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ABSTRACT

The Monte Carlo method has long been recognized as a powerful technique for per—
forming certain calculations, generally those too complicated for a more classical
approach. Since the use of high—speed computers became widespread in the nine—
teen—fifties, a great deal of theoretical investigation has been made and practical
experience has been gained in the Monte Carlo approach. The aim of this review is
first to lay a theoretical basis for both the ‘traditional’ Monte Carlo and quasi—
Monte Carlo methods, and then to present some practical aspects of when and how
to use them. An important theme of this review will be the comparison of Monte
Carlo, quasi-Monte Carlo, and numerical quadrature for the integration of func—
tions, especially in many dimensions.
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could be considered as an update to the book of Byckling and Kajantie.
The techniques reviewed in this paper are very important since one finds in
practice that in high—energy collisions only a small part of phase space is
actually populated, namely that corresponding to peripheral or low—momen—
tum—transfer events. ’

8.6 SAMPLING FROM A FINITE POPULATION

In many fields, particularly in astronomy, plasma physics, fluid dynamics, etc., it is
a common problem to simulate the behaviour of a large but finite number of
objects (stars, electrons, molecules, etc.) which interact with one another. A typical
step in such a simulation is the calculation of the force or potential at one object
by summing the contributions due to all the other objects. Although the number of
objects is finite it may be so large that it is not possible to perform the entire sum,
and some approximation must then be made using a smaller sample of objects.
Three possible approaches are:

1. A fixed—point rule. Based on some additional knowledge of the physics or the
geometry of the problem, it may be possible to average over some fixed set
of points. Such a formula would be highly problem—dependent, and the
uncertainty of the result would depend on the distributions involved, per—
haps in a very complicated way.

2. Random sampling with replacement. In this method, objects are chosen ran—
domly, and one does not ‘remember’ which objects were already chosen, so
that some may be taken more than once. The population thus becomes
infinite, and the theory developed earlier applies just as if it were any other
Monte Carlo calculation: the uncertainty on the potential is the standard
deviation of the individual contributions, divided by the square root of the
sample size.

3. Sampling without replacement. This method resembles 2), except that one
explicitly avoids taking the contribution from any one object more than
once. The final convergence must be better than 2), since one eventually
reaches zero error when all contributions have been taken, but since by
definition we cannot consider all contributions, it is the convergence rate in
the early part of the sequence that matters. This convergence rate starts out
equal to that of 2), only improving slowly as the number of contributions
taken becomes a significant fraction of the total. The price paid for this
small improvement is having to remember which contributions were already
chosen. Also the improvement may not be usable if it is too hard to calcu—
late.



2. Simulation of neutrons or charged particles traversing matter, where elemen—
tary interactions would be scattering, decay, absorption, etc.

In these calculations it may be necessary to assign to each elementary interaction a
weight proportional to the probability of that interaction. The weight of an entire
event is then the product of the weights of its component interactions, and the final
results of the simulation will be averages over these total weights. As we have seen,
the uncertainties of these averages are minimized when the weights are equal. The
efficiency of the calculation can therefore be improved by using the following tech—
niques for reducing the variance of the weight distribution:

L. Splitting — After each elementary interaction, compare the accumulated pro—
duct of weights with the average product at that point for the other events.
If it is significantly greater than the average, split the event into two {or
more) events from that point on, each one having half (or less) of the
abovementioned accumulated product, In practice this may be complicated
to implement using programming languages which do not explicitly support
recursiveness,

2. Killing — Compare the accumulated product as above, and if it is significantly
less than the average, either kill (reject) the whole event before finishing it,
or continue with the weight increased to the average. The probability of kil—
ling the event should be 1-r, where r is the ratio of the accumulated product
weight to the average accumulated product at that point.

It should be clear that it is of no use to apply the killing technique after the entire
event has been generated, but only during intermediate steps to avoid the rest of
the calculation. Splitting may be performed after the entire event has been generated
if this is more convenient, but the decision to split should be made on the basis of
the accumulated product weight at the point at which the event is to be split.

85 MULTIPARTICLE PHASE SPACE

One of the richest areas of Monte Carlo calculations has been the integration of the
relativistic phase space of multiparticle reactions in high energy and nuclear physics.
For a reaction with k outgoing particles, the phase space volume element is basi-
cally the 3k-—dimensional momentum space element, but the true dimensionality is
reduced to 3k—4 by a four—dimensional delta—function expressing the conservation
of energy and momentum. Whenever k is greater than four or five, the complexity
of these integrals becomes overwhelming and they can only be performed by num—
erical techniques, usually only by Monte Carlo. Unfortunately, this interesting prob—
lem is much too vast to be treated here, and we will merely point to the most
important references on the subject:

1. The classic work on the subject is the monograph of Hagedorn (1964).

2. A more recent and extensive treatment, also much more oriented toward prac—
tical Monte Carlo calculations, is the book of Byckling and Kajantie (1973).

3. The most recent techniques for enriching the region of low momentum—trans—
fer are summarized in the review article of Carey and Drijard (1978), which



4. The weighting method.
a) Choose a random number x ; between zero and one.
b) Choose another random number y ; between zero and x ..
¢) Take the sum of 2x, g(x .,y ) repeating the steps above.

In this method, the points are chosen fincorrectly’ as in the obvious method, but
the bias is corrected by applying the weighting function which happens to be just
7x in this case. This method may or may not be more efficient than folding,
depending on the function g. In particular it will be more efficient whenever the
variance of xg is smailer than the variance of g. If nothing is known a priori about
g, it is usual to avoid weighting if possible.

8.3 PROGRAMS FOR REAL——LIFE CALCULATIONS

At this point the reader should already be convinced that the possibilities for unde-
tected gross errors in Monte Carlo calculations are numerous. Of course there is
nothing special about Monte Carlo in this respect; complex systems lead to com—
plex calculations and errors can be made on many levels, from the logical under—
standing of the problem and method all the way down to typing errors in the pro—
grams and data. In fact, the Monte Carlo method offers unique opportunities to
verify the results of complicated calculations, especially in the case of simulations.

The basic principle is to output not only the number you are interested in, but
also as many other intermediate and accessory results as possible, especially those
for which you know in advance what answer to expect. Even if you are only inter—
ested in the global average of some quantity, print out a histogram of the quantity
as a function of some other interesting quantity. This generally costs little or noth—
ing extra in a big calculation, and may give considerable insight into the system
being studied (if the expected distribution is not known in advance) or allow a pow=
erful check of the correctness of the computation (if the expected distribution is
known). I find it convenient to use a general histogramming package such as the
generally available HBOOK (CERN Program Library) which allows one to look at
an entire one— or two—dimensional empirical distribution in very readable format
with only two or three simple lines of FORTRAN. The quantities which you
should look at will of course depend on the problem, but a general rule is to exa~
mine the quantity of interest in one more dimension than is required, if possible.

8.4 SPLITTING AND KILLING iIN SEQUENTIAL SIMULATIONS

In this section we consider simulation caleulations in which each ‘event’ (member of
the hypothetical population) consists of a sequence of elementary interactions.
Examples of such calculations would be:

1. Simulation of the traffic flow in a city, where elementary interactions would be
car turning left, turning right, parking, breaking down, having an accident,

ete.



Consider the integration of the function g over the two—dimensional region
specified as:

1 X
I = [ g0xy) dy dx

x=0 y=0
We give four ways of estimating this integral by Monte Carlo.
L. The obvious way.
a) Choose a random number x; between zero and one.
b) Choose another random number ¥, between zero and x -
¢} Take the sum of g(x i+ ¥ ;) repeating steps a and b.
A simple graphical representation of this method shows that it gives the wrong
answer. While it is true that this procedure would yield points only in the allowed
region (the lower triangle in figure 8.1), it would give the same expected number of
points along each vertical line in the figure, producing a much higher density of
points on the left-hand—side than on the right.
2. The rejection 'method.
a) Choose a random number %, between zero and one.
b) Choose another random number y ; also between zero and one.
c) Ify, >X,, reject the point and return to a.
d) Accumulate the sum of g(x;, y ) for the remaining points.
This method, although correct, has the disadvantage of using only half the points
generated. That is, it is equivalent to integrating over the whole square, but consid—
ering the function to be zero on the upper triangle.

3. The folding method (a trick).

a) Choose two independent random numbers r, and r,, each between zero
and one.

b) Set x, = larger of (r,r)

¢) Set y, = smaller of (r,r,)

d) Sum up g(x i» ¥,) as before.
This method is equivalent to choosing points r over the whale square, then folding
the square about the diagonal so that all points x,y fall in the lower triangle. It is

ciear that this gives a constant point density without any rejection, and is therefore
correct and more efficient than the rejection method.



under the square root in the expression for I is negligeable compared with the first
term and the result is simplified considerably.

ln the other limit, when all weights are equal (and non—zero), the two terms
under the square root cancel and the standard deviation is of course zero. In prac-
tice it may not appear to be zero because of rounding error in the computer, which
is especially serious for this particular calculation. For this reason, the sums Q and
W should be accumulated in double precision, and it is necessary to test that
rounding has not caused the argument of the square root to become negative.

8.2 INTEGRATION OVER A TRIANGLE

One of the fundamental advantages of the Monte Carlo method is the ability to
casily handle problems with awkward integration regions (interdependent integration
limits). However, as this example shows, there are a variety of different ways to
handle these problems, and not all of them are correct.

/
/

X —-

Figure 8.1: A triangular integration region.



7.3.4  Multidimensional distributions

Multidimensional distributions given as histograms may of course be treated exactly
as for one dimension. However when the desired distribution is given as a smooth
function, the method outlined above cannot be extended in a straightforward man—
ner, and would anyway require multidimensional tables and multidimensional inter—
polation, which either consume considerable time and space or are quite inaccurate,
especially when the function involved has a large variance.

The problem of randomly sampling a space of high—dimensionality is closely
related to that of multidimensional integration, so it is reasonable to look at integra—
tion methods for indications on how to proceed. Indeed the recursive partitioning
method of Friedman 1977b is directly applicable and DIVONNE2 (Friedman
1977a) has as an option the generation of points according to the function. This is
because the aim of the partitioning algorithm is to delimit regions in which the func—
tion variance is small, after which one can efficiently apply hit—or—miss generation
or simply produce weighted points.

8. APPLICATIONS

In Monte Carlo calculation, the step from theoretical understanding to correct
results is often far from trivial. Unlike analytical calculations where gross errors
usually produce results which are obviously absurd, subtle bugs in Monte Carlo
‘reasoning’ easily give rise to answers which are compietely wrong but still appear
sufficiently reasonable to go unnoticed. If only for this reason, it is indispensable to
consider a few examples, particularly those which illustrate the most notorious traps
for the unwary.

8.1 THE UNCERTAINTY OF A WEIGHTED AVERAGE

The results given here can be derived easily from the definitions of mean and vari—
ance, but are included here because they are of such central importance in real cal—
culations. We suppose that (as is the usual case) the result of our calculation is an
average over a set of terms which we will call weights w ~ We further assume that
this average is Gaussian—distributed in accordance with the central limit theorem,
and wish to determine the standard deviation of this distribution. In order to esti—
mate the average and its standard distribution it is necessary to accumulate :

1. The sum of the weights, W
2. The sum of the squares of the weights, Q
3. The total number of entries, N

Then it follows from chapter 2 that the best estimate of the average is just W/N,
and that the standard deviation of this is D=(1/N} \/(Q-W?¥N).

For the important case when most of the weights are zero (for example for one
bin of a histogram when most of the events go into other bins), the second term



7.3.1  The rejection (hit—or—miss) method

One can of course always use the hit—or—miss method if the probability density f is
bounded and its upper bound is known. In this method, one simply chooses points
randomly and uniformly in the space, using the function value at each point
(divided by the maximum function value) as the probability of accepting the point.
A point is then accepted if and only if f/f , is greater than a uniform random
number chosen between zero and one. This well-known technique becomes very
incfficient when the variance of f is large, in which case nearly all the points are
rejected. For this reason it is usually better to use one of the methods described
below.

7.3.2  Distribution given as histogram

A distribution in the form of a histogram is usually represented as a vector of fre—
quencies, where the first value is the relative frequency of points desired in the first
bin, etc. These frequencies must first be normalized so that their sum is unity, then
it is usually convenient to form the cumulative distribution, where the ith number in
the cumulative distribution vector is the sum from one to i of the numbers in the
corresponding density vector. {The last number in the cumulative vector is therefore
always equal to one.) To generate a random number according to the histogram,
one first generates a uniform number u, and then looks for the first position in the
cumulative distribution vector where the value is greater than u,. This is the bin in
which that random number should be generated. It may of course be very ineffi—
cient to do this search sequentially (at least for long vectors), and a better method
would be to do it by a binary search technique. (The CERN library program HIS—
RAN uses this method.)

A stilt faster method, although much more complicated, is that of the Marsaglia
Tables, described in Abrens and Dieter {1972).

7.3.3  Distribution given as function

To randomly sample according to a one-dimensional distribution given as a
smooth function, the usual technique is first to determine the percentiles of this dis—
tribution, that is the points on the independent variable axis where the integral of
the function takes on given values. {Called percentiles because they are chosen so
that the integral over each interval is a given percentage, often one percent, of the
total.) This is the inversion of the cumulative distribution function. The result of
this relatively time—consuming operation is a set of x—values which can then be
used to generate random numbers very rapidly, by direct interpolation in the table
of x now considered as a function of F. The CERN library program FUNRAN
uses this method with four—point polynomial interpolation in a table of 100 values.



and (x —m) has the covariance matrix
Vv=CccC
where C’is the transpose of C.

Given V, the matrix C can be calculated by using the following recursive formu—
las (the ‘square root’ method):

12

¢, = |vy,— Z¢;l J<i€m
| k=1
i1
Vi T X’Cikcjk
k=1
¢; = U<j<i<m
C..

L]

In practice, one usually wants a large set of random vectors all generated with the
same covariance matrix V, so the matrix C is computed once at the beginning of
the program and then used each time a random Gaussian vector is wanted.

7.2 ALL OTHER KNOWN DISTRIBUTIONS

A vast number of transformations, tricks, and formulas is known for generating
random numbers according to different distributions. For example, given two uni—
form numbers, their sum is distributed according to a triangular distribution, and
the largest of the two is distributed like \/u. An extraordinarily complete and very
dense collection of such techniques is given in Everett and Cashwell (1972).

7.3 EMPIRICAL DISTRIBUTIONS

It often happens that one wants to generate random numbers distributed according
to some probability density f which is not any of the usual distributions, but may
for example have been determined empirically, from measurements on a particular
complex system.



7.1.3  The Forsythe—Von Neumann method

This is an ingenious method for generating random numbers in any distribution of
the form:

f(x) = ¢ exp[~G(x)] ,0<G(x)<1 and a<x<b
based on the fact that if you:

1. choose u, uniformly between a and b
2. calculate t = G{u,)
3. generate uniformly u,u, .. u, o<,
where k is determined by the condition:
t>u >u,> . u, <uy
then the probability that k is odd is P(t) = ¢

Therefore, whenever k is ¢ven, reject that value of u, and go back to I. When k is
odd, accept that u, as a member of a sample from f. Unfortunately, the fact that
the range of G must be from zero to one requires some fiddling to use this techni—
que for generating from the Gaussian distribution, but some good methods are
based on it. (See Ahrens and Dieter, 1973.)

7.1.4 Compound methods

Many other techniques have been proposed for generating Gaussian random num-—
bers, and the best (fastest exact) methods are composed by combining several of
these techniques. The general idea is to use a fast approximate method most of the
time, and then with a carefully calculated (small) probability, one draws from a
rcorrective’ distribution which just makes up for the approximation in the first tech—
nique. In addition, different regions under the Gaussian curve are attacked using
different techniques, with the region first being chosen using an auxiliary random
number. Such methods are often somewhat complicated to program, and require a
table of constants used to choose regions, methods, corrections, etc. A detailed
account of a good compound method is given in Dieter and Ahrens (1973), and a
summary of many good methods, both simple and compound, for the Gaussian
distribution, is given in Ahrens and Dieter (1972).

7.1.5  Generating correlated Gaussians

‘The above sections deal only with the generation of one—dimensional Gaussians,
which can be used directly for multidimensional Gaussian distributions only when
the different variables (dimensions) are uncorrelated (i.e., when the covariance matrix
is diagonal). For the general case of multidimensional Gaussian variables with a
general covariance matrix V, uncorrelated standard Gaussian variables may be used
when transformed as indicated here. Let z be a standard normal random vector (i.c.,
independent Gaussian—distributed components with zero mean and unit variance),
then a unique lower—triangular matrix C exists such that

x=Cz+m

._42_



7.1.1  Using the Central Limit Theorem

This method has already been described above in 2.6.1. It is not exact, although it
may be good enough for many purposes, and the absence of points in the extreme
tails may even be desirable in some cases. It is also not especially fast, but may be
faster than some other methods when a good generator of arrays of uniform num-—
bers is available. [Note that this method, like most of those given in this chapter,
must not make use of a quasirandom uniform number generator, since serial corre—
lations in the uniform generator lead to distortions in the distribution of the output
random numbers.]

As a word of warning, 1 should point out an interesting mistake sometimes
made in connection with this generator. It arises from the realization that the Cen—
tral Limit Theorem of course works for differences as well as sums, so that taking
the sum of six uniform numbers minus the sum of six other uniform numbers,
would be as good as taking the sum of twelve uniform numbers and subtracting
six. Some clever people decide therefore to use twelve uniform numbers to generate
two random Gaussian deviates, once using a sum and once with differences. It is
certainly true that this gives two (approximately) Gaussian numbers, but they are
unfortunately highly correlated. Correlation has also been the source of some con—
cern about the simple generator of 2.6.1, since any correlations in the uniform gen—
erator would produce deviations from the Gaussian distribution of the sum.

7.1.2  The transformation method
Since the Gaussian probability function cannot be integrated in terms of the usually
available functions, it is not straightforward to apply a transformation from uniform
to Gaussian—distributed variabies. There is, however, a clever method of transform—
ing two independent uniform variables v and v into two independent Gaussian vari—
ables x and y:
Xx = (~2Inu)'? cos(2nv)
y o= (2Inu" sin2av)
This method is exact and easy to program, but is not quite as fast as it may
appear, since it requires calculation of a logarithm, square root, sine, and cosine, all
of which are reasonably time—consuming operations.
An improvement on the above method is the polar method of Marsaglia.
1. Generate uniform random numbers u and v.
2. Calculate w = 2u~1*+ (2v—1)~
3. If w>1, po back to 1.
4. Return x = uz and y = vz, where z = /(=2 In w / w),
This variation eliminates the sine and cosine at the slight expense of ~21% rejec—

tion in step 3 and a few more arithmetic operations.



decimal = binary binary decimal

integer  integer fraction ftraction
1= 1 1 0.1 0.5

2 10 0.01 0.25
3 11 0.1 0.75
4 100 0.001 0.125
5 101 0.101 0.625
6 110 0.011 0.375
7 111 0.111 0.875
g 1000 0.0001  0.0625

This gencrator has properties similar to those of the Richtmyer generator, except
that it scems to behave much better for smaller n. In spite of the apparent compu—
tational complexity, it can be made fast, thanks to a relatively simple algorithm for
implementing it. due to Halton (1960).

As with the Richtmyer generator, this method can be improved by shuffling. A
particularly effective scrambling technique, based on explicit minimization of the dis—
crepancy for this generator, is given by Braaten and Weller (1979).

7. NON-UNIFORM RANDOM NUMBERS

Up to now we have been almost exclusively concerned with uniformly—distributed
random numbers, either with uniformly—distributed probability of occurrence, or for
quasi—random sets, a distribution as uniform as possible (sometimes called
'super—uniform’, since it is more uniform than a truly random set with uniform
probability density). In this chapter we discuss the problem of generating random
numbers such that the probability of obtaining a number in a given range is not
uniform, but follows some other distribution.

Generating non—uniform distributions is very important in many applications,
where the physical phenomena being simulated are known to follow certain other
distributions. The most important of these are the Gaussian (or Normal) and
exponential distributions for continuous variables, and the Poisson and binomial
distributions for discrete variables. Many other distributions may be required for
special applications, and many different techniques are known for generating them.
We present here only a brief review of the most important methods with some indi-
cation of where to look for more. It is assumed throughout this chapter that an
appropriate generator of uniformly—distributed random numbers is available for use
in generating the non—uniform distributions.

7.1 GAUSSIAN GENERATORS
The Gaussian distribution is one of the most important in statistical and physical

caleulations. and also one of the richest in terms of different methods proposed for
generating random numbers.



6.3.3  The Richtmyer generator

This generator is the equivalent of the Korobov parallelepiped family described Jjust
above, but for infinite N and ‘any’ d. Since one can no longer optimize the coeffi-
cients, it is apparently sufficient to use ‘irrational’ numbers, in order to avoid a
short period. Since truly irrational numbers cannot be represented in computers, it
has been suggested to use the square roots of the first few prime numbers. Thus
one gets the simple formula for the jth coordinate of the ith quasirandom point:

X, = iSJ. , mod ]

1

where Sj 15 the square root of the jth prime number.

In theory this generator is supposed to have very good properties for an infinite
number of points, and its discrepancy should decrease like 1/n for very large n.
The problem is then to make it behave well for smail n {which may still be very
large in practice) without destroying the asymptotic behaviour. This is done , first
of all, by observing the two-dimensional distributions of the first few thousand
numbers of two of the coordinates. When a pair is seen to be badly distributed.
one of the corresponding § values is dropped from the table and replaced by a
higher root prime. Of course, this observed distribution would in principle improve
with larger n, but one does not know how large, so it is better in practice to be
careful.

The second method for improvement of short—term behaviour of such quasiran—
dom generators is the shuffling technique, which assures that all the numbers from
the generator will be used, but not quite in the order in which they are generated.
Usually another (pseudo~) random generator is used for the shuffling, which is per—
formed using a buffer (usually 10 or 20 words per dimension), and selecting the
next quasirandom number pseudorandomly from the buffer of the appropriate
coordinate, filling the used location in the buffer with the next quasirandom number
in the corresponding sequence. This vields points different from those of the
unshuffled generator, but preserves the super—uniform distribution of each of the
coordinate values.

6.3.4  The van der Corput generator

The formula of Van der Corput corresponds to expressing the integers in a system
of base P, reversing the digits, putting a point in front, and interpreting the resulting
sequence as fractions in the base P. P is any prime, so the ith coordinate is gener—
ated using this formula with P being the ith prime number. For example, for P=2
this gives:
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After reading the above theorems, we should not be surprised to learn that the
expected value of the extreme discrepancy of a set of n truly random points
decreases with n like 1/y/n for large n in any number of dimensions.

6.3 QUASI-RANDOM NUMBER GENERATORS

Because theorem 4 of the last section applies oanly to infinite sequences, we must
distinguish herc between finite quasi—tandom sequences of n numbers where n is
fixed in advance, and the first n numbers of an infinite sequence. The latter will
clearly be more convenient to use since it can be extended if necessary, but the
above theorems indicate that we might be able to get a better discrepancy if we fix
n.

6.3.1  Good lattice points

Optimal points for function integration are generated by fixing n (and the dimen—
sionality d) and actually minimizing the extreme discrepancy of the n points with
respect to their positions. The computational complexity of such a calculation
being overwhelming, only an approximate minimum—discrepancy solution can be
found for anything but a very small point set. A considerable amount of theoretical
work has been done on d—dimensional lattices (Kuipers and Niederreiter, 1974, and
Zaremba, editor, 1972), but this approach has not yet produced techniques of great
interest for large calculations, except for the Korobov sequences described below.

6.3.2  Finite Korobov sequences

Korobov considered sets of points restricted to belong to certain families character—
ized by different expressions for the coordinates, with each expression containing
some freec parameters. The values of these parameters were then optimized by
requiring a minimum extreme discrepancy. Probabiy the most successful Korobov
family is the parallelepiped lattice, where successive points x are given by:

ak | bk dk |
X, = —| . e k=1N
N N N|
mod | Wmod i |m0d 1

where a, b. ..d are coefficients to be determined in order to optimize the discre—
pancy for the given value of the number of points N and the dimensionality. Dis—
cussion of Korobov sequences and references to the original Russian articles can be
found in Stroud(197[) and in Zakrzewska et.al. (1978). The latter article describes
a program for multiple integration using Korobov sequences. These sequences can

also be used as an option in DIVONNEZ2 (Friedman 1977a), and extensive tables:

of optimal coefficients for generating Korobov sequences are given in Keast(1972).



refer to this as uniformity in the sense of Weyl, to distinguish it from more
common meanings of the word. A truly random point set in a finite—dimensional
space can be shown to be uniform in this sense. In quasi~Monte Carlo we will use
non-random points which are also uniform (for infinite sets) or which have low dis—
crepancy (for finite sets).

6.2.2  The convergence of Quasi—Monte Carlo integration

The theorems given in this section concern the approximation of a multidimensional
definite integral by an unweighted sum of function values over a set of points. The
function to be integrated will be assumed to be of finite variation. A precise defini~
tion of variation is not very enlightening and is beyond the scope of this article (see
Zaremba 1968 or Stroud 1971); we give here only a rough idea sufficient for an
understanding of the results presented below. The variation in quasi—Monte Carlo
theory plays the role of variance in true Monte Carlo, being also a measure of the
non—constancy of the function. For a differentiable function of d variables, the var—
tation can be thought of as an average of the absolute values of the dth mixed par—
tial derjvatives. Integrable functions of interest to physicists (with at most a finite
number of discontinuities) have a firite variation.

The following theorems form the mathematical basis for integration by quasi—
Monte Carlo.

1. (Weyl, 1916) If a definite integral is estimated by an unweighted sum of func—
tion values over a sct of points, the estimate will converge to the true value
of the integral as the number of points approaches infinity if and only if the
point set is uniform in the sense of Weyl. This theorem is the equivalent of
the Jaw of large numbers for true Monte Carlo, and gives the conditions
under which the quasi—-Monte Carlo estimate is consistent.

2. (Hlawka, see Zaremba 1968) If a definite integral is approximated by an
unweighted sum of function values over a finite set of points, the resulting
error will be bounded by the product of the discrepancy of the point set and
the variation of the function.

3. (Roth and others, sec Kuipers and Niederreiter or Zaremba 1968) The discre—
pancy of a point set cannot be made smaller than a certain value, which
depends on the number of points n and the dimensionality d. Attempts to
find point sets which achieve this fundamental lower limit have been success—
ful only in a small number of cases.

4. (Korobov, sec Stroud 1971) The discrepancy of the first n points of an infin—
ite point set cannot decrease as a function of n any faster than 1/n for large
n.

The second theorem above implies that the estimate of the integral will converge to
the correct answer as fast as the discrepancy of the point set converges to zero, and
the fourth theorem gives us hope that this could be. as fast as 1/n, compared with
the much slower square root of n for true Monte Carlo. Unfortunately, it is not
generally known how to generate points which attain the lower discrepancy bound,
but one can least generate points with considerably lower discrepancy than the
expectation of a truly random set.



usually of no importance — this aspect of randomness can safely be abandoned
for most calculations. Another aspect which can be abandoned is the degree of fluc—
tuation about uniformity for certain distributions — in many cases a super—uni—
Sform distribution is in fact more desirable than a truly random distribution with
uniform probability density.

Since we have now dropped all pretense of randomness, the reader may object
at this point to retaining the name Monte Carlo. Strictly speaking he is right, but it
is probably more justified to enlarge the concept of Monte Carlo to include the use
of quasirandom sequences. Quasi—-Monte Carlo is indeed rather a downward (in
dimensionality) extension of Monte Carlo than an upward extension of one—dimen—
sional gquadrature, since it retains some fundamental properties of Monte Carlo
such as applicability to spaces of very high dimensionality, performance nearly
independent of dimensionality, very small growth rate, even for high dimensionali—
ties. and robustness with respect to the continuity properties of the function. In
addition, the theory of quasi—Monte Carlo outlined below is much closer to that of
true Monte Carlo than to that of quadrature.

6.2 THE THEORETICAL BASIS OF QUASI-MONTE CARLO

6.2.1  The discrepancy of a point set

Let us here introduce a measure of non—uniformity valid for any dimensionality,
called discrepancy. (see Weyl (1916, in German), or secondary references Zaremba
(1968), Zaremba, ed. (1972), or Stroud (1971)). Consider the unit hypercube in d
dimensions, with each coordinate of x varying from zero to one, and we are given a
set of n points, the ith point having coordinates x ;. The function v(x) gives the inte—
grated number of points, from the origin to the point x (the empirical distribution
function). The corresponding volume from the origin to the point x is just given by
the product of the coordinates of the point x, and the local discrepancy g at X is
defined as the difference between the number of poimts in this volume and the
expected number based on the volume:

o0 = IVl = x, %%,

One can then define various measures of global discrepancy by taking different
norms of the function g. The most common are the extreme discrepancy given by
the maximum of the absolute value of g for all x, and the mean square discrepancy
given by the integral of the square of g over all x. The general term ‘discrepancy’ is
sometimes loosely applied also to the global measures.

Since we will use discrepancy to test the hypothesis of uniformity of a point dis—
tribution, it is not surprising that this measure is already well—known to statisti—
cians, who will recognize extreme discrepancy as the Kolmogorov statistic, and
mean-square discrepancy as the Smirnov—Cramer—Von Mises statistic for testing
compatibility of distributions (see Eadie et al (1971), pp. 268-270)

If the extreme discrepancy of a point set approaches zero as the number of
points approaches infinity, the (infinite) set of points is said to be uniform. We



In cases where generation time is important, several tricks may be used.

One is of course to code the generator in assembler, which is often done anyway
since the operations needed may be easier to code in assembler. Even better is to
code the generator ‘in—line’ in the calling program to avoid the overhead of a
subroutine call, which is usually the greater part of the time spent in getting a ran—
dom number. The standard CDC FORTRAN function RANF causes the compiler
to produce in—line code, although the multiplier used by RANF is not the best.

Often a calculation requires n—tuples of random numbers, in which case it is
much more efficient to use a subroutine that returns n random numbers at a time
rather than calling a single generator n times, because of the overhead in the call,

Sometimes it is desirable to have exactly the same sequence of random numbers
in one calculation as you had in the previous calculation, and sometimes it is
equally important that the sequence be different. Many generators therefore offer
different ways of initiating the sequence. Most generators use a default starting
value (like RN32 above) and therefore always produce the same sequence unless
requested otherwise. Such generators often allow inputting and outputting the seed
value, so that at the end of a run the current seed value can be output, and rcad
back in at the beginning of the next run to continue the sequence (this is the case
with RN32). In this way, different sequences can be forced by inputting different
starting seeds.  Still other generators use ‘random’ starting seeds gotten by using
the time of day and date from the system clock and transforming that into an
appropriate integer. This removes ail control from the user and even adds some
element of truly random unpredictability.

6. QUASI-MONTE CARLO

The theoretical difficulties and practical success of pseudorandom numbers have
given rise to another type of sequence known as quasirandom. (In English usage,
‘pseudo~' means false, and ’quasi—' means almost, but in the technical context of
random numbers their meanings are somewhat different and much more precise.)
Quasirandom sequences are not even intended to appear random, but only to give
the right answer to the problem at hand. Thus they are more satisfactory since they
are not based on an illusion, but on the other hand they must in principle be taj—
lored to the problem at hand. Since this problem can often be reduced to multiple
integration, the tailoring becomes ready—to—wear in practice, and the theory appli—
cable to most cases.

6.1 THE QUASIRANDOM PHILOSOPHY

The concept of quasirandom numbers arises from the realization that the mathemat—
ical randomness of pseudorandom numbers is neither attainable in theory nor
necessary in practice, and it is more meanmgful to assure that the 'random’
sequence has the necessary properties to produce the desired result.  For example,
in multiple integration and in most simulation studies, each multidimensional point
or simulated event is considered independently of the others and the order in which
they appear is immaterial, That is, correlations between successive points {events) is



ENTRY RN320T{IX)
IX =1Y

RETURN

END

With the default seed shown, the first two numbers produced by these generators
are approximately:?

R! = 0.10791504.......
R2 = 0.58747506.......

5.2.8 Practical computing considerations

The usage of random number generators from FORTRAN programs requires some
special considerations of a practical nature. Perhaps the most important of these
stems from the fact that most pseudorandom generators, like the one above, are
coded as FORTRAN functions rather than subroutines. Strictly speaking, this is
not in accordance with the rules of FORTRAN, since random number generators
are not functions of their arguments only, they have ‘side effects’, namely they set
up the next number. Since they are functions, the FORTRAN compilers reserve the
right to optimize them out of existence by replacing each function evaluation by the
constant value of the function. For example

X = RANDOM(!) + RANDOM(I)
could be compiled as if it were
X = 2.0*RANDOM(1)

which is of course not the same thing at all. The well-known way around this is to
do something like

X = RANDOM(I) + RANDOM(I+ 1)

in order to fool the compiler into thinking the two calls have different arguments
and must therefore be called twice. Similar problems may arise when calls to ran—
dom number generators appear in DO-loops. Of course the proper way around
this is to use random number generators coded as subroutines rather than as func—
tions. This may be somewhat clumsier to use, but is much safer.

In many applications, the actual time taken to generate the random numbers
may be important. In earlier days this was usually the case, and it is still a point of
great pride among programmers to chop half a microsecond off the generation time,
even though it may be quite negligeable compared with the rest of the calculation.

? The numbers produced by different computers are exactly the same if represented
as binary fractions, but the exact decimal representation requires many more
digits than we reproduce here, and more than your computer is likely to give n a
printout.
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integer .becomes the seed for the next number. We get a floating—point
pseudorandom number from the seed by masking off the iower § bits to assure
exact floating—point representation of the integer, floating it, and multiplying the
result by the exact floating representation of 271,

Differences in FORTRAN and floating—point representations require slightly dif—
ferent implementation on different machines. We show here as examples the CDC
and IBM versions.

FUNCTION RN32(1IDUMMY)
C CDC VERSION, FJAMES, 1978
C IY IS THE SEED, CONS =2**-31
DATA 1Y/65539/
DATA CONS /16614000000000000000B/
DATA MASK31/17777777777B/
IY = IY * 69069
C KEEP ONLY LOWER 31 BITS
IY = 1Y .AND. MASK31
C SET LOWER 8 BITS TO ZERO TO ASSURE EXACT FLOAT
JY = 1Y .AND. 07777777777777777400B
YFL = JY
RN32 = YFL*CONS
RETURN
C ENTRY TO INPUT SEED
ENTRY RN32IN
1Y = IDUMMY
RETURN
C ENTRY TO OUTPUT SEED
ENTRY RN320T
IDUMMY = 1Y
RETURN
END

FUNCTION RN32(DUMMY)
C IBM VERSION, F.JAMES, 1978
C 1Y 1S THE SEED, CONS=2**-3]
DATA 1Y/65539/
DATA CONS/Z39200000/
1Y = IY *69069
C ASSURE LEFTMOST BIT ZERO (POSITIVE INTEGER)
IF (IY .GT.0) GO TO 6
IY = 1Y + 2147483647 + 1
6 CONTINUE
C SET LOWER 8 BITS TO ZERO TO ASSURE EXACT FLOAT
JY = (1Y/256)%256
YFL = JY
RN32 = YFL*CONS
RETURN
C ENTRY TO INPUT SEED
ENTRY RN32IN(IX)
1Y = IX
RETURN
C ENTRY TO OUTPUT SEED
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5.2.6 Good psendorandom generators

On a computer with integer length ¢ bits, The best simple multiplicative generator is
probably that proposed by Ahrens et.al. (1970), where the multiplier is

a = 22 *(J5-1)/2

(You may recognize the famous ‘golden section’ constant here.) In practice the con—
stant a is determined for a given value of the integer length t by multiplying 2 72
into a very precise value of  the golden section constant
(=0.6180339887498948482045868) and rounding to the nearest integer congruent
to 5 (mod 8). This will yield a gencrator with period 2“2 and good distribution
properties.

On CDC 6000, 7000, and Cyber machines, it is unfortunately not easy to take
advantage of the full 60—bit words, since integer multiplication is performed only on
48 bits (for compatibility with floating—point numbers which have 48-bit mantis—
sas). For such computers, the value t=48 is therefore appropriate, and the constant
a is:

a = (1170673633457725), = (43490275647445)10
which has a period of 2 = 70,368,744,177,664.

On IBM 370 and IBM—compatible computers, the 32-bit integer arithmetic
makes simple generators somewhat risky for large calculations. With only 31 signi—
ficant bits available, the maximum period is 229 or about 500 million. Since it is
dangerous to come anywhere close to exhausting the period (exhausting the period
would give a perfectly uniform distribution since all numbers would be generated) it
is not too difficult to imagine calculations where a better generator is needed. In this
case 1 recommend using the McGill University package ’'Super—duper’, available
from Prof. George Marsaglia, School of Computer Science, McGill University, P.O.
Box 6070, Montreal, Canada. The basic generator of this package combines (wo
methods to give a period as long as one would expect from a 64—bit machine.

5.2.7 Machine—independent pseudo—generators

It is sometimes convenient to have a random number generator which produces
exactly the same numbers on any computer. Assuming that we want floating—point
numbers between zero and one, we therefore choose the precision of the lowest—
precision machine we are likely to use, and simulate that precision on other compu—
ters. (On computers with longer words, the lower bits will be zero.) Such a genera—
tor will in general not be optimal on any machine, either in terms of period or of
speed, but we will show here that it can be implemented, in FORTRAN, on most
larger computers. It can then be used to test programs and compare and continue
calculations across changes of computer.

If we choose IBM 32-bit words as our minimum precision, such a generator,
called RN32 (CERN Program Library) has been implemented as follows. As
default starting integer use the value 65539 Multiply the previous (or starting)
integer ('seed’) by 69069. Keep only the lower 31 bits of the result. This 31-bit
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Maximum number of hyperplanes = ( d! 2 ) 17

no. of biis d=3 d=4 d=6d=10
t= 16 73 35 19 13
t= 32 2953 566 120 4]
t= 36 7442 1133 191 54
t =48 119086 9065 766 126
t = 60 190537672520 3064 290

Furthermore, it is usually the case that the points lie on more than one such set of
hyperplanes, making an extremely regular pattern rather than the ‘random’ distriby~
tion desired. [Of course it is true that any points must lie on some set of hyper—
planes, but truly random points would lie on a much larger number of such
planes.]| We can use the table above to decide the maximum dimensionality for
which we care to use such random numbers to perform, for example, numerical
integration, based on the word fength of our machine. For machines with long
words, the limit is probably beyond anything we would be likely to need, but with
integers of 36 bits and less, care must be taken.

Note that Marsaglia completely explained the effect observed earlier by Lach,
and which was ‘corrected’ by changing the multiplier of the generator. Lach was
observing the hyperplanes in three—dimensional space, and taking a slice in one of
the dimensions produced the bands when projected onto the other two dimensions.
Changing the multiplier may have increased the number of planes, and certainly
changed their orientation, so that the effect then appeared to go away. Lach was
using a computer with 36-bit ntegers, so that it should have been possible to get a
good distribution in only three dimensions.

52,5 The Ahrens—Dieter solution

About the same time as Marsaglia was discovering the hyperplanes, he and others
were investigating muitiplicative generators in more detail, and found ways to det—
ermine, for example, the exact distribution of pairs of numbers (Dieter, 1971), and
the autocorrelation function (Dieter and Ahrens, 1971). The result of all this work
is a good understanding of both the good and bad properties of such generators,
as well as how to find good multipliers. Dicter and Ahrens {1979) show that the
way around the Marsaghia hyperplane problem is to use compound multiplicative
congruential generators of the form:

r, ={ar_, +b r._,) (mod m)
which will increase the number of hyperplanes by a factor 2 W provided the con—

stants a and b are chosen carefully. The hyperplanes do not go away, but their
number may be increased arbitrarily by adding more terms as above.
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In practice one uses somewhat more complicated tests, based on more compli—
cated Ffunctions. These tests have names such as the runs test, poker test, €tc.
Some tests are felt to be more sensitive than others, bul since one does not in prin—
ciple know what kind of #non—randomness” to look for, it is not possible to mea—
sure the power of a test in any precise way, The most common tests are described
abundantly in the literature (e.g. Ahrens ct.al, 1970) and summarized in Knuth
1969,

Since there is an uncountably infinite number of possible functions that could be
applied to each of the possible sequences coming from a pseudorandom generator,
no generator can be “tested” thoroughly. The most interesting such function is just
the calculation for which the pseudorandom numbers are needed, and the {unk—
nown) correct answer to this problem provides yet another test of the generator —
indeed the only test we really care about. The philosophy of pseudo—Monte Carlo
could therefore be stated in these words: If a pseudorandom number generator has
passed a certain number of tests, then it will pass the next one, where the next one
is the answer to our problem. It is of course not known in general why it should
pass this next test, except for the fact that it is not known why it should not.

A somewhat different kind of test was used by J. Lach (1962, unpubtished) who
was suspicious because results using the IBM 709 pseudorandom generator pro—
duced fluctuations greater than expected. He simply piotted the random number dis—
tribution on a cathode ray display and observed the “non-randomness” by eye.
Taking pairs of numbers as (x,y) coordinates of points, no obvious correlations
were seen, but when triplets (x,y,z} were considered, and (x.y) were plotted only for
7<0.1, the resulting point distribution showed a structure of slanting bands, with all
the space betwecn the bands completely empty of points. The pseudorandom gen—
erator was later corrected by changing the multiplier so that the particular effect
observed by Lach disappeared, but what Lach had observed was later showed by
Marsaglia to be a defect inherent in all generators of this type (sce next section).

My personal feeling about testing is that it is best Lo avoid it through a deeper
theoretical understanding of the generator. [1n the case of the multiplicative con—
gruential generator, the important properties are now known exactly; see below.| If
testing must be done, 1 prefer visual tests of the type used by Lach, since these
tests not only are rather sensitive to the kinds of “non—randomness” we are inter—
ested in, but may alsc give some insight into the properties of the generator.

5.2.4  The Marsaglia effect

In his classic paper Random numbers fall mainly in the planes Marsaglia (1968)
finally brought some genuine understanding into the occult art of pseudorandom
number generation. He showed that if successive d-tuples from a multiplicative
congruential generator are taken as coordinates of points in d—dimensional space,
all the points will lic on a certain finite number of parallel hyperplanes, this number
always being not greater than a certain function of d and the bit-length of integer
arithmetic on the machine. We give some values of this function here:



I, = ar_, +b (modm)
The two gencrators have very similar properties and will be considered together,
For both generators, m is invariably chosen as 2\, where t is the number of bits in
the representation of an integer on the computer being used, so that in practice the
algorithm consists of multiplying two

numbers of t bits each, yielding a number of 2t bits, of which the lower (least sig—
nificant) t bits arc retained as the next ‘random’ number. These integers are then
converted to floating--point numbers in the range zero to one by dividing by m.

5.2.2  The early approach: maximum period

It turns out to be a relatively easy problem in number theory to give the conditions
for a congruential generator to attain the maximum period, which is generally of
length m/4. Early theoretical results therefore concerned primarily this aspect with
very little progress on other propertics. This gave rise to a large number of genera—
tors with long periods, which were then subjected to “tests for randomness”, and
the ones for which no “nonrandom” behaviour could be discovered were used.
Often these gencrators were later found to be unacceptable but continued to be
used by those who hadn’t yet stumbled upon the unfortunate properties. !

The nineteen—sixtics may be termed the ‘dark ages’ of pseudorandom generators,
characterized by an enormous number of articles (mostly unpublished) purporting
to show, on the basis of ‘tests’ as described below, that one pseudorandom genera—
tor was better or worse than another.

3.2.3  Testing pseudorandom generators

Since there was in the early days no good theory about the behaviour of pseudo—
random number generators, it was necessay to resort to "tests of randomness” in
order to certify a given generator as “good”. These tests usually consist of forming
some function a given string of pseudorandom numbers and comparing the value of
this function with the expected value of the same function of truly random num—
bers. For example, the simplest test would be to take the average of the first n
numbers from a pseudorandom generator, which should be close to 0.5, the expec—
tation of the average of truly random numbers uniformly distributed between zero
and one. The variance of the average for truly random numbers being n/12, the
square root of this quantity is the expected standard deviation, so we expect that
95% of the strings of n numbers will have an average within two such standard
deviations of 0.5. If our pseudorandom generator yields an average which falls
outside this range, we say that it fails that test at the 5% level. Of course even a
truly random sequence would fail such a test 5% of the time, but that is just too
bad.

' The best example of this is RANDU which was distributed by IBM with their
360 series and was found almost immediately to be very poor. One can still find
articles being published today by people just getting around to making this pain—
ful discovery.



a formula was used rather than a physical process. The theory outlined in chapter
2 is generally assumed to hold for Monte Catlo results calculated with pseudoran—
dom numbers as well as with truly random numbers.

Unfortunately, there is no way to generate such numbers, which are both truly
random and not truly random. This has not prevented people from using pseudo—
random sequences (often with considerable success), closing one eve to the theoreti—
cal impossibility of it all. In this chapter we discuss how this is done in practice.

5.2.1 From mid-squares to multiplicative generators

Perhaps the earliest pseudorandom number generator was that of Von Neumann
known as 'mid—squares’. Given a starting number of ¢ digits, the first ‘random’
number is the middle r/2 digits of this number. Then the first ‘random’ number is
squared, (forming another number of t digits), and the middle r/2 digits of this
square are the second ‘random’ number, etc. The digits may be decimal, octal,
binary, or in any other base. If the original number is chosen carefully, this method
can vyield a reasonably long string of numbers which appear random, but the pro—
perties of this generator, to the extent that they are known at all, are not very good,
and it is not used any more. First of all, this generator is characterized by a period,
since if any number reappears, the entire sequence from the first appearance to the
second will reappear. This is a rather general property of pseudorandom generators
including those commonly used today. Also, certain numbers reproduce themselves
immediately (for example zero), which means that those numbers can never appear
unless the period is one,

It may appear that the mid—squares method cannot possibly be very good
because it is not complicated enough. The naive approach then consists in
improving’ the unacceptable method by making it more complicated. An excellent
example of how one might do this is given by Knuth (1969, pp. 4—6). His
'super—random’ generator is so complicated that one could never hope to under—
stand its propertics, and turns out nevertheless to be very bad. The lesson to be
learned is that a simple generator whose properties (and weaknesses) are knowr, is
always to be preferred to a complicated generator of unknown properties. A corol—
lary of this lesson is that it is not easy to "improve” a bad pseudorandom genera—
tor by making it more complicated. Such an.exercise cannot add any true random—
ness, and usually serves only to shorten the period by using up several numbers to
produce one. Exceptions to this are the shuffling technique discussed below in con—
nection with guasi—random numbers, and the Dieter—Ahrens generator also dis—
cussed below,

Indeed the pseudorandom generator most widely used is even somewhat simpler
than mid-squares; it is the method attributed to D.H.Lehmer, known as multiplica—
tive congruential or linear congruential. Given a modulus m, a multiplier a, and &
starting value r,, the method generates successive pseudorandom numbers by the
formula:

r. = ar_, (modm)

A variation known as the mixed congruential generator requires in addition an
additive constant b:



an unbiased decision procedure must be found for the cases when the needle almost
crosses a boundary. Thirdly, we must ensure that the actual distribution of angle
and position of the needle is uniform. The angular distribution may be uniformized
by spinning the needie very fast as it is thrown, provided the surface is very flat
and of homogeneous friction properties. The distribution of needle position will not
be uniform. but may be expected to follow some Gaussian distribution about the
point where the thrower aims. In practice, one would determine the width of this
distribution experimentally and carry out a rather complicated correction of the type
performed by Frigerio et al as described above.

5.1.1  Bias removal technique

It often happens when generating truly random numbers, as in the example just
above, that the major problem is in determining the exact distribution {i.e., the bias
of the apparatus), whereas the ’truly randomness’ is guaranteed by the nature of
the physical process used. In these circumstances, a very useful trick to eliminate
the bias is the following:

Suppose we are given a truly random sequence of zeroes and ones, bul where
the probabilities P(0) and P(1) may not be exactly one—half. Using this original
sequence, we produce a second sequence in the following way: Consider pairs of
bits in the sequence, and if the two bits in the pair are the same, reject both bits; if
the two bits are different, accept the sccond bit (always rejecting the first of each
pair). The new sequence thus formed is guaranteed to have zeroes and ones with
equal probability as long as there was no correlation between the bits of the origi~-
nal sequence. This can be seen easily by calculating P/(0) and P%(1), the probabili-
ties of zero and one in the new sequence, in terms of P(0) and P(1), the original
probabilities.  Since a zero can only come from a one followed by a zero.
P/(0)=P(1)*P(0), and similarly P/(1)=P(0)*P(1). These probabilities must therefore
be equal no matter what P(0) and P(1} are. Unfortunately P(0) and P'(1) do not
add up to one, because the probability of rejecting a pair entirely is PX0)+ P 1).
which must be greater than or equal to one~half. In addition half the bits are lost
because a pair yields at most one bit, so the efficiency of the procedure is at most
25%, but it allows the use of a basic generator which is of unknown bias, as long
as this bias is nearly constant in time. (Any method using an explicit correction for
bias must also know the exact time—dependence of this bias.)

The efficiency of this method is easily seen to be P(0)*P(1), which is equal (o
P*(1-P), where P is either P(0) or P(1). This means that for heavily biased original
sequences. the efficiency is approximately equal to the probability of the less prob-
able bit.

5.2 PSEUDORANDOM NUMBERS

The random numbers most often used in real calculations are those known as
pseudorandom, which are generated according to a strict mathematical formula and
therefore reproducible and not at all random in the mathematical sense, but are
supposed to be indistinguishable from a sequence generated truly randomly. That
is, someone who does not know the formula is not supposed to be able to tell that



5. RANDOM AND PSEUDORANDOM NUMBERS

In principle, a random number is simply a particular value taken on by a random
variable {(which was defined above). However, in Monte Carlo studies, one often
uses the word ‘random’ with various other, quite different, meanings. Here it is usu—
ally applied to sequences of numbers which, once-they have been determined, are
not at all random in the statistical sense, but may have some properties which are
similar to the properties of a truly random sequence. To be precise one must dis—
tinguish three different types of sequences: truly random, pseudo—random, and
quasi—random. (The first two of these are described in this chapter, and the third in
the chapter on Quasi—Monte Carlo.)

Unfortunately, it is common to confuse the randomness properties of a sequence
with its distribution. This is unnecessary, since the two are quite independent: A
perfectly random sequence may have any distribution (uniform, Gaussian, etc.),
whereas a perfectly uniformiy—distributed sequence may be not at all random.

5.1 TRULY RANDOM NUMBERS

A sequence of truly random numbers is unpredictable and therefore unreproducible.
Such a sequence can only be generated by a random physical process, for example
radioactive decay, thermal noise in electronic devices, cosmic ray arrival times, etc.
If such a physical process is used (properly) to generate the random numbers for a
Monte Carlo calculation, there is no theoretical problem, since the theory autlined
above is sufficient justification, provided there is no physical defect in the appara—
tus.

In practice, however, it turns out to be very difficult to construct physical gener—
ators which are fast enough (onme needs typically hundreds of floating—point num—
bers per second) and at the same time accurate and unbiased. Faced with these
practical difficulties, very few large-scale calculations have been made using such
generators.

One important exception is the work of Frigerio et al (1975 and 1978} They
used a radioactive alpha—particle source and a high—resolution counter turned on
for periods of 20 msec., during which time they counted on average 24.315 decays.
Whenever the count was odd, they recorded a zero—bit, and when even a one—bit,
all written to magnetic tape. A careful correction was made to eliminate the bias due
to the fact that the probability of an odd count is not exactly one—half (the bias
could have been removed without even knowing this probability, using the method
given in the next subsection). Their apparatus yielded about 6000 31-bit truly ran—
dom numbers per hour. These numbers have been stored on magnetic tape, sub—
jected to a number of tests for randomness’, and used in Monte Carlo caiculations.
Copies of the tape, containing 2.5 million truly random numbers, are available from
the Argonne National Laboratory Code Center, Argonne, Illinois 60439.

To illustrate the practical problems of physical bias in truly random generators,
lct us again consider the Buffon needle experiment. First of all, the width of the
stripes must be constant and equal to the length of the needle to within the accu—
racy ultimately desired for the final result, which is not so hard if we only want one
or two figure accuracy, but will clearly prevent us from going much further. Also,



sense. (See Sobol 1979 for a simple and convincing example of this.) In the chapter
on quasi-Monte Carlo, we will define and discuss a more precise measure of uni—
formity (or non—uniformity) calied discrepancy, which will explain this paradox.

Furthermore, the volume of multidimensional space is always very big, so that
points are always far apart, which negates the very basis of quadrature rules.

4.3.1  The polynomial hangup’

Let us look more carefully at the theoretically fast convergence rate of high—order
quadrature rules. This is related to the ‘polynomial hypothesis” dear to the hearts of
quadrature experts. For low orders, it is hard to find fault with the polynomial
hypothesis; the zero—degree polynomial is certainly the simplest function and it is
reasonable to expect a good iritegration method to be able to integrate it exactly.
(Even Monte Carlo does that, by the way!) Similarly, a first—degree (straight—line)
polynomial naturally cormes next in the scale of complicatedness as perceived by the
human eye, but who is to say that a parabola is simpler or smoother than, for
example, a sine function or an exponential? Is there a Justification for seeking
methods that integrate exactly polynomials of degree r, when the function to be
integrated is not a polynomial?

We may seek such a justification in Taylor’s theorem. This theorem states that
under certain conditions any function can be expressed as a polynomial of degree r,
plus a remainder term. The conditions are that the function and all its derivatives
should be continuous; the coefficients of the polynomial are given in terms of these
derivatives evaluated at the point where the independent variable is equal to zero.
The usefulness of the theorem comes from the cases where the remainder term
becomes very small as r increases, but the theorem says nothing about when this
can be expected to be true.

Indeed, there is nothing special about the polynomial in this respect. Other theo—
rems give conditions under which general functions can be expressed as other infin—
ite series (e.g., trigonometric series, Fourier series) and conditions under which the
series can be truncated with a given remainder. The property that makes the Taylor
series special is that under very general conditions the higher—order terms can
indeed be neglected in the neighborhood gf zero (the point about which the expan—
sion is performed). Unfortunately this has very little to do with the macroscopic
properties of the function which are important for integration over a large region,
especially a multidimensional region which is always large.

In practice, polynomials are notoriously bad at approximating functions over
large intervals, so we should not be surprised that related quadrature rules some—
times give unsatisfactory results. Experience shows spline functions to be good at
approximating a wider class of functions, and although spline functions are piece—
wise polynomials, they are not polynomials, and indeed have discontinuous deriva—
tives of some degree at the knots. Integrating spline functions is of course eagy if
you know where the knots are, although Gauss rules generally fail without this
knowledge.



4.24  Adaptive multidimensional quadrature

Like non—adaptive quadrature, adaptive quadrature is much better developed in one
dimension than in many dimensions, since the problems mentioned above for mul—
tidimensional quadrature in general, clearly make adaptivity difficult too. Neverthe—
less, several attempts have been made, of which we will mention a few that have
been published. They appear to.be reasonably successful, at least for small dimen—
sionalities (up to 6).

1. Van Dooren and de Ridder (1976) have published an algorithm not too differ—
ent from Eriedman’s DIVONNE2 (1977), except that the former use multi—
dimensional extensions of one—dimensional Gauss rules instead of Monte
Carlo for the basic integration technique, and their subdivision of regions is
always into two equal parts.

2. Genz (1972) presents an algorithm especially interesting for its use of extrapo—
lation methods, but the multidimensional adaptivity does not seem to resuit
in a great improvement in efficiency.

3. Kahaner and Wells (1979) use an interesting technique based on simplices
rather than hypercubes. Their basic thesis is that the lack of good adaptive
quadrature procedures in many dimensions is mainly due to problems in
organization of multidimensional data structures. Their work is as much an
exercise in programming as numerical analysis, and it presents many inter—
esting ideas in both areas. It probably points in the direction where we can
expect the most significant advances. From a practical point of view, their
program is not of much interest since it is written in a language {(Madcap)
not generally available.

4.3 THE MONTE CARLO PARADOX

Some of the conclusions to be drawn from the comparison of Monte Carlo integra—
tion with numerical guadrature are somewhat surprising and call for deeper consid—
eration:

1. In one dimension, the perfectly ‘regular’ trapezoidal rule converges much faster
than the identical rule with randomly distributed points, but in many dimen—
sions, a random distribution leads to faster comvergence than the perfectly
regular grid.

2. Just to confuse matters further, the random distribution which is superior to
the regular distribution in many dimensions can nevertheless be improved
by making it more uniform, either by stratified sampling as we have already
seen, or through quasi—Monte Carlo which is discussed below.

The explanation of this paradox is that our intuitive feeling for what constitutes
uniformity’ in distribution, based on one—dimensional knowledge, is not quite right
for higher dimensions. For example, consider the projection of the point distribu—
tion onto one axis, for the hyperrectangular grid of points. Great spikes appear in
this projection whenever we come to a 'hyperrow’ of points, which no longer looks
very uniform; the projections of a random distribution are more uniform in this



4.2.3  Multidimensional rules

The situation is greatly improved if truly multidimensional quadrature rules are
used instead of product rules. Unfortunately, good quadrature rules are not known
for many regions, dimensionalities, and orders. The situation is well described in the
article of Haber (1970) and in the book of Stroud (1971}, of which we summarize
some of the more important results here.

As in one dimension, multidimensional formulae can be found which will inte—
grate exactly any polynomial of degree iess than or equal to some degree r. In
addition we may require the formulae to satisfy two important criteria:

1. That all the weights be positive. This is important in order to avoid numerical
instabilities arising from cancellation of Jarge terms of opposite sign, and
seems also to make the formulae more robust with respect to the validity of
the polynomial assumption.

2. That ali the points used lie within the region of integration. This seems such
an clementary requirement that one is surprised to discover that many for—
mulae in d dimensions do not possess it, even for convex regions.

If we restrict ourselves to formulae satisfying the above requirements, very few gen—
erally applicable formulac have been found. Even for the simplest region, the hyper—
cube, the only known formulae valid for all dimensionalities and even reasonably
close to the theoretical efficiency limit are of degree 2 and 3, as summarized in the
table below:

Degree r Best known n  n(Gauss)
2 2d + 1
3 2d 24
5 O(d), 39
not found
>3 ? [_r_i]_) ¢ 1 odd
2

We see that there exist low—order multidimensional formulae considerably better
than the Gauss rule, and in fact some higher—order formulae of comparable theoret—
ical efficiency are known, but they do not have all positive weights for all r. Stroud
has shown that a formula of degree r=5 exists, with n of the order of d° and posi—
tive weights, but to my knowledge no one has as yet found it.
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But suppose we actually try to apply a 10—point Gauss rule in 38 dimensions.
This requires at least 10°* function evaluations, which is clearly unfeasible. This
brings up two new points:

. The feasibility limit is the largest number of function evaluations we can
afford to make. Depending on the computer resources available, the feasibil—
ity limit will usually be between 10° and 10 points for functions which can
be evaluated reasonably fast. This limits the use of a 10—point Gauss rule
to 5 dimensions for someone with moderate computer resources, or 10
dimensions for someone with ‘unlimited’ computer resources. Fig. 4.1 shows
that, except for very low order rules, the feasibility hmit is reached long
before the crossover point where Monte Carlo converges faster than quadra—
ture, so that the theoretical convergence rates for high—order rules in high
dimensionalities will remain purely theoretical,

2. The growth rate is the smallest number of additional function evaluations
needed to improve the current estimate. Monte Carlo estimates can be
improved by adding a single point, but at the other extreme Gauss rule
estimates can only be improved by going to a higher—order rule, requiring
(m+1)¢ additional points, or by subdividing the space, which requires at
least 2m?¢ additional points even for the simpiest partitioning. In both cases
all the previous Gauss points must be thrown away.

One way to get around the problems of feasiblity limit and growth rate has been
suggested by Tsuda (1973). He uses a rule with far too many points actually to
evaluate, and then applies the standard Monte Carlo technique of sampling the
resulting terms randomly. He reports good resuits for this combination of guadra—
ture and Monte Carlo, but the reasons behind this success are not clear to me. It
could be that the use of points of a quadrature rule guards against any two points
being too close, and therefore ensures a certain uniformity of distribution even if
only a random subset of these points is actually used (this explanation was sug—
gested to me by J. Friedman),



sense that a quadrature formula for a square will not have the same properties
when applied to a circle.

The standard Monte Carlo technique for dealing with odd—shaped regions is to
embed the region in the smallest hyperrectangle that will surround it, and integrate
over the hyperrectangle, throwing away the points that fall outside the inner region.
This leads to some inefficiency of course, due to the rejected points, but is capable
of dealing in a straightforward way with essentially any finite region. Such a gen—
eral technique does not work for numerical quadrature methods, since it introduces
discontinuities on the boundary of the inner region, thus destroying some of the
nice convergence properties.

The ability of Monte Carlo to integrate over complicated multidimensional
regions (albeit not always very cfficiently) is one of its most valuable properties,
since it is often the only known technique capable of handling such problems. Pur—
ists may be right in saying that this only expresses our ignorance of better meth—
ods, but for people with real problems to be solved, it does represent a way out.

4.2.2 Extension of one—dimensional rules

For rectangular regions, which are after all the most common, multidimensional
quadrature rules can be formed by straightforward extension of one—dimensional
rules. Such rules, known as product rules, generally preserve the properties of the
one—dimensional rules of which they are extensions, but only at the cost of increas—
ing the number of points exponentially with the dimensionality. Thus a product rule
requiring n function evaluations in one dimension, will require n’ evaluations in two
dimensions, n’ in three dimensions, and so on. This slows down the effective con—
vergence rate in d dimensions by a factor 1/d in the exponent as follows:

Uncertainty
as a function of in one ind
number of points n  dimension  dimensions

-1/2 —1/2
Meonte Carlo n n

-2 -2/d
Trapezoidal rule n n

—4 -4/d
Simpson’s rule n n

-2m+1 —{2m—1)/d
Gauss rule n n

Since the convergence of Monte Carlo is independent of dimensionality, there is
always some d above which Monte Carlo converges faster than any fixed quadra—
ture rule. Thus Simpson’s rule in more than & dimensions converges more slowly
than Monte Carlo, and a 10—point Gauss rule converges more slowly than Monte
Carlo in more than 38 dimensions, even assuming that the function has the nice
continuity properties required by these higher—order rules.



4.1.3  Adaptive quadrature

The quadrature rules described above are all fixed—point rules, that is the points
and weights are fixed in advance. Adaptive quadrature, on the other hand, is an
attempt to attain a prescribed accuracy by adapting the quadrature method to the
function. The most common class of adaptive methods consists in using a fixed—
point rule and an error—bound estimate, then dividing the interval into two or more
pieces, usually of equal length, if the error—bound estimate exceeds the required
value. The same procedure is then applied recursively to each subinterval until all
subintervals satisfy the error bounds, or until the sum of all estimated uncertainties
reaches an acceptable level. The most common strategies are compared by Malcolm
and Simpson (1975).

Most computer centres offer one or more ‘automatic integration’ programs based
on adaptive quadraturc of the above type. These programs differ mainly in the fix—
ed—point rule used and in the method of obtaining an estimate of uncertainty
which, as we have seen, is not always straightforward.  Because of problems in
obtaining reliable estimates of uncertainty, the better programs aim for a certain
amount of overkill, but may be unreliable nonetheless. For example, a spline func—
tion which appears smooth to the eye. has discontinuous higher—order derivatives
which tend to produce poor results with high—order Gauss rules and consequently
adaptive quadrature based on them, Other problems with adaptive quadrature are
discussed by Lyness and Kaganove (1976).

4.2  MULTIDIMENSIONAL QUADRATURE

Numerical quadrature formulas are based on the study of erthogonal polynomials,
which are well understood in one dimension. For higher dimensionalities the
mathematical basis is not as well understood, and practical studies are much more
recent and less extensive. We resume here briefly the current situation.

4.2.1  Multidimensional region boundaries

In one dimension, only three ‘different’ regions of integration need to be considered:
finite, semi—~infinite, and infinite. Choosing one particular interval in each class, all
other intervals can be mapped onto one of the three by a linear mapping. which
conserves all the convergence properties of any integration method. In general in
this paper, we consider only the finite interval. Simple non—linear transformations
are avajlable to transform semi—infinite and infinite intervais into the unit interval,
and this is a standard way to perform integration over infinite intervals, but these
transformations do modify the properties of quadrature rules. For Monte Carlo
integration, these transformations do not effect the n—dependence of the conver—
gence, but the function whose variance determines the uncertainty of the estimate is
of course the transformed function.

In more than one dimension, the situation is quite different. Already in two
dimensions, and restricting ourselves to finite regions, there are an infinite number

of “different’ regions which cannot be transformed into each other by linear trans—
formations. For example, a circle is fundamentally different from a square, in the

RN T TR R I TR ST P VIR



tribution to the error will come from the second derivative (constant curvature)
terms. This error is proportional to the sagittas of the curve segments over each
band, and these sagittas will each be proportional to the square of the distance
between successive points. Therefore if the function is evaluated at n equaliy—spaced
points, the uncertainty on the integral should be proportional to 1/n’for large n.

Recall that for Monte Carlo integration, the convergence was only like the
square root of n, so that where increasing n by a factor of 100 only buys you one
more decimal digit with Monte Carlo, you get four digits with the trapezoidal rule.
This is especially interesting because the two methods are so similar. Indeed the
methods are identical except that points are chosen equally spaced in one case and
randomly in the other, and the randomness apparently causes us to lose a factor of
four in convergence rate (decimal digits per factor of 100 increase in n). Before see—
ing what randomness gives us in return for this disastrous convergence rate, let us
consider still more impressive convergence rates of other quadrature methods.

4.1.2  Higher—order quadrature

By choosing the points and weights appropriately, it is possible to integrate exactly
polynomials of higher degree and therefore achieve higher convergence rates. The
next step after the trapezoidal rule is Simpson’s rule which requires three points on
a given interval and integrates exactly all polynomials of degree three. The highest
possible degree for a given number of points is achieved with Gauss quadrature
formulas which integrate exactly all polynomials of degree 2n—1 (or -less) with n
carefully chosen points and n corresponding weights. The numerical values of these
points and weights, as well as the basic properties of Gaussian quadrature, are
given by Stroud and Secrest (1966).

The theoretical convergence rate for Gauss quadrature is enormously higher
than for Monte Carlo, but some of its other properties are not so nice. The uncer—
tainty is not easy to estimate, error—bound formulas being given in terms of the
values of higher derivatives of the function over the interval, which are much harder
to calculate than the integral itself, so are essentially useless in practice. In addition,
the validity of the error~bound formulas depends on continuity properties of the
function and its derivatives, which may not be known. In practice, one is forced to
use ‘overkill’, aiming at a precision much higher than that required. and uncertain—
ties, if estimated at all, are usually estimated by comparing the results of more than
one different Gauss rule on the same interval. Unfortunately, the nature of these
rules is such that the best way to combine the results of two different Gauss rules
over the same interval is to throw away the lower—order result and keep only the
higher. Practical experience indicates also that there is no advantage in going to
extremely high orders, and that beyond about 12 or 13 points it is usually better to
split the interval and apply a lower—order rule several times. This indication of the
breakdown of the polynomial philosophy is discussed below.



The actual integration need not be performed using Monte Carlo. Qther methods
are offered as options in the program, but in practice this choice does not seem to
make much difference in the accuracy obtained, and Monte Carlo is usually used
because it gives a reasonably accurate uncertainty estimate.

4. COMPARISON WITH NUMERICAL QUADRATURE

In order to decide whether a Monte Carlo method should be applied to a given
problem, it is reasonable to see how it compares with other available methods. In
the case of integration, alternative numerical techniques have been the subject of
extensive studies for centuries, and the widespread use of computers has lead to
considerable practical experience in this field. The current chapter is a brief review
of the properties of numerical quadrature as it is commonly practiced today, for the
purposes of comparison with Monte Carlo. This is not intended to be a complete
or detailed account of any quadrature techniques, but is intended only to give the
properties of most use in deciding whether to use quadrature at all.

4.1 ONE-DIMENSIONAL QUADRATURE

Unless otherwise stated, numerical quadrature is always done in one dimension.
Some of the reasons for this will appear later, but certainly a prime motive for stick—
ing with one dimension is the beauty and elegance of the methods that have been
developed for one dimension.

All quadrature formulas approximate the value of the integral by a lfinear combi-
nation of function values:

n
I, = I w, flx)
i=1

Different formulas correspond to different choices of the points x and the weights
w. Crude Monte Carlo could be considered a quadrature formula with unit weights
and peints chosen uniformly but randomly.

4.1.1  Trapezoidal rule

This simplest of all rules consists of dividing the total interval inte n subintervals,
and approximating the integral over each subinterval by the area of the trapezoid
inscribed under (or over) the curve to be integrated. The sum of these approxima—
tions reduces to the average of the n+1 function values multiplied by the length of
the interval (in fact the end—points must be added with a factor one—half, but this
important detail can be considered as a boundary correction and is not relevant to
our arguments here). For large n, we can think of the function expressed as a Tay—
lor series expansion about each of the n points; then the constant terms and the
first derivative (linear) terms will be integrated exactly by the trapezoidal rule, and
to the extent that higher order terms are of decreasing importance, the largest con—



for example that the function has a narrow spike, and that on the first step no
point falls in the spike. Both the integral and its variance will be estimated tco low.
Then on the next step, a point hits the spike; this time the estimates are both about
right, but since the variance is large the value gets a low weight and the overall
estimate remains too low. The program never recovers from such an incident since
it never forgets an early value even if later experience shows it to be a bad estimate.

3.4.2 Friedman’s adaptive importance sampling

A more recent program of J. Friedman [unpublished, superceded by his more
recent effort described immediately below] uses a quite different approach. The pro—
gram is divided into an exploratory phase and an evaluation phase, and none of
the function values found in the exploratory phase are used explicitly in the evalua—
tion. This avoids the bias due to the way the exploratory points are chosen, at a
modest cost in efficiency. The exploratory phase is used to establish a control func—
tion which will be used for the importance sampling of the evaluation phase. The
control function is a sum of Cauchy (Breit—Wigner) peaks, whose positions and
shapes correspond to those of the function to be integrated, as determined respec—
tively by a peak search using a function minimizing routine, and an eigenvector
analysis of the covariance of the function around each peak. Cauchy—shaped peaks
are used because they tend to zero more slowly than Gaussian peaks, helping to
avoid the instability problem mentioned above.

Although this program is an improvement over RIWIAD for maost functions, it
also has several drawbacks in practice, and is unsuitable for functions which cannot
be approximated by a small number of peaks.

3.4.3  Friedman’s DIVONNE?2 with recursive partitioning

A more recent offering of J. Friedman, called DIVONNE2 |Friedman, 1977a and
bl represents a synthesis of the ideas seen to be most valuable in the above pro—
grams, together with some more modern ideas in multidimensional data structures.
It consists of two separate programs, the first of which performs a recursive multi—
dimensional partitioning (stratification) of the function parameter space, and the
sccond does a stratified—sampling Monte Carlo integration based on this partition—

ing.

The goal of the partitoning is to produce subvolumes in which the range of
function values, as determined by function minimization techniques, is as small as
possible. The partitioning program retains the drawback of RIWIAD that partition
boundaries must be parallel to the parameter axes, but since the partitioning is
recursive (only one sub—volume is split in two at each step, not a whole row), the
algorithm eventually tends to liberate itself from the orientation of the axes.

The partitioning algorithm has other applications than integration, and can be
used, for example, in conjunction with & specially—designed random number genera—
tor to generate points in the parameter space distributed according to the function
(see the section below on generating random numbers according to empirical distri—
butions).



Suppose that it is known that {x) is a monotonically increasing function of x.
Then choose x; randomly and independently as usual, uniformly distributed bet—
ween the integration limits (say O to 1), but instead of forming the sum of f(x ), we
take one—haif of the sum of {f(x,)+f{1-x ). Then each time x . is small, resulting in
a small value of f{x,), I-x, and thus f{1—x ) will be large, and vice-versa. The partial
sums {f(x,)+f(1—x,)}} will therefore be more constant than the individual function '
values, and have a lower variance. Looked at in another way, we are taking the
average of the estimate of the integral of f{x) and the estimate of the integral of
f{1—x) using the same points x, and since these two functions are highly (negatively)
correlated, the variance of the sum is less than the sum of the variances.

3.4 ADAPTIVE VARIANCE~-REDUCING TECHNIQUES

With the possible exception of uniform stratification, all the variance—reduction
methods described above require some advance knowledge of the behaviour of the
function, and if misapplied may easily lead to a degradation of the Monte Carlo
efficiency rather than an improvement, not to mention the additional labour factor
involved in the application of the variance-reduction. A natural extension is toward
adaptive techniques which learn about the function as they proceed, preferably
requiring no a priori knowledge about the function. Similarty—inspired techniques
abound in numerical quadrature where it is probably safe to say that most auto—
matic function integration is done using adaptive methods. Truiy adaptive methods
for Monte Carlo integration are less common, perhaps because they are rather diffi-
cult to realize (and easy to misinterpret). We shall consider three examples which
should serve to illustrate the problems involved and ideas that have proved to be
useful. The programs I shall describe here are all designed for multidimensional
integration of general functions, especially badly—behaved functions with spikes and
large variances.

3.4.1  Sheppey and Lautrup’s RIWIAD

The program RIWIAD of Sheppey and Lautrup is one of the earliest to be used
with success on difficult multivariate functions on the hypercube. It first divides the
full hypercube evenly into a number of subhypercubes and estimates the integrai
and its variance in each hypercube by crude Monte Carlo {uniform stratification).
Based on the values found in each subvolume, it then adjusts the boundaries to
form new hyperrectangles such that subvolumes are smaller where the function is
larger, and the process is continued. At each step, an estimate of the integral and
its uncertainty is made in each subvolume, and the interval boundaries are modified
to improve the next stratification. A running weighted average of the integral esti—
mates and uncertainty estimates is maintained, and the procedure stops when the
desired uncertainty is achieved.

RIWIAD has several drawbacks. The stratification boundaries are always paral-
lel to the original parameter axes and always run along the whole length of the
hypercube, dividing all the volumes through which they go, even if the previous
results indicated that some of these subvolumes did not have to be divided. Worst
of all, the weighted average of partial results produces a bias due to the correlation
between the estimate of the expectation and the estimate of the variance. Suppose,



3. It is unstable in the sense that if the function g becomes very small, /g
becomes very large and in general its variance also. In particular, if g goes
to zero somewhere where f is not zero, V(f/g) may be infinite, and the usual
technique of estimating the variance from the sample points may not detect
this fact if the region where g=0 is small. It is therefore dangerous to
choose functions g which go through zero, or which approach zero quickly
{(such as Gaussian functions).

On the positive side, importance samphing is the only general method for remov—
ing infinite singularities in the integrand f, by using a sampling function g with a
similar singularity in the same place.

3.3.3  Control variates

The control variate method is similar to importance sampling in that one again
secks an integrable function g which approximates the function to be integrated f,
but this time the two functions are subtracted rather than divided. Mathematically,
this technique is based on the linearity of the integral operator:

[fodx = §10xg(x) dx + § g(x)dx

Now if the definite integral of g over the entire interval is known, the only uncer—
tainty comes from the integral of (f-g), which will have a smaller variance than fif g
has been chosen carefully.

The method of control variates is more stable than importance sampling, since
zeroes in g cannot induce singularities in (f—g). Anather advantage over importance
sampling is that the integral of the ‘approximating function’ g need not be inverted
analytically.

3.3.4  Antithetic variates

Usually Monte Carlo calculations make use of random numbers (points) which are
independent of cach other, at least i principle. The method of antithetic variates
deliberately makes use of correlated points, taking advantage of the fact that such
correlation may be negative as well as positive. We recalt from (2.2) that the vari—
ance of the sum of two function values ' and {” 1s just the sum of the individual
variances when the random points where the function is evaluated are chosen inde—
pendently, but that in the general case an additional term is present:

V(E+17) = V(E) + V() + 2 cov(f )

If we can arrange to choose points such that f and ” are negatively correlated, a
substantial reduction in variance may be realized. This requires knowledge of the
function T, and it is not easy to give general methods for accomplishing this nega—
tive correlation. Hammersley and Handscomb 11964, pp. 60—65] discuss this in
some detail and give further references. For our purposes it will suffice to give a
simple example to sce how the technique works in general.

W o T



3.3.2  Importance sampling

We have seen that a large variation in the value of the function f leads to a large
uncertainty in the Monte Carlo estimate of its integral. Conversely, Monte Carlo
calculations will be most efficient when each point (event) has nearly the same func—
tion value (weight). This can be arranged by choosing a large number of points in
regions of the sampling space where the function value is largest, and compensating
for this overpopulation by reducing the function values in these regions. In this
way the reweighted funcion values become more nearly constant and the effective
variance is reduced.

Mathematically, importance sampling corresponds to a change of integration var—
iable:

fx)dx —> {f(x) / 2(x)} dG(x)

Points are chosen according to G(x) instead of uniformly, and f is weighted
inversely by g(x) = dG(x)/dx. The relevant variance is now V{f/g), which will be
smail if g has been chosen to be close to f in shape.

To apply importance sampling to a function f, a function g must be found such
that:

1. g(x) is a probability density function; that is, it is everywhere non—negative
and is normalized so that its integral over the sampling space is unity.

2. G(x}, the integral of g, is known analytically. This is an integrated distribution
function, which increases monotonically as a function of x, from zero to
one.

3. Either the function G(x) can be inverted (solved for x) analytically, or, alterna~
tively, a g—distributed random number generator is available.

4. The ratio f(x)/g(x} is as nearly constant as possible, so that the variance V(f/g)
is small compared with V(f),

Importance sampling then proceeds as follows: Choose values of G randomly and
uniformly between zero and one; for each G, solve for X, and evaluate f{x)/g(x), tak—
ing the sum of these ratios as the result.

Although importance sampling is undoubtedly one of the most basic and useful
Monte Carlo techniques, it suffers in practice from a number of drawbacks:

1. The class of functions g which are integrable and of which the integral can be
inverted analytically, is small: essentially the trigonometric functions, expo—
nentials, and polynomials of very low degree, and some combinaticns of
these. Of course the inversion can be done numerically, but this is usually
stow and somewhat clumsy or else inaccurate.

2. True multidimensional importance sampling is extremely clumsy for all but the

simplest functions, so that it is usually used one-dimension—at~a—time in
multidimensional problems.
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I = [ fluydu
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The splitting up of the integral into pieces is a common technique in adaptive num—
erical quadrature, but the properties of this technique in the framework of Monte
Carlo integration are somewhat different. The technique consists, in the general
case, of dividing the full integration interval (or space) into subintervals (subspaces),
and choosing n; points in the jth subinterval, whose length (volume) we will denote
by {jl. Then instead of adding the contributions from all points directly, partial
sums are formed over each interval, and the partial sums are added, weighted pro—
portionally to {j} and inversely to n ;. This yields a result with the variance:

L 1 2
2= T—— [fx)}dx—- EZ— | Rx)dx
jon; 4t iony (U

which is of course just the sum of the variances of the individual pieces. If the
intervals {j} and the numbers of points n, are chosen carefully, this can lead to a
dramatic reduction in the variance compared with crude Monte Carlo, but it can
also lead to a larger variance, so something must be known about the function in
order to use this technique most advantageously.

Suppose we don't know anything about the function and simply divide the space
into equal volumes {j}, choosing in each volume equal numbers of points n ; (uni—
form stratification). It is easily verified from the above formula, using the triangle
inequality, that uniform stratification cannot increase the variance, and will in gen-
eral decrease it if the expectation of the function is different in the different subre—
gions. In particular, if the stratification is into just two equal regions {1} and {2},
the improvement in variance is:

1 2
D(s?) = —|[ f(x)dx - [ fx)dx
nli1} {2} I

Since this cannot be negative, uniformization by uniform stratification can be seen
to be a safe method, but the improvement in variance may be arbitrarily small.

In real calculations, additional complications may arise. In many-dimensional
integration, for example, it may not be at all straightforward to divide the integra—
tion region into subregions of known volume. Computational overheads in time and
memory space may also be prohibitive.



Let us therefore perform this integration using crude Monte Carlo instead of the
hit—or—miss variety, by straightforward application of the method of chapter 2,
choosing randomly values of a and averaging the values of }cos(aj. It is easily veri—
fied that this results in a standard deviation smaller by a factor of 0.82. This is a
general result: Crude Monte Carlo is always more efficient than hit—or-miss Monte
Carlo, since hit~or—miss can be considered as crude Monte Carlo on a step—func—
tion taking on only values zero or one, and of all functions bounded between zero
and one with a given expectation, the step—function has the largest variance.

Another way of looking at the comparison between crude and hit—or—miss is the
following: For a given angle a , the probability of a hit is |cos(a1. Instead of finding
the expectation of this value by direct averaging (crude Monte Carlo), we take it as
the probability of actually generating a hit. In order to make a hit with probability
!cos(aj, generate another random number x, 0<x<1, and call it a hit whenever
x<|cos(a)’. This is less efficient, but it does mean that all the values entering into the
average are equal to one {or zero), which may be advantageous in some situations.
In many practical calculations it may correspond to using ‘unweighted’ rather than
‘weighted’ events, by taking the weight as the probability of accepting the event. In
terms of pure Monte Carlo efficiency, this unweighting procedure is always disad—
vantageous, but it may improve the efficiency of other parts of the calculation, as
we shall see later,

3.3 CLASSICAL VARIANCE-REDUCING TECHNIQUES

From the results of chapter 2, the square of the uncertainty on a Monte Carlo
integral is:

2 = V(/n

This uncertainty can be decreased by increasing n, but this improves (converges)
very slowly. Another way is to try to decrease the effective variance V(f). We have
already seen one example of changing the variance in comparing crude with
hit—or-miss Monte Carlo. In this section we introduce the most important techni—
ques for variance—reduction.

3.3.1  Stratified sampling

We may feel intuitively that the reason why Monte Carlo integration has such a
large uncertainty is that the points are chosen unevenly, and that if the points were
more uniformly distributed the fluctuations would be smaller. Intuition is not
always right as we shall see in chapter 4, but there is at least one way to make the
point distribution more uniform which we can show will produce in general an
improvement in the variance. Since it is a special case of a more general technique
of controlling the distribution of points, let us first present the general technique.

Mathematically, stratified sampling is based on the fundamental property of the
Riemann integral:



These uncertainties are untolerably high compared with those of almost any other
method of calculating m. In addition, physical biases are difficult to eliminate, as
will be discussed below in connection with the generation of truly random numbers.
We can therefore conclude that Buffon’s needle represents an amusing exercise and
a good example of the application of the Monte Carlo method in an unexpected
domain unrelated to stochastic phenomena, but that it should not be used in prac—
tice to calculate 7. Now let us see how to improve upon it, still within the general
framework of the Monte Carlo methoed.

3.2 INTEGRATION: CRUDE MONTE CARLO

Consider doing the Buffon needle calculation on a computer. We would choose a
random angle a and a random distance x from the edge of the stripe pattern along
the direction perpendicular to the stripes (the outcome is clearly independent of
translations along the direction of the stripes). On these (a,x} axes, Figure 3.1
shows the region corresponding to 2 hit, namely the area between the a—axis and
the curve cos(a). The calculation is equivalent to the integration of cos(a).

=

0 a T2

Figure 3.1: Buffon’s needle as an integration problem.



3. FROM BUFFON’S NEEDLE TO VARIANCE-REDUCING TECHNIQUES

In this chapter we present one of the earliest real Monte Carlo calculations, that of
Buffon’s needle, and examine some of its properties. We will see that its most
important and worst property is its slow convergence (low efficiency}). We then pre—
sent a series of techniques known collectively as ‘variance~reduction’, designed to
improve this efficiency.

3.1  BUFFON’S NEEDLE: HIT-OR-MISS MONTE CARLO

Although it is hard to imagine nowadays doing Monte Carlo calculations without a
high—speed computer, the technique was first investigated and used long before the
existence of electronics. One such early calculation known as Buffon's needle
[(Buffon, 1777] was used to calculate the value of 7. It is a good example of the use
of the Monte Carlo Method to solve a problem which has no immediate statistical
interpretation and which we are accustomed to attacking with more traditional
mathematical tools.

The ‘calculation’ proceeds as follows: Lay out on the floor a pattern of parallel
lines separated by a distance d (the stripes of an American flag will do). Repeatedly
throw ‘randomly’ a needle of length d onto this striped pattern. Each time the nee—
dle lands in such a way as to cross the boundary between two stripes, count a ‘hit’,
When the needle does not cross a boundary, count a ‘miss’. After a given (large)
number of tries, estimate z by twice the number of tries (hits + misses) divided by
the number of hits.

The above recipe is based on the fact that the probability of a hit is 2/z. This
can be calculated very easily as follows. Let the angle between the needle and the
perpendicular to the stripes be equal to a, then the projection of the needle onto
this perpendicular is of length d|cos(aj, and the distance between stripes is d. For a
given angle a, the probability of a hit is clearly the ratio of these two lengths,
dlcos(aj/d = lcos(aj. Since all angles are equally likely, the average value of Icos(aj
can be calculated by integrating kos(aj over its range and dividing by the range. By
symmetry it is sufficient to integrate over one quadrant, say from 0 to n/2, where
the integral is just one, and the probability is therefore 2/7.

Estimating this probability by the actual ratio of hits to random tries is called
hit~or—miss Monte Carlo and is in general the least efficient Monte Carlo method.
Let us caiculate the expected accuracy after n tries. The number of hits follows a
binomial distribution with expectation np (where p is the probability of a hit, 2/7)
and variance np(l-p) [Eadie et al., 1971, p. 44]. The variance of 2/7 is therefore
p(1-p)/n, and the standard deviation is the square root of this. Converting this to
the standard deviation on 7 gives 2.37/,/n. (We have to know 7z to calculate this
result, but it could also be estimated from the data). This means that the uncer—
tainty on the value of r is:

after 100 tries: .2374
after 10 000 tries: 0237
after 1 000 000 tries: .0024



guishable from a true Gaussian by eye, except for the extreme tails which are of
course of finite length whereas the true Gaussian tails go to infinity in both direc—
tions. The area under these tails is extremely small, so the discrepancy in probabii~
ity content is negligeable for many applications, but care must be taken since the
tails may be the most important feature.

Since the expectation and variance of the uniform distribution are respectively
1/2 and 1/12 (by straightforward calculation from the definitions of expectation and
variance), we have:

E(R,) =02 and VR, ) = n/12

Usually we want a standard Gaussian distribution, that is, with mean zero and var—
iance one. We therefore take:
R, —1n/2
—>  N(0.1)
n/12

A convenient choice for a practical Gaussian random number generator is n=12,
which reduces simply to R,,—6. The properties of this generator will be discussed
below in chapter 7.

2.7 RESUME:MATHEMATICAL PROPERTIES OF THE MONTE CARLO
METHOD

Let us consider again (2.3), where the left-hand side is the n—point Monte Carlo
estimate of the integral on the right—hand side, the u; being truly random numbers
uniformly distributed between the integration limits a and b. The mathematical
properties of this estimate are rather general properties of numerical results of
Monte Carlo calculations, which we resume here:

1. If the variance of f is finite, the Monte Carlo estimate is comsistent that is, it
converges to the true value of the integral for very large n.

2. The Monte Carlo estimate is unbiased for all n, that is, the expectation of the
Monte Carlo estimate is the true value of the integral. This follows directly
from the linearity of the expectation operator.

3. The Monte Carlo estimate is asymptotically Normally distributed (approaches
a Gaussian density}).

4. The standard deviation of the Monte Carlo estimate is given by o= V({)/\n.
This result is true for all n, but is only useful insofar as the estimale is
Gaussian—distributed (true only for large’ n).



Figure 2.1: Distributions of sums of uniform random numbers compared
with the normal distribution. (a) R, MR, (@R, (d R,



2.6 THE CENTRAL LIMIT THEOREM

Whereas the law of large numbers tells us that the Monte Carlo estimate of an
integral is correct for ‘infinite’ n, the central limit theorem tells us approximately
how that estimate is distributed for large but finite n. This very important theorem
says essentially that the sum of a large number of independent random variables is
always normally distributed (i.e., a Gaussian distribution), no matter how the indi—
vidual random variables are distributed, provided they have finite expectations and
variances, and provided n is ‘large enough’. How large n has to be depends of
course on the individual distributions, but in practice the convergence (o the Gaus—
sian distribution is surprisingly fast, even when the underlying distributions are, for
example, uniform, as we shali see in an example in the following section.

The Gaussian distribution is completely specificd by giving its expectation a and
variance s%. We denote by N(a,s?) the distribution whose density is Gaussian with
mean a and variance s*:

I —(x—a)?/2s

flxy = e

sy/2m

we can complete the statement of the Central Limit Theorem by giving the expecta—
tion and variance of the (Gaussian) distribution resulting from summing a (large)
number of independent random variables. This expectation and variance will of
course depend on the expectations and variances of the individuat distributions and
can be calculated immediately using (2.1} and (2.2). Let the n independent random
variables x, have distributions with finite expectations ¢ and variances v, Then
S=Zx, will have expectation E(S}=Ze¢. and variance V(S)=Zv . This is an exact
result even for finite n, which follows from (2.1) and (2.2). The fact that the distri—
bution of S is asymptotically Gaussian is the important part of the theorem which
enables us to turn our knowledge of E(S) and V(S) into statements of probability
about the value of S for a given trial.

2.6.1  Example: Gaussian random number generator

The Central Limit Theorem allows us to comstruct a Gaussian random pumber
generator, given any other kind of random number generator, simply by taking
sums of random numbers. Let us see how this works in practice, using a uniform
random number generator which we assume for the moment to be given. We will
denote the sum of n uniform random numbers as R , so that R, will be a random
number distributed uniformly (between zero and one). Then R, will be distributed
as in Fig. 2.1(b), that is with a density function which is a triangle. This kind of
distribution is familiar to gamblers using dice, where the outcome is the sum of two
numbers uniformly distributed between one and six. The extreme values of the sum
(2 and 12} are the most unlikely, and the middie value (7) is the most probable. R;
is distributed as shown in Fig. 2.1(c), that is a parabolic spline function with knots
at 1 and 2 (that is, three different parabolas joined at the points x=1 and x=2,
with the first derivative continuous at these points), which is beginning to look like
the well=known bell-shaped Gaussian curve. R, is a cubic spline function, and
higher sums are higher—order spline functions which approximate more and more
closely the Gaussian distribution. After Ry or R, the distribution is almost indistin—

_6_



24 THE LAW OF LARGE NUMBERS

The law of large numbers concerns the behaviour of sums of large numbers of ran—
dom variables. Let us choose n numbers u; randomly with probability density uni—
form on the interval from a to b, and for each u; evaluate the function flu ). This
law says that the sum of these function values, divided by n, will converge to the
expectation of the function f. That is, as n becomes very large, ‘

l n i b
— I flu,) —> { flwydu (2.3)
n i=] (b—a) a

In statistical language, the lefi—hand side of (2.3) is a consistent estimator of the
integral on the right—hand side, since (under certain conditions) it converges to the
exact value of the integral as n approaches infinity. The ‘certain conditions’ involve
the behaviour of the function f, since it must of course be integrable, and we will
generally require that it be everywhere finite and at least piecewise continuous (it
may have a finite number of discontinuities in the interval under consideration).

Since the left—hand side of (2.3) is just the Monte Carlo estimate of the integral
on the right-hand side, the law of large numbers can be interpreted as a statement
that the Monte Carlo estimate of an integral is, under ‘certain conditions’, a consis—
tent estimate, i.c. it converges to the correct answer as the random sample size
becomes very large.

2.5 CONVERGENCE

It is worthwhile discussing at this point the meaning of convergence in the statistical
context, since it is considerably more complex than the more familiar convergence
of calculus. We recall that in calculus, the sequence {A} is said to converge to B if
for any arbitrarily small positive quantity J, an element of {A} can be found such
that all the succeeding elements of {A} are guaranteed to be within & of B.

In the statistical context, the ’‘guarantee’ must be replaced by a statement of
probability, so that the corresponding definition becomes: A{n) is said to converge
to B as n goes to infinity if for any probability P {0<P<]1], and any positive
quantity d, a k can be found such that for all n>k the probability that A(n) will
be within § of B is greater than P. Note that this is quite weak in that no matter
how big n is, A(n) can never be guaranteed to be within a given distance of B.

This risk, that convergence is only given with a certain probability, is inherent in
Monte Carlo calculations, and is the reason why this technique was named after the
world’s most famous gambling casino. Indeed the name is doubly appropriate
because the style of gambling in the Monte Carlo casino, not to be confused with
the noisy and tasteless gambling houses of Las Vegas and Reno, is serious and
sophisticated. The apparent contradiction between the unpredictability of the gam—
bling process and the seriousness of the results is one of the fascinating aspects of
the Monte Carlo method which has been responsible for a great deal of the interest
shown in the method, but has also resulted in considerable confusion and misun—
derstanding. This point will come up again, especially in our discussion of random
numbers.



where G(u) is a distribution function giving the distribution of the independent vari—
able u’. Usually the u’ will be uniformly distributed between a and b: dG =
du/(b—a), so that the expectation becomes:

1 b

| f(u) du
(b—a) a

Ef) =

Similarly the expectation of a variable u’is the average value of u:
E@) = [udG{u) = [ug(w) du

The variance of a function or variable is the average of the squared deviation from
jits expectation, and is most conveniently defined in terms of the expectation:

V() = Elf —E@? = [I[f-EDHIG

Note that calculating the expectation requires one integration, and the variance
involves one more integration.

The square root of the variance is called the standard deviation. It is more phy—
sically meaningful than the variance since it has the same dimensions as its argu—
ment, but the square root makes it more clumsy to manipulate mathematicaily.
The standard deviation can most easily be interpreted as the root—mean—square
deviation from the mean.

Considering expectation and variance as operators, we may verify some simple
rules for applying these operators to linear combinations of variables. Let x and ¥
be random variables and ¢ be a constant. Then

E(cx+y) = ¢E(x) + E(y) 2.1)
and V{ex+y) = c?V(x)+ V(y) + 2cE{y—E(y)Xx-E(x)] (2.2)

Expectation is therefore a linear operator, whereas variance is not linear. The last
term in the above expression for the variance is called the covariance between x
and y and is zero if x and y are independent. If this term is positive, x and y are
said to be positively correlated, and if negative, x and y are negatively correlated.
Note that x and y may be uncorrelated (i.e., their covariance may be zero) even if
they are not independent, but if they are independent they must also be uncorre—
lated. Note also that even though the variance operator is not linear, the following
relationship holds if x and y are independent variables:

Vix+y) = V(x) + V(y) , xy uncorrelated.



G(u) = f g(x)dx
dG{u)
glu}) =
du

Note that G(u) is a monotonically non—decreasing function taking on values from
zero to one, and that g is always normalized so that its integral over all u is one. '

A function of a random variable is of course itself a random variable, although
it will in general be distributed differently from its argument. The functions G(u)
and g(u) defined above are however not to be considered as randem variabies, since
they are functions of the variable u rather than the random variable u’.

2.2 INDEPENDENCE OF RANDOM VARIABLES

Let us consider two random variables u’ and v/. In order to specify completely the
distribution of u’ and v/, we now require a function of two variables, say h(u,v),
and the ensuing mathematics becomes considerably more complicated. However, an
important special case is when the function h(u,v) can be factored exactly into a
product of two functions, each of which depends only on one variable, h{u,v) =
p(u) q(v). In this case we say that v’ and v’ are stochastically independent since the
distribution of u” does not depend on the value of v' and vice-versa.

When more than two variables are considered, the concept of independence
becomes more complicated, and it is no longer sufficient to consider only the
dependence of pairs of variables. Indeed, it is possible to have all pairs of variables
independent and still have dependence among triplets or higher combinations of
variables. For example, let r and s be two independent random variables, each uni—
formly distributed between zero and one, and consider the three new variables:

XxX=r
Yy=s
z = (r+s) mod |

Now each of the three random variables x,y,z is also uniformly distributed between
zero and one, and all pairs (x,y), (v,2), and (x,z) are independent (knowledge about
the value of one member of a pair gives no information about the value of the
other member). However, the three are clearly dependent, since knowledge of any
two determines the third completely.

2.3 EXPECTATION, VARIANCE, COYARIANCE

The mathematical expectarion of a function flu’) is defined as the average or mean
value of the function:

E(f) = [fwdG = [fu)eg)du



1.3 INTEGRATION

At least in a formal sense, all Monte Carlo calculations are equivalent to integra—
tions. This follows from the definition of a Monte Carlo calculation as producing a
result F which is a function of random numbers r . Let us assume for simplicity the
usual case that the r, are uniformly distributed between zero and one. Then the
Monte Carlo result F = F(r,r,, ... ,r ) is an unbiased estimator of the multidimen—
sional integral
1= " o[ Pl Xy e X)) dxydxy dx

or, stated another way, the expectation of F is the integral L [When the problem to
be solved is explicitly the problem of integrating a function f, the F above is not to
be identified with f, but rather the Monte Carlo estimate of its integral.| This formal
equivalence will allow us to lay a firm theoretical justification for Monte Carlo tech—
niques and will also lead us to many results of practical importance.

2. MATHEMATICAL FOUNDATION FOR MONTE CARLO
INTEGRATION

In this chapter we will define some basic statistical terms and invoke some of the
important results of mathematical statistics to lay a forma) foundation for the valid—
ity of Monte Carlo calculations. The results of this chapter will be important to the
later chapters, so we will try to make it complete, but since many readers will
already be familiar with this material, no attempt is made to be mathematically rigo—
rous. Those who wish a more detailed treatment are urged to consult an indepen—
dent text such as Eadie et at (1971). Those who still remember their elementary
statistics are advised to skip directly to 2.6.

2.1  RANDOM VARIABLES AND DISTRIBUTIONS

A random variable is a variable that can take on more than one value {(generally a
continuous range of values), and for which any particular value that will be taken
cannot be predicted in advance. Even though the value of the variable is unpred—
ictable, the distribution of the variable may well be known. The distribution of a
random variable gives the probability of a given value (or infinitesimal range of
values). Since we will usually be working with continuous variables, we define:

[ g(wydu = Plu < w< u+dul

The function g{u) is the probability density function of u, and gives the probability
of finding the random variable u’ within du of a given value u. This is the most
usual way for physicists to express the way v’ is distributed, although it is some~
times more convenient mathematically to use the integrated distribution function
defined as the definite integral of g from minus infinity to u:



1. INTRODUCTION AND DEFINITIONS
1.1  DEFINITION

A Monte Carlo technique is any technique making use of random numbers to solve
a problem. (We assume for the moment that the reader understands what a random
number is, although this is by no means a trivial point and will be treated later in
some detail.)

The above definition should be supplemented by a somewhat narrower but more
enlightening  definition as given by Halton (1970): The Monte Carlo method is
defined as representing the solution of a problem as a parameter of a hypothetical
population, and using a random sequence of numbers to construct a sample of the
population, from which statistical estimates of the parameter can be obtained.

Let us express the solution of the problem as a result F, which may be a real
number, a set of numbers, a yes/no decision, etc. The Monte Carlo estimate of F
will be a function of, among other things, the random numbers used in the calcula—
tion. The introduction of randomness into an otherwise well—defined problem pro—
duces solutions with rather special properties which, as we shall see, are sometimes
surprisingly good.

1.2 SIMULATION

Historically, the first large~scale calculations to make use of the Monte Carlo
method were studies of neutron scattering and absorption, random processes for
which it is quite natural to employ random numbers. Such calculations, a subset of
Monte Carlo calculations, are known as direct simulation, since the ‘hypothetical
population” of the narrower definition above corresponds directly to the real popu—
lation being studied. However, as those involved were well aware, the numerical
results obtained were perfectly ‘deterministic’ and in principle obtainable by classical
computational techniques (in fact integration). Whether or not the Monte Carlo
method can be applied to a given problem does not depend on the stochastic
nature of the system being studied, but only on our ability to formulate the prob—
lem in such a way that random numbers may be used to obtain the solution. This
can be seen by inverting the neutron scattering problem and considering first the
classical solution in terms of a complicated multidimensional integral. The value of
this integral is quite non—random, but happens also to be the solution of a problem
involving random processes. The Monte Carlo Method may be applied wherever it
is possible to establish equivalence between the desired result and the expected
behaviour of a stochastic system.

The problem to be solved may already be of a probabilistic or statistical nature,
in which case its Monte Carlo formulation will usuaily be a straightforward simula—
tion, or it may be of a deterministic or analytic nature, in which case an appropriate
Monte Carlo formulation may require some imagination and may appear contrived
or artificial. In any case, the suitability of the method chosen will depend on its
mathematical properties and not on its superficial resemblance to the problem to be
solved. We shall see how Monte Carlo technigues may be compared with other
methods of solution of the same physical problem.
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