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The binary liquid phase separation of aqueous solutions ofg-crystallins is utilized to gain insight
into the microscopic interactions between these proteins. The interactions are modeled by a
square-well potential with reduced rangel and depthe. A comparison is made between the
experimentally determined phase diagram and the results of a modified Monte Carlo procedure
which combines simulations with analytic techniques. The simplicity and economy of the procedure
make it practical to investigate the effect on the phase diagram of an essentially continuous variation
of l in the domain 1.05<l<2.40. The coexistence curves are calculated and are in good agreement
with the information available from previous standard Monte Carlo simulations conducted at a few
specific values ofl. Analysis of the experimental data for the critical volume fractions of the
g-crystallins permits the determination of the actual range of interaction appropriate for these
proteins. A comparison of the experimental and calculated widths of the coexistence curves suggests
a significant contribution from anisotropy in the real interaction potential of theg-crystallins. The
dependence of the critical volume fractionfc and the reduced critical energyêc upon the reduced
rangel is also analyzed in the context of two ‘‘limiting’’ cases; mean field theory (l→`) and the
Baxter adhesive sphere model (l→1). Mean field theory fails to describe both the value offc and
the width of the coexistence curve of theg-crystallins. This is consistent with the observation that
mean field is no longer applicable whenl<1.65. In the opposite case,l→1, the critical parameters
are obtained for ranges much shorter than those investigated in the literature. This allows a reliable
determination of the critical volume fraction in the adhesive sphere limit,
fc(l51)50.26660.009. © 1996 American Institute of Physics.@S0021-9606~96!50804-7#

I. INTRODUCTION

The liquid–liquid phase separation of protein solutions
is of great interest because the factors which govern the con-
densation of protein into coexisting protein-poor and protein-
rich phases are believed to play a central role in several
human diseases.1–3 The understanding of the location of the
phase boundaries and the strategies to shift them by modify-
ing protein interactions are key elements in the search for
disease treatment. An important example of such a disease is
cataract,1 where opacification of the eye lens results from
alterations in the spatial distribution of the lens proteins.4

These alterations are known to be produced, in part, by the
phase separation of theg -crystallins, a family of monomeric
lens proteins.5 Several studies6–9 have investigated the phase
separation in aqueous solutions of individual members of the
calf lens g-crystallin family. These experiments show that
the g-crystallins may be divided into two groups, ‘‘high-
Tc’’ proteins, such asgIIIa (gC) andgIVa (gE), which exhibit
high critical temperatures (Tc'38 °C!, and ‘‘low-Tc’’ pro-
teins, such asgII (gB) and gIIIb (gD), which exhibit low
critical temperatures (Tc'5 °C!. The critical volume frac-
tions of all theg -crystallins are approximately the same
fc50.2160.02.7 The coexistence curves are found to be
upper consolute and very broad, as is observed in some col-
loidal dispersions.10,11 Mixtures of g -crystallins have also
been studied.12

From a theoretical point of view, the phase transition in
the protein–water solution is analogous to that of the single

component liquid–vapor system. Beginning with the van der
Waals equation of state,13 there has been a quest for an ana-
lytical equation of state for simple liquids. The general ap-
proach is to assume a form for the intermolecular potential,
almost always central and pairwise additive. One of the most
common selections is the square-well potential, since it is the
simplest model which includes both attractive and repulsive
forces. At this stage, either one of two choices is made;~i! A
‘‘fundamental’’ statistical-mechanical equation, such as the
Percus–Yevick formula,14 is invoked, from which a closed
form solution for the equation of state is obtained;15,16 ~ii ! A
statistical-mechanical perturbation theory is used. Here, the
main approach is to treat the attractive part of the potential
being studied as a perturbation to the hard sphere model,
which has only repulsive forces.17–19

Though these theories provide a recipe for how to cal-
culate quantities of interest for phase separation, their com-
plexity limits their utility when interpreting experimental re-
sults. One way to overcome this difficulty, is to begin with a
phenomenological thermodynamic expression for the Gibbs
free energy of the system. A simple analytic model, based on
mean field theory, has been proposed8,20 to describe the
phase separation phenomena of aqueous protein solutions.
As we shall see in this paper, this model corresponds to a
long-range square-well intermolecular potential.

Many Monte Carlo simulations have been made of sys-
tems which undergo phase separation.21–23 The most recent
of these24–26 have employed the so-called Gibbs ensemble
Monte Carlo technique.27,28The focus of many of these stud-

1646 J. Chem. Phys. 104 (4), 22 January 1996 0021-9606/96/104(4)/1646/11/$6.00 © 1996 American Institute of Physics

Downloaded¬31¬Oct¬2002¬to¬18.81.1.13.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



ies is to examine the theory of critical phenomena for a va-
riety of intermolecular potentials, including the square-well
potential. In the recent study of Vegaet al.,24 the vapor–
liquid phase equilibria of square-well systems with hard-
sphere cores were studied for the reduced rangesl51.25,
1.375, 1.5, 1.75, and 2. The critical points and the shapes of
the coexistence curves~in terms of a critical exponent! were
calculated. This information indicates that the interactions
between theg -crystallins are short-ranged as expected. The
results, however, are not detailed enough in the short-range
regime to interpret the phase diagram of these proteins.

Therefore, in order to gain insight into the microscopic
interactions of theg -crystallins, we have developed our
Monte Carlo method to analyze the experimental observa-
tions of Broideet al.7 We also explore the applicability of
mean field models, such as that proposed by Berlandet al.8

and Taratutaet al.,20 to aqueousg -crystallin solutions. To
simplify the analysis, as well as to save computational time,
our Monte Carlo procedure uses theoretical extrapolation
techniques, in addition to simulation, to calculate the quan-
tities of interest, most importantly the chemical potential. To
reconstruct the phase diagram of our model aqueous protein
solution, we fit the Monte Carlo results for the chemical
potential with an analytic expression. We then obtain the
coexistence curve by a method analogous to the Maxwell
equal areas construction for the van der Waals equation of
state.29 Since the use of an analytic form for the chemical
potential neglects the contributions of critical fluctuations to
the free energy of the system, our approach is unable to
describe accurately the critical exponents. However, we are
interested in aspects of phase separation which are not
strongly affected by the fluctuations; the critical temperature
Tc , the critical volume fractionfc , and the shape of the
coexistence curve in regions relatively far from the critical
point. To check the accuracy of our method, especially near
the critical point, where the reliability of the method cannot
be justifieda priori, in Sec. III B we compare our results
with those available from other Monte Carlo simulations.

To begin our analysis, let us consider a system contain-
ing Np protein molecules andNw water molecules. We may
write the microscopic free energy,E, of the protein–water
solution as

E5Eint1NwEw
0,w1NpEp

0,w . ~1!

This form of the microscopic free energy represents a
thermodynamic average of the energy of the system over all
the positions of the water molecules and over the internal
degrees of freedom of the proteins. Thus,E depends solely
on the relative positions of the proteins. HereEw

0,w is the
average free energy per water molecule in a solution of pure
water~i.e., the chemical potential of one water molecule! and
Ep
0,w is the average free energy of one protein molecule,

fixed in space, in a dilute water solution. The interaction
energyEint results from the direct and indirect~i.e., through
water! interactions between the proteins. The contribution of
the water–water and protein–water interactions is indepen-
dent of the positions of the proteins. However,Eint depends
on the positions of the proteins and we will assume that it

can be represented by a central and pairwise interaction. For
convenience, we will refer to the microscopic free energyE
as simply the energy of the proteins.

Now we proceed to make the model more specific. We
consider the proteins to be spheres, of diameters, while the
water is taken to be a continuous background~that is, the
size of the water molecules is taken to be small as compared
to s). We assume that the effective potential energyu(r ) for
a pair of proteins whose centers are separated by a distance
r , is of the form of a square-well plus a hard core as given by
Eq. ~2! below,

u~r !5H 1`, for r,s

2e, for s<r,ls

0, for r>ls.

~2!

Herel is the reduced range of the potential well ande is
its depth. With this potential, we can calculate the interaction
energyEint , and hence the total energyE, as a function of
volume fraction and temperature. Note that for our particular
choice of potential, we can define the number of protein–
protein contactsNcon as the number of protein pairs whose
centers are in the ranges<r,ls from each other. Thus we
may write the interaction energy as

Eint52Ncone. ~3!

Of course Eq.~3! assumes that there are no overlapping hard
cores in the configuration. If this is not the case and there are
overlaps thenEint5`.

Once we have chosen an explicit form for the intermo-
lecular potential of the system, we may use the Monte Carlo
simulation procedure described in Sec. II to obtain the ther-
modynamic properties of our system. Thus we can recon-
struct the phase diagram of our model aqueous protein solu-
tion and compare it with the experimental results of Broide
et al.7 This comparison is made in Sec. III D.

II. COMPUTER SIMULATION

The conditions for phase equilibrium in the protein–
water solution are

mp~ I!5mp~ II !, ~4!

mw~ I!5mw~ II !, ~5!

wheremp andmw are the chemical potentials of the protein
and water, respectively. Here I and II denote the two coex-
isting phases. We also write as a shorthand
mp(I)[mp(f

I,T) andmp(II)[mp(f
II ,T) and similarly for

mw . We letf
I andf II be the protein volume fractions in the

two phases and we takef I<f II without loss of generality.
The temperature of the system is denoted byT. We may
write Eqs.~4! and ~5! in an alternative form, namely

m~ I!5m~ II !, ~6!

E
f I

f II

m~f,T!df5S f II2f I

2 D @m~ I!1m~ II !#. ~7!
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Herem[mp2gmw , whereg[Vp /Vw , is the ratio of
the volume of one protein molecule (Vp) to the volume of
one water molecule (Vw). The volume fraction is defined as
f[NpVp /V, with V the total volume of the system. Equa-
tion ~6! follows directly from Eqs.~4! and ~5!. Equation~7!
is equivalent to the equal areas rule proposed by Maxwell29

for a pure fluid and can be derived by integrating by parts the
Gibbs–Duhem relation,f(]m/]f)1g(]mw /]f)50, from
f I to f II and using Eqs.~5! and ~6!. The quantitym repre-
sents the change in free energy due to the replacement ofg
water molecules by one protein molecule and it is the analog
of the chemical potential in a one component system. We
will call m ‘‘the effective chemical potential’’ to distinguish
it from the protein or water chemical potentials.

We can see that in order to use Eqs.~6! and~7! to study
the phase separation of the system, we need to know the
effective chemical potential as an analytic function of vol-
ume fraction and temperature. We should note that below the
critical temperatureTc the effective chemical potential, as an
analytic function of the volume fraction, has a region of
negative slope. In this region, the system is unstable to mi-
croscopic fluctuations. At the critical temperature, this region
reduces to a point with critical volume fractionfc . At the
critical point, both the first and second derivatives of the
effective chemical potential with respect to volume fraction
are zero. Thus, the two equations

]m

]f
U
fc ,Tc

50, ~8!

]2m

]f2 U
fc ,Tc

50, ~9!

determine the values offc and Tc . The spinodal, which
marks the boundary between areas of the phase diagram
where the system is stable and unstable, is given by

]m

]f
50. ~10!

According to Eqs.~6!–~10!, if m is known as a function
of f and T, then the whole phase diagram may be con-
structed. By focusing our attention onm, we may simplify
the study of the phase separation phenomena as follows:

~i! We obtain the effective chemical potential,
m(f,T0), as a function of volume fraction at a temperature
T0 aboveTc , by using Widom’s formula,30

m5m01kT ln f2kT ln^exp~2DEtest/kT!&. ~11!

Here,^ & denotes a canonical ensemble average for the
system at constant volume and temperature andDEtest is the
change in the microscopic free energy of the system due to
the addition of a test particle. The standard part of the chemi-
cal potential is given bym0 and it is independent of volume
fraction.

For our particular system

DEtest[E~Np11,Nw2g!2E~Np ,Nw!. ~12!

Using Eqs.~1! and ~3! we obtain

DEtest52ne1Ep
0,w2gEw

0,w , ~13!

wheren, the number of new contacts made by the test pro-
tein, is given by

n[Ncon~Np11!2Ncon~Np!. ~14!

We note that Eq.~13! presupposes that the hard core of the
test protein does not overlap with any other hard core. In the
case of an overlapDEtest5`. Substituting Eq.~13! into Eq.
~11!, we obtain the following form for the chemical potential

m5m01Ep
0,w2gEw

0,w1kT@ ln f2 ln^exp~nê !&#, ~15!

whereê[e/kT is the reduced energy.
In Eq. ~15! the ensemble average, represented by,., is

to be taken overall attempts to add the test particle, both
those for which there are no hard core overlaps and those for
which hard core overlaps do occur. In the latter case
DEtest5` and the corresponding exponential in Eq.~15!
should be set to zero. For example, forê50, which is the
hard sphere limit, the quantitŷexp(nê)& reduces to the ratio
of the number of successful attempts to add a test particle to
the total number of attempts.

We now introduce the reduced chemical potential
m̂(f,T), defined as

m̂[ ln f2 ln^exp~nê !&. ~16!

We can see from Eq.~15! thatm5kTm̂1m01Ep
0,w2gEw

0,w .
Since the last three terms of this expression will cancel in
Eqs.~6! and~7!, the phase diagram is determined entirely by
m̂. In fact, we can replacem with m̂ in Eqs.~6! and ~7!. As
a shorthand, we will refer tom̂ as the chemical potential. We
use Monte Carlo simulations to calculate the quantity
^exp(nê)&.

~ii ! We assume that the chemical potential may be rep-
resented by an analytic form, which we use to explicitly
carry out the integration in Eq.~7!. We will see in the next
section that the error introduced by this approach in the re-
construction of the phase diagram is small, whereas the sav-
ings in computational time are great. We fit the Monte Carlo
results to the following expression form̂(f,T):

m̂~f,T!5m̂CS~f!1 (
n51

n0

An~T!fn. ~17!

Here,

m̂CS5 ln f231
32f

~12f!3
. ~18!

In Eq. ~18!, m̂CS is the Carnahan–Starling31 approxima-
tion for the chemical potential of an assembly of hard
spheres. TheAn(T) of Eq. ~17! are temperature-dependent
coefficients to be determined. The parametern0 is chosen so
as to obtain a smooth representation of the chemical poten-
tial. If n0 is too large, the fit tends to follow in detail the
statistical errors of the Monte Carlo simulation. On the other
hand, for smalln0 the systematic deviation of the fit from the
Monte Carlo results becomes large. We therefore typically
choosen054. Note that form̂(f,T) to have the correct high
temperature behavior~i.e., to reduce to the hard sphere
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limit !, An(T) must, to within the accuracy of the Carnahan–
Starling approximation@Eq. ~18!#, tend to zero ase/kT→0.
The form of the chemical potential, as given in Eq.~17!, was
chosen not only because it has the correct high temperature
limit, but also because it properly reproduces the lowf be-
havior and it conveniently reduces to the mean field theory
result if we setn051.

We estimateTc by extrapolating the chemical potential,
as explained below, downward in temperature until we find a
point where both Eqs.~8! and ~9! are satisfied. We perform
accurate Monte Carlo simulations at a temperatureT1 ,
whereT1 is within one percent above our estimatedTc , to
find m̂(f,T1). We then use the extrapolation procedure de-
scribed in the next paragraph to obtain a series of chemical
potential isotherms for temperatures belowTc . Using these
isotherms we are able to find the locations of the phase
boundaries without any further time-consuming simulations.

To perform the temperature extrapolation, we expand the
chemical potential at a temperatureT2,T1 in powers of
Dê[ê22 ê1 with ê1[e/kT1 and ê2[e/kT2 . Here we take
advantage of the fact that the chemical potential is a function
of temperature only through the reduced energyê. To first
order we have

m̂~f,T2!5m̂~f,T1!1Dê
]m̂

]ê
U
ê1

. ~19!

By substituting Eq.~14! into the definition of the chemical
potential in Eq.~16!, the derivative]m̂/]ê may be written as

]m̂

]ê
5
1

e S ]Ēint

]Np
D
V,T

, ~20!

where Ēint is the average interaction energy of the system.
Using Eq.~3! we have

Ēint52N̄cone52 1
2 Nph̄e. ~21!

HereN̄con is the average number of protein–protein contacts
andh̄ is the average number of contacts per particle. Substi-
tuting Eq.~21! into Eq. ~20!, we re-express Eq.~19! as

m̂~f,T2!5m̂~f,T1!2
Dê

2

]

]f
@fh̄~f,T1!#. ~22!

The quantityh̄(f,T1) is also calculated during the Monte
Carlo simulation at temperatureT1 . Note thath̄ is not equal
to ^n&, the ensemble average of the number of contacts made
by the test particle, for the test particle is not in thermody-
namic equilibrium with the other particles in the system.

Therefore, once we have performed the Monte Carlo
simulation at temperatureT1 , we constructm̂(f,T2) by us-
ing Eq.~22!. We have found empirically that we may reliably
employ our temperature expansion provided thatDê/ ê1 is
less than ten percent. At each temperature we fit the Monte
Carlo results for the chemical potential~both those obtained
by direct simulation and those obtained from our extrapola-
tion procedure! by Eq.~17! with the appropriate values of the
coefficientsAn(T). Once we have an analytic representation
for the chemical potential we use Eqs.~6! and~7! to calculate

the coexisting phases at each temperature and hence obtain
the coexistence curve. In this way, we have calculated the
critical volume fractionfc , the reduced critical energyêc ,
the spinodal and the coexistence curve, for a large number of
square-well reduced rangesl between 1.05 and 2.40.

For the Monte Carlo simulation we randomly place our
particles inside a cube of unit volume with the usual periodic
boundary conditions.32 The hard core diameter,s, of the
particles was chosen to be in the range 0.14–0.18, so that we
haveN5100–250 particles at the highest volume fractions
f50.3–0.4 for which we perform the simulation. Note that
heref[ 1

6 ps3N. To generate a statistical ensemble of con-
figurations, the particles are displaced using a time-saving
modification of the well-established NVT Metropolis
scheme.33 In our scheme, as in the Metropolis scheme, the
displacement of a particle is accepted unconditionally if the
change in the total energy of the system,DE, due to the
displacement, is negative and with probability
exp(2DE/kT) if DE is positive. From the ensemble so gen-
erated, we may calculate the quantitiesh̄ and ^exp(nê)&
which are needed in Eqs.~16! and ~22! to obtain chemical
potential isotherms. The quantity^exp(nê)& is found through
the addition of test particles to the system. To accumulate
statistically significant information on the average value of
exp(nê), we must continue testing each configuration of the
system until, on average, at least one successful attempt to
add a test particle is made. A successful attempt is one for
which the core of the test particle does not overlap with that
of any other particle. Thus, the addition of test particles not
only enables us to calculate the quantity^exp(nê)&, but also
provides information on acceptable new positions for the
particles of the system. Using this information, in our
scheme we generate new members of the ensemble~as de-
scribed in the following paragraph! by moving particles to
any acceptable position inside the simulation volume. This
should be contrasted with the standard choice for particle
displacement. Usually, the step size for particle displacement
is chosen in such a way that approximately half of the trial
configurations are accepted. This is the rule of thumb to op-
timize the speed of evolution of the system. However, since
we are only interested in the chemical potential, we may use
the same information for chemical potential tests and particle
repositioning. In this way the system evolves several times
faster than in the standard~small step size! algorithm. Natu-
rally, the results of the two methods are the same. The use of
the same information for chemical potential tests and particle
repositioning in no way biases the results; if we refrain from
calculating the chemical potential we simply have a Me-
tropolis equilibration algorithm.

The fundamental cycle in our Monte Carlo simulation
consists of the following sequence of steps:~i! A particle is
selected at random.~ii ! An attempt is made to add a new test
particle at a randomly chosen position.~iii ! If the attempt is
successful, the number of contacts made by the test particle
is calculated.~iv! For a successful attempt, or an unsuccess-
ful one where the test particleonly overlaps with the single
particle selected in step~i!, the next configuration is created
by moving the particle chosen in step~i! to the position of
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the test particle. This last move is accepted in the standard
way, i.e., it is accepted unconditionally if the change in en-
ergy due to the move,DE, is negative and with probability
exp(2DE/kT) if DE is positive.

We see that the test particle of step~ii ! can be thought of
as simply a label for the position to which we are trying to
move the particle chosen in step~i!. By steps~i!, ~ii !, and
~iv!, we generate the members of the canonical ensemble.
Furthermore, during step~iii !, the test particle is also used to
calculate the chemical potential of the system by means of
Widom’s formula@see Eqs.~11! and~16!#. The algorithm we
have outlined above is significantly faster than one in which
the evolution of the system, through small steps, is carried
out independently of the calculation of the chemical poten-
tial.

For a given reduced rangel, we performed our main
Monte Carlo simulation at a reduced energy,ê1[e/kT1 ,
within one percent below the reduced critical energy,
êc[e/kTc , as shown in Table I. The critical energy was
estimated from auxiliary simulations by using the tempera-
ture extrapolation method. Our main simulation was contin-
ued until the statistical errors inm̂ were no greater than the
uncertainties associated with the analytic fit ofm̂ @Eq. ~17!#.

As usual, the system was allowed to equilibrate before test-
ing for the chemical potential. Extrapolation and fitting tech-
niques were used, as explained previously, to obtain the
phase diagram. It should be noted that the final determination
of fc and êc is made by a small extrapolation of the results
from the thorough simulation carried out atê1 . Thus, sys-
tematic errors in these quantities are very small. The whole
procedure was repeated for a large number of reduced ranges
1.05<l<2.40.

In the next section we present the results of our Monte
Carlo study.

III. RESULTS AND DISCUSSION

A. Results of this study

We begin our discussion by illustrating our temperature
extrapolation method. In Fig. 1 we compare the direct Monte
Carlo results for the chemical potential with those obtained
by extrapolation. The open symbols represent the simulation
results of the chemical potential forl51.25 at three differ-
ent values of the reduced energyê5 1.318~triangles!, 1.267
~circles!, and 1.216~squares!. The dashed lines are the
chemical potentials obtained by extrapolating the chemical
potential atê51.267 toê51.318~coarse dashed line! and to
ê51.216~fine dashed line! using Eq.~22!. The solid line is
the analytic fit of Eq.~17! with n054 to theê51.267 Monte
Carlo results. We see that the chemical potentials obtained by
extrapolating fromê51.267 to eitherê51.318 orê51.216
~i.e., 64% of the original temperature! are in satisfactory
agreement with those calculated directly atê51.318 and
ê51.216 by Monte Carlo simulation. We find similar agree-
ment between the simulation results and the extrapolation
method over the whole range ofl studied, 1.05<l<2.40.

TABLE I. Results and parameters from the Monte Carlo simulations at
different reduced rangesl (l5` is the mean field limit!. The quantities
presented are~i! the critical volume fractionfc ; ~ii ! the reduced critical
energyêc ; ~iii ! the average number of contacts per particle at the critical
point h̄c ; ~iv! the number of successful attempts madeK tot in units of
106; ~v! the reduced energy at which the simulation is performedê1; ~vi! the
diameter of the particless; ~vii ! the maximum number of particles used in
the simulationMmax; and ~vii ! the maximum volume fractionfmax.

l fc êc h̄c K tot ê1 s Mmax fmax

` 0.134 0.000 ` 0.5 0.000 0.16 178 0.38
` 0.132 0.000 ` 0.9 0.000 0.14 248 0.36
2.40 0.140 0.197 15.51 1.0 0.195 0.16 140 0.30
2.40 0.140 0.197 15.64 4.7 0.196 0.14 208 0.30
2.20 0.135 0.263 11.81 2.9 0.260 0.14 228 0.33
2.20 0.135 0.262 11.59 1.7 0.260 0.16 140 0.30
2.00 0.126 0.361 8.58 4.1 0.357 0.14 218 0.31
2.00 0.126 0.359 8.45 3.0 0.357 0.16 142 0.30
1.80 0.132 0.487 6.71 6.0 0.480 0.16 148 0.32
1.80 0.129 0.483 6.46 7.7 0.480 0.18 118 0.36
1.65 0.146 0.610 5.95 7.3 0.608 0.16 142 0.30
1.65 0.149 0.606 5.95 9.1 0.605 0.18 110 0.34
1.50 0.171 0.763 5.38 12.8 0.760 0.18 110 0.34
1.50 0.166 0.773 5.33 5.5 0.767 0.16 154 0.33
1.40 0.172 0.935 4.85 3.4 0.930 0.14 218 0.31
1.40 0.173 0.922 4.72 20.6 0.920 0.18 100 0.31
1.30 0.194 1.129 4.44 15.5 1.127 0.18 110 0.34
1.30 0.193 1.128 4.41 6.7 1.127 0.18 110 0.34
1.25 0.205 1.269 4.27 21.5 1.267 0.18 110 0.34
1.25 0.206 1.270 4.31 14.0 1.267 0.18 100 0.31
1.20 0.219 1.449 4.17 5.5 1.435 0.16 169 0.36
1.20 0.216 1.443 4.09 17.1 1.435 0.18 110 0.34
1.15 0.227 1.693 3.91 10.7 1.680 0.16 169 0.36
1.15 0.227 1.673 3.83 24.0 1.660 0.18 110 0.34
1.10 0.235 2.035 3.54 31.9 2.015 0.16 169 0.36
1.10 0.244 2.038 3.63 61.6 2.015 0.18 118 0.36
1.05 0.246 2.667 3.16 122.1 2.650 0.18 125 0.38
1.05 0.273 2.665 3.42 81.4 2.650 0.18 125 0.38

FIG. 1. Illustration of the temperature expansion method forl51.25. The
open symbols represent the Monte Carlo results for the chemical potential
for three different values of the reduced energyê51.318~triangles!, 1.267
~circles!, and 1.216~squares!. The solid line is a fit to theê51.267 Monte
Carlo results using Eq.~17! with n054. The dashed lines are the chemical
potentials obtained by extrapolating theê51.267 chemical potential to
ê51.318~coarse dashed line! and toê51.216~fine dashed line!.
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This gives us confidence to use the extrapolation procedure
in place of the many time-consuming simulations that would
otherwise be required.

The coexisting volume fractions may then be determined
from the chemical potential isotherms by applying Eqs.~6!
and ~7!. The points which lie on the spinodal are given by
Eq. ~10!. An example of the construction of the coexistence
curve and spinodal is shown in Fig. 2 for the casel51.25.
The open circles are the Monte Carlo results for the chemical
potential withl51.25 andê51.267. The isotherms which
result from the temperature extrapolation~from ê51.267 to
ê51.317 in steps of 0.005! are shown as solid lines. The
coexisting points and spinodal points at each temperature are
shown as dashes and crosses respectively. The coexistence
curves so constructed are shown in Fig. 3 for the reduced
rangesl51.8,1.5,1.25, and 1.1. The coexistence curves be-
come broader as the range of the interaction decreases, and
the corresponding critical volume fraction increases.

In Table I we list the results for a group of representative
Monte Carlo simulations for different values of the reduced
range,l. For each value ofl listed in column 1, we present
in columns 2–4 the corresponding results we obtained for
the critical volume fractionfc , the critical reduced energy
êc[e/kTc , and the average number of contacts per particle,
h̄c , at the critical point. Note that all the results in the table
were obtained usingn054. The manner in which we ob-
tained the results in thel5` case will be discussed in Sec.
III C.

To gain insight into the accuracy of the results, we varied
the conditions under which the simulations were made. We
list in columns 5–9 of Table I the simulation parameters that
we varied;K tot , the total number of successful attempts~in
units of 106) made during the testing of the chemical poten-
tial at each volume fraction, the reduced energy,ê1 , at which

the simulation is performed,s, the diameter of the particles,
Mmax, the maximum number of particles used in the simu-
lation, andfmax, the maximum volume fraction at which the
simulation was carried out~note thatfmax5Mmaxps3/6).
For each reduced range presented in Table I, we show the
results obtained with two different sets of simulation param-
eters. Although it is difficult to evaluatea priori the system-
atic errors inherent in our method, we may estimatea poste-
riori our errors by using the variation in the values of the
quantities of interest; the critical volume fractionfc , the
reduced critical energyêc , and the average number of con-
tacts per particle at the critical pointh̄c . We see that these
quantities vary by no more than a few percent between the
different runs for a givenl.

Another source of systematic errors which we investi-
gated is that brought about by our particular choice of fit to
Eq. ~17!. Different fits will result in different values for the
critical volume fraction and the critical temperature. In Table
II we show the values offc and êc obtained using different
values ofn0 at three different ranges,l51.8, 1.3, and 1.1.
We see that the variation infc and êc due to the change in
n0 is of the order of the errors shown in Table I. Thus we

FIG. 2. Reconstruction of the spinodal and the coexistence curve. The open
circles are the Monte Carlo results for the chemical potential withl51.25
and ê51.267. The isotherms which result from the temperature extrapola-
tion ~from ê51.267 toê51.317 in steps of 0.005! are shown as solid lines.
The coexisting points and spinodal points at each temperature are shown as
dashes and crosses, respectively.

FIG. 3. Coexistence curves. The curves with progressively larger widths
represent the results obtained for the reduced rangesl51.8, 1.5, 1.25, and
1.1.

TABLE II. Variation of the simulation results with the order of the chemical
potential fit,n0 .

l n0 fc êc

1.80 3 0.126 0.466
1.80 4 0.129 0.483
1.80 5 0.132 0.484
1.30 3 0.189 1.131
1.30 4 0.194 1.129
1.30 5 0.196 1.132
1.10 3 0.251 2.006
1.10 4 0.244 2.038
1.10 5 0.245 2.038
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conclude that, forn053, 4, or 5, our results are relatively
insensitive to the value ofn0 chosen. However, we do find
that for n0 below three the fit does not give an adequate
representation of the chemical potential, while forn0 above
five, the fit begins to follow the statistical errors of the simu-
lation results.

B. Other Monte Carlo results

In view of the nonorthodox nature of our calculational
procedure, which involves analytic techniques as well as
simulations, it is useful to compare our results with those
available from conventional Monte Carlo simulations. We
present, in Fig. 4, the coexistence curves from our simula-
tions atl51.25~coarse dashed line! and 1.5~fine solid line!,
together with the coexisting points for the same values of
l as obtained by Vegaet al. ~open circles and squares,
respectively!.24 We can see that the agreement between the
two simulations is satisfactory, even though we extend our
coexistence curves to temperatures significantly below the
critical point. Note thatT*5kT/e.

We believe that our approach provides a better way to
estimatefc and êc than the conventional Monte Carlo
method. As can be seen from Fig. 4, the Gibbs ensemble
Monte Carlo simulations of two coexisting phases24 are im-
practical to carry out close to the critical point. Therefore, the
critical parameters of those calculations must still be ob-
tained from some form of extrapolation. Our simulations are
carried out very close to the critical temperature allowing for
a better estimation offc and êc .

In Figs. 5 and 6 we compare our deduced critical volume
fractions and reduced critical energies with those found by
conventional Monte Carlo simulations. In Fig. 5, we show
our results~solid circles! for the critical volume fractionfc

as a function of the reduced rangel. We also show in Fig. 5

the results forfc , as obtained by other Monte Carlo simu-
lations: ~i! Hendersonet al.22 use an NVT algorithm~open
squares!; ~ii ! Vegaet al.24 use a Gibbs ensemble Monte Carlo
simulation~open triangles!; ~iii ! Lombaet al.26 use a Gibbs
ensemble Monte Carlo simulation but choose a Yukawa po-
tential instead of a square-well~open circles!. The corre-
sponding results for the reduced critical energyêc are shown
in Fig. 6. We have converted the Yukawa potential param-
eters into those of an equivalent square-well by taking the
depth of the two potentials to be the same and requiring the
high temperature limit of the second virial coefficients to be
equal. The Yukawa potential results of Lombaet al.26 illus-

FIG. 4. Comparison of the coexistence curves. The coexistence curves from
our simulations atl51.25~coarse dashed line! and 1.5~fine dashed line! are
shown together with the coexisting points obtained by Vegaet al. ~Ref. 24!
for the same ranges~open circles and squares, respectively!. Note that
T*5kT/e.

FIG. 5. Variation of the critical volume fraction with the reduced range. Our
results~solid circles! are presented together with those of Hendersonet al.
~Ref. 22! ~open squares!, Vegaet al. ~Ref. 24! ~open triangles!, and Lomba
et al. ~Ref. 26! ~open circles!. The solid line is a linear extrapolation of our
results tol51. The dashed line is the mean field result.

FIG. 6. Variation of the critical reduced energy with the reduced rangel.
Our results~solid circles! are presented together with those of Henderson
et al. ~Ref. 22! ~open squares!, Vegaet al. ~Ref. 24! ~open triangles!, and
Lomba et al. ~Ref. 26! ~open circles!. The solid line is Eq.~29! with
tc50.13. The dashed line is Eq.~28! with ac510.6.
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trate that the phase separation phenomena do not depend on
the detailed form of the potential chosen. We see that the
mean values we find forfc and êc are consistent with those
found by others. In addition, the uncertainty in our results is
smaller than that obtained by conventional Monte Carlo
simulations.

The effectiveness of our approach is especially important
for short range potentials which are the focus of our study.
Monte Carlo simulations become increasingly time-
consuming asl→1.23 However, the time saved by our use of
analytic methods allows us to thoroughly investigate the
short range regime as can be seen from Fig. 5.

C. Connection with the mean field and adhesive
sphere models

As we have seen above, our Monte Carlo calculations
provide a description of the phase diagram over a wide do-
main ofl, 1.05<l<2.40. It is interesting to examine these
Monte Carlo results in thel→` and l→1 limits where
analytic solutions are available. Thel→` limit corresponds
to mean field theory,34 while thel→1 limit corresponds to
the adhesive or sticky sphere model.15,16Both of these ‘‘lim-
iting’’ theories depend on one parameter only. We will show
how the general two parameter (ê andl) square-well poten-
tial reduces to these different one parameter models. We
show that we can recover the well-known mean field
results8,20 and we determine the domain ofl in which mean
field theory becomes a valid approximation. For thel→1
limit, the Monte Carlo calculation provides us with important
estimates of the critical parameters of the adhesive sphere
model, which have been the subject of theoretical
uncertainty.16

The connection between the two parameter square-well
potential and the two limiting theories is most readily seen
by considering the second virial coefficientB2(T) of the
square-well potential,35 where

B252
3

ps3E
0

`

$exp@2u~r !/kT#21%d3r

524$@exp~ ê !21#~l321!21%. ~23!

For the interaction between the proteins to provide a physi-
cally reasonable equation of state,B2 must be finite. In the
mean field case, this requirement implies that asl→`, we
must haveê→0 @see Eq.~23!#. Analogously, for the adhe-
sive sphere model, we must takeê→` asl→1. Therefore,
the second virial coefficients for the two limiting theories are

B2
mf524~ êl321!,

for mean field ~l→`,ê→0!, ~24!

B2
ad524@3~l21!exp~ ê !21#,

for adhesive spheres~l→1,ê→`!. ~25!

Equations~24! and~25! provide relationships betweenê and
l for the two limiting theories. Thus, if we define the quan-
tities

a54êl3 ~26!

and

t5
1

12~l21!exp~ ê !
, ~27!

we see thata is the single parameter which characterizes the
mean field theory, whilet is the single parameter which
describes the adhesive sphere model. Note thata corre-
sponds to the well known van der Waals term34 and is a
measure of the strength of the attraction between particles for
a long range interaction potential. The parametert, intro-
duced by Baxter,15 is a measure of the stickiness of the ad-
hesive spheres. The hard sphere case (ê50) can be regained
from either limiting theory;a→0 in mean field theory or
t→` for the adhesive sphere model.

We begin our analysis by considering the predictions of
these limiting theories for the reduced critical energy,
êc[e/kTc . In Fig. 6 we show our simulation results~solid
points! for the reduced critical energy as a function of
ln(l21). We see that reduced critical energy increases as the
range of the potential decreases. The mean field result for
êc is

êc5
ac
4l3 . ~28!

This last equation is derived from Eq.~26! and ac is the
value of the parametera at the critical point. The dashed line
in Fig. 6 represents Eq.~28! with ac510.6, a value deter-
mined analytically.8,20We see that mean field theory gives a
good estimate forêc for reduced ranges greater than
l;1.10 @ ln(l21);22.30#.

As l tends to unity, we may compare our findings with
the adhesive sphere results given by Eq.~27!. At the critical
point t5tc and the relation betweenêc andl is

êc52 ln@12tc~l21!#. ~29!

The numerical value oftc is not well-established. Watts
et al.16 obtainedtc by using the Percus–Yevick

14 equation to
find an analytic solution for the equation of state15 of adhe-
sive spheres. They undertook a calculation of the equation of
state in three distinct ways; through the pressure, compress-
ibility, and energy equations. The pressure equation gives
unphysical solutions while the other two equations predict
different values fortc ; 0.098 ~from the compressibility
equation! and 0.12~from the energy equation!. Neither of
these two values is consistent with our results forêc as l
approaches unity. For our Monte Carlo results to asymptoti-
cally approach the theoretical predictions, we require
tc.0.125. We observe that this lower bound fortc is larger
than either of the two previous estimates made by Watts
et al.16 The solid line in Fig. 6 shows a comparison of our
results with Eq.~29! for tc50.13.

We may also examine the behavior of the critical volume
fraction in the context of the two limiting theories. In Fig. 5
we show the mean field result forfc as the horizontal dashed
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line, fc50.130.8,20We note that for the mean field theory to
give an accurate result forfc , the reduced rangel must
exceed 1.65.

To compare the Monte Carlo findings with the adhesive
sphere model, we extrapolate our results for the critical vol-
ume fraction tol51. If we perform a linear extrapolation
~solid line!, we find thatfc(l51) is 0.26660.009. The
uncertainty reported in this quantity represents only the sta-
tistical errors of our data and does not include any systematic
errors. The critical volume fractions predicted by Watts
et al.16 are fc50.121 ~from the compressibility equation!
andfc50.320~from the energy equation!. The large uncer-
tainty in the theoretical result is due to the increasing flatness
of the chemical potential near the critical point asl→1. This
makes the critical volume fraction very sensitive to the ap-
proximations made in the Percus–Yevick scheme. We be-
lieve that our result,fc(l51)50.26660.009, represents a
reliable estimate of the critical volume fraction for adhesive
spheres. This value of the critical volume fraction may prove
useful as a benchmark for further investigations of systems
with short range interactions.

Another quantity we may examine to elucidate the con-
nection between the limiting theories and the Monte Carlo
results ish̄, the average number of contacts per particle. We
calculate the dependence ofh̄ on volume fraction during the
Monte Carlo simulations. This important quantity is the key
ingredient in our extrapolation formula@Eq. ~22!#. The low
f behavior ofh̄ may be examined theoretically. The result is

h̄58~l321!exp~ ê !f. ~30!

Equation ~30! is derived using the Boltzmann distribution
and assuming that the particles interact independently.36 The
assumption of independent interactions is also a fundamental
postulate in mean field theory and it is justified when the
number of possible contacts is large, i.e.,l→`. Thus, Eq.
~30! should hold for allf in the mean field limit and where
it reduces toh̄mf58l3f.

It is by using this last result that we calculated the
l5` entries in Table I. By substituting the expression for
h̄mf into Eq. ~22!, we obtain the temperature extrapolation
formula in the mean field limit, namely,

m̂~f,T2!5m̂~f,T1!22Daf ~31!

with Da[a(T2)2a(T1) anda is given by Eq.~26!. It can
be shown from Eq.~16! that Eq. ~31! is exact, i.e., higher
order terms inDa tend to zero in the mean field limit. Our
l5` entries were obtained by using Eq.~31! to extrapolate
the chemical potential obtained from a hard sphere
@T15`, a(T1)50] simulation. The results shown in Table I
agree with those found analytically in the mean field
limit.8,20We also finda(Tc)510.6 as predicted theoretically.

In Fig. 7, we show the average number of contacts per
particle h̄ ~open symbols!, as a function off for several of
the entries in Table I,~i! l51.05 (ê152.650, triangles!; ~ii !
l51.25 (ê151.267, squares!; ~iii ! l51.65 (ê150.605, bow
ties!; and ~iv! l52.20 (ê150.260, circles!. Recall thatê1 is
the reduced energy at which the simulations are performed.
The straight lines represent Eq.~30! with ê5 ê1 at each of

the ranges listed above. As expected, Eq.~30! fits the Monte
Carlo results very well at lowf for all values ofl. For a
given rangel, the deviation ofh̄ from the direct proportion-
ality to f expressed in Eq.~30! is a measure of the departure
from the mean field limit. The solid line in the figure is the
analytic result for h̄ in the adhesive sphere limit37 with
t50.13. At low f, this full expression reduces to
h̄52f/t, a result which can be obtained directly from Eq.
~30!. As we see, the average number of contacts per particle
provides direct physical insight into the protein interactions.
We will return to it in the next section.

D. Comparison with experimental data for the
g-crystallin proteins

In this section we compare the coexistence curves gen-
erated by the Monte Carlo simulation with the experimen-
tally measured ones.7 In Fig. 8 we present data points of the
reduced coexistence curves (T/Tc vs f) for g IIIa ~circles!,
g IIIb ~squares!, g II ~triangles!, and g IVa ~bow ties!. The
experimentally observed value offc is 0.2160.02 for all the
g -crystallins. From Fig. 5, this corresponds to a range of
approximatelyl51.25. Thus, we also show our Monte Carlo
results for the coexistence curves atl51.25 ~coarse dashed
line!.

For comparison, we also present the mean field coexist-
ence curve as obtained analytically~fine dashed line!. Recall
that in the mean field casefc50.130. It is interesting to note
that one can understand the experimentally observed value of
fc50.21 as arising from the short range character of the
interaction potential. In addition, the Monte Carlo results for
l51.25 predict a coexistence curve which is twice as broad
as the one obtained by mean field theory. Nevertheless, the
predicted width is still about half that found experimentally.

FIG. 7. The average number of contacts per particle. The average number of
contacts per particle,h̄, is shown as a function off for several ranges,~i!
l51.05, ê52.650 ~triangles!; ~ii ! l51.25, ê51.267 ~squares!; ~iii !
l51.65, ê50.605~bow ties!; ~iv! l52.20, ê50.260~circles!. The straight
dashed lines represent the lowf behavior for the different ranges as given
by Eq. ~30!. The solid line is the adhesive sphere result fort50.13.
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Even if we allow for uncertainty in the value of the critical
volume fraction, and hence consider smaller values ofl, we
still find that the curves generated by Monte Carlo simulation
are significantly narrower than the experimental coexistence
curves.

The question of the ‘‘extra width’’ of the coexistence
curves notwithstanding, it is important to note that the agree-
ment between the Monte Carlo simulations and the experi-
ment results worsens asl increases. Therefore, it is safe to
conclude that the range of the protein–protein interaction is
no greater thanl51.25. Since theg -crystallins are typically
48 Å in diameter, this sets an upper limit of 12 Å on the
width of the attractive well of theg -crystallins. This is con-
sistent with the conclusions drawn from structure factor
measurements.38 The information contained in Figs. 3, 5, and
7 shows thatl must exceed 1.65 for mean field theory to
provide a satisfactory description of the protein–protein in-
teractions. Our observation above thatl<1.25 for theg
-crystallins implies that a mean field model is inappropriate
for studyingg -crystallin phase separation.

We now examine possible explanations for the width of
the experimentally determined coexistence curves. Since the
interaction between the proteins is in fact mediated by the
surrounding water, we may consider the energy of interaction
between the proteins to be temperature dependent. For ex-
ample,e(T)5kTcêc@11 k(T2Tc) /Tc#, wherek is a con-
stant. In Fig. 8, the coexistence curve forl51.25 with
k523 is shown as a solid line. This curve, which obviously
gives a better fit to the data than the temperature independent
(k50) case, is obtained by appropriately rescaling the
k50 coexistence curve. The temperature dependence of the
interaction energy in no way affectsfc , but it does increase

the width of the coexistence curve. It remains to be seen
whether such a strong temperature dependence ofe(T) is
physically reasonable.

It is also possible that the observed extra width of the
coexistence curve could result from an anisotropic character
of the protein interaction energy. We note from our simula-
tions that, as the range of the interaction decreases,h̄c , the
average number of contacts per particle at the critical point,
decreases~see Table I! while the width of the coexistence
curves increases~see Fig. 3!. Therefore, it is conceivable that
for the phase separation curve to become even broader and
agree with the experimental observations, the number of con-
tacts should drop below the very short range results. This
will occur if the true potential is both short-ranged and an-
isotropic.

From these considerations an interesting point emerges.
We can see from the results presented in Table I that for a
system with short range attractions (l→1) each particle al-
ready makes only about three contacts at the critical point.
An anisotropic potential, i.e., one for which the attraction
between proteins depends on their relative orientation, will
cause the average number of contacts per particle to drop
even further and may change the system to the point where
phase separation is replaced by reversible aggregation. The
experimental results presented in this section lead us to be-
lieve that the proteins we study could be in fact close to this
boundary. Therefore, it would be interesting to explore the
role of anisotropy in the relationship between phase separa-
tion and reversible aggregation.

IV. SUMMARY AND CONCLUSIONS

We have studied the binary liquid phase separation of
aqueous protein solutions by modeling the protein interac-
tions with a square-well potential. We utilize this potential in
a hybrid Monte Carlo method which blends simulations with
thermodynamic extrapolation techniques. In this method, we
use the results of Monte Carlo simulations along a single
isotherm to construct an analytic form of the chemical po-
tential for a series of isotherms above and below the critical
temperature. This unorthodox Monte Carlo scheme permits
us, by the economy of its design, to reconstruct the phase
diagram of systems over a wide domain of the reduced range
of attractionl. In particular, we have thoroughly explored
potentials in the short range regime, with ranges as small as
l51.05. These potentials are especially important for they
apply to many colloidal suspensions, including theg
-crystallin protein solutions which we have previously inves-
tigated experimentally.

Our results provide insight into the central role played
by the range of the interaction in determining the shape and
location of the phase boundaries. Indeed, we have found that
as the range decreases, the width of the coexistence curve
increases and the critical volume fraction shifts to higher
values. As part of our analysis, we have demonstrated how
the two parameter square-well model reduces to the one pa-
rameter mean field model asl→` and to the one parameter
adhesive sphere model asl→1. In the mean field limit, we

FIG. 8. Comparison with the experimental results for theg -crystallins. The
coexistence curve generated by the Monte Carlo simulation forl51.25 is
shown as a coarse dashed line. The fine dashed line represents the coexist-
ence curve obtained analytically in the mean field limit. The experimental
results of Broideet al. ~Ref. 7! are presented forg IIIa ~circles!, g IIIb

~squares!, g II ~triangles!, and g IVa ~bow ties!. The solid line is the coex-
istence curve obtained forl51.25 and a temperature dependent interaction
energy of the forme5kTcêc@11k(T2Tc) /Tc#, with k523.
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recover the analytic result for the critical volume fraction,
fc(l→`)50.13. In fact, we find that the mean field model
is a valid approximation provided thatl>1.65. On the other
hand, by examining our short range results, we are able to
propose a value for the critical volume fraction in the adhe-
sive sphere limit,fc(l51)50.26660.009. We have also
obtained an estimate for the critical value of the Baxter pa-
rametertc'0.13. In view of the uncertainty in previous ana-
lytical findings, we believe that our results will be useful
benchmarks for future theoretical and experimental studies
of the adhesive sphere system.

For theg -crystallins, we have experimentally observed
a critical volume fraction offc'0.21 and very broad coex-
istence curves. These facts imply thatl<1.25, that is the
width of the attractive well of these proteins is no greater
than one quarter of their diameter. Thus, we conclude that the
interactions between the proteins fall into the short range
regime and cannot be described by a mean field theory. Al-
though our simulation results for the critical volume fraction
of short range systems are in agreement with the experimen-
tally observed value, the calculated width of the coexistence
curve is still significantly smaller than that found experimen-
tally. We have shown that the extra width of the experimental
curves may be explained in terms of a temperature dependent
depth of the attractive well. However, a more appealing pos-
sibility is that this additional width may be due to anisotropy
in the interaction potential. Such anisotropic interactions are
to be expected in protein solutions. The calculational sim-
plicity of our hybrid Monte Carlo method should facilitate a
systematic examination of the effects of such anisotropic in-
teractions.
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