=0.13. The dashed line is E(R8) with a,=10.6.

B. Other Monte Carlo results
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trate that the phase separation phenomena do not depend on g=4¢g)\3 (26)

the detailed form of the potential chosen. We see that the

mean values we find fop, ande, are consistent with those and

found by others. In addition, the uncertainty in our results is

smaller than that obtained by conventional Monte Carlo _ 1

simulations. T 1200 —1)exp &)

The effectiveness of our approach is especially important

for short range potentials which are the focus of our studywe see thaa is the single parameter which characterizes the

Monte Carlo simulations become increasingly time-mean field theory, whiler is the single parameter which

consuming a3 — 1.22 However, the time saved by our use of describes the adhesive sphere model. Note thatorre-

analytic methods allows us to thoroughly investigate thesponds to the well known van der Waals téfmand is a

short range regime as can be seen from Fig. 5. measure of the strength of the attraction between particles for
a long range interaction potential. The parameteiintro-
duced by Baxtet® is a measure of the stickiness of the ad-

C. Connection with the mean field and adhesive hesive spheres. The hard sphere case() can be regained

sphere models from either limiting theory;a—0 in mean field theory or

As we have seen above, our Monte Carlo calculations - for th_e adhesive sphere mod_el. . -~
provide a description of the phase diagram over a wide do; we _be_g_m our angly5|s by considering the _p_redlct|ons of
main of A, 1.05<\<2.40. It is interesting to examine these these limiting theories for the reduced critical energy,
Monte C:;wlc; results in {he\—>oo and A1 limits where €= e/kT.. In Fig. 6 we show our simulation resul¢solid

. . . S pointg for the reduced critical energy as a function of
analytic solutions are available. The-co limit corresponds In(\—1). We see that reduced critical energy increases as the
to mean field theory while thex—1 limit corresponds to ' 9y

the adhesive or sticky sphere mod&i®Both of these “lim- range of the potential decreases. The mean field result for

iting” theories depend on one parameter only. We will show e '®
how the general two parameter énd\) square-well poten- o a
tial reduces to these different one parameter models. We €= 3"
show that we can recover the well-known mean field
result§*°and we determine the domain bfin which mean  This last equation is derived from E6) and a. is the
field theory becomes a valid approximation. For the:1  value of the parametex at the critical point. The dashed line
limit, the Monte Carlo calculation provides us with important j Fig. 6 represents Eq28) with a.=10.6, a value deter-
estimates of the critical parameters of the adhesive sphek@iined analytically*?° We see that mean field theory gives a
model, which have been the subject of theoreticalyood estimate fore, for reduced ranges greater than
uncertainty° A~1.10[In(\—1)~—2.30].

The connection between the two parameter square-well  As \ tends to unity, we may compare our findings with
potential and the two limiting theories is most readily seenthe adhesive sphere results given by Ey). At the critical

by considering the second virial coefficieB,(T) of the  point r= 7, and the relation betweek, and\ is
square-well potential® where

(27)

(28)

3 3 &= —In[12r(A —1)]. 29
By=— Ffo {exi —u(r)/kT]=1}d*r The numerical value of, is not well-established. Watts
. . et al1® obtainedr, by using the Percus—Yevitkequation to
=—4{[exple) - 1](\°—1)—1}. (23 find an analytic solution for the equation of stitef adhe-
For the interaction between the proteins to provide a physisive spheres. They undertook a calculation of the equation of
cally reasonable equation of staf, must be finite. In the state in three distinct ways; through the pressure, compress-
mean field case, this requirement implies thahas, we  ibility, and energy equations. The pressure equation gives
must havee—0 [see Eq.(23)]. Analogously, for the adhe- unphysical solutions while the other two equations predict
sive sphere model, we must take>~ as\—1. Therefore, different values for7.; 0.098 (from the compressibility
the second virial coefficients for the two limiting theories areequation and 0.12(from the energy equatignNeither of
mf_ a3 these two values is consistent with our results &ras \
By'=—4(er"—1), approaches unity. For our Monte Carlo results to asymptoti-

for mean field (A—,e—0), (24) cally approach the theoretical predictions, we require
7.>0.125. We observe that this lower bound fgris larger
B3%=—4[3(\—1)exp(e)—1], thanlgither of the two previous estimates made by Watts
for adhesive spheregh —1,e—x). (25) ?és?}its '\I;\:teh sI,E()(;((ng;] ?oLanlzg(.).?-;hows a comparison of our
Equations(24) and(25) provide relationships betweeénand We may also examine the behavior of the critical volume
\ for the two limiting theories. Thus, if we define the quan- fraction in the context of the two limiting theories. In Fig. 5
tities we show the mean field result fgr, as the horizontal dashed
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line, ¢.=0.130%2°We note that for the mean field theory to
give an accurate result fop., the reduced rang& must © 0
exceed 1.65. P .

To compare the Monte Carlo findings with the adhesive 12 S0 .
sphere model, we extrapolate our results for the critical vol- ;o m
ume fraction ton=1. If we perform a linear extrapolation 101 S © ““ 7
(solid ling), we find that$.(A=1) is 0.266-0.009. The ;o X
uncertainty reported in this quantity represents only the sta- f J/o -
tistical errors of our data and does not include any systematic 6 ©
errors. The critical volume fractions predicted by Watts
et al’® are ¢.,=0.121 (from the compressibility equation
and ¢.= 0.320(from the energy equationThe large uncer-
tainty in the theoretical result is due to the increasing flathess
of the chemical potential near the critical pointhaas> 1. This o L
makes the critical volume fraction very sensitive to the ap- 0.00 0.05 0.10 0.15 0.20 0.25 0.30
proximations made in the Percus—Yevick scheme. We be- )
lieve that our resultg.(A=1)=0.266+0.009, represents a
reliable estlmate of the lecfa,l volume fractloq for adhesIveFIG. 7. The average number of contacts per particle. The average number of
spheres. This value of the critical volume fraction may provegontacts per particley, is shown as a function ab for several ranges)
useful as a benchmark for further investigations of systems=1.05, €=2.650 (triangles; (i) A=1.25, €=1.267 (squares (iii)
with short range interactions. N=1.65,¢=0.605(bow tieg; (iv) A=2.20,=0.260(circles. The straight

Another quantity we may examine to elucidate the Con_dashed lines represfenF thg Iqﬁvbehavio_r for the different ranges as given
nection between the limiting theories and the Monte Carloby Eq. (30). The solid line is the adhesive sphere result #e0.13.
results is», the average number of contacts per particle. We
calculate the d.epend.ence @f(_)n.volume fraction_du.ring the the ranges listed above. As expected, &6) fits the Monte
Monte_Car!o simulations. Thls important quantity is the keyCarIo results very well at lowp for all values of\. For a
ingredient in our extrapolation formul&q. (22)]. The low - given range\, the deviation ofy from the direct proportion-
¢ behavior ofyp may be examined theoretically. The result is ality to ¢ expressed in Eq30) is a measure of the departure

7=8(\3—1)exp(€) . (30)  from the mean field limit. The solid line in the figure is the

_ . _ _ ~analytic result fory in the adhesive sphere limft with
Equation(30) is derived using the Boltzmann distribution __q 13 At low é, this full expression reduces to

and assuming that the particles interact independéhiifie 7=2¢l7, a result which can be obtained directly from Eq.
assumption of independent interactions is also a fundament@j;o)_ As we see, the average number of contacts per particle

postulate in mean field theory and it is justified when thepo\ides direct physical insight into the protein interactions.
number of possible contacts is large, i®>. Thus, EQ.  \we will return to it in the next section.

(30) should hold for all¢ in the mean field limit and where
it reduces ton,;=8\3¢. _ _ .
It is by using this last result that we calculated theD- Comparison with experimental data for the
\=% entries in Table I. By substituting the expression for ¥-¢rystallin proteins
7me INt0 EQ. (22), we obtain the temperature extrapolation  In this section we compare the coexistence curves gen-
formula in the mean field limit, namely, erated by the More17te Carlo simulation with the experimen-
A A tally measured onesln Fig. 8 we present data points of the
#(.To)=p(¢,Ty) ~ 2820 B reduced coexistence curves/T, vs ¢) for y ., (circles,
with Aa=a(T,)—a(T,) anda is given by Eq.(26). It can vup (squarey vy, (triangles, and 7y, (bow ties. The
be shown from Eq(16) that Eq.(31) is exact, i.e., higher experimentally observed value ¢ is 0.21+0.02 for all the
order terms inMAa tend to zero in the mean field limit. Our v -crystallins. From Fig. 5, this corresponds to a range of
A= entries were obtained by using E&1) to extrapolate approximatelyx =1.25. Thus, we also show our Monte Carlo
the chemical potential obtained from a hard spheraesults for the coexistence curvesiat1.25(coarse dashed
[T,=c, a(T,)=0] simulation. The results shown in Table | line).
agree with those found analytically in the mean field For comparison, we also present the mean field coexist-
limit.82°We also finda(T.) =10.6 as predicted theoretically. ence curve as obtained analyticalfine dashed ling Recall
In Fig. 7, we show the average number of contacts pethat in the mean field casg,=0.130. It is interesting to note
particle 7 (open symbols as a function ofp for several of that one can understand the experimentally observed value of
the entries in Table I(i) A=1.05 (¢;=2.650, triangle} (ii) ¢.=0.21 as arising from the short range character of the
A=1.25 (e;,=1.267, squargs iii) A=1.65 (¢;=0.605, bow interaction potential. In addition, the Monte Carlo results for
ties); and (iv) A =2.20 (¢;=0.260, circles Recall thate; is A =1.25 predict a coexistence curve which is twice as broad
the reduced energy at which the simulations are performedis the one obtained by mean field theory. Nevertheless, the
The straight lines represent E(O) with e=¢; at each of predicted width is still about half that found experimentally.

J. Chem. Phys., Vol. 104, No. 4, 22 January 1996

Downloaded-31-0ct-2002-t0-18.81.1.13.=Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



Lomakin, Asherie, and Benedek: Phase separation in protein solutions 1655

the width of the coexistence curve. It remains to be seen
whether such a strong temperature dependence(Df is
physically reasonable.

It is also possible that the observed extra width of the
coexistence curve could result from an anisotropic character
of the protein interaction energy. We note from our simula-
tions that, as the range of the interaction decreaggsthe
average number of contacts per particle at the critical point,
decreasegsee Table )l while the width of the coexistence
curves increasesee Fig. 3 Therefore, it is conceivable that
for the phase separation curve to become even broader and
agree with the experimental observations, the number of con-
tacts should drop below the very short range results. This

, | | | will occur if the true potential is both short-ranged and an-
0.1 0.2 0.3 0.4 isotropic.
o From these considerations an interesting point emerges.
We can see from the results presented in Table | that for a
FIG. 8. Comparison with the experimental results for fherystallins. The ~ SyStem with short range attractions—-1) each particle al-
coexistence curve generated by the Monte Carlo simulationfet.25 is  ready makes only about three contacts at the critical point.
shown as a coarse dashed line. The fine dashed line represents the coexjAn anisotropic potential, i.e., one for which the attraction
ence curve ob.tained analytically in the mean field limit. '!'he experimentallbetween proteins depends on their relative orientation, will
results of Broideet al. (Ref. 7) are presented fory . (circles, vup .
(squarel v, (triangles, and y ., (bow ties. The solid line is the coex- CAUSE the average number of contacts per particle to drop
istence curve obtained for=1.25 and a temperature dependent interaction €ven further and may change the system to the point where
energy of the forme=kT e [1+ k(T—T.) /T.], with k=—3. phase separation is replaced by reversible aggregation. The
experimental results presented in this section lead us to be-
lieve that the proteins we study could be in fact close to this
Even if we allow for uncertainty in the value of the critical boundary. Therefore, it would be interesting to explore the
volume fraction, and hence consider smaller values,ofve  role of anisotropy in the relationship between phase separa-
still find that the curves generated by Monte Carlo simulatiortion and reversible aggregation.
are significantly narrower than the experimental coexistence
CUrves. _ _ _ IV. SUMMARY AND CONCLUSIONS

The question of the “extra width” of the coexistence
curves notwithstanding, it is important to note that the agree- We have studied the binary liquid phase separation of
ment between the Monte Carlo simulations and the experiaqueous protein solutions by modeling the protein interac-
ment results worsens asincreases. Therefore, it is safe to tions with a square-well potential. We utilize this potential in
conclude that the range of the protein—protein interaction i® hybrid Monte Carlo method which blends simulations with
no greater than =1.25. Since they -crystallins are typically thermodynamic extrapolation techniques. In this method, we
48 A in diameter, this sets an upper limit of 12 A on the use the results of Monte Carlo simulations along a single
width of the attractive well of they -crystallins. This is con- isotherm to construct an analytic form of the chemical po-
sistent with the conclusions drawn from structure factortential for a series of isotherms above and below the critical
measurement®. The information contained in Figs. 3, 5, and temperature. This unorthodox Monte Carlo scheme permits
7 shows thatn must exceed 1.65 for mean field theory to us, by the economy of its design, to reconstruct the phase
provide a satisfactory description of the protein—protein in-diagram of systems over a wide domain of the reduced range
teractions. Our observation above the&s1.25 for they  of attraction\. In particular, we have thoroughly explored
-crystallins implies that a mean field model is inappropriatepotentials in the short range regime, with ranges as small as
for studying y -crystallin phase separation. A=1.05. These potentials are especially important for they

We now examine possible explanations for the width ofapply to many colloidal suspensions, including the
the experimentally determined coexistence curves. Since therystallin protein solutions which we have previously inves-
interaction between the proteins is in fact mediated by theigated experimentally.
surrounding water, we may consider the energy of interaction  Our results provide insight into the central role played
between the proteins to be temperature dependent. For eky the range of the interaction in determining the shape and
ample,e(T)=kT.e[1+ «(T—T.)/T.], wherex is a con- location of the phase boundaries. Indeed, we have found that
stant. In Fig. 8, the coexistence curve far=1.25 with  as the range decreases, the width of the coexistence curve
x=—23 is shown as a solid line. This curve, which obviously increases and the critical volume fraction shifts to higher
gives a better fit to the data than the temperature independewdlues. As part of our analysis, we have demonstrated how
(k=0) case, is obtained by appropriately rescaling thehe two parameter square-well model reduces to the one pa-
x=0 coexistence curve. The temperature dependence of thameter mean field model as— and to the one parameter
interaction energy in no way affects., but it does increase adhesive sphere model as-1. In the mean field limit, we

0.99

0.98
T/T

0.97

0.96
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