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Abstract

We consider the problem of optimizing the parameters of a given denoising algorithm for

restoration of a signal corrupted by white Gaussian noise. To achieve this, we propose to minimize

Stein’s Unbiased Risk Estimate(SURE) which provides a means of assessing the true mean-squared-

error (MSE) purely from the measured data without need for any knowledge about the noise-free

signal. Specifically, we present a novel Monte-Carlo technique which enables the user to calculate

SURE for an arbitrary denoising algorithm characterized bysome specific parameter setting. Our

method is a black-box approach which solely uses the response of the denoising operator to additional

input noise and does not ask for any information about its functional form. This, therefore, permits

the use of SURE for optimization of a wide variety of denoising algorithms.

We justify our claims by presenting experimental results for SURE-based optimization of a series

of popular image-denoising algorithms such as total-variation denoising, wavelet soft-thresholding,

and Wiener filtering/smoothing splines. In the process, we also compare the performance of these

methods. We demonstrate numerically that SURE computed using the new approach accurately

predicts the true MSE for all the considered algorithms. We also show that SURE uncovers the

optimal values of the parameters in all cases.
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Monte-Carlo SURE: A Black-Box

Optimization of Regularization Parameters

for General Denoising Algorithms

I. INTRODUCTION

Images are often corrupted by noise during the acquisition process. Denoising aims at eliminating

this measurement noise while trying to preserve important signal features such as texture and edges.

Over the past few decades, a large variety of algorithms has been developed for that purpose. They can

be roughly categorized into linear denoising methods such as Wiener filtering and smoothing splines,

variational and partial-differential-equation-based (PDE) methods that use non-quadratic regularization

functionals such as total-variation, and multiresolutionmethods such as wavelet denoising. Formally,

any denoising algorithm can be thought of as an operatorfλλλ (which depends on the set of parameters

λλλ) that maps the noisy datay onto the signal estimatẽx = fλλλ(y). When applying a particular

algorithm, the user is faced with the difficult task of adjusting λλλ to obtain best performance. To

accomplish this, researchers usually resort to empirical methods or pose the problem in a Bayesian

framework. Empirical methods have proliferated, especially in the variational context where one of

the key problems is the selection of the “best” regularization parameter. The most-common techniques

include the use of the discrepancy principle [1], generalized cross validation (GCV) [1]–[7], and the

L-curve methods [8]–[11]. Alternatively, the problem can also be formulated in a Bayesian framework

by imposing model-based constraints as prior knowledge on the noise-free signal [12]–[15].

In a denoising scenario, the mean-squared error (MSE) of thesignal estimate is the preferred

measure of quality to optimizeλλλ. Unfortunately, the MSE depends on the noise-free signal which

is generally unavailable or unknown a priori. A practical approach, therefore, is to replace the true

MSE of x̃ by some estimate in the scheme of things. A theoretical result due to Stein [16] makes this

possible in the Gaussian scenario.Stein’s Unbiased Risk Estimate—SURE, as it is called—provides

a means for unbiased estimation of the true MSE. Without everrequiring knowledge of the noise-

free signal, this unbiased estimate solely depends on the given data and on some description of the

first-order dependence of the denoising operator with respect to the data. The unbiasedness of SURE

can be mathematically established, which makes it non-empirical. Moreover, the closeness of SURE

to the true MSE is aided by the law of large numbers for large data size (especially, images).

The divergence of the denoising operatorfλλλ with respect toy is the key ingredient of SURE [16].
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It can be computed analytically only in some special cases such as when the denoising operator

performs a coordinate-wise non-linear mapping, when the signal estimate is obtained by a linear

transformation of the noisy data (linear filtering [7]), or when both are combined in a specific way

(e.g., wavelet thresholding [17]–[20]). For linear algorithms, the desired divergence reduces to the

trace of the corresponding matrix transformation. However, in a general setting, the explicit evaluation

of the divergence is often out of reach. Especially challenging are cases where the functional form

of the denoising operator is not known, for example when the denoised output is the result of an

iterative optimization procedure. Since most of the variational and Bayesian methods fall into this

category, there are many key algorithms for which the evaluation of the required divergence term is

neither tractable mathematically nor even feasible numerically.

In this paper, we address this limitation by proposing a novel scheme that is applicable for a

general denoising scenario. Our method is based on Monte-Carlo simulation: the denoising algorithm

is probed with additive noise and the response signal is manipulated to estimate the desired divergence.

This leads to a black-box interpretation of the proposed technique—it completely relies on the output

of the denoising operator and does not need any information about its functional form. We validate

the proposed scheme by presenting numerical results for a variety of popular denoising methods—

total-variation (TV) denoising, redundant-wavelet soft-thresholding, and some classical ones such as

orthonormal-wavelet soft-thresholding and smoothing splines.

The paper is structured as follows: after setting up the problem in Section II we provide a brief

overview of the SURE theory in Section III. In Section IV, we present Monte-Carlo strategies for

estimating the MSE of a particular denoising algorithm. First, we propose a simple scheme for the

special case of linear algorithms and then proceed to describe a new method for arbitrary non-linear

operators. In Section V, we present experimental results and demonstrate numerically that SURE,

computed using the new Monte-Carlo strategy, faithfully imitates the true MSE curve. Moreover,

it is always capable of uncovering the optimal value of the parameter (regularization parameter for

the variational methods and soft-threshold value for the wavelet-based methods). Additionally, we

illustrate that the proposed scheme is applicable for denoising methods characterized by multiple

parameters. In the process, we also compare the performanceof these denoising algorithms in terms

of visual quality and signal-to-noise ratio (SNR). We finally draw our conclusions in Section VI.

II. N OTATION & PROBLEM FORMULATION

We adopt the standard vector formulation of a denoising problem: we observe the noisy data

y ∈ R
N given by

y = x + b, (1)
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Fig. 1. The signal estimatẽx is obtained by applying theλλλ-dependent denoising algorithm on the observed datay. The

MSE box then computes the estimate SURE(λλλ) of the MSE between the noise-freex and the denoised̃x as a function of

λλλ, knowing onlyy andfλλλ(y). The best estimate of the signal is obtained by finding thatλλλ which minimizes the surrogate

mean-squared error.

wherex ∈ R
N represents the vector containing the samples of the unknowndeterministic noise-free

signal andb ∈ R
N denotes the vector containing zero-mean white Gaussian noise of varianceσ2,

respectively. We are given a denoising algorithm which is represented by the operatorfλλλ : R
N → R

N

that maps the input datay onto the signal estimate:

x̃ = fλλλ(y), (2)

whereλλλ represents the set of parameters characterizingfλλλ.

Our primal aim in this work is to optimizeλλλ knowing onlyy andfλλλ(y) as illustrated by the “MSE

estimation” box in Figure 1. To achieve this, we propose the use of SURE as a reliable estimate of the

true MSE. SURE computation is greatly simplified if the denoising is performed by coordinate-wise

filtering in an orthonormal transform domain (e.g., Fouriertransform, orthonormal wavelet transform,

which preserve the MSE during the transformation). However, complications appear as soon as the

transform becomes non-orthogonal or redundant. Then, one is forced to compute SURE in the signal

domain, which may or may not be mathematically tractable depending on the type of filtering that

is applied.

In the variational framework, the denoised output is obtained in general by minimizing the problem-

specific cost functional

fλ(y) = arg min
u

J (y,u), (3)

J (y,u) = D(y,u) + λR(u), (4)

whereD(·, ·) is the data fidelity term that measures the consistency ofu to the given data, while

R(·) is a suitable regularization functional that often penalizes a lack of smoothness inu. When
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J is quadratic inu, fλ becomes linear. However, for most otherJ , fλ is non-linear, in which case

it is usually not possible to write a closed-form expressionfor fλ. The corresponding estimation

is typically implemented iteratively by running a suitableoptimization procedure that may involve

large-scale image-domain filtering.

In the above variational formulation,λλλ = λ is a positive scalar that controls the amount of

regularization imposed on the solution. Whenλ → 0, the solution tends to fit the datay more

closely (implying a less significant noise reduction), while a large value ofλ yields a solution that is

heavily constrained (typically resulting in a loss of features and over-smoothing). Thus, the choice of

the appropriateλ is crucial. Much effort has been dedicated to this problem [1], [21]. The primary

techniques to optimizeλ can be broadly classified as follows:

1) Use of the discrepancy principle [1], [6], [7];

2) L-curve based methods [8]–[11];

3) Bayesian methods [12]–[15];

4) TheCL criterion [22];

5) MSE based methods [6], [7], [23];

6) Generalized cross validation (GCV) [1]–[7].

The discrepancy principle selectsλ by matching data fidelity term to noise variance; this generally

yields over-penalized solutions [7]. The L-curve methods are entirely deterministic and chooseλ

by “balancing” the effect of data-fidelity and regularization terms, while Bayesian methods have a

statistical interpretation in terms of Baye’s rule and assume some prior knowledge on the noise-free

signal. TheCL criterion requires the knowledge ofσ2 and was originally proposed for linear methods

[22]. Moreover, it has been noted in [24] that, for linear algorithms,CL is an unbiased estimate of

MSE (up to a constant). Some researchers in signal processing have also made explicit attempts

to minimize an estimate of the MSE but these methods are either restricted to the case of a linear

estimator [6], [7] or they are largely empirical [23].

The most popular method for linear algorithms is probably GCV which does not require the

knowledge of the noise variance. GCV is based on the “leave-one-out” principle [2]–[5] and is

known to yieldλ which asymptotically minimizes (under certain hypotheses) the true MSE [25]. In

[24], Girard proposed Monte-Carlo versions of GCV andCL (namely, RGCV and RCL) for linear

algorithms when the associated quantities are not explicitly computable. Following this, an extension

of RGCV for “mildly” non-quadratic (non-linear) problems was suggested by Wahba in [26], [27] and

by Girard in [28]. In this paper, we propose an approach that is similar in spirit to these Monte-Carlo

methods but which brings in the following improvements:
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1) the proposed method is applicable for algorithms with “arbitrary” non-linearities;

2) the adjustment of parameters is based on SURE which is optimal even in the non-asymptotic

case unlike GCV.

III. STEIN’ S UNBIASED RISK ESTIMATE—SURE

In his hallmark paper [16], Stein established the frameworkfor unbiased estimation of the risk (or

MSE) of an arbitrary estimator in the presence of Gaussian noise. While SURE is a well-established

technique in the statistical literature, it is not so widelyknown in signal processing. There is a notable

exception in the context of (orthonormal) wavelet denoising [17], [18] where the SURE strategy has

proven to be quite powerful and has been incorporated in somestate-of-the-art algorithms [19], [20],

[29]; specifically, SURE-based denoising using non-orthonormal transforms is described in [20]. In

what follows, we briefly review the theory of SURE in the context of general non-linear algorithms.

We then illustrate the concept in the simpler case of a linearalgorithm, which also yields a closed-form

solution.

A. Theoretical Background

In the sequel, we assume thatfλλλ is a continuous and bounded operator (i.e., the input-output

mapping is continuous and a small perturbation of the input necessarily results in a small perturbation

of the output). We also require that the divergence offλλλ with respect to the datay given by

divy{fλλλ(y)} =

N∑

k=1

∂fλλλk(y)

∂yk

(5)

where fλλλk(y) and yk represent thekth component of the vectorsfλλλ(y) andy, respectively, is well

defined in the weak sense.

Definition 1: Giveny as in (1), SURE corresponding tofλλλ(y) is a random variableη : R
N → R,

specified as

η(fλλλ(y)) =
1

N
‖y − fλλλ(y)‖2 − σ2 +

2σ2

N
divy{fλλλ(y)}, (6)

where‖ · ‖2 represents the Euclidean norm.�

The following theorem, due to Stein [16], then states thatη is indeed unbiased.

Theorem 1:The random variableη(fλλλ(y)) is an unbiased estimator of

MSE(fλλλ(y)) =
1

N
‖x− fλλλ(y)‖2, (7)

that is,

Eb

{
1

N
‖x − fλλλ(y)‖2

}

= Eb{η(fλλλ(y))}, (8)
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whereEb{·} represents the expectation with respect tob. �

For a proof that is accessible to signal processing audience, see [20]. (It requires the assumption that

‖fλλλ(y)‖ is bounded by a rapidly increasing function such asC exp
(

‖y‖2

2(σ2+ǫ2)

)

; C, ǫ > 0.)

In the SURE formulation, the MSE is estimated purely based onthe input datay, the divergence

of fλλλ(y), and the noise statistics; it requires no knowledge whatsoever of the noise free signalx. The

basis for the approach is that there are many more data pointsthan unknown parametersλλλ. Therefore,

thanks to the law of large numbers, both1
N
‖x− fλλλ(y)‖2 anddivy{fλλλ(y)} are quite stable estimates

of Eb{
1
N
‖x − fλλλ(y)‖2} and Eb{divy{fλλλ(y)}}, respectively, meaning that SURE provides a fairly

accurate proxy for the true MSE. Hence, it can be applied for data-driven optimization of a wide

range of denoising problems. However, the catch with (6) is that the evaluation ofdivy{fλλλ(y)} turns

out to be difficult or even infeasible when there is no explicit form for the estimator (as is usually

the case for iterative algorithms). We close this section bypresenting a few cases where the desired

divergence takes an explicit form.

B. Special Case: Linear Algorithms

Classical signal-reconstruction algorithms are linear innature. These are usually associated with

quadratic cost functions; the better-known examples are Tikhonov filters [7], [10] and smoothing

splines [30]–[33] in the variational setting, MAP estimators under the Gaussian prior [11], [14], and

Wiener filter [7], [34] in the stochastic setting. Such estimators can be described by the following

matrix transformation:

fλλλ(y) = Fλλλy, (9)

whereFλλλ is a N × N matrix that depends onλλλ. Thus, the desired divergence term is explicitly

evaluated as

divy{fλλλ(y)} = divy{Fλλλ y} = trace{Fλλλ}, (10)

which yields an explicit expression for SURE. In this context, circulant matrices deserve a special

mention because their structure can be exploited for efficient computation of the trace as we shall

see in Section V-A.4.

C. Special Case: Coordinate-wise Non-Linearity

Let each component offλλλ be a non-linear function of a single argument, that is, thekth component

of the outputx̃ is obtained as

x̃k = fλλλk(yk). (11)
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In this case too, the divergence can be analytically evaluated since it amounts to computing the sum

of the first derivativesf ′
λλλk

of the individual components offλλλ:

divy{fλλλ(y)} =

N∑

k=1

∂fλλλk(yk)

∂yk

=

N∑

k=1

f ′λλλk. (12)

Even though the coordinate-wise processing described by (11) is not very interesting as such, it

becomes quite powerful when applied in a transform domain; in particular in a wavelet or similar

multiresolution transform whereinfλλλk is a function of thekth noisy transform coefficient [17]–[20].

The present result is directly transposable to the case of anorthonormal transform which permits exact

mapping of the MSE and the divergence between the signal and transform domain using expressions

similar to (11) and (12). We are going to illustrate such a case in Section V-A.1.

IV. M ONTE-CARLO ESTIMATION OF divy{fλλλ(y)}

The crucial step for evaluating the SURE formula in (6) is thecomputation ofdivy{fλλλ(y)}. As we

just saw, this can be done explicitly in the cases of linear and coordinate-wise non-linear estimators

[17]–[20]; but it is more difficult otherwise. In this section, we investigate Monte-Carlo techniques to

achieve this goal. We start by revisiting a method that is valid in the linear case only [35], [36], but

which can be very useful when the matrixFλλλ is not available explicitly. Following that, we introduce

a more general technique that is applicable for arbitrary (non-linear) algorithms.

A. Linear Algorithm with UnstructuredFλλλ

In many practical situations, especially with large data-sets, the matrixFλλλ is not available ex-

plicitly; instead Equation (9) is implemented iterativelyby using some suitable numerical solver

(e.g., conjugate gradient, multigrid technique). It follows that the trace is not directly accessible.

There are matrix methods (such as the power method) that can produce an estimate oftrace{Fλλλ}

in an iterative fashion starting from (9), but they tend to bememory- and computation-intensive. To

tackle this difficulty, we propose the use of the following Monte-Carlo algorithm which estimates the

required trace stochastically withO(N) computational cost (up to the complexity of realizing (9)).

It is implemented by applying the estimator to noise only, asdescribed next.

Algorithm 1: Monte-Carlo algorithm for estimating1
N

trace{Fλλλ}.

• Generate a zero-mean i.i.d. random vectorb′ of unit variance.

• For a givenλλλ = λλλ0 do the following:

1. Evaluateb̃ = Fλλλb
′ for λλλ = λλλ0

2. Compute the estimate of1
N

trace{Fλλλ} as 1
N

b′Tb̃
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Algorithm 1 is a standard procedure in the literature [35], [36] and has a twofold advantage over

the iterative matrix methods mentioned before: firstly, it is memory-efficient because, at any given

point, it only storesFλλλb
′ and notFλλλ itself. Secondly, from a computation point of view, the method

is as good as the initial algorithm itself since we can simplyapply it to noise. The validity of the

algorithm is guaranteed by the fact that the random variableb′T Fλλλ b′ is an unbiased estimator of

trace{Fλλλ}, which is a well-established result in the literature [35]–[38].

Proposition 1: Let b′ be a zero-mean i.i.d. random vector with unit variance andt̂ = 1
N

b′T Fλλλ b′,

where the factor1
N

accounts for the averaging of the MSE (7) over all samples. Then,

Eb′{t̂} =
1

N
trace{Fλλλ}. � (13)

For image-processing applications, it is reasonable to believe that a single realization ofb′ will

yield a sufficiently low variance estimate [24], [35]. This is because, in practice, most denoising

algorithms operate only “locally” (i.e.,Fλλλ is more or less diagonal with rapidly decaying off-diagonal

elements). Qualitatively speaking, the components{b̃i}
N
i=1 of b̃ are therefore “nearly” independent.

Since N is large for images (typicallyN ≥ 2562), by law of large numberŝt − Eb′{t̂} does

not fluctuate more than 1√
N

; this eliminates any necessity for additional algorithm evaluations.

A more quantitative argument can be made by computing the variance of t̂ which is given by

Varb′{t̂} = 1
N2

(

trace{FT
λλλ
Fλλλ} + trace{F2

λλλ
} + (Eb′{b

′4} − 3)
∑N

k=1 F 2
kk

)

, where Fkk is the kth

diagonal element ofFλλλ andEb′{b
′4} is the fourth-order moment of the random variableb′. Again,

sinceFλλλ is “approximately” diagonal, the quantitiestrace{FT
λλλ Fλλλ} and trace{F2

λλλ} are of the order

of N . The variance is then bounded asVarb′{t̂} ≤ constant/N . Thus, in principle,̂t asymptotically

converges to1
N

trace{Fλλλ} in the mean-squared-error sense. A further option is to reduceVarb′{t̂} by

selecting ab′ that has small a fourth-order moment. For instance, it has been suggested to chooseb′

such that its components are either +1 or -1 with probability1
2 [36]–[38]; for such ab′, the variance

is lower than that obtained using a Gaussianb′ [36], [38].

B. General Algorithm for Non-Linear Problems

Similar to the technique described above, our strategy for anon-linear fλλλ is essentially based

on probing the system with noise, but is slightly more involved because of the nonlinearity offλλλ.

Specifically, we propose to investigatefλλλ(y+εb′) which may be thought of as a random perturbation

around the operating point of the algorithm. The output is then compared withfλλλ(y) which yields a

differential response offλλλ evaluated aty. The following theorem states that this differential response

yields the desired divergence asε decreases.

Theorem 2:Let b′ be a zero-mean i.i.d. random vector (that is independent ofy) with unit variance
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and bounded higher order moments. Then,

divy{fλλλ(y)} = lim
ε→0

Eb′

{

b′T
(

fλλλ(y + εb′) − fλλλ(y)

ε

)}

, (14)

provided thatfλλλ admits a well-defined second-order Taylor expansion. Otherwise, the expression is

still valid in the weak sense (sufficient to apply Theorem 1) provided that

‖fλλλ(y)‖ ≤ C0(1 + ‖y‖n0), (15)

for somen0 > 1 andC0 > 0 (that is,fλλλ is tempered).

Proof: We write the second-order Taylor expansion offλλλ(y + εb′) as

fλλλ(y + εb′) = fλλλ(y) + εJfλλλ(y)b′ + ε2rfλλλ , (16)

whereJfλλλ(y) is the Jacobian matrix offλλλ evaluated aty and rfλλλ represents the vector containing

the (Lagrange) remainder terms corresponding to each component offλλλ. In this case, the components

rfλλλk of rfλλλ are bounded in the expectation sense; that is,Eb′{|rfλλλk|} < +∞, k = 1, 2, . . . , N .

Then, subtractingfλλλ(y) from (16) and multiplying byb′T from the left yields

Eb′{b′T(fλλλ(y + εb′) − fλλλ(y))} = εEb′{b′T Jfλλλ(y)b′} + ε2Eb′{b′Trfλλλ}

= ε trace{Jfλλλ(y)} + C2ε
2,

whereEb′{b′Trfλλλ} = C2 and |C2| < +∞ because{Eb′{|rfλλλk|} < +∞}N
k=1 and b′ has bounded

higher-order moments. Whenε → 0, we immediately see that

lim
ε→0

1

ε
Eb′{b′T(fλλλ(y + εb′) − fλλλ(y))} = trace{Jfλλλ(y)} = divy{fλλλ(y)},

which yields the desired result.

We could also obtain the proof of the weak form of the result (when the second derivatives

are not necessarily well-defined), but is more technical. Itinvolves standard but tedious usage of

mathematical tools of measure theory such as the Fubini theorem and the Lebesgue’s dominated

convergence theorem and is not included in this paper1. �

Theorem 2 is a powerful result since nowhere did we have to express the functional form offλλλ

explicitly, thus making (14) suitable for a wide variety of algorithms. The important point is thatfλλλ is

treated as a black box, meaning that we only need access to theoutput of the operator, irrespective of

how it is implemented. From a calculus point of view, it can beregarded as the stochastic definition of

the divergence of a vector field in multiple dimensions wherefλλλ(y+εb′)− fλλλ(y) may be understood

as the first-order (random) difference offλλλ. It may also be thought of as a generalization of a result

1A formal proof of this result is available at http://bigwww.epfl.ch/publications/ramani0803doc01.pdf
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Fig. 2. The dotted box depicts the module that estimates1

N
divy{fλλλ(y)} according to (17). The dashed box represents

the SURE module (depicted as the MSE estimation box in Figure1) which computes the SURE according to (6).

due to Wahba [26], [27] and Girard [28] developed in the context of RGCV which is only applicable

for “mildly” non-linear problems, in the sense thatJfλλλ(y) ≈ Jfλλλ(x). We discuss this further in Section

V-C.1.

Equation (14) (including the limit) forms the basis of our Monte-Carlo approach for computing

SURE for a non-linearfλλλ. Since, in practice, the limit in (14) cannot be implementeddue to finite

machine precision, we propose the following approximation:

1

N
divy{fλλλ(y)} ≈

1

Nε
b′T(fλλλ(y + εb′) − fλλλ(y)), (17)

where the factor1
N

accounts for the averaging (of SURE) over all the pixels. TheR.H.S. of (17)

amounts to adding a small amount of noise (of varianceε2) to y and evaluatefλλλ(y + εb′). The

differencefλλλ(y + εb′) − fλλλ(y) is then used to obtain an estimate of the divergence. The schematics

of implementing (17) is illustrated in Figure 2. The validity of the approximation in (17) depends on

how smallε can be made. In practice, we must select aε small enough to mimic the limit, but still

large enough so as to avoid round-off errors infλλλ(y + εb′). As demonstrated in Section V-B, the

admissible range ofε covers several decades, so that the choice of this parameteris not critical.

We now give an algorithm for Monte-Carlo divergence estimation (and SURE) which is quite

straightforward and easy to implement. It assumes that a “suitably” small ε has been selected and a

zero-mean unit variance i.i.d. random vectorb′ has been generated.

Algorithm 2: Algorithm for estimating 1
N

div
y
{fλλλ(y)} and SURE(λλλ) for a givenλλλ = λλλ0.

1. Forλλλ = λλλ0, evaluatefλλλ(y)

2. Build z = y + εb′. Evaluatefλλλ(z) for λλλ = λλλ0

3. Computediv = 1
Nε

b′T (fλλλ(z) − fλλλ(y)) and SURE(λλλ0) using (6).
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Algorithm 2 also uses only one realization ofb′ for the same reason given in Section IV-A: the

law of large numbers is applicable to1
N

b′Tfλλλ(y + εb′) wheneverfλλλk(y + εb′) is “approximately”

independent for differentk. This assumption is quite valid in practice becausefλλλ mostly performs

“local” operations (for instance, finite-length wavelet filters and coordinate-wise thresholding are

used in wavelet-based methods and finite-difference filtersare used in TV denoising). We present

experimental results in Sections V-C.2 to V-D that support this claim.

Another significant observation is that wheneverfλλλ is linear, the two Monte-Carlo algorithms

discussed in this work turn out to be rigorously equivalent.This is formally stated in the following

proposition which is easily proven:

Proposition 2: Let fλλλ be linear as in (9) andb′ be a zero-mean i.i.d. random vector with unit

variance. Then, without the limit, the R.H.S. of (14) reduces to that of (13), independent ofε. �

V. VALIDATION AND COMPARISON OFDENOISING TECHNIQUES

Now that we have practical means of estimatingdivy{fλλλ(y)} for an arbitraryfλλλ, we demonstrate

the applicability of Monte-Carlo SURE for some popular denoising algorithms such as total-variation

denoising (TVD) and redundant scale-dependent wavelet soft-thresholding (RSWST). Also included

in the evaluation are orthonormal scale-dependent waveletsoft-thresholding and smoothing splines

for which SURE takes an explicit form. For the variational methods (TVD and smoothing splines),

the parameterλλλ = λ represents the regularization tradeoff, while for the wavelet-based methods,λλλ

controls the scale-dependent thresholds. In the forthcoming sections, we first describe each algorithm

along with its associated characteristics. We then discussnumerical issues related to choice ofε to

be used in Algorithm 2. Finally, we present experimental results that validate our arguments.

A. Description of Denoising Methods

1) Orthonormal Scale-Dependent Wavelet Soft-Thresholding (OSWST):If W is the matrix corre-

sponding to an orthonormal wavelet transform, the OSWST denoised signal is given byfλλλ(y) = WTc̃,

where

c̃ = arg min
c






‖y − WTc‖2 +

∑

i,k

λi,s,q |c
i
k|

q







︸ ︷︷ ︸

JW{y,c}

. (18)

The second term in the R.H.S. of the above equation is equivalent to the Besov norm of the

corresponding continuously defined signal estimate [39]. The quantityci
k is thekth wavelet coefficient

in the ith sub-vector ofc (corresponding to theith sub-band) andλi,s,q = 2−iq(s+ d

2
− d

q
)λ is the

scale-dependent regularization parameter fors, λ ∈ R
+; the dimension of the data isd, while q
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corresponds to theℓq norm of the coefficient vector. For our experiments, we setd = 2 and q = 1

(for image denoising withℓ1 constraint on the wavelet coefficients), which yields the scale-dependent

regularization parameter

λi,s = 2−i(s−1)λ. (19)

The advantage of selecting an orthogonal transform is that it decouplesJW so that (18) is

equivalent to independently minimizing scalar cost functions on a coefficient-by-coefficient basis.

The minimization of scalar cost corresponding toc̃i
k is then simply achieved by a soft-thresholding

operation [39] with the thresholdλi,s

2 so that

c̃i
k = Tλi,s

(ci
k) =







ci
k − λi,s

2 sign(ci
k) if |ci

k| > λi,s

2

0 if |ci
k| ≤

λi,s

2 ,
(20)

whereci
k is thekth wavelet coefficient in theith sub-band of the wavelet transformc = Wy. Due

to the orthonormality ofW the MSE (and hence SURE) is invariant under the transform (Parseval

equivalence). Thereforec replacesy, while Tλi,s
replacesfλλλ in (6). The required divergence is then

simply computed to beσ2
∑

i,k 1A(ci
k), whereA = {ci

k : |ci
k| > λi,s

2 ∀ i, k} and1{·} is the indicator

function.

The OSWST is akin to theSureShrinkalgorithm of Donoho et al [17] in that they both apply soft-

thresholding in an orthonormal (wavelet) transform domain. However, the two methods significantly

differ from each other in the way they select the threshold levels: whileSureShrinkassigns a threshold

value to each sub-band by independent sub-band minimization of SURE, OSWST optimizes the

threshold parameters(λ, s) (that characterize the sub-band dependent threshold valuein Equation

(19)) by minimization of SURE computed over all the sub-bands (entire wavelet decomposition).

2) Redundant Scale-dependent Wavelet Soft-Thresholding (RSWST):Redundant discrete wavelet

transforms are over-complete representations that are advantageous for denoising, mainly due to their

better shift-invariant properties [40]–[42]. We considerthe undecimated wavelet transform (UWT)

with an orthonormal filter pair in the redundant paradigm (tight-frame). Our denoising function is

again the scale dependent soft-thresholding operatorTλi,s
but now applied on the UWT coefficients.

For s = 1 in (19), λi,s = λ yields the same threshold level for all sub-bandsi in which case both

OSWST and RSWST perform universal soft-thresholding of thecorresponding wavelet coefficients.

However, unlike OSWST, there is no cost function associatedwith RSWST. Moreover, as shown in

[20], Parseval’s equivalence is no longer valid in the redundant wavelet domain which forces us to

evaluate SURE in the signal domain.

Writing fλλλ(y) = WTTTT (Wy), whereW is a UWT matrix andTTT the vector containing the soft-

thresholding operatorsTλi,s
[see Equation (20)], it is immediately clear that evaluating divy{fλλλ(y)}
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is arduous because the output ofTTT depends onWy thus demanding explicit access to each element

of W. However, since the soft-thresholding operator is continuous and weakly-differentiable [18],

RSWST (and OSWST included) satisfies the weaker hypotheses of Theorem 2 and therefore qualifies

for Monte-Carlo estimation procedure described in SectionIV-B. In fact, RSWST constitutes a good

demonstration example for illustrating the signal-domaincomputation of SURE using Algorithm 2

to perform a combined optimization of the two threshold parametersλλλ = (λ, s).

3) Total-Variation Denoising (TVD):While wavelet-based denoising forms an active research area

in its own right, other denoising procedures that have flourished in the literature, include variational

and PDE based methods of which the most popular is TV denoising [43]. The idea behind TVD is

to minimize the total-variation of an image that is constrained to be “close” to the given noisy data.

The problem has been formulated in both continuous and discrete domains [43], [44]. The solution

is either found by evolving a PDE derived from the Euler-Lagrange equation or by performing some

kind of iterative optimization (e.g., bounded optimization using Majorization-Minimization (MM)

[45] or half-quadratic [46] optimization).

Here, we consider the discrete domain formulation of Figueiredo et al [44] where the TV denoised

image is obtained by minimizing the cost functional

JTV(y,u) = ‖y − u‖2 + λTV(u), (21)

where TV(u) =
∑

k

√

(Dhu)[k]2 + (Dvu)[k]2 is the discrete 2D total-variation norm andDh

andDv are matrices corresponding to the first order finite difference in the horizontal and vertical

directions, respectively.JTV is convex and can be minimized using an iterative MM algorithm [44].

Then, starting from the update equation, it can be established in a straightforward (but tedious) manner

that fλλλ for TVD admits at least a second-order Taylor expansion2. TVD is a typical example where

SURE cannot be evaluated analytically and while our Monte-Carlo method circumvents the difficulty.

4) Smoothing Splines:The smoothing splines problem corresponds to reconstructing a continuously-

defined function from an infinitely long sequence(N → ∞) of noisy data on a uniform grid. It is

generally formulated in the shift-invariant framework [30]–[33] where the B-spline coefficients are

obtained by linear (digital) filtering of the noisy data.

We will slightly digress from the vector notation to accurately formulate what we said in the para-

graph above. Let{y[k]}k∈Zd represent the infinite sequence of noise-corrupted input ind dimensions.

The smoothing spline algorithm is usually described by a generatorϕ : R
d → R which specifies the

approximation space (e.g., polyharmonic spline) and a digital correction filterhλλλ. In the denoising

2The derivation of this result can be found at http://bigwww.epfl.ch/publications/ramani0803doc01.pdf
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scenario, the denoised output is obtained by re-sampling the smoothing spline on the grid which

yields an estimate of the form

fλλλ(y)[k] =
∑

m∈Zd

(y ∗ hλλλ)[m]ϕ(k − m) = (y ∗ hλ ∗ b)[k], (22)

wherefλλλ(y)[k] is thekth component of the infinite dimensional vectorfλλλ(y) andb[k] = ϕ(x)|x=k∈Zd .

The required divergence isdivy{fλλλ(y)} whosekth component is given by

∂fλλλ(y)[k]

∂y[k]
= (hλλλ ∗ b)[0]. (23)

It is independent ofk and can be computed in the Fourier domain as

(hλλλ ∗ b)[0] =
1

(2π)d

∫

ωωω∈[0, 2π)d

Hλλλ(ejωωω)

(
∑

k∈Zd

ϕ̂(ωωω + 2πk)

)

︸ ︷︷ ︸

Fλλλ(ejωωω)

dωωω, (24)

whereHλλλ(ejωωω) is the frequency response ofhλλλ and ϕ̂ is the Fourier transform ofϕ.

In the finite dimensional case, the smoothing spline denoised output can be obtained using (9)

whereFλλλ is the block-circulant matrix formed from the filter taps(hλλλ ∗ b)[k] and is diagonalized by

the Fast Fourier Transform (FFT) matrix. Its eigenvalues are nothing but the samples of the frequency

responseFλλλ(ejωωω) whose sum yields the desired trace.

B. Range of Validity of the Proposed Monte-Carlo SURE

The two main conditions for Algorithm 2 to work are thatfλλλ satisfies the hypotheses of Theorem

2 andε is “small”. Ideally, we would like to letε tend towards zero in (17) as dictated by (14),

but this cannot be realized exactly in practice due to finite machine precision. Whenε is too small,

numerical round-off errors become more prominent becausefλλλ becomes insensitive to changes inε.

In effect, this phenomenon fixes a lower bound forε which may vary depending on the sensitivity

of fλλλ. To elucidate this, we selected the following non-linear algorithms: TVD and RSWST with

threshold valueλ
2 (which satisfy at least one of the hypotheses of Theorem 2) and found, based

on numerical experiments with JAVA thatε ≥ 10−12 was admissible for these algorithms. We then

applied Algorithm 2 with Gaussianb′ for each of these methods for different values ofε and a wide

range ofλ for the Boats test image with input SNR 4 dB.

We observed that whenε was decreased fromε = 1 down to 10−12, Algorithm 2 yielded SURE

values which not only captured the trend of the true MSE over awide range ofλ but also yielded

very good estimates of the optimalλ for the TVD and RSWST methods, in agreement with Theorem

2. We illustrate this in Figure 3 for the cases ofε = 0.1 andε = 0.01 for TVD and RSWST where

the corresponding curves nearly overlap and are also close to the true MSE curve over the entire
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Fig. 3. Plots of MSE(λ) and (Monte-Carlo) SURE(λ) for different ε: TVD (left); Haar-RSWST with threshold valueλ
2

(right); Noisy Boats image with SNR = 4 dB;σ = 29.45.

range ofλ. At the other end, as soon asε & 2, we started to observe significant bias (cf. uppermost

curves in Figure 3 corresponding toε = 10) which indicates that largeε is not desirable for non-linear

problems. We therefore conclude that whenever the assumptions of Theorem 2 are valid, the proposed

estimation procedure is quite robust with respect toε (whenε → 0) and it yields meaningful results

whenε is made “small”.

Next, to investigate the relevance of the underlying differentiability hypotheses in Theorem 2, we

applied Algorithm 2 to RSWHT which performs hard-thresholding with the threshold valueλ2 . Since

the hard-thresholding operator is neither continuous nor weakly-differentiable [47], RSWHT violates

the hypotheses of Theorem 2. Numerically, this is reflected in the increasing instability of the SURE

curves asε decreases in Figure 4. In this case, violating the hypotheses of Theorem 2 leads to a

variance of Monte-Carlo SURE that increases without bound with decreasingε.

It must be noted that the hard-thresholding function is quite an extreme case and has been considered

here purely to illustrate the sharpness of the hypotheses ofTheorem 2 to certify whether or not

a denoising algorithm is suitable for the proposed Monte-Carlo SURE. Fortunately for us, most

common algorithms encountered in practice satisfy the required differentiability hypothesis and can

be optimized with Algorithm 2 as demonstrated next.

C. Results with One-Parameter Optimization

We now present numerical results for SURE-based optimization of a single parameter (onlyλ)

for the methods discussed in Section V-A. In doing this, we exemplify the use of SURE, but do not

contend with state-of-the-art denoising methods. For our experiments, we consider different categories

of test images including a medical image (MRI256 × 256), a stochastic image (a realization of
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; Noisy Boats

image with SNR = 4 dB;σ = 29.45.

fractional Brownian motion (fBm) with Hurst exponent 0.5 ona uniform grid of size256 × 256,

see Figure 5), a tomography phantom (Shepp-Logan phantom ofsize256× 256) together with three

standard natural images: Barbara(512×512), Boats(512×512) and Peppers(256×256). To test the

effectiveness of smoothing splines for denoising of stochastic signals, we implement the polyharmonic

smoothing spline (PSS) of degree equal to 1 which is known to be the optimal estimator for the

considered fBm image [33]. We choose the Haar wavelet transform for the wavelet based methods

to match the wavelet filter with the first-order finite difference filter employed in TVD. We used

J = 4 levels of decomposition in all cases and did not perform any thresholding on the coarse-scale

projection of the signal.

The performance of the methods is quantified by the SNR of the output fλλλ(y), which is computed

as

SNR = 10 log10

(
‖x‖2

‖x− fλλλ(y)‖2

)

. (25)

All SNR values reported in this paper were obtained by averaging over three independent simulations.

We consider images corrupted by white Gaussian noise whose standard deviationσ is known (it can be

estimated reliably in practice using the median estimator of Donoho et al [17]). In all the experiments,

the value ofσ is set to achieve the desired input SNR computed by replacing‖x − fλλλ(y)‖2 with

Nσ2 in (25). Besides, in the implementation of all the methods, periodic boundary conditions were

used when required. For PSS and OSWST, SURE was computed analytically, while for TVD and

RSWST, the proposed Monte-Carlo method (Algorithm 2) was used with zero-mean i.i.d. Gaussian

random vectors of standard deviationε = 0.1.

1) Comparison with Other Performance Measures:Here, we compare the performances of SURE

and generalized cross validation for a linear (PSS method) and a non-linear (RSWST (s = 1))

algorithm in terms of SNR improvement. TheGCV is computed explicitly for the PSS method,
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fBm MRI
Fig. 5. Specific noise-free images considered in this paper apart from other standard test images.

while, for RSWST, we consider the Monte-Carlo version (for non-linear algorithms) proposed by

Girard [28] which we denoteRGCVNL. Thus, we writeGCV [24] andRGCVNL [28] as

GCV(λ) =
N−1‖y − Fλy‖

2

(1 − N−1trace{Fλ})2
, (26)

RGCVNL(λ) =
N−1‖y − fλ(y)‖2

(1 − N−1ε−1b′T[fλ(y + εb′) − fλ(y)])
2 , (27)

whereε = 0.9σ is used in (27) as recommended in [28]. The output SNR obtained by adjustingλ

based on SURE and generalized cross validation (GCV andRGCVNL) is tabulated for various input

noise levels and test images in Table I.

As seen from the table, for the PSS method, the performance ofGCV becomes steadily poorer

with decreasing noise level. This may be due to the fact thatGCV does only perform optimally

under special conditions (cf. Proposition 3.1 in [25]) which are probably not fulfilled in the present

experiments. As forRGCVNL, it was observed that the selectedλ was far from the optimum value

in all cases: this can be attributed to the bias originating from the recommended value ofε and

the fact that RSWST does not probably satisfy the “mild” non-linearity assumption. As a result, the

performance ofRGCVNL is poor at all noise levels.

Following the philosophy underlying (14) and the argumentation in Section V-B, we therefore

decided to inspect another version ofRGCVNL, denoted byRGCV⋆
NL, which utilized a small value:

ε = 0.1. It is observed thatε = 0.1 dramatically improves the performance as reflected in the output

SNR values corresponding toRGCV⋆
NL: this demonstrates the validity of the proposed Monte-Carlo

procedure for estimating the divergence for algorithms with “arbitrary” non-linearities. However, it

should be noted that the performance ofRGCV⋆
NL is still not on par with SURE, which consistently

imitates the oracle for both the methods and for all noise levels and considered test images. This

indicates that GCV-like measures, though having the advantage of not requiringσ2, may not always

yield optimal performance for all denoising algorithms.
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TABLE I

COMPARISON OFGCV AND SUREIN TERMS OF SNR IMPROVEMENT

Input SNR (dB) 4 8 12 16 20 4 8 12 16 20

Method Measure Boats MRI

Oracle 11.83 13.69 15.81 18.27 21.20 12.40 14.63 17.02 19.59 22.35
PSS

SURE 11.83 13.69 15.81 18.27 21.20 12.40 14.63 17.02 19.59 22.35(Degree 1)
GCV 11.76 13.36 14.80 16.04 20.02 11.98 13.57 14.77 16.07 20.04

Oracle 11.87 14.07 16.49 19.07 21.91 12.20 14.64 17.26 20.08 23.08

SURE 11.87 14.06 16.49 19.07 21.90 12.19 14.64 17.26 20.07 23.08RSWST

RGCVNL 9.42 11.45 13.05 16.56 20.03 9.63 12.04 13.90 17.82 21.18(s = 1)

RGCV⋆

NL 11.65 13.97 15.19 18.83 20.60 12.11 14.44 16.97 19.99 22.87

Method Measure Peppers Shepp-Logan

Oracle 10.74 12.47 14.70 17.44 20.68 9.91 11.79 14.13 17.06 20.45
PSS

SURE 10.74 12.47 14.70 17.44 20.68 9.91 11.79 14.13 17.06 20.45(Degree 1)
GCV 10.74 12.42 12.10 16.04 20.01 9.88 11.78 14.12 17.00 20.28

Oracle 12.05 14.57 17.28 20.04 22.88 13.98 17.59 21.28 25.02 28.82

SURE 12.04 14.56 17.28 20.04 22.88 13.98 17.58 21.26 25.00 28.81RSWST

RGCVNL 9.34 11.96 13.93 17.86 20.86 10.84 14.51 17.19 22.04 25.93(s = 1)

RGCV⋆

NL 11.94 14.27 16.18 19.98 22.82 13.66 16.90 19.89 24.27 28.32

2) MSE-SURE Comparison:A series of relevant graphs (SURE(λ), MSE(λ) versusλ) for four

denoising methods are shown in Figures 6 and 7. It is observedthat SURE follows the true MSE

curve remarkably well in all the cases thereby leading to accurate estimates of the optimalλ. We

observed the same trend for all test images and input SNRs which confirms the consistency of our

method. The agreement is somewhat better in the case of larger images (Boats, Barbara) as compared

to the Peppers image which is probably due to the fact that we have 4 times more pixels to estimate

the MSE (law of large numbers).

These results demonstrate the validity of the approximation in (17). The RSWST method is a

borderline case for which the formula (14) is only true in theweak sense because the second derivative

of the soft-thresholding operator is not well-defined for the two critical values±λ
2 . Yet, Algorithm 2

still performs well in accordance with the second part of Theorem 2.

It should also be noted that this type of extensive estimation over a wide range ofλ (as shown

in Figures 6 and 7) has been done purely for the purpose of illustration. In practice, we can rely on

bracketing methods (golden-mean search) which do not use any derivative information in order to

find the minimum of SURE in a much smaller number of steps (typically 10 steps).

3) Visual Comparison:To highlight the different characteristics of the denoising methods it is

best to compare the results visually. Figure 8 shows the denoised outputs of four algorithms with
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(a) PSS (Degree = 1) (b) Haar-OSWST (s = 1)

0 0.6 1.3 1.9 2.6 3.2 3.9 4.5 5.2 5.8

200

300

400

500

600

700

800

900

1000

1100

λ

M
S

E

 

 

TRUE MSE
SURE

11.8 37.9 64.1 90.3 116.4 142.6 168.8 195 221.1 247.3

200

300

400

500

600

700

800

λ

M
S

E

 

 

TRUE MSE
SURE

(c) TVD (ǫ = 0.1) (d) Haar-RSWST (s = 1, ǫ = 0.1)
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Fig. 6. MSE(λ) and SURE(λ) for all considered methods (Noisy Peppers image with SNR = 4 dB, σ = 33.54).

optimized parameters. The smoothing spline estimator, as its name suggests, attempts to smooth the

noisy fluctuations during the denoising process. But in doing so, it also smoothes the underlying image

leading to smudged edges (as seen in Figure 8c), which is the main disadvantage of this approach.

The Haar-OSWST (s = 1) preserves some edge information but produces a blocky output because

small detail coefficients are set to zero by the univariate soft-thresholding operator. There is a loss

of image details and the reconstructed output exhibits artifacts corresponding to the footprints of the

basis function (Haar wavelet). The Haar wavelet is at the lowend of what can be achieved with an

orthonormal wavelet transform; the use of a wavelet with better regularization properties (symlets,

higher order spline wavelets, etc) yields better results—typically +0.5 dB additional gain (results not

shown).

The TV denoised image appears significantly better than the earlier two. Yet, although the edges

are preserved as per the TV constraint, the output exhibits some artificial blockiness due to the fact
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(a) PSS (Degree = 1) (b) Haar-OSWST (s = 1)
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(c) TVD (ǫ = 0.1) (d) Haar-RSWST (s = 1, ǫ = 0.1)
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Fig. 7. MSE(λ) and SURE(λ) for all considered methods (Noisy Boats image with input SNR= 4 dB, σ = 29.45)).

that the algorithm tends to favour piecewise constant solutions.

The Haar-RSWST (s = 1) yields the best visual output, which correlates with the higher SNR value

(11.90 dB). This can be attributed to the redundant nature ofthe underlying transform. Interestingly

enough, the result is not penalized by the lower order of the Haar transform (piecewise-constant

approximation), in fact, it is quite the contrary (as was also noticed in [20]). This is in contrast with

the non-redundant case where higher order wavelets yield better results, but nothing that comes close

to the result in Figure 8f.

4) Computational Cost:Two main aspects of any denoising algorithm are the associated computa-

tional cost and the yielded SNR improvement. In general, these two aspects are conflicting in nature

and the user must strike a good balance between them. In termsof computational efficiency, the four

methods can be ranked as follows:

(i) The Haar-OSWST method (J = 4 levels), which requires of the order of2 × 4N operations,
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Visual comparison of SURE-optimized denoising results for the Boats image (zoomed); (a) Noise-free image (b)

Noisy observations (σ = 29.45; SNR = 4 dB); (c) Polyharmonic smoothing spline (Degree 1) result (SNR = 11.84 dB); (d)

Haar-OSWST (s = 1) result (SNR = 10.33 dB); (e) TVD result (SNR = 11.02 dB); (f) Haar-RSWST result (s = 1, SNR

= 11.90 dB)

while it uses the same amount of storage as the image itself.

(ii) Polyharmonic smoothing splines; these are implemented efficiently using the FFT and therefore

requireO(N log2 N) + N operations while storage-wise, it is equivalent to the Haar-OSWST

method.

(iii) The Haar-RSWST method; it is implemented using thealgorithm à trous [41] which, for J =

4, requires a total of13 × 2 × 4N computations. It should be noted that the performance

improvement yielded by the redundancy of the transform is atthe cost of requiring13N storage

locations which is probably one potential downside of this method.

(iv) TVD; the MM algorithm of [44] required an average of 13 main iterations. At any given

iteration, the method uses few-N locations (typically< 4N ) for storing intermediate iteration

variables. Additionally, for each main iteration, we performed 20 conjugate-gradient iterations

to solve an associated linear system. This leads to a total of260N operations to obtain a single
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TABLE II

PERFORMANCE OF CONSIDERED METHODS IN TERMS OFSNR†

Image Input SNR (dB) 4 8 12 16 20

PSS (Degree 1) (11.83, 11.83) (13.69, 13.69) (15.81, 15.81) (18.27, 18.27) (21.20, 21.20)

Haar-OSWST (s = 1) (10.33, 10.32) (12.63, 12.63) (15.22, 15.22) (18.09, 18.08) (21.23, 21.23)
Boats

Haar-RSWST(s = 1) (11.87, 11.87) (14.07, 14.06) (16.49, 16.49) (19.07, 19.07) (21.91, 21.90)

TVD (10.98, 10.98) (13.13, 13.13) (15.61, 15.61) (18.36, 18.36) (21.42, 21.42)

PSS (Degree 1) (9.76, 9.76) (11.63, 11.63) (14.08, 14.08) (17.08, 17.08) (20.51, 20.51)

Haar-OSWST (s = 1) (9.29, 9.29) (11.71, 11.71) (14.59, 14.58) (17.78, 17.78) (21.24, 21.24)
Barbara

Haar-RSWST(s = 1) (10.56, 10.55) (12.87, 12.86) (15.58, 15.58) (18.61, 18.61) (21.89, 21.89)

TVD (9.45, 9.45) (11.66, 11.66) (14.48, 14.48) (17.70, 17.70) (21.15, 21.15)

PSS (Degree 1) (15.29, 15.29) (16.87, 16.87) (18.64, 18.64) (20.59, 20.59) (22.85, 22.85)

Haar-OSWST (s = 1) (11.15, 11.14) (13.12, 13.11) (15.38, 15.37) (18.01, 18.00) (21.05, 21.04)
fBm

Haar-RSWST(s = 1) (13.24, 13.23) (14.95, 14.95) (16.90, 16.90) (19.14, 19.14) (21.78, 21.78)

TVD (12.40, 12.40) (14.03, 14.03) (15.93, 15.93) (18.26, 18.26) (21.14, 21.14)

PSS (Degree 1) (12.40, 12.40) (14.63, 14.63) (17.02, 17.02) (19.59, 19.59) (22.35, 22.35)

Haar-OSWST (s = 1) (10.29, 10.29) (12.86, 12.84) (15.66, 15.66) (18.69, 18.68) (21.90, 21.89)
MRI

Haar-RSWST(s = 1) (12.20, 12.19) (14.64, 14.64) (17.26, 17.26) (20.08, 20.07) (23.08, 23.08)

TVD (11.40, 11.39) (13.70, 13.70) (16.24, 16.24) (19.09, 19.08) (22.19, 22.19)

PSS (Degree 1) (10.74, 10.74) (12.47, 12.47) (14.70, 14.70) (17.44, 17.44) (20.68, 20.68)

Haar-OSWST (s = 1) (10.07, 10.07) (12.66, 12.64) (15.53, 15.52) (18.53, 18.52) (21.68, 21.68)
Peppers

Haar-RSWST(s = 1) (12.05, 12.04) (14.57, 14.56) (17.28, 17.28) (20.04, 20.04) (22.88, 22.88)

TVD (11.22, 11.22) (13.67, 13.67) (16.35, 16.35) (19.17, 19.17) (22.18, 22.18)

PSS (Degree 1) (9.91, 9.91) (11.79, 11.79) (14.13, 14.13) (17.06, 17.06) (20.45, 20.45)

Haar-OSWST (s = 1) (11.94, 11.93) (15.47, 15.46) (19.10, 19.09) (22.82, 22.81) (26.62, 26.61)
Shepp-Logan

Haar-RSWST(s = 1) (13.98, 13.98) (17.58, 17.58) (21.28, 21.26) (25.01, 25.00) (28.82, 28.81)

TVD (15.33, 15.32) (18.92, 18.91) (22.66, 22.66) (26.38, 26.37) (30.13, 30.13)

†Each cell is formatted as (Oracle value, Estimated value)

denoised signal estimate implying that TVD is the costliestof all the considered methods.

5) SNR Improvement:We now make a quantitative comparison of the methods in termsof SNR

improvement. For the sake of comparison, the SNR is computedfor outputs obtained by settingλ

based on both the true MSE and SURE. This is tabulated in TableII where the first value in each

cell gives the SNR obtained by choosingλ based on the true MSE (oracle SNR), while the second

corresponds to that obtained by Monte-Carlo SURE optimization. The maximum of the SNRs with

respect to all the methods is indicated in bold-face font foreach image and noise variance. Several

observations are in order:

• The first and the most important one for this paper is that the SNR obtained based on the true

MSE and SURE are either equal or different only in the second decimal place for all tested cases.
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This indicates the reliability and robustness of our Monte-Carlo SURE optimization procedure.

• Haar-OSWST (s = 1) performs poorly, especially at high noise levels. This is due to the inflexible

nature of the soft-thresholding operator and blocky-reconstruction of the Haar wavelet. However,

as noted earlier, one may be able to boost the performance slightly by using a higher order wavelet

(typically + 0.5 dB additional gain).

• The linear smoothing spline technique is among the least effective method for natural image

denoising. It is seemingly better than Haar-OSWST (s = 1) at high noise levels for almost all

images due to the fact that it smoothes the noisy image thereby strongly reducing the harsh effect

of noisy fluctuations. But, it also smoothes the underlying signal making it the least-preferred

method for images with rich texture (for instance, the Barbara image).

However, the polyharmonic smoothing spline of degree 1 outperforms all the other methods

for the fBm image, which is in agreement with the theory. Thisalso strengthens the fact that

smoothing splines are ideal whenever the underlying image fits the statistical model. A similar

behaviour is observed for the MRI image which may be due to thefact that MRI images are

mostly fractal-like [48] and their power spectrum can be well approximated by the1/‖ωωω‖α

spectral law [49].

• As expected, the use of redundant transform improves the denoising quality compared to Haar-

OSWST (s = 1). The Haar-RSWST (withs = 1) method provides a gain of more than 2 dB

compared to Haar-OSWST (s = 1) at large levels of noise. Notably, it is also the best method

for all the images with the exception of fBm and the Shepp-Logan phantom.

• TVD performs better than PSS and Haar-OSWST (s = 1) (and even(λ, s)-optimized Haar-

OSWST, see the following subsection for details), wheneverthe images are smooth without

strong textures (for instance the Peppers image and the Shepp-Logan phantom). This shows that

TVD is competitive or even better than classical wavelet denoising methods [44] for images that

fall well within the piecewise-constant category. The Shepp-Logan phantom is noteworthy in this

context as it is a good example of a piecewise constant image.Unsurprisingly, TVD performs

better than all the considered methods for this particular image, as indicated in Table II.

In the presence of rich texture (the Barbara image), however, TVD performs worse than all

wavelet based methods, which is quite expected because the TV prior is not well-suited for such

images. In fact, any texture is considered part of the noise and is annihilated by TVD.

To conclude, we infer that of the considered methods, some are better suited than others for certain

type of images: while overall Haar-RSWST yields the best results for natural images, smoothing

splines are well adapted to fractal-like processes and TVD does best for piecewise-constant images.
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TABLE III

COMPARISON OF(λ, s)–OPTIMIZED METHODS†

Image Input SNR (dB) 4 8 12 16 20

PSS (11.85, 11.85) (13.76, 13.76) (15.92, 15.91) (18.38, 18.38) (21.29, 21.29)

Boats Haar-OSWST (11.07, 11.06) (13.08, 13.06) (15.48, 15.48) (18.25, 18.23) (21.31, 21.31)

Haar-RSWST (12.87, 12.87) (14.92, 14.92) (17.16, 17.16) (19.53, 19.52) (22.15, 22.15)

PSS (9.85, 9.85) (11.63, 11.63) (14.23, 14.23) (17.29, 17.29) (20.66, 20.66)

Barbara Haar-OSWST (9.63, 9.62) (11.92, 11.91) (14.74, 14.71) (17.89, 17.88) (21.33, 21.32)

Haar-RSWST (10.86, 10.79) (13.03, 13.01) (15.70, 15.70) (18.84, 18.80) (22.12, 22.12)

PSS (15.30, 15.29) (16.89, 16.89) (18.67, 18.67) (20.66, 20.66) (22.95, 22.95)

fBm Haar-OSWST (12.85, 12.84) (14.43, 14.42) (16.24, 16.21) (18.42, 18.40) (21.21, 21.21)

Haar-RSWST (15.04, 15.00) (16.68, 16.67) (18.49, 18.49) (20.37, 20.36) (22.16, 22.12)

PSS (12.70, 12.70) (15.19, 15.18) (17.85, 17.85) (20.65, 20.65) (23.51, 23.51)

MRI Haar-OSWST (11.09, 11.08) (13.39, 13.36) (16.06, 16.01) (18.95, 18.92) (22.07, 22.06)

Haar-RSWST (13.73, 13.72) (16.05, 16.04) (18.56, 18.56) (21.21, 21.17) (23.98, 23.95)

PSS (10.74, 10.74) (12.47, 12.47) (14.71, 14.71) (17.51, 17.51) (20.77, 20.77)

Peppers Haar-OSWST (10.85, 10.84) (13.24, 13.23) (15.97, 15.94) (18.84, 18.82) (21.89, 21.88)

Haar-RSWST (12.95, 12.94) (15.42, 15.41) (18.07, 18.06) (20.71, 20.71) (23.40, 23.40)

PSS (9.92, 9.92) (11.80, 11.80) (14.13, 14.13) (17.06, 17.06) (20.45, 20.45)

Shepp-Logan Haar-OSWST (12.40, 12.31) (15.91, 15.85) (19.51, 19.48) (23.26, 23.21) (27.04, 26.99)

Haar-RSWST (14.36, 14.24) (17.90, 17.84) (21.57, 21.54) (25.26, 25.26) (29.05, 29.02)

†Each cell is formatted as (Oracle value, Estimated value)

D. Results with Multi-Parameter Optimization

So far we have only provided results for SURE-based one-parameter optimization. However, there

is no major difficulty in applying our method for multi-parameter optimization as well. The brute

force approach would be to perform an exhaustive search in multiple dimensions to find the best

parameter values that minimize SURE. A better way is to perform the search by applying derivative-

free optimization. The Powell-Brent algorithm, which usesbracketing and parabolic interpolation for

line-search and takes aboutn(n + 1)/2 iterations to converge forn set of parameters, is well-suited

for our problem as long as the number of parameters stays reasonably small (typicallyn < 10).

Here, we test the concept with the optimization ofλλλ = (λ, s) for the PSS, Haar-OSWST and

Haar-RSWST methods. For the PSS method,s matches the order of the spline to the Hurst exponent

of the underlying noise-free signal. This fact has been applied in [33] where the optimal(λ, s) is

obtained by fitting a fractal-like model to the power spectrum of the noisy image. However, in our

approach this is not required asλ ands are optimized together using SURE. For the wavelet methods,

adjustings changes the threshold value in each sub-band according to (19) and our understanding is
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that this yields better denoising performance than universal soft-thresholding. In all our experiments,

we observed that the 2D Powell optimization of the respective methods took no more than 4 iterations

at various noise levels for all the test images. The results are tabulated in Table III.

With PSS, the combined optimization does not yield any significant improvement for the fBm

since a degree 1 spline is theoretically the best in the MSE sense (Wiener solution). As expected PSS

still performs the best of all the methods for the fBm image. The improvement for Boats, Barbara,

Peppers and the Shepp-Logan phantom is also less significantbecause these images are not very

fractal-like. In contrast, there is a significant improvement (' 1 dB at high input SNR) for the MRI

image which provides further support for the claim that MRI images are fractal-like and the orders

must be matched to the fractal dimension to obtain best results.

As noted in Table III, this combined optimization is shown toproduce a consistent SNR increase

for both Haar-OSWST and Haar-RSWST methods. In fact, in the redundant case it leads to an

increase of about +1 dB for smooth images like Peppers, Boatsand fBm at high noise levels. Thus

the optimized Haar-RSWST performs the best of all the considered methods for all natural images

which exemplifies the fact that redundant transforms make a powerful denoising tool.

However, it must be emphasized that the results provided in this section are purely for the purpose

of illustrating multi-parameter optimization of SURE computed by the proposed Monte-Carlo scheme.

In our experiments, we considered a set of popular denoisingalgorithms with adjustable parameters

without making any specific claim concerning their overall optimality. In fact, we have intentionally

chosen some test images which favour one or the other algorithm to illustrate that the issue of finding

a “best” algorithm is not so clear-cut.

The reader who is interested in state-of-the-art methods isreferred to the relevant literature; in

particular the BiShrink (dual tree complex wavelet decomposition) [50], BLS-GSM (full steerable

pyramidal decomposition) [51], ProbShrink (undecimated Daubechies symlets) [52], and SURE-

LET (with redundant Haar transform) [20]. Depending on the type of image these more-advanced

techniques can yield a further SNR improvement of the order of 1 dB. In some cases such as

SURE-LET, they already take full advantage of the possibility of automatic SURE-based parameter

adjustment, with the important difference that the underlying solution is explicit as opposed to our

black-box approach where it is obtained numerically. The benefit with the latter scheme is that it

requires no hypothesis concerning the analytical form of the solution and therefore has a wider range

of applicability.
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VI. SUMMARY & CONCLUSIONS

Computation and application of SURE for denoising problemsdemands the evaluation of the

divergence of the denoising operator with respect to the given noisy data. The calculation of this

divergence for a general denoising problem may turn out to benon-trivial, especially if the operator

does not have explicit analytical form as is the case with iterative algorithms (variational, PDE-based

and Bayesian methods). In this paper, we introduced a Monte-Carlo technique that circumvents this

difficulty and makes SURE viable for an arbitrary denoising scenario, especially when the computation

of the associated divergence is mathematically intractable or numerically infeasible. By adding a

perturbation to the signal, our method essentially implements a random first-order difference estimator

of the divergence of the denoising operator. From a calculuspoint of view, this can be related to a

stochastic definition of the divergence of a vector field. Thefinal outcome is a black-box scheme

which yields SURE numerically using only the output of the denoising algorithm without the need

for any knowledge of its internal working.

We demonstrated the applicability of our method by performing Monte-Carlo SURE optimization

of some popular denoising algorithms in the wavelet (both orthonormal and redundant) and variational

(linear and non-linear) settings. We found that SURE computed using the proposed technique perfectly

predicts the true MSE in all considered cases, thereby yielding correct values for the optimal threshold

and the regularization parameter for the respective problems. We also substantiated this argument in

the multivariate case by performing SURE-based optimization of the thresholds for denoising by scale-

dependent wavelet soft-thresholding. We showed that the SNR obtained by SURE-based optimization

is in almost perfect agreement with the oracle solution (minimum MSE) for all considered cases. This

suggests that Monte-Carlo SURE can be reliably employed fordata-driven adjustment of parameters

in a large variety of denoising problems involving Gaussiannoise.
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