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Abstract

We consider the problem of optimizing the parameters of a&midenoising algorithm for
restoration of a signal corrupted by white Gaussian noiseachieve this, we propose to minimize
Stein’s Unbiased Risk Estimat8URE) which provides a means of assessing the true meareziju
error (MSE) purely from the measured data without need for lamowledge about the noise-free
signal. Specifically, we present a novel Monte-Carlo tegheiwhich enables the user to calculate
SURE for an arbitrary denoising algorithm characterizedsbyne specific parameter setting. Our
method is a black-box approach which solely uses the respafrthe denoising operator to additional
input noise and does not ask for any information about itetional form. This, therefore, permits
the use of SURE for optimization of a wide variety of denajsaigorithms.

We justify our claims by presenting experimental resultsSORE-based optimization of a series
of popular image-denoising algorithms such as total-tiaradenoising, wavelet soft-thresholding,
and Wiener filtering/smoothing splines. In the process, 18e aompare the performance of these
methods. We demonstrate numerically that SURE computenhusie new approach accurately
predicts the true MSE for all the considered algorithms. W ahow that SURE uncovers the

optimal values of the parameters in all cases.
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Monte-Carlo SURE: A Black-Box
Optimization of Regularization Parameters

for General Denoising Algorithms

I. INTRODUCTION

Images are often corrupted by noise during the acquisitrorgss. Denoising aims at eliminating
this measurement noise while trying to preserve importaymad features such as texture and edges.
Over the past few decades, a large variety of algorithms &es teveloped for that purpose. They can
be roughly categorized into linear denoising methods sgcWigner filtering and smoothing splines,
variational and partial-differential-equation-base® B} methods that use non-quadratic regularization
functionals such as total-variation, and multiresolutinathods such as wavelet denoising. Formally,
any denoising algorithm can be thought of as an opefgtgwhich depends on the set of parameters
A) that maps the noisy datg onto the signal estimat& = fy(y). When applying a particular
algorithm, the user is faced with the difficult task of adjngtA to obtain best performance. To
accomplish this, researchers usually resort to empiricethods or pose the problem in a Bayesian
framework. Empirical methods have proliferated, espbcial the variational context where one of
the key problems is the selection of the “best” regularmaparameter. The most-common techniques
include the use of the discrepancy principle [1], geneealizross validation (GCV) [1]-[7], and the
L-curve methods [8]-[11]. Alternatively, the problem cdsabe formulated in a Bayesian framework
by imposing model-based constraints as prior knowledgenembise-free signal [12]-[15].

In a denoising scenario, the mean-squared error (MSE) ofsitpeal estimate is the preferred
measure of quality to optimiza. Unfortunately, the MSE depends on the noise-free signatiwh
is generally unavailable or unknown a priori. A practicapegach, therefore, is to replace the true
MSE of x by some estimate in the scheme of things. A theoretical résig to Stein [16] makes this
possible in the Gaussian scenaigiein’s Unbiased Risk EstimateSURE, as it is called—provides
a means for unbiased estimation of the true MSE. Without esguiring knowledge of the noise-
free signal, this unbiased estimate solely depends on tlenglata and on some description of the
first-order dependence of the denoising operator with dpethe data. The unbiasedness of SURE
can be mathematically established, which makes it non#grapiMoreover, the closeness of SURE
to the true MSE is aided by the law of large numbers for large dize (especially, images).

The divergence of the denoising operafQmwith respect tay is the key ingredient of SURE [16].
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It can be computed analytically only in some special caset s when the denoising operator
performs a coordinate-wise non-linear mapping, when th@ati estimate is obtained by a linear
transformation of the noisy data (linear filtering [7]), oh&n both are combined in a specific way
(e.g., wavelet thresholding [17]-[20]). For linear algoms, the desired divergence reduces to the
trace of the corresponding matrix transformation. Howgivea general setting, the explicit evaluation
of the divergence is often out of reach. Especially challem@re cases where the functional form
of the denoising operator is not known, for example when throiked output is the result of an
iterative optimization procedure. Since most of the vaial and Bayesian methods fall into this
category, there are many key algorithms for which the evmioaof the required divergence term is
neither tractable mathematically nor even feasible nuraéyi

In this paper, we address this limitation by proposing a heaheme that is applicable for a
general denoising scenario. Our method is based on Monte-8lenulation: the denoising algorithm
is probed with additive noise and the response signal ispodatied to estimate the desired divergence.
This leads to a black-box interpretation of the proposetr&pie—it completely relies on the output
of the denoising operator and does not need any informatioutats functional form. We validate
the proposed scheme by presenting numerical results forietwaf popular denoising methods—
total-variation (TV) denoising, redundant-wavelet gbitesholding, and some classical ones such as
orthonormal-wavelet soft-thresholding and smoothingnggl.

The paper is structured as follows: after setting up the lprokin Section Il we provide a brief
overview of the SURE theory in Section Ill. In Section IV, weepent Monte-Carlo strategies for
estimating the MSE of a particular denoising algorithmskEiwe propose a simple scheme for the
special case of linear algorithms and then proceed to desarinew method for arbitrary non-linear
operators. In Section V, we present experimental results damonstrate numerically that SURE,
computed using the new Monte-Carlo strategy, faithfullyitates the true MSE curve. Moreover,
it is always capable of uncovering the optimal value of theapeeter (regularization parameter for
the variational methods and soft-threshold value for theele-based methods). Additionally, we
illustrate that the proposed scheme is applicable for démgpimethods characterized by multiple
parameters. In the process, we also compare the perfornaditicese denoising algorithms in terms

of visual quality and signal-to-noise ratio (SNR). We figadlraw our conclusions in Section VI.

[I. NOTATION & PROBLEM FORMULATION
We adopt the standard vector formulation of a denoising Iprob we observe the noisy data

y € RY given by

y =x+b, (1)
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Fig. 1. The signal estimat® is obtained by applying tha-dependent denoising algorithm on the observed gtatghe
MSE box then computes the estimate SYRFof the MSE between the noise-freeand the denoisest as a function of
A, knowing onlyy andfy(y). The best estimate of the signal is obtained by finding dhathich minimizes the surrogate

mean-squared error.

wherex € RY represents the vector containing the samples of the unkm@terministic noise-free
signal andb € RY denotes the vector containing zero-mean white Gaussiase raji variancer?,
respectively. We are given a denoising algorithm which gesented by the operatfy : RV — RV

that maps the input data onto the signal estimate:

X = f)\ (Y) ) (2)

where represents the set of parameters characterising

Our primal aim in this work is to optimiz& knowing onlyy andfy(y) as illustrated by the “MSE
estimation” box in Figure 1. To achieve this, we propose the af SURE as a reliable estimate of the
true MSE. SURE computation is greatly simplified if the desivag is performed by coordinate-wise
filtering in an orthonormal transform domain (e.g., Foutiansform, orthonormal wavelet transform,
which preserve the MSE during the transformation). Howewgemplications appear as soon as the
transform becomes non-orthogonal or redundant. Then,ofaded to compute SURE in the signal
domain, which may or may not be mathematically tractableeddng on the type of filtering that
is applied.

In the variational framework, the denoised output is olgdiim general by minimizing the problem-

specific cost functional
fiy) = argmin J(y,u), 3)
J(y,u) = D(y,u)+AR(u), (4)

whereD(-, ) is the data fidelity term that measures the consistency t the given data, while

R(-) is a suitable regularization functional that often peredia lack of smoothness . When



IEEE TRANS. IMAGE PROCESSING, IN PRESS 4

J is quadratic inu, f, becomes linear. However, for most oth&r f, is non-linear, in which case
it is usually not possible to write a closed-form expressionf,. The corresponding estimation
is typically implemented iteratively by running a suitaldptimization procedure that may involve
large-scale image-domain filtering.

In the above variational formulatior’hk = X\ is a positive scalar that controls the amount of
regularization imposed on the solution. Whan— 0, the solution tends to fit the data more
closely (implying a less significant noise reduction), whal large value of yields a solution that is
heavily constrained (typically resulting in a loss of feasiand over-smoothing). Thus, the choice of
the appropriate\ is crucial. Much effort has been dedicated to this problein [A1]. The primary
technigues to optimize. can be broadly classified as follows:

1) Use of the discrepancy principle [1], [6], [7];

2) L-curve based methods [8]-[11];

3) Bayesian methods [12]-[15];

4) The(Cp, criterion [22];

5) MSE based methods [6], [7], [23];

6) Generalized cross validation (GCV) [1]-[7].

The discrepancy principle selecksby matching data fidelity term to noise variance; this gelhera
yields over-penalized solutions [7]. The L-curve methods entirely deterministic and choose
by “balancing” the effect of data-fidelity and regularizatiterms, while Bayesian methods have a
statistical interpretation in terms of Baye'’s rule and asswsome prior knowledge on the noise-free
signal. TheC, criterion requires the knowledge of and was originally proposed for linear methods
[22]. Moreover, it has been noted in [24] that, for linearalthms,Cy, is an unbiased estimate of
MSE (up to a constant). Some researchers in signal processive also made explicit attempts
to minimize an estimate of the MSE but these methods arereiéistricted to the case of a linear
estimator [6], [7] or they are largely empirical [23].

The most popular method for linear algorithms is probablyVG@hich does not require the
knowledge of the noise variance. GCV is based on the “leaeaut”’ principle [2]-[5] and is
known to yield A which asymptotically minimizes (under certain hypoth¢she true MSE [25]. In
[24], Girard proposed Monte-Carlo versions of GCV afig (namely, RGCV and R) for linear
algorithms when the associated quantities are not eXglioiimputable. Following this, an extension
of RGCYV for “mildly” non-quadratic (non-linear) problemsas suggested by Wahba in [26], [27] and
by Girard in [28]. In this paper, we propose an approach thatmilar in spirit to these Monte-Carlo

methods but which brings in the following improvements:
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1) the proposed method is applicable for algorithms wittbiteary” non-linearities;
2) the adjustment of parameters is based on SURE which ismap#ven in the non-asymptotic

case unlike GCV.

IIl. STEIN'S UNBIASED RISK ESTIMATE—SURE

In his hallmark paper [16], Stein established the frameworkunbiased estimation of the risk (or
MSE) of an arbitrary estimator in the presence of GaussiaendVhile SURE is a well-established
technigue in the statistical literature, it is not so widkhown in signal processing. There is a notable
exception in the context of (orthonormal) wavelet den@jdib7], [18] where the SURE strategy has
proven to be quite powerful and has been incorporated in state-of-the-art algorithms [19], [20],
[29]; specifically, SURE-based denoising using non-ortdroral transforms is described in [20]. In
what follows, we briefly review the theory of SURE in the coditef general non-linear algorithms.
We then illustrate the conceptin the simpler case of a lia&gorithm, which also yields a closed-form

solution.

A. Theoretical Background

In the sequel, we assume thjt is a continuous and bounded operator (i.e., the input-dutpu
mapping is continuous and a small perturbation of the ingaessarily results in a small perturbation
of the output). We also require that the divergencéAOWith respect to the datg given by

divy{fa(y)} = Z afg’; - 5)
k=1
wherefy,(y) andy; represent thé™ component of the vectorf (y) andy, respectively, is well
defined in the weak sense.
Definition 1: Giveny as in (1), SURE corresponding fQ(y) is a random variablg : RV — R,

specified as
1 2 o, 20%
nB() = Fly —BWI7 -0+ — divy {fi(y)}, (6)

where|| - ||? represents the Euclidean norm.l
The following theorem, due to Stein [16], then states th& indeed unbiased.

Theorem 1:The random variable(fy(y)) is an unbiased estimator of
1
MSE(fx(y)) = +Ix = B3I, (7)
that is,

B { I~ B | = Bulat) ®
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where Ey,{-} represents the expectation with respecbto B
For a proof that is accessible to signal processing audjesgee[20]. (It requires the assumption that
IIfx(y)|| is bounded by a rapidly increasing function suchCasxp (%) C,e>0.)

In the SURE formulation, the MSE is estimated purely basedheninput datay, the divergence
of f5\(y), and the noise statistics; it requires no knowledge whatsoef the noise free signal. The
basis for the approach is that there are many more data gbansunknown parameteis Therefore,
thanks to the law of large numbers, boli|x — f\(y)||> anddivy {f\(y)} are quite stable estimates
of Ep{+|x — f(y)[[*} and Ep{divy{fa(y)}}, respectively, meaning that SURE provides a fairly
accurate proxy for the true MSE. Hence, it can be applied &ie-driven optimization of a wide
range of denoising problems. However, the catch with (6hag the evaluation oflivy {fy(y)} turns
out to be difficult or even infeasible when there is no expliorm for the estimator (as is usually
the case for iterative algorithms). We close this sectiorpt®senting a few cases where the desired

divergence takes an explicit form.

B. Special Case: Linear Algorithms

Classical signal-reconstruction algorithms are lineanature. These are usually associated with
guadratic cost functions; the better-known examples akédriov filters [7], [10] and smoothing
splines [30]-[33] in the variational setting, MAP estimatainder the Gaussian prior [11], [14], and
Wiener filter [7], [34] in the stochastic setting. Such estiors can be described by the following

matrix transformation:

fx(y) =Fay, ©)
whereF) is a N x N matrix that depends oi. Thus, the desired divergence term is explicitly
evaluated as
divy{fy(y)} = divy{Fyy} = trace{F,}, (10)

which yields an explicit expression for SURE. In this comfecirculant matrices deserve a special
mention because their structure can be exploited for effic@@mputation of the trace as we shall

see in Section V-A.4.

C. Special Case: Coordinate-wise Non-Linearity

Let each component d, be a non-linear function of a single argument, that is,Affecomponent

of the outputx is obtained as

T = i (yi)- (11)



IEEE TRANS. IMAGE PROCESSING, IN PRESS 7

In this case too, the divergence can be analytically evetlaince it amounts to computing the sum

of the first derivatived;, of the individual components df:

. of
divy {fx(y)} = Z Xk (ye) Z £, (12)
k=1

Even though the coordinate-wise processing descrlbed lb)/ iELnot very interesting as such, it
becomes quite powerful when applied in a transform domaimpdrticular in a wavelet or similar
multiresolution transform whereify;, is a function of thek*® noisy transform coefficient [17]-[20].
The present result is directly transposable to the case oftannormal transform which permits exact
mapping of the MSE and the divergence between the signalrandform domain using expressions

similar to (11) and (12). We are going to illustrate such aedasSection V-A.1.

IV. MONTE-CARLO ESTIMATION OF divy {fy(y)}

The crucial step for evaluating the SURE formula in (6) is ¢benputation otdivy {fy(y)}. As we
just saw, this can be done explicitly in the cases of linea emordinate-wise non-linear estimators
[17]-[20]; but it is more difficult otherwise. In this sectipwe investigate Monte-Carlo technigues to
achieve this goal. We start by revisiting a method that i&dvial the linear case only [35], [36], but
which can be very useful when the matii is not available explicitly. Following that, we introduce

a more general technique that is applicable for arbitrapn{linear) algorithms.

A. Linear Algorithm with Unstructured

In many practical situations, especially with large dattssthe matrixF is not available ex-
plicitly; instead Equation (9) is implemented iterativdby using some suitable numerical solver
(e.g., conjugate gradient, multigrid technique). It fol that the trace is not directly accessible.
There are matrix methods (such as the power method) that rcatuge an estimate aface{F}
in an iterative fashion starting from (9), but they tend torbemory- and computation-intensive. To
tackle this difficulty, we propose the use of the following iMe-Carlo algorithm which estimates the
required trace stochastically with(/N) computational cost (up to the complexity of realizing (9)).
It is implemented by applying the estimator to noise onlydascribed next.

Algorithm 1: Monte-Carlo algorithm for estimating;trace{F}.

« Generate a zero-mean i.i.d. random vedibof unit variance.

« For a given\ = Ay do the following:

1. Evaluateb = Fyb’ for A = X
2. Compute the estimate gftrace{Fy} as+b'Tb
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Algorithm 1 is a standard procedure in the literature [38B][and has a twofold advantage over
the iterative matrix methods mentioned before: firstly,sithemory-efficient because, at any given
point, it only storesF,b’ and notF',, itself. Secondly, from a computation point of view, the nuath
is as good as the initial algorithm itself since we can simgbply it to noise. The validity of the
algorithm is guaranteed by the fact that the random variableF, b’ is an unbiased estimator of
trace{Fy }, which is a well-established result in the literature [33B}.

Proposition 1: Let b’ be a zero-mean i.i.d. random vector with unit variance @ad+b'" Fy b/,

where the facto% accounts for the averaging of the MSE (7) over all samplegnTh

Ep{t} = %trace{F,\}. [ (13)
For image-processing applications, it is reasonable teewelthat a single realization db’ will
yield a sufficiently low variance estimate [24], [35]. This because, in practice, most denoising
algorithms operate only “locally” (i.eF is more or less diagonal with rapidly decaying off-diagonal
elements). Qualitatively speaking, the compone[rﬂt:}ﬁil of b are therefore “nearly” independent.
Since N is large for images (typicallyN > 2562), by law of large numbers — Ey, {t} does
not fluctuate more than\/l—ﬁ; this eliminates any necessity for additional algorithmaleations.
A more quantitative argument can be made by computing th@&nee of ¢ which is given by
Vary, {t} = = (trace{FIF)\} + trace{F3} + (Ey {0'*} — 3) SN szk> where Fy, is the k8
diagonal element oFy, and E, {b'*} is the fourth-order moment of the random variableAgain,
sinceF), is “approximately” diagonal, the quantitiesace{Fy F)} andtrace{F3} are of the order
of N. The variance is then bounded ¥sry, {{} < constant/N. Thus, in principle/ asymptotically
converges toi-trace{F,} in the mean-squared-error sense. A further option is toaetfery, {¢} by
selecting &b’ that has small a fourth-order moment. For instance, it has lseiggested to chooké
such that its components are either +1 or -1 with probabgi[\%]—[%]; for such ab’, the variance

is lower than that obtained using a Gausdidrj36], [38].

B. General Algorithm for Non-Linear Problems

Similar to the technique described above, our strategy fowom-linearf, is essentially based
on probing the system with noise, but is slightly more ineah\because of the nonlinearity 6f.
Specifically, we propose to investigaigy +<b’) which may be thought of as a random perturbation
around the operating point of the algorithm. The output entbompared witl (y) which yields a
differential response dfy evaluated ay. The following theorem states that this differential raspm
yields the desired divergence aslecreases.

Theorem 2:Let b’ be a zero-mean i.i.d. random vector (that is independepj wfith unit variance
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and bounded higher order moments. Then,

divy {£(y)} = lim By {b/T (fA(y +eb’) — f,\(Y)> } 7 (14)

9
provided thatf, admits a well-defined second-order Taylor expansion. @tiser the expression is

still valid in the weak sense (sufficient to apply Theorem fjvided that

B3I < Co(X + [lylI™), (15)

for someny > 1 andCy > 0 (that is, f is tempered).

Proof: We write the second-order Taylor expansiorfydfy + b’) as
fr(y +eb’) = fr(y) + e Jg, (y) b’ + €°ry, (16)

where Jg, (y) is the Jacobian matrix ofy, evaluated aly andrs, represents the vector containing
the (Lagrange) remainder terms corresponding to each coemp@ffy. In this case, the components
rg, ;. Of re, are bounded in the expectation sense; thakjs{|rs, x|} < +o0, k=1,2,...,N.

Then, subtractindy (y) from (16) and multiplying byb’ ™ from the left yields

Ep{b'T(fx(y +eb) —fa(y))} = eEBp{b' T Jg(y)b'} + e Ep {b' Trp }
= etrace{Jg (y)} + Coe?,

where Ey, {b'Trg } = Cy and |Cy| < +oo because( By {|rg,x|} < +oo}s_, andb’ has bounded

higher-order moments. When— 0, we immediately see that

lim - By (b T (£ (y + eb) — f(y))} = trace{Jg, ()} = divy {f(y)},

e—0 €
which yields the desired result.

We could also obtain the proof of the weak form of the resulhdw the second derivatives
are not necessarily well-defined), but is more technicalnvblves standard but tedious usage of
mathematical tools of measure theory such as the Fubiniréhe@nd the Lebesgue’s dominated
convergence theorem and is not included in this papeil

Theorem 2 is a powerful result since nowhere did we have toesspthe functional form of),
explicitly, thus making (14) suitable for a wide variety dfarithms. The important point is théj, is
treated as a black box, meaning that we only need access tutpet of the operator, irrespective of
how it is implemented. From a calculus point of view, it carrbgarded as the stochastic definition of
the divergence of a vector field in multiple dimensions whigg +cb’) — £ (y) may be understood

as the first-order (random) difference i It may also be thought of as a generalization of a result

A formal proof of this result is available at http://bigwwepfl.ch/publications/ramani0803doc01.pdf
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y £ fa(y)

Estimate of

“divy {fr(y)}/N

ii.d.
zero-mean
unit variance

Divergence Estimation Module (¢ = 0)

SURE [-SURE(A)

SURE Module

Fig. 2. The dotted box depicts the module that estimatesvy {f(y)} according to (17). The dashed box represents
the SURE module (depicted as the MSE estimation box in Figunehich computes the SURE according to (6).

due to Wahba [26], [27] and Girard [28] developed in the ceined RGCV which is only applicable
for “mildly” non-linear problems, in the sense thhg (y) ~ J¢, (x). We discuss this further in Section
V-C.1.

Equation (14) (including the limit) forms the basis of our Me-Carlo approach for computing
SURE for a non-lineafy. Since, in practice, the limit in (14) cannot be implemente to finite

machine precision, we propose the following approximation

v R} & b (Bl +<b) ~ () (17)

where the facto% accounts for the averaging (of SURE) over all the pixels. RiE.S. of (17)
amounts to adding a small amount of noise (of varianteto y and evaluatefy(y + cb’). The
differencefy (y + ¢b’) — £y (y) is then used to obtain an estimate of the divergence. Thersies
of implementing (17) is illustrated in Figure 2. The validitf the approximation in (17) depends on
how smalle can be made. In practice, we must seleet small enough to mimic the limit, but still
large enough so as to avoid round-off errorsfifly + ¢b’). As demonstrated in Section V-B, the
admissible range of covers several decades, so that the choice of this paraieeiet critical.

We now give an algorithm for Monte-Carlo divergence estioratand SURE) which is quite
straightforward and easy to implement. It assumes that @atsy” small ¢ has been selected and a
zero-mean unit variance i.i.d. random veckdrhas been generated.

Algorithm 2: Algorithm for estimating%divy{f,\(y)} and SUREX) for a given\ = .

1. For\ = A, evaluatefy (y)

2. Build z =y + ¢b’. Evaluatefy(z) for A = A

3. Computediv = 5= b’ (fy(z) — fi(y)) and SUREN,) using (6).
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Algorithm 2 also uses only one realization bf for the same reason given in Section IV-A: the
law of large numbers is applicable t]éb’Tf,\(y + eb’) wheneverfy,(y + cb’) is “approximately”
independent for different. This assumption is quite valid in practice becatisenostly performs
“local” operations (for instance, finite-length waveletidis and coordinate-wise thresholding are
used in wavelet-based methods and finite-difference fikeesused in TV denoising). We present
experimental results in Sections V-C.2 to V-D that supplig tlaim.

Another significant observation is that whene¥gris linear, the two Monte-Carlo algorithms
discussed in this work turn out to be rigorously equivaldttis is formally stated in the following
proposition which is easily proven:

Proposition 2: Let f, be linear as in (9) and®’ be a zero-mean i.i.d. random vector with unit

variance. Then, without the limit, the R.H.S. of (14) redui¢e that of (13), independent ef M

V. VALIDATION AND COMPARISON OFDENOISING TECHNIQUES

Now that we have practical means of estimatitig, {f\(y)} for an arbitraryfy, we demonstrate
the applicability of Monte-Carlo SURE for some popular disimg algorithms such as total-variation
denoising (TVD) and redundant scale-dependent wavelétls@sholding (RSWST). Also included
in the evaluation are orthonormal scale-dependent waselittthresholding and smoothing splines
for which SURE takes an explicit form. For the variationalthwals (TVD and smoothing splines),
the parameteA = ) represents the regularization tradeoff, while for the eveased methods\
controls the scale-dependent thresholds. In the forthegmeéctions, we first describe each algorithm
along with its associated characteristics. We then disousserical issues related to choice «oto

be used in Algorithm 2. Finally, we present experimentabitssthat validate our arguments.

A. Description of Denoising Methods

1) Orthonormal Scale-Dependent Wavelet Soft-Threshgl(idSWST):If W is the matrix corre-
sponding to an orthonormal wavelet transform, the OSWSDided signal is given bfy (y) = WTg,
where

¢ = argmin{ [ly - Whel” + > Nigqlcil? o (18)
ik

jW{yvc}
The second term in the R.H.S. of the above equation is eguivab the Besov norm of the

corresponding continuously defined signal estimate [38& quantityc:, is thekt" wavelet coefficient
in the i*® sub-vector ofc (corresponding to thé'® sub-band) and\;;, = 9~1(+5 =0\ is the

scale-dependent regularization parameterfoh € R*; the dimension of the data i4, while ¢
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corresponds to thé, norm of the coefficient vector. For our experiments, wedet 2 andq = 1
(for image denoising withf; constraint on the wavelet coefficients), which yields thelesacependent

regularization parameter
Nig = 270067 (19)

The advantage of selecting an orthogonal transform is thatecouples 7w so that (18) is
equivalent to independently minimizing scalar cost fumtsi on a coefficient-by-coefficient basis.
The minimization of scalar cost correspondingciois then simply achieved by a soft-thresholding

operation [39] with the thresholé;—s so that

7 >\i,s

. . C
a=",()=3 " 2

sign(ch) if |ct]

Aie
(20)

> 2
0 if |cj| < 25
whereci is the k'™ wavelet coefficient in thé'™ sub-band of the wavelet transfore= Wy. Due
to the orthonormality ofw the MSE (and hence SURE) is invariant under the transformséval
equivalence). Therefore replacesy, while 7, , replacesfy in (6). The required divergence is then

simply computed to be?* ", ; 1.4(c},), where A = {¢} : |¢}| > Aee 4, k} and1{-} is the indicator

function.

The OSWST is akin to th&ureShrinkalgorithm of Donoho et al [17] in that they both apply soft-
thresholding in an orthonormal (wavelet) transform doma&iowever, the two methods significantly
differ from each other in the way they select the thresholdlke while SureShrinkassigns a threshold
value to each sub-band by independent sub-band minimeaioSURE, OSWST optimizes the
threshold parameterg\, s) (that characterize the sub-band dependent threshold wal&eguation
(19)) by minimization of SURE computed over all the sub-mfehtire wavelet decomposition).

2) Redundant Scale-dependent Wavelet Soft-ThresholBi8§VET):Redundant discrete wavelet
transforms are over-complete representations that a@nsatyeous for denoising, mainly due to their
better shift-invariant properties [40]—[42]. We considbe undecimated wavelet transform (UWT)
with an orthonormal filter pair in the redundant paradignghtiframe). Our denoising function is
again the scale dependent soft-thresholding opefBtor but now applied on the UWT coefficients.
Fors =1in (19), \; s = A yields the same threshold level for all sub-barida which case both
OSWST and RSWST perform universal soft-thresholding ofdberesponding wavelet coefficients.
However, unlike OSWST, there is no cost function associatitd RSWST. Moreover, as shown in
[20], Parseval's equivalence is no longer valid in the rethm wavelet domain which forces us to
evaluate SURE in the signal domain.

Writing fy(y) = WTT (Wy), whereW is a UWT matrix andZ the vector containing the soft-
thresholding operator$,, . [see Equation (20)], it is immediately clear that evalugiiiv, {f)(y)}
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is arduous because the outputBfdepends oWy thus demanding explicit access to each element
of W. However, since the soft-thresholding operator is comtirsuand weakly-differentiable [18],
RSWST (and OSWST included) satisfies the weaker hypothdésdsenrem 2 and therefore qualifies
for Monte-Carlo estimation procedure described in SedtitB. In fact, RSWST constitutes a good
demonstration example for illustrating the signal-domeagmputation of SURE using Algorithm 2
to perform a combined optimization of the two threshold pagtersh = (), s).

3) Total-Variation Denoising (TVD)While wavelet-based denoising forms an active research are
in its own right, other denoising procedures that have fikhi in the literature, include variational
and PDE based methods of which the most popular is TV demp[diB]. The idea behind TVD is
to minimize the total-variation of an image that is consteai to be “close” to the given noisy data.
The problem has been formulated in both continuous andetiscomains [43], [44]. The solution
is either found by evolving a PDE derived from the Euler-laagye equation or by performing some
kind of iterative optimization (e.g., bounded optimizatiosing Majorization-Minimization (MM)
[45] or half-quadratic [46] optimization).

Here, we consider the discrete domain formulation of Figags et al [44] where the TV denoised

image is obtained by minimizing the cost functional

Jrv(y,u) = [y —uf® + ATV (u), (21)

where TV(u) = >, v/(Dpu)[k]2 + (D,u)[k]? is the discrete 2D total-variation norm arfdy,
and D,, are matrices corresponding to the first order finite diffeeem the horizontal and vertical
directions, respectively/ry is convex and can be minimized using an iterative MM algaonifd4].
Then, starting from the update equation, it can be estadigha straightforward (but tedious) manner
that fy for TVD admits at least a second-order Taylor exparsidivD is a typical example where
SURE cannot be evaluated analytically and while our MordeldCmethod circumvents the difficulty.

4) Smoothing Splinesthe smoothing splines problem corresponds to reconstigiatcontinuously-
defined function from an infinitely long sequen@¥ — oo) of noisy data on a uniform grid. It is
generally formulated in the shift-invariant framework [3[B3] where the B-spline coefficients are
obtained by linear (digital) filtering of the noisy data.

We will slightly digress from the vector notation to accegtformulate what we said in the para-
graph above. Lefy[k]}keza represent the infinite sequence of noise-corrupted inpdtdimensions.
The smoothing spline algorithm is usually described by aegatory : R — R which specifies the

approximation space (e.g., polyharmonic spline) and aaligorrection filterhy. In the denoising

2The derivation of this result can be found at http://bigwemfl.ch/publications/ramani0803doc01.pdf
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scenario, the denoised output is obtained by re-sampliagsthoothing spline on the grid which
yields an estimate of the form

B(y)[k] = > (y*ha)[m] ok —m) = (y * hy * b)[K], (22)

mezZ4
wheref) (y)[k] is thek component of the infinite dimensional vecfgty) andblk] = ¢(x)|x—kez.

The required divergence vy {f(y)} whosek' component is given by

%@{/}){}[k] = (hy * b)[0]. (23)
It is independent ok and can be computed in the Fourier domain as
(hy % D)[0] = — / Hy(e) (Z gb(w—|—27rk)> dw, (24)
(277)d welo, 2m)d kezd
Fx(eiv)

where Hy (¢/%) is the frequency response bf and ¢ is the Fourier transform op.

In the finite dimensional case, the smoothing spline dedo@méput can be obtained using (9)
whereF) is the block-circulant matrix formed from the filter tapisy « b)[k] and is diagonalized by
the Fast Fourier Transform (FFT) matrix. Its eigenvaluesranthing but the samples of the frequency

responseFy (e/¥) whose sum yields the desired trace.

B. Range of Validity of the Proposed Monte-Carlo SURE

The two main conditions for Algorithm 2 to work are tht satisfies the hypotheses of Theorem
2 ande is “small”. Ideally, we would like to letc tend towards zero in (17) as dictated by (14),
but this cannot be realized exactly in practice due to finigeciine precision. Whea is too small,
numerical round-off errors become more prominent bec#jdecomes insensitive to changeszin
In effect, this phenomenon fixes a lower bound fowhich may vary depending on the sensitivity
of f). To elucidate this, we selected the following non-lineagogithms: TVD and RSWST with
threshold value% (which satisfy at least one of the hypotheses of Theorem #&)faaond, based
on numerical experiments with JAVA that> 10~'2 was admissible for these algorithms. We then
applied Algorithm 2 with Gaussiah’ for each of these methods for different valuesand a wide
range of)\ for the Boats test image with input SNR 4 dB.

We observed that when was decreased from = 1 down to 10~!2, Algorithm 2 yielded SURE
values which not only captured the trend of the true MSE oveiide range of\ but also yielded
very good estimates of the optimalfor the TVD and RSWST methods, in agreement with Theorem
2. We lllustrate this in Figure 3 for the casese#= 0.1 ande = 0.01 for TVD and RSWST where

the corresponding curves nearly overlap and are also ctosket true MSE curve over the entire
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Fig. 3. Plots of MSEX) and (Monte-Carlo) SURR) for differente: TVD (left); Haar-RSWST with threshold valug
(right); Noisy Boats image with SNR = 4 dB; = 29.45.

range of\. At the other end, as soon as> 2, we started to observe significant bias (cf. uppermost
curves in Figure 3 correspondingdc= 10) which indicates that largeis not desirable for non-linear
problems. We therefore conclude that whenever the assonsptif Theorem 2 are valid, the proposed
estimation procedure is quite robust with respect {whenes — 0) and it yields meaningful results
whene is made “small”.

Next, to investigate the relevance of the underlying défgiability hypotheses in Theorem 2, we
applied Algorithm 2 to RSWHT which performs hard-threslhiodwith the threshold valut—z‘-. Since
the hard-thresholding operator is neither continuous rneakly-differentiable [47], RSWHT violates
the hypotheses of Theorem 2. Numerically, this is refleatetthé increasing instability of the SURE
curves as: decreases in Figure 4. In this case, violating the hypothes&heorem 2 leads to a
variance of Monte-Carlo SURE that increases without bouitl decreasing:.

It must be noted that the hard-thresholding function isejait extreme case and has been considered
here purely to illustrate the sharpness of the hypotheseBhebrem 2 to certify whether or not
a denoising algorithm is suitable for the proposed MontdeCSURE. Fortunately for us, most
common algorithms encountered in practice satisfy theireduifferentiability hypothesis and can

be optimized with Algorithm 2 as demonstrated next.

C. Results with One-Parameter Optimization

We now present numerical results for SURE-based optinsigatif a single parameter (only)
for the methods discussed in Section V-A. In doing this, weneglify the use of SURE, but do not
contend with state-of-the-art denoising methods. For apegments, we consider different categories

of test images including a medical image (MB36 x 256), a stochastic image (a realization of
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Fig. 4. Plots of MSE)) and (Monte-Carlo) SURR) for differente: Haar-RSWHT with threshold valug; Noisy Boats
image with SNR = 4 dBp = 29.45.

fractional Brownian motion (fBm) with Hurst exponent 0.5 anuniform grid of size256 x 256,
see Figure 5), a tomography phantom (Shepp-Logan phant@ize?56 x 256) together with three
standard natural images: Barb@fd2 x 512), Boats(512 x 512) and Pepper§256 x 256). To test the
effectiveness of smoothing splines for denoising of stetibaignals, we implement the polyharmonic
smoothing spline (PSS) of degree equal to 1 which is knownetdhe optimal estimator for the
considered fBm image [33]. We choose the Haar wavelet toamsfor the wavelet based methods
to match the wavelet filter with the first-order finite difface filter employed in TVD. We used
J = 4 levels of decomposition in all cases and did not perform &mngsholding on the coarse-scale
projection of the signal.

The performance of the methods is quantified by the SNR of thpubf) (y), which is computed

as

SNR = 101 B (25)
-\ ks 2 )

All SNR values reported in this paper were obtained by avegpgver three independent simulations.
We consider images corrupted by white Gaussian noise whasdard deviation is known (it can be
estimated reliably in practice using the median estimat@anoho et al [17]). In all the experiments,
the value ofo is set to achieve the desired input SNR computed by replating fy(y)||> with
No? in (25). Besides, in the implementation of all the methodsjqalic boundary conditions were
used when required. For PSS and OSWST, SURE was computegtieaisl, while for TVD and
RSWST, the proposed Monte-Carlo method (Algorithm 2) wasdusith zero-mean i.i.d. Gaussian
random vectors of standard deviatier= 0.1.

1) Comparison with Other Performance Measurésere, we compare the performances of SURE
and generalized cross validation for a linear (PSS methad) @ non-linear (RSWSTs(= 1))

algorithm in terms of SNR improvement. THeCV is computed explicitly for the PSS method,
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fBm MRI
Fig. 5. Specific noise-free images considered in this papartdrom other standard test images.

while, for RSWST, we consider the Monte-Carlo version (fandinear algorithms) proposed by
Girard [28] which we denot®& GCVyr,. Thus, we writeGCV [24] and RGCVyy, [28] as

_ Ny -Fyl?
GEVER) = (1 — N—1trace{F,})?’ (26)

_ Ny — Syl
RO = T T + ob) — B 0

wheree = 0.9¢0 is used in (27) as recommended in [28]. The output SNR oldalyeadjusting\

based on SURE and generalized cross validatio@V andRGCVyy,) is tabulated for various input
noise levels and test images in Table I.

As seen from the table, for the PSS method, the performance(®f becomes steadily poorer
with decreasing noise level. This may be due to the fact @@y does only perform optimally
under special conditions (cf. Proposition 3.1 in [25]) whigre probably not fulfilled in the present
experiments. As foRGCVyr, it was observed that the selectedvas far from the optimum value
in all cases: this can be attributed to the bias originatirgnf the recommended value efand
the fact that RSWST does not probably satisfy the “mild” ioearity assumption. As a result, the
performance oRGCVyy, is poor at all noise levels.

Following the philosophy underlying (14) and the argumBatain Section V-B, we therefore
decided to inspect another versionRECV g, denoted byRGCVY;,, which utilized a small value:
e = 0.1. It is observed that = 0.1 dramatically improves the performance as reflected in thputu
SNR values corresponding RGCVYy : this demonstrates the validity of the proposed Monte-€arl
procedure for estimating the divergence for algorithmshwiarbitrary” non-linearities. However, it
should be noted that the performanceR&CVY is still not on par with SURE, which consistently
imitates the oracle for both the methods and for all noiselewand considered test images. This
indicates that GCV-like measures, though having the adganof not requirings2, may not always

yield optimal performance for all denoising algorithms.
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TABLE |

COMPARISON OFGCV AND SUREIN TERMS OFSNRIMPROVEMENT

inputsNR(@B)|| 4 | 8 | 12| 16 | 20 | 4 | 8 | 12 | 16 | 20 |
Method Measure Boats MRI

Oracle 11.83 | 13.69 | 15.81 | 18.27 | 21.20 || 12.40 | 14.63| 17.02 | 19.59 | 22.35
(DeZ?eSe 1)| SURE 11.83 | 13.69 | 15.81 | 18.27 | 21.20 || 12.40 | 14.63| 17.02 | 19.59 | 22.35

GCV 11.76 | 13.36 | 14.80 | 16.04 | 20.02 || 11.98 | 13.57 | 14.77 | 16.07 | 20.04

Oracle 11.87 | 14.07 | 16.49 | 19.07 | 21.91 || 12.20 | 14.64 | 17.26 | 20.08 | 23.08
RSWST | SURE 11.87 | 14.06 | 16.49 | 19.07 | 21.90 || 12.19 | 14.64 | 17.26 | 20.07 | 23.08
(s=1) | RGCVnL 9.42 | 11.45| 13.05| 16.56 | 20.03 || 9.63 | 12.04| 13.90 | 17.82 | 21.18

RGCViL 11.65| 13.97 | 15.19| 18.83 | 20.60 || 12.11 | 14.44 | 16.97 | 19.99 | 22.87
Method Measure Peppers Shepp-Logan

Oracle 10.74 | 12.47 | 14.70 | 17.44| 20.68 | 9.91 | 11.79| 14.13| 17.06 | 20.45
(DEZ?; 1)| SURE 10.74 | 12.47 | 14.70 | 17.44| 20.68 | 9.91 | 11.79| 14.13| 17.06 | 20.45

GCV 10.74 | 12.42 | 12.10 | 16.04 | 20.01 || 9.88 | 11.78| 14.12| 17.00 | 20.28

Oracle 12.05 | 14.57 | 17.28 | 20.04 | 22.88 || 13.98 | 17.59 | 21.28 | 25.02 | 28.82
RSWST | SURE 12.04 | 14.56 | 17.28 | 20.04 | 22.88 || 13.98 | 17.58 | 21.26 | 25.00 | 28.81
(s=1) | RGCVNL 9.34 | 11.96 | 13.93| 17.86 | 20.86 || 10.84 | 14.51 | 17.19 | 22.04 | 25.93

RGCVir 11.94 | 14.27 | 16.18 | 19.98 | 22.82 || 13.66 | 16.90 | 19.89 | 24.27 | 28.32

2) MSE-SURE ComparisorA series of relevant graphs (SUREB, MSE(\) versus)\) for four
denoising methods are shown in Figures 6 and 7. It is obsehadSURE follows the true MSE
curve remarkably well in all the cases thereby leading tausste estimates of the optimal We
observed the same trend for all test images and input SNRshwdtinfirms the consistency of our
method. The agreement is somewhat better in the case of iargges (Boats, Barbara) as compared
to the Peppers image which is probably due to the fact thatave B times more pixels to estimate
the MSE (law of large numbers).

These results demonstrate the validity of the approximaiio (17). The RSWST method is a
borderline case for which the formula (14) is only true in Weak sense because the second derivative
of the soft-thresholding operator is not well-defined fog tivo critical value&tg. Yet, Algorithm 2
still performs well in accordance with the second part of dileen 2.

It should also be noted that this type of extensive estimatieer a wide range ok (as shown
in Figures 6 and 7) has been done purely for the purpose atridition. In practice, we can rely on
bracketing methods (golden-mean search) which do not ugelarivative information in order to
find the minimum of SURE in a much smaller number of steps ¢y 10 steps).

3) Visual Comparison:To highlight the different characteristics of the denagsimethods it is

best to compare the results visually. Figure 8 shows the isedautputs of four algorithms with
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Fig. 6. MSE)) and SUREM) for all considered methods (Noisy Peppers image with SNR 8 4od= 33.54).

optimized parameters. The smoothing spline estimatorisasaime suggests, attempts to smooth the
noisy fluctuations during the denoising process. But in dain, it also smoothes the underlying image
leading to smudged edges (as seen in Figure 8c), which is #we disadvantage of this approach.

The Haar-OSWST4(= 1) preserves some edge information but produces a blockyibbgrause
small detail coefficients are set to zero by the univariafeéthoesholding operator. There is a loss
of image details and the reconstructed output exhibitéaats corresponding to the footprints of the
basis function (Haar wavelet). The Haar wavelet is at the éma of what can be achieved with an
orthonormal wavelet transform; the use of a wavelet withtdvategularization properties (symlets,
higher order spline wavelets, etc) yields better resuligsietlly +0.5 dB additional gain (results not
shown).

The TV denoised image appears significantly better than ahneetwo. Yet, although the edges

are preserved as per the TV constraint, the output exhibitgeesartificial blockiness due to the fact
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Fig. 7. MSE)) and SUREM\) for all considered methods (Noisy Boats image with input SNR dB, o = 29.45)).

that the algorithm tends to favour piecewise constant mwist

The Haar-RSWSTs(= 1) yields the best visual output, which correlates with thghler SNR value
(11.90 dB). This can be attributed to the redundant natutbefiunderlying transform. Interestingly
enough, the result is not penalized by the lower order of tlarHransform (piecewise-constant
approximation), in fact, it is quite the contrary (as wasatsticed in [20]). This is in contrast with
the non-redundant case where higher order wavelets yigtdrbvesults, but nothing that comes close
to the result in Figure 8f.

4) Computational CostTwo main aspects of any denoising algorithm are the assat@imputa-
tional cost and the yielded SNR improvement. In generakdheo aspects are conflicting in nature
and the user must strike a good balance between them. In tdramnputational efficiency, the four

methods can be ranked as follows:

(i) The Haar-OSWST method/(= 4 levels), which requires of the order afx 4N operations,
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(d) (e) ®

Fig. 8. Visual comparison of SURE-optimized denoising lssfor the Boats image (zoomed); (a) Noise-free image (b)
Noisy observationsda( = 29.45; SNR = 4 dB); (c) Polyharmonic smoothing spline ([2egt) result (SNR = 11.84 dB); (d)
Haar-OSWST { = 1) result (SNR = 10.33 dB); (e) TVD result (SNR = 11.02 dB); (fadd-RSWST results(= 1, SNR

= 11.90 dB)

while it uses the same amount of storage as the image itself.

(i) Polyharmonic smoothing splines; these are implemegetféciently using the FFT and therefore
requireO(N logy N) + N operations while storage-wise, it is equivalent to the Ha8WST
method.

(i) The Haar-RSWST method; it is implemented using #igorithm & trous[41] which, for J =
4, requires a total ofl3 x 2 x 4N computations. It should be noted that the performance
improvement yielded by the redundancy of the transform teeatost of requiring 3N storage
locations which is probably one potential downside of thistimod.

(iv) TVD; the MM algorithm of [44] required an average of 13 mdterations. At any given
iteration, the method uses feiN-locations (typically< 4N) for storing intermediate iteration
variables. Additionally, for each main iteration, we penm@d 20 conjugate-gradient iterations

to solve an associated linear system. This leads to a tod(g¥ operations to obtain a single
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TABLE 1l
PERFORMANCE OF CONSIDERED METHODS IN TERMS OBNR!

Image Input SNR (dB) 4 8 12 16 20
PSS (Degree 1) (11.83, 11.83)| (13.69, 13.69)| (15.81, 15.81)| (18.27, 18.27)| (21.20, 21.20)
Boats Haar-OSWST § = 1) | (10.33, 10.32)| (12.63, 12.63)| (15.22, 15.22)| (18.09, 18.08)| (21.23, 21.23)
Haar-RSWST(s = 1) | (11.87, 11.87) | (14.07, 14.06) | (16.49, 16.49) | (19.07, 19.07) | (21.91, 21.90)
TVD (10.98, 10.98)| (13.13, 13.13)| (15.61, 15.61)| (18.36, 18.36)| (21.42, 21.42)
PSS (Degree 1) (9.76, 9.76) | (11.63, 11.63)| (14.08, 14.08)| (17.08, 17.08)| (20.51, 20.51)
Barbara Haar-OSWST{=1) | (9.29, 9.29) | (11.71, 11.71)| (14.59, 14.58)| (17.78, 17.78)| (21.24, 21.24)
Haar-RSWST(s = 1) | (10.56, 10.55) | (12.87, 12.86) | (15.58, 15.58) | (18.61, 18.61) | (21.89, 21.89)
TVD (9.45, 9.45) | (11.66, 11.66)| (14.48, 14.48)| (17.70, 17.70)| (21.15, 21.15)
PSS (Degree 1) (15.29, 15.29) | (16.87, 16.87) | (18.64, 18.64) | (20.59, 20.59) | (22.85, 22.85)
Bm Haar-OSWST § = 1) | (11.15, 11.14)| (13.12, 13.11)| (15.38, 15.37)| (18.01, 18.00)| (21.05, 21.04)
Haar-RSWST(s = 1) | (13.24, 13.23)| (14.95, 14.95)| (16.90, 16.90)| (19.14, 19.14)| (21.78, 21.78)
TVD (12.40, 12.40)| (14.03, 14.03)| (15.93, 15.93)| (18.26, 18.26)| (21.14, 21.14)
PSS (Degree 1) (12.40, 12.40) | (14.63, 14.63)| (17.02, 17.02)| (19.59, 19.59)| (22.35, 22.35)
MRI Haar-OSWST { = 1) | (10.29, 10.29)| (12.86, 12.84)| (15.66, 15.66)| (18.69, 18.68)| (21.90, 21.89)
Haar-RSWST(s = 1) | (12.20, 12.19)| (14.64, 14.64) | (17.26, 17.26) | (20.08, 20.07) | (23.08, 23.08)
TVD (11.40, 11.39)| (13.70, 13.70)| (16.24, 16.24)| (19.09, 19.08)| (22.19, 22.19)
PSS (Degree 1) (10.74, 10.74)| (12.47, 12.47)| (14.70, 14.70)| (17.44, 17.44)| (20.68, 20.68)
Peppers Haar-OSWST § = 1) | (10.07, 10.07)| (12.66, 12.64)| (15.53, 15.52)| (18.53, 18.52)| (21.68, 21.68)
Haar-RSWST(s = 1) | (12.05, 12.04) | (14.57, 14.56) | (17.28, 17.28) | (20.04, 20.04) | (22.88, 22.88)
TVD (11.22, 11.22)| (13.67, 13.67)| (16.35, 16.35)| (19.17, 19.17)| (22.18, 22.18)
PSS (Degree 1) (9.91, 9.91) | (11.79, 11.79)| (14.13, 14.13)| (17.06, 17.06)| (20.45, 20.45)
Shepp-Logan Haar-OSWST § = 1) | (11.94, 11.93)| (15.47, 15.46)| (19.10, 19.09)| (22.82, 22.81)| (26.62, 26.61)
Haar-RSWST(s = 1) | (13.98, 13.98)| (17.58, 17.58)| (21.28, 21.26)| (25.01, 25.00)| (28.82, 28.81)

TVD

(15.33, 15.32)

(18.92, 18.91)

(22.66, 22.66)

(26.38, 26.37)

(30.13, 30.13)

TEach cell is formatted as (Oracle value, Estimated value)

denoised signal estimate implying that TVD is the costlasall the considered methods.

5) SNR ImprovementiWe now make a quantitative comparison of the methods in tef®&NR

improvement. For the sake of comparison, the SNR is compfatedutputs obtained by setting

based on both the true MSE and SURE. This is tabulated in Tablbere the first value in each

cell gives the SNR obtained by choosingbased on the true MSE (oracle SNR), while the second

corresponds to that obtained by Monte-Carlo SURE optiridratThe maximum of the SNRs with

respect to all the methods is indicated in bold-face fontfach image and noise variance. Several

observations are in order:

« The first and the most important one for this paper is that tNR ®btained based on the true

MSE and SURE are either equal or different only in the secauihdal place for all tested cases.
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This indicates the reliability and robustness of our Mo@trio SURE optimization procedure.

« Haar-OSWST £ = 1) performs poorly, especially at high noise levels. Thisle tb the inflexible
nature of the soft-thresholding operator and blocky-retaction of the Haar wavelet. However,
as noted earlier, one may be able to boost the performamgeiglby using a higher order wavelet
(typically + 0.5 dB additional gain).

« The linear smoothing spline technique is among the leasc®fe method for natural image
denoising. It is seemingly better than Haar-OSWST=(1) at high noise levels for almost all
images due to the fact that it smoothes the noisy image thestetngly reducing the harsh effect
of noisy fluctuations. But, it also smoothes the underlyilghal making it the least-preferred
method for images with rich texture (for instance, the Bealimnage).

However, the polyharmonic smoothing spline of degree 1 exfippms all the other methods
for the fBm image, which is in agreement with the theory. Talso strengthens the fact that
smoothing splines are ideal whenever the underlying imagetfe statistical model. A similar
behaviour is observed for the MRI image which may be due tofdce that MRI images are
mostly fractal-like [48] and their power spectrum can be Ivagiproximated by thel /|lw||*
spectral law [49].

« As expected, the use of redundant transform improves theisiag quality compared to Haar-
OSWST ¢ = 1). The Haar-RSWST (withy = 1) method provides a gain of more than 2 dB
compared to Haar-OSWSTs & 1) at large levels of noise. Notably, it is also the best method
for all the images with the exception of fBm and the Sheppdroghantom.

« TVD performs better than PSS and Haar-OSWST= 1) (and even()\, s)-optimized Haar-
OSWST, see the following subsection for details), whendkierimages are smooth without
strong textures (for instance the Peppers image and thepShmgan phantom). This shows that
TVD is competitive or even better than classical waveletoiing methods [44] for images that
fall well within the piecewise-constant category. The Siepgan phantom is noteworthy in this
context as it is a good example of a piecewise constant imagsurprisingly, TVD performs
better than all the considered methods for this particutege, as indicated in Table II.

In the presence of rich texture (the Barbara image), how&bD performs worse than all
wavelet based methods, which is quite expected becauseipeidr is not well-suited for such
images. In fact, any texture is considered part of the namkisi annihilated by TVD.

To conclude, we infer that of the considered methods, soméetter suited than others for certain
type of images: while overall Haar-RSWST vyields the besultesfor natural images, smoothing

splines are well adapted to fractal-like processes and TU&sdest for piecewise-constant images.
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TABLE 1l

COMPARISON OF(), §)—OPTIMIZED METHODS'
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Image Input SNR (dB) 4 8 12 16 20
PSS (11.85, 11.85)| (13.76, 13.76)| (15.92, 15.91)| (18.38, 18.38)| (21.29, 21.29)
Boats Haar-OSWST | (11.07, 11.06)| (13.08, 13.06)| (15.48, 15.48)| (18.25, 18.23)| (21.31, 21.31)
Haar-RSWST | (12.87, 12.87) | (14.92, 14.92) | (17.16, 17.16) | (19.53, 19.52) | (22.15, 22.15)
PSS (9.85, 9.85) | (11.63, 11.63)| (14.23, 14.23)| (17.29, 17.29)| (20.66, 20.66)
Barbara | Haar-OSWST | (9.63, 9.62) | (11.92, 11.91)| (14.74, 14.71)| (17.89, 17.88)| (21.33, 21.32)
Haar-RSWST | (10.86, 10.79) | (13.03, 13.01) | (15.70, 15.70) | (18.84, 18.80) | (22.12, 22.12)
PSS (15.30, 15.29) | (16.89, 16.89) | (18.67, 18.67) | (20.66, 20.66) | (22.95, 22.95)
fBm Haar-OSWST | (12.85, 12.84)| (14.43, 14.42)| (16.24, 16.21)| (18.42, 18.40)| (21.21, 21.21)
Haar-RSWST | (15.04, 15.00)| (16.68, 16.67)| (18.49, 18.49)| (20.37, 20.36)| (22.16, 22.12)
PSS (12.70, 12.70)| (15.19, 15.18)| (17.85, 17.85)| (20.65, 20.65)| (23.51, 23.51)
MRI Haar-OSWST | (11.09, 11.08)| (13.39, 13.36)| (16.06, 16.01)| (18.95, 18.92)| (22.07, 22.06)
Haar-RSWST | (13.73, 13.72) | (16.05, 16.04) | (1856, 18.56) | (21.21, 21.17) | (23.98, 23.95)
PSS (10.74, 10.74)| (12.47, 12.47)| (14.71, 14.71)| (17.51, 17.51)| (20.77, 20.77)
Peppers | Haar-OSWST | (10.85, 10.84)| (13.24, 13.23)| (15.97, 15.94)| (18.84, 18.82)| (21.89, 21.88)
Haar-RSWST | (12.95, 12.94) | (15.42, 15.41) | (18.07, 18.06) | (20.71, 20.71) | (23.40, 23.40)
PSS (9.92, 9.92) | (11.80, 11.80)| (14.13, 14.13)| (17.06, 17.06)| (20.45, 20.45)
Shepp-Logan| Haar-OSWST | (12.40, 12.31)| (15.91, 15.85)| (19.51, 19.48)| (23.26, 23.21)| (27.04, 26.99)
Haar-RSWST | (14.36, 14.24) | (17.90, 17.84) | (21.57, 21.54) | (25.26, 25.26) | (29.05, 29.02)

TEach cell is formatted as (Oracle value, Estimated value)

D. Results with Multi-Parameter Optimization

So far we have only provided results for SURE-based onenpetex optimization. However, there

is no major difficulty in applying our method for multi-parater optimization as well. The brute
force approach would be to perform an exhaustive search itipheudimensions to find the best
parameter values that minimize SURE. A better way is to perfthe search by applying derivative-
free optimization. The Powell-Brent algorithm, which usgacketing and parabolic interpolation for
line-search and takes aboutn + 1)/2 iterations to converge for set of parameters, is well-suited
for our problem as long as the number of parameters staysnmably small (typicallyn < 10).

Here, we test the concept with the optimization)of= (), s) for the PSS, Haar-OSWST and
Haar-RSWST methods. For the PSS methothatches the order of the spline to the Hurst exponent
of the underlying noise-free signal. This fact has beeniagph [33] where the optimal), s) is
obtained by fitting a fractal-like model to the power spegatraf the noisy image. However, in our
approach this is not required asands are optimized together using SURE. For the wavelet methods,

adjustings changes the threshold value in each sub-band accordin@}a(t our understanding is
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that this yields better denoising performance than unategsft-thresholding. In all our experiments,
we observed that the 2D Powell optimization of the respeatiethods took no more than 4 iterations
at various noise levels for all the test images. The resudidabulated in Table III.

With PSS, the combined optimization does not yield any $icamt improvement for the fBm
since a degree 1 spline is theoretically the best in the M®Bes@Niener solution). As expected PSS
still performs the best of all the methods for the fBm imagke Tmprovement for Boats, Barbara,
Peppers and the Shepp-Logan phantom is also less signifiegalise these images are not very
fractal-like. In contrast, there is a significant improvernéZ 1 dB at high input SNR) for the MRI
image which provides further support for the claim that MREkges are fractal-like and the order
must be matched to the fractal dimension to obtain bestteesul

As noted in Table lll, this combined optimization is shownpimduce a consistent SNR increase
for both Haar-OSWST and Haar-RSWST methods. In fact, in #oumdant case it leads to an
increase of about +1 dB for smooth images like Peppers, BoalsfBm at high noise levels. Thus
the optimized Haar-RSWST performs the best of all the camerd methods for all natural images
which exemplifies the fact that redundant transforms makeveepful denoising tool.

However, it must be emphasized that the results provideldignsection are purely for the purpose
of illustrating multi-parameter optimization of SURE couted by the proposed Monte-Carlo scheme.
In our experiments, we considered a set of popular denosggrithms with adjustable parameters
without making any specific claim concerning their overgdtimality. In fact, we have intentionally
chosen some test images which favour one or the other digotit illustrate that the issue of finding
a “best” algorithm is not so clear-cut.

The reader who is interested in state-of-the-art methodsfesred to the relevant literature; in
particular the BiShrink (dual tree complex wavelet decosifian) [50], BLS-GSM (full steerable
pyramidal decomposition) [51], ProbShrink (undecimateduBechies symlets) [52], and SURE-
LET (with redundant Haar transform) [20]. Depending on thpet of image these more-advanced
technigues can yield a further SNR improvement of the ordel @B. In some cases such as
SURE-LET, they already take full advantage of the poss$jbiif automatic SURE-based parameter
adjustment, with the important difference that the undegdysolution is explicit as opposed to our
black-box approach where it is obtained numerically. Theelfie with the latter scheme is that it
requires no hypothesis concerning the analytical form efgblution and therefore has a wider range

of applicability.
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VI. SUMMARY & CONCLUSIONS

Computation and application of SURE for denoising problesiesnands the evaluation of the
divergence of the denoising operator with respect to therginoisy data. The calculation of this
divergence for a general denoising problem may turn out tadsetrivial, especially if the operator
does not have explicit analytical form as is the case wittaiiee algorithms (variational, PDE-based
and Bayesian methods). In this paper, we introduced a M@até technique that circumvents this
difficulty and makes SURE viable for an arbitrary denoisiogrerio, especially when the computation
of the associated divergence is mathematically intraetal numerically infeasible. By adding a
perturbation to the signal, our method essentially implet:ma random first-order difference estimator
of the divergence of the denoising operator. From a calcphist of view, this can be related to a
stochastic definition of the divergence of a vector field. Tinal outcome is a black-box scheme
which yields SURE numerically using only the output of thendising algorithm without the need
for any knowledge of its internal working.

We demonstrated the applicability of our method by perfagriionte-Carlo SURE optimization
of some popular denoising algorithms in the wavelet (both@rormal and redundant) and variational
(linear and non-linear) settings. We found that SURE comgbusing the proposed technique perfectly
predicts the true MSE in all considered cases, therebyigiglcbrrect values for the optimal threshold
and the regularization parameter for the respective pnabléVe also substantiated this argument in
the multivariate case by performing SURE-based optinozatif the thresholds for denoising by scale-
dependent wavelet soft-thresholding. We showed that the SiMained by SURE-based optimization
is in almost perfect agreement with the oracle solution {mirm MSE) for all considered cases. This
suggests that Monte-Carlo SURE can be reliably employeddta-driven adjustment of parameters

in a large variety of denoising problems involving Gaussiaise.
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