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Abstract

Recent work on robust estimation has led to many procedures which
are easy to formulate and straightforward to program but difficult to
study analytically. In such circumstances experimental sampling is
quite attractive, but the variety and complexity of both estimators
and sampling situations make effective Monte Carlo techniques essential
This discussion examines problems, techniques, and results arid draws on
examples in studies of robust location and robust regression.
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The past several years have witnessed considerable research on

robustness [12, 13], with the problems of point and interval estimation

of symmetric location [2, 6] receiving a major share of attention.

The results of these efforts are providing a basis for further work on

more complicated problems such as robust regression [8], robust factorials

and robust estimation of scale. In all these problems many of the pro-

cedures proposed and studied are relatively easy to formulate and generally

straightforward to program for a digital computer, but they are quite

difficult to study analytically. Even if we can get hold of their

asymptotic behavior, as we often can in the symmetric location problem,

their behavior in small samples is almost sure to be analytically intrac-

table. This state of affairs will tend to drive us inexorably to experi-

mental sampling, and as a consequence effective Monte Carlo techniques

will take on considerable importance. This is clearly evident, for

example, in the Princeton study of robust estimators of location [2]:

the first phase considered 65 estimators in 30 sampling situations, and

a later phase pursued simple linear combinations of pairs of estimators,

five linear combinations per pair (adding some 10400 more "estimators").

Of course, if we already have Monte Carlo estimates of the variance of

each estimator and of the covariance of each pair (as was the case in

that phase of the Princeton study), it isn't necessary to start afresh with

each linear combination. In any case, thirty situations make for a lot

of computing, and we should pay close attention to accuracy and computa-

tional labor.
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In what follows I will examine some of the Monte Carlo techniques

which have been effective in studying point estimators of symmetric

location and explore their generalizations in a study of regression

procedures.

Building Blocks

Before I start on location and regression estimators, however, I

should spend a little time on some of the essential building blocks

of any experimental sampling process. They are easy to identify, and

they are now reasonably well understood, but there still seem to be

a few problems in making them as reliable and accessible as they should be.

The simplest and most important of these building blocks is the source

of uniform pseudo-random numbers. Much has been written on the theory

of uniform random number generators, and George Marsaglia discussed some

interesting positive results [20] at last year's Interface, but practice

still seems to lag a bit. As an example, one of our students recently

checked at the Computer Center to see what generators were available. We

use an IBM 370, and he found the three routines in the new SL-MATH [14];

he also found the two routines GGU1 and GGU2 in the IMSL library [15].

Initially he had difficulty deciding which generator he should use, but

the problem was easy to solve. The SL-MATH generators are versions of the

one described by Lewis, Goodman, and Miller [17, 18] and their paper

reports the results of extensive testing. The IMSL routines, on the other

hand, are so sketchily documented that one cannot determine precisely what

generator or generators they implement, and there is no reference to results

of testing. The basic point which emerges here is hardly new, but apparently
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it needs to be said once more. A user's minimum requirements for a uniform

generator are that it be (1) of high quality, (2) extensively tested with

published results, (3) fully and accurately documented, and (4) efficiently

implemented. These amount to little more than "truth in packaging", but

I'm afraid far too many of our consumers still settle for much less -- a

black box.

Now that we have uniform random numbers, we must still turn them

into a sample from the particular distribution we're using. This step

in the process often consumes a major share of computer time; the impor-

tant thing is to do it accurately and efficiently. See, for example, the

books by Fishman [4] and Knuth [16] and the paper by Ahrens and Dieter [1].

For a bizarre example, see the paper by Neave [21].

If a number of distributions are involved, it may be possible to

unify this part of the process by capitalizing on common features. The

Princeton study provides two related examples. First, all the distributions

were represented in the form

Gaussian/independent,

the ratio of a standard Gaussian numerator to an independent denominator.

As Exhibit 1 shows, this class of distributions [23] is quite broad. One

member, Gauss/uniform, known more briefly as the "slash" distribution, is

an alternative to the Cauchy having Cauchy tails and Gaussian center.

Second, since contaminated Gaussian mixtures belong to this class, the

efficient way to handle them is in the form of contamponents, which take

a fixed nunber of observations from the contaminating distribution instead

of the varying nurrber determined by the mixture probability. Then we can
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Exhibit 1

Some Distributions Represented as Gauss/independent
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combine the contamponent results, using binomial weights, to get the

result for any desired mixture.

In the location problem many estimators are calculated from the

ordered sample, so we require a procedure for generating the necessary

order statistics. For complete samples of any reasonable size the

efficient way is to sort; we just need to be sure we use an efficient

sorting algorithm, whose labor will be proportional to nxlog(n). If

the procedures we are studying depend on only a few order statistics at

one end of a sample, the approaches of Lurie and Hartley [19] or Schucany

[24] may be better. These are not designed for complete samples. For

example, on an IBM 360 Model 65 the first algorithm of Lurie and Hartley

is slower than sorting for complete samples smaller than about one

million.

These are by no means all the useful building blocks, but handling

these operations efficiently will provide a solid basis for any empirical

sampling study. These components should be part of any reasonable statis-

tically oriented subroutine library.

Estimators and Invariance

In both the location problem and the regression problem all the

estimators under study will share some basic invariance properties which

the Monte Carlo techniques may be able to exploit. Any reasonable loca-

tion estimator T() should be either location-invariant,

T( + bi) = T() +
or location-scale-invariant,

T(ay + bi) = aT() + b,
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depending on the context in which it is used. Usually we would demand

location-scale invariance.

In the regression problem

= x+
one can require more invariance properties of an estimator B(), such as

invariance under multiplication of the data by a scalar, or under non-

singular linear transformation of the carriers (the columns of X). The

important ones seem to be regression invariance,

B(y+X) =B()+1,

and regression-and—scale invariance,

B(a+X1)=aB()+1.

The first of these may be described less formally as transparency -- if
the data is perturbed by an exactly fittable change, all the change goes

into the fit. This condition is stronger in the regression problem than

the corresponding condition in the location problem: such procedures as step—

wise regression and ridge regression [9, 11] don't satisfy the transparency

condition. If good Monte Carlo techniques are available, however, we may

want to restrict our attention to such procedures, at least for the present.

The Location Problem

Once we have agreed to study only invariant estimators of location,

the natural thing to do (for each finite sample size) is to find the best

invariant estimator (in the sense of having the smallest mean squared

error). This estimator is the Pitman estimator, and the primary object

in studying it is to determine its variance in a variety of sampling

situations so that we can use it as a standard in assessing the perfor—

mance of other, more robust, invariant estimators.
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Each sample of n "belongs to" a configuration, the set of all

samples to which it is related by changes in only location and scale:

c() = {ay + bi a>O, - < b <

We usually specify the configuration c by giving a standard menter of

the set, defined in terms of a particular location statistic y and a

particular scale statistic s:

c= (-yi)/s, =y1+sc

Thus T() = y + sT(c)

The behavior of an invariant estimator is essentially determined by what

it does for each configuration, and the Pitman estimator may be derived

by minimizing mean squared error, configuration by configuration. For

convenience we take the true location parameter to be zero and the true

scale parameter to be one. Then it is a simple matter to find T0(c),

the value of the Pitman estimator for configuration c, by differentiating

mse(T IL) = E{[y + sT(c)]2 I .ç.}

with respect to T:

T0(c) = -E{ys c}/E{s2

It follows that

mse0(c) mse(T Jc) = E{sy I c} T0(c) + E{y2 c}

and

mse(T Ic) = mse0(c)
+ E{s21 c} [T(c) - T0(c)]2

Now we should ask where Monte Carlo enters. What we want is the

variance of T0. To get it, or more precisely, to estimate it, we obtain

the configurations by simple experimental sampling. We then calculate

T0(c) and mse0(c) by numerical quadrature. We also calculate E{s2lc},

because we'll be interested in the performance of other invariant
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estimators [7]. We can estimate var(T0) by simply averaging the values

of mse0(c) over the sample of configurations, but in general we can do

substantially better by carrying along some other estimators whose

variances we know, such as linear combinations of order statistics. This

will put us in a position to estimate var(T0) more accurately by regres-

sion estimation [3], taking advantage of the correlation between mse0(c)

and mse(Tlc) for some appropriate estimator T (such as the BLUE, whose

variance can be calculated from order—statistic covariances). Using the

values of mse0(c), we fit the regression line

mse0(c) a + b mse(TIc)

and estimate var(T0) by

mse0 + b[var(T) - T)]

(the bars indicate averages over the sampled configurations, and var(T) is

known). In principle we could use several estimators as carriers in this

regression, but as a practical matter one will usually suffice, and for

some sampling situations there may not be many estimators whose variance

we know.

Taking a larger view for a moment, we should consider using regression

estimation in a wide variety of problems. Not only should we plan to

provide a basis for calibrating the sampling results, but the ability to

improve the accuracy of Monte Carlo estimates in this fashion will also

be broadly useful.

Now let's turn to another set of techniques applied in studying loca-

tion estimators. As I mentioned earlier, the sampling situations in the

Princeton study involve distributions which can be represented as Gaussian!

independent: (y1, ... = (z1/v1, ... zn/vn)• For invariant
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estimators this leads to a neat swindle and some quite efficient Monte

Carlo. The basic observation is that we can take the sample of v's (the

denominators) and then, by conditioning on these v's, take advantage of

the Gaussian distributions of the z's. Thus we use
A fl

= v1y)/( v.)

and

in 2 "2= (n—1Y' v. (y. - y)
i=l

1 1

Now y and S are conditionally independent so that

E{T ()Jc,v} = T (c) + (i v)
One version of this approach has been described by Relies [22] for Student's

t distributions, and W. H. Rogers independently rediscovered it and

extended it for the Princeton study. The gains in efficiency, that is,

the reductions in sampling variance, come from two sources: the conditional

independence of Y and s, given v, and the ability to evaluate one term of

the conditional mean squared error analytically. Since all definitions

of configuration are equivalent, we see in this case the benefit of choos-

ing a convenient one.

In preparation for a later generalization to the regression problem

we can pursue the matter of configurations a bit further, defining

outer configuration: the y are fixed, up to location and scale, but

neither the z nor the v. are individually fixed; and

inner configuration: the y. are fixed, up to location and scale, and

the v are fixed.

If we wanted more detailed information for each outer configuration, we

could (in principle) sample the inner configurations. Often, as in the

Princeton study, we have no particular interest in this information, and



—lo-

we take only a single inner configuration for each outer configuration.

This keeps the experimental sampling simple: we generate the sample of

z's and the sample of v's, determine the outer configuration from the

resulting , and condition on the V's. In this setting the formula for

the conditional expectation of the product of two estimators is a simple

generalization of the conditional mean square error formula above.

In studying robust location estimators there is no reason to put

all the emphasis on variances —- percentage points deserve attention too.

For percentage points the exact conditional calculations involve the non-

central t distribution but are only slightly more complicated than the

ones for covariances. Having derived these Monte Carlo techniques, we

should naturally ask what they buy us; the reductions in sampling variance

are quite encouraging, both for variances of estimators and for percentage

points of estimators. Exhibit 2 has a few of the efficiencies (in the log

scale) for the 2.5% point [5]. The estimators are the mean (M) and four

trimmed means (the % value is trimmed from each end -- the limiting case

of 50% is the median). Sampling situations are Gaussian at n=5, 10, 20,

and 40, three contamponents ("lO%3G n=20" means that exactly 2 of the 20

values are Gaussian with mean 0 and scale 3), and Cauchy at n=20. In

this data and in other more extensive data a general pattern emerges:

the Monte Carlo does better for more robust estimators and for distribu-

tions closer to Gaussian. Being able to reduce sampling variance by a

factor of 10000 is a nice gain indeed, but a factor of 100 or even 5 is

not to be overlooked.

This look at the efficiency of the Monte Carlo is one facet of the

sort of analysis one should do on the results. When we have as much
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Exhibit 2

Efficiency of Monte Carlo

in Estimating 2.5% Point of Estimators

(entries are 1og10(efficiency))

estimator

M 5% 10% 25% 50%

G 4.4 3.9 2.9 2.1
n=5

G 4.2 3.6 2.7 2.1
n=l 0

G 3.7 3.7 2.5 1.9
n=20

G 3.9 3.3 2.7 1.9
n =40

10%3G 1.9 2.5 2.9 2.5 2.0
n= 10

10%3G 1.9 2.3 2.7 2.2 1.9
n= 20

l0%1OG 1.1 1.2 2.5 2.3 1.9
n=20

Cauchy 0.6 0.7 0.9 1.1 1.1
n=20

Source: A. M. Gross [5]
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structure as in the Princeton Study, there are many other ways to approach

the results. The book devotes a long and imaginative chapter to such

matters, so I will only remark that several groups of the estimators were

actually members of one-parameter families, and much has been learned

from studying their behavior as families.

Regression Problems

When we venture into studying candidates for robust estimators in

the linear regression problem, we face many more difficult design and

Monte Carlo problems. For example, in the model

where y. and E are nxl , X is nxp, and is pxl , we must choose values of

n and p, give careful attention to the matrix X, and select a class of

disturbance distributions for E. On this last point we can hope to use

the same sort of swindle which proved so effective in the location problem

[10]. As we shall see, the matter of configuration becomes somewhat

more complicated: we now have

outer configuration: the y are fixed, up to regression and scale,
but neither the z. nor the v are individually fixed;

middle configuration: the y are fixed, up to regression and scale,

and the set {v} is fixed; and

inner configuration: the y are fixed, up to regression and scale,

and the v (including their permutation) are fixed.

The need here for a third level of configuration arises because we can no

longer freely permute the denominators. A tendency for more variable

errors to arise at a sensitive place in the design will affect the co-

variance matrix of an estimator of , and we will need to have control
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of this so that we can investigate it.

To derive the swindle for the regression problem with disturbances

= z/v, we let w = v and <w> = diag (w1, ... w). Then the outer

configurations are based on

= (xT<>x)1xT<>
and, letting = Xb.,

2 —1 n 2= (n - p) i1 w(Y - y)
In estimating the covariance matrix of a regression estimator B(y) the

details parallel those in the location problem, but the gains don't seem

to be nearly so dramatic. D. F. Andrews reports factors of about 2 to 10

for a small study at p=3. Our experience at the National Bureau of

Economic Research has largely involved p=6, with roughly the same results.

At NBER we have recently begun a substantial Monte Carlo study of

robust regression procedures [8]. To get started, one has to restrict

his scope quite severely and plan to proceed in stages. As a result,

spurred by suggestions from J. W. Tukey [25], we have concentrated on

n=20, p=6, essentially two carefully structured X matrices, and a rather

restrictive class of estimators. Our set of disturbance distributions is

small, selected in part on the basis of the Princeton study. We expect to

report further details and at least preliminary results in a month or two.

Concluding Remarks

In concluding I'd like to look at how the techniques I've discussed

fit into the broader framework of Monte Carlo. We would like to have at

our command a number of general techniques, broadly applicable and programmed

ready for use. Regression estimation is one reasonable possibility; I
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think it could profitably be used more often. Overall, however, I am

somewhat skeptical about finding many general techniques which provide

great gains in efficiency. It seems more likely that general techniques

will offer only very limited gains and that the real improvements will

continue to come from working hard to exploit specific features of the

particular problem or of a class of closely similar problems. The needs

for calibration and analysis of results will continue to demand careful

attention.

0

0
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