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Abstract. Transition probabilities governing the interaction of energy packets and matter are derived that allow
Monte Carlo NLTE transfer codes to be constructed without simplifying the treatment of line formation. These
probabilities are such that the Monte Carlo calculation asymptotically recovers the local emissivity of a gas
in statistical equilibrium. Numerical experiments with one-point statistical equilibrium problems for Fe II and
Hydrogen confirm this asymptotic behaviour. In addition, the resulting Monte Carlo emissivities are shown to be
far less sensitive to errors in the populations of the emitting levels than are the values obtained with the basic
emissivity formula.
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1. Introduction

When Monte Carlo methods are used to compute the spec-
tra of astronomical sources, it is advantageous to work
with indivisible monochromatic packets of radiant energy
and to impose the constraint that, when interacting with
matter, their energy is conserved in the co-moving frame.
The first of these constraints leads to simple code and the
second facilitates convergence to an accurate temperature
stratification.

For a static atmosphere, the energy-conservation con-
straint automatically gives a divergence-free radiative flux
even when the temperature stratification differs from the
radiative equilibrium solution. A remarkable consequence
is that the simple Λ-iteration device of adjusting the tem-
perature to bring the matter into thermal equilibrium with
the Monte Carlo radiation field results in rapid conver-
gence to the close neighbourhood of the radiative equilib-
rium solution (Lucy 1999a). An especially notable aspect
of this success is that this temperature-correction proce-
dure is geometry-independent, and so these methods read-
ily generalize to 2- and 3-D problems.

For an atmosphere in differential motion, the energy-
conservation constraint yields a radiative flux that is
rigorously divergence-free in every local matter frame.
Determining the temperature stratification by bringing
matter into thermal equilibrium with such a radiation
field – i.e., by imposing radiative equilibrium in the co-
moving frame – is an excellent approximation if the lo-
cal cooling time scale is short compared to the local ex-
pansion time scale. This condition is well satisfied for the
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spectrum-forming layers of supernovae (SNe) and of hot
star winds (Klein & Castor 1978).

The constraint that the energy packets be indivisible is
advantageous from the point of view of coding simplicity.
The interaction histories of the packets are then followed
one-by-one as they propagate through the computational
domain, with there being no necessity to return to any of
a packet’s interactions in order to continue or complete
that interaction. This is to be contrasted with a Monte
Carlo code that directly simulates physical processes by
taking its quanta to be a sampling of the individual pho-
tons. Absorption of a Monte Carlo quantum is then often
followed by the emission of several quanta as an atom cas-
cades back to its ground state. Multiple returns to this
interaction are then necessary in order to follow the sub-
sequent paths of each of these cascade quanta. The result-
ing coding complexity is of course compounded by some
of these quanta creating further cascades.

Although coding simplicity argues strongly for indi-
visible packets, a counter argument is the apparent im-
plied need to approximate the treatment of line formation.
Thus, in Monte Carlo codes for studying the dynamics of
stellar winds (Abbott & Lucy 1985; Lucy & Abbott 1993)
or for synthesizing the spectra of SNe (Lucy 1987; Mazzali
& Lucy 1993), the integrity of the packets could readily
be maintained since lines were assumed to form by co-
herent scattering in the matter frame. But significantly,
an improved SN code has recently been described (Lucy
1999b) in which branching into the alternative downward
transitions is properly taken into account without sacri-
ficing indivisibility. Accordingly, an obvious question now
is whether Monte Carlo techniques can be developed that
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Fig. 1. Schematic representation of the interaction of a macro-
atom with a packet of energy ε0. The macro atom is activated
by absorbing the energy packet, makes two internal transitions,
and then de-activates by emitting a packet of energy ε0.

enforce energy-packet indivisibility and yet do not have to
adopt any simplifications with regard to line formation. If
this can be achieved, then Monte Carlo codes for general
NLTE transfer problems become feasible.

2. Macro-atoms

As discussed in Sect. 1, it is common in Monte Carlo
transfer codes to quantize radiation into monochromatic
energy packets. But matter is not quantized, neither nat-
urally into individual atoms nor artificially into parcels of
matter. Instead, the continuum description of matter is
retained, with macroscopic absorption and scattering co-
efficients governing the interaction histories of the energy
packets.

Nevertheless, it now proves useful to imagine that mat-
ter is quantized into macro-atoms whose properties are
such that their interactions with energy packets asymp-
totically reproduce the emissivity of a gas in statistical
equilibrium. But these macro-atoms, unlike energy pack-
ets, do not explicitly appear in the Monte Carlo code. As
conceptual constructs, they facilitate the derivation and
implementation of the Monte Carlo transition probabili-
ties that allow an accurate treatment of line formation.

The general properties of macro-atoms are as follows:
1) Each macro-atom has discrete internal states in one-

to-one correspondence with the energy levels of the atomic
species being represented.

2) An inactive macro-atom can be activated to one of
its internal states i by absorbing a packet of kinetic energy
or a packet of radiant energy of an appropriate co-moving
frequency.

3) An active macro-atom can undergo an internal tran-
sition from state i to any other state j without absorbing
or emitting an energy packet.

4) An active macro-atom becomes inactive by emitting
a packet of kinetic energy or a packet of radiant energy of
an appropriate co-moving frequency.

5) The de-activating packet has the same energy in
the macro-atom’s frame as the original activating packet.
Figure 1 illustrates these general rules. An inactive macro-
atom, with internal states shown schematically, encounters

a packet of energy ε0 and is activated to one of these states.
The active macro-atom then undergoes two internal tran-
sitions before de-activating itself by emitting a packet of
energy ε0.

Subsequently, energy packets will in general be referred
to as e-packets but also as r- or k-packets when specifying
their contents to be radiant or kinetic energy, respectively.

3. Transition probabilities

In Sect. 2, the concept of a macro-atom was introduced
by stating some general properties concerning its inter-
action with e-packets. The challenge now is to derive ex-
plicit rules governing a macro-atom’s activation, its subse-
quent internal transitions, and its eventual de-activation.
Asymptotically, the result of obeying these rules must be
the emissivity corresponding to statistical equilibrium.

3.1. Energy flow rates

For the moment, we drop the notion of a macro-atom and
consider a real atomic species interacting with its environ-
ment. Let εi denote the excitation plus ionization energy of
level i and let Rij denote the radiative rate for the transi-
tion i→ j. The rates per unit volume at which transitions
into and out of i absorb and emit radiant energy are then

ȦRi = R`iεi` and ĖRi = Ri`εi`, (1)

respectively, where εi` = hνi` = εi − ε`. Note the sum-
mation convention adopted for the suffix `, which ranges
over all levels <i, including those of lower ions. Similarly,
below, the suffix u implies summation over all levels >i,
including those of higher ions.

The corresponding rates at which kinetic energy is ab-
sorbed from, or contributed to, the thermal pool by tran-
sitions to and from level i are

ȦCi = C`iεi` and ĖCi = Ci`εi`, (2)

where Cij is the collisional rate per unit volume for the
transition i→ j.

If we now define the total rate for the transition i→ j
to be Rij = Rij + Cij , then the net rate at which level i
absorbs energy is

ȦRi + ȦCi − ĖRi − ĖCi = (R`i −Ri`)(εi − ε`). (3)

This is an identity that follows directly from the defining
Eqs. (1) and (2); it is therefore quite general and does not
assume statistical equilibrium.

3.2. Statistical equilibrium

We now assume that the level populations ni are in sta-
tistical equilibrium. For level i, this implies that

(R`i −Ri`) + (Rui −Riu) = 0. (4)

A useful alternative representation of statistical equilib-
rium is obtained by multiplying Eq. (4) by εi and then
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eliminating the term (R`i −Ri`)εi using Eq. (3). The re-
sult can be written in the form

ĖRi + ĖCi +Riuεi +Ri`ε` = ȦRi + ȦCi +Ruiεi +R`iε`.(5)

Equation (4), the conventional equation of statistical equi-
librium, balances the rates at which basic atomic processes
excite and de-excite level i. As such, it directly relates
to Nature’s quantization of radiation into photons and of
matter into atoms. In contrast, Eq. (5), though mathemat-
ically equivalent, deals with macroscopic energy flow rates
in a finite volume element. These flows can now be quan-
tized into indivisible e-packets. Moreover, we can think of
the volume element as a macro-atom with discrete energy
states.

3.3. Interpretation

Equation (5) expresses the fact that in statistical equilib-
rium the contribution from level i to the energy content of
unit volume is stationary. In consequence, the net rate at
which level i gains energy – the right-hand side of Eq. (5) –
equals the net rate of loss – the left-hand side.

But the importance here of Eq. (5) lies in the vari-
ous terms contributing to gains and losses by level i and
their relevance for constucting transition rules for macro-
atoms. The net rate of gain comprises the expected ab-
sorption terms ȦRi and ȦCi plus the termsRuiεi and R`iε`
that clearly represent energy flows into i from upper and
lower levels. Similarly, the net rate of loss comprises the
expected emission terms ĖRi and ĖCi plus the terms Riuεi
and Ri`ε` representing energy flows out of i to upper and
lower levels.

The above remarks imply definitive values for the en-
ergy flows between level i and other levels. But this is not
true. If Eq. (4) is rewritten as

Riu +Ri` = Rui +R`i, (6)

then comparison with Eq. (5) shows immediately that an
arbitrary quantity of energy ε may be added to εi and ε`
without invalidating this equation. But this merely shifts
the zero point of the energy scale for excitation and ion-
ization, which we are always free to do. Nevertheless, this
freedom implies a corresponding indefiniteness in the en-
ergy flow rates between levels.

3.4. Stochastic interpretation

Notwithstanding this indefiniteness, we now interpret
Eq. (5) in terms of macro-atoms absorbing and emitting e-
packets or undergoing transitions between internal states.
In this interpretation, the terms ȦRi and ȦCi obviously
represent the activation of macro-atoms to state i due to
the absorption of r-packets and of k-packets, respectively.

Now consider an ensemble of active macro-atoms in
state i. For this ensemble to reproduce the behaviour of
the real system, the relative numbers of the macro-atoms
that subsequently de-activate with the emission an r- or

k-packet or which make a transition to another inter-
nal state must be proportional to the relative values of
the corresponding terms on the left-hand side of Eq. (5).
Accordingly, for an individual macro-atom in state i, the
probabilities that it de-activates with the emission of an
r-packet or a k-packet are

pRi = ĖRi /Di and pCi = ĖCi /Di, (7)

where

Di = ĖRi + ĖCi +Riuεi +Ri`ε` = (Ri` +Riu)εi. (8)

Similarly, the probabilities that it makes an internal tran-
sition to particular upper or lower states are

piu = Riuεi/Di and pi` = Ri`ε`/Di. (9)

Unlike transition probabilities for real atoms, these ana-
logues for macro-atoms depend on ambient conditions.
Consequently, in the course of a NLTE calculation, they
are iterated on just as are Eddington factors in various
other radiative tranfer schemes (Auer & Mihalas 1970;
Hummer & Rybicki 1971). Moreover, as with Eddington
factors, the Monte Carlo transition probabilities are di-
mensionless ratios that are likely to converge faster than
do their dimensional numerators and denominators.

3.5. Excitation equilibrium

When Eq. (5) is summed over all energy levels, the energy
flows between different levels cancel, giving∑
i

(ȦRi + ȦCi ) =
∑
i

(ĖRi + ĖCi ). (10)

Thus, in statistical equilibrium, the energy stored in the
form of excitation and ionization is stationary. For the
macro-atoms, this is obeyed rigorously by each activa-
tion – de-activation event since the emitted packet’s en-
ergy equals that of the absorbed packet – see Fig. 1.

4. Alternative formulations

Monte Carlo transition probabilities have been defined in
Sect. 3, but their non-negativity was not established. Of
concern in this regard is stimulated emission when level
populations are inverted. However, in anticipation of this
issue, radiative rates were introduced without specifying
whether stimulated emission contributes positively to Rij
or negatively to Rji. We now exploit this flexibility in
order to avoid negative probabilities.

4.1. General case

In the general case, inverted level populations may occur –
i.e., gjni > ginj for some i > j.
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4.1.1. Definitions of rates

In order to prevent the probabilities becoming negative
when levels invert, stimulated emissions must be added to
spontaneous emissions and not treated as negative absorp-
tions. Accordingly, for bound-bound (b-b) transitions, the
radiative rates per unit volume are defined to be

Rij = (Aij +Bij J̄
e
ij)ni and Rji = BjiJ̄

a
jinj , (11)

where J̄e
ij and J̄a

ji are the mean intensities averaged over
the lines’ emission and absorption profiles – see Mihalas
(1978, p. 78). Similarly, for free-bound (f-b) and bound-
free (b-f) transitions, we define

Rκi = (αsp
i + αst

i )nκne and Riκ = γini. (12)

Here αsp
i and αst

i are the rate coefficients for spontaneous
and stimulated recombinations to level i, and γi is the un-
corrected rate coefficient for photoionizations from level i.
Each of these three quantities can be expressed as an inte-
gral over frequency involving the b-f absorption coefficient
for an atom excited to level i – see Mihalas (1978, pp. 130–
131).

For collisions, a population inversion gives a negative
rate if de-excitations are treated as negative excitations.
This is avoided by defining

Cij = qijnine and Cji = qjinjne. (13)

With these expressions for the radiative and collisional
rates, the probabilities defined by Eqs. (7) and (9) are non-
negative provided only that the εi’s are non-negative. This
latter condition is satisfied with the standard convention
that the ground state of the neutral atom has zero exci-
tation energy.

4.1.2. Absorption of packets

Because R`i and therefore ȦRi are here defined without
correcting for stimulated emission, the macroscopic line-
and continuum-absorption coefficients that determine the
flight paths of r-packets must also be defined without this
correction. This ensures a positive absorption coefficient
even for a transition with a population inversion.

4.1.3. Emission of packets

If the Monte Carlo transition probabilities result in a
macro-atom de-activating radiatively from state i, the
next step is to determine the frequency of the photons
comprising the emitted r-packet. First we suppose that i
corresponds to a bound level.

Because Ri` and therefore ĖRi here include stimu-
lated emission, the process that radiatively de-activates
the macro-atom may be either a spontaneous or a stim-
ulated emission. The ratio of the probabilities of these
alternatives is q = Ėsp

i /Ė
st
i , where

Ėsp
i = Ai`niεi` = Ėsp

i` and Ėst
i = Bi`J̄

e
i`niεi` = Ėst

i` (14)

are the contributions to ĖRi from spontaneous and stim-
ulated emissions. Knowing q, we can choose between the
two alternatives with a standard Monte Carlo procedure.
Thus, if x is a random number from the interval (0, 1), we
select spontaneous emission if x < q/(1 + q) and stimu-
lated otherwise.

Having thus decided the emission process, we must
next choose a downward transition. For spontaneous line
emission, the transition i→ j is selected with probability
Ėsp
ij /Ė

sp
i . For stimulated emission, on the other hand, the

selection probability is Ėst
ij/Ė

st
i .

With the transition thus determined, the frequency ν
of the r-packet is selected by randomly sampling the line’s
emission profile φe

ν . Thus, if x again denotes a random
number from (0, 1), then ν is determined by the equation

∫ ν

0

φe
ν dν = x. (15)

This equation can of course always be solved numerically
for ν. However, elegant and efficient procedures for sam-
pling standard profiles are available (Lee 1974a,b).

Now we consider a macro-atom that de-activates from
a continuum state κ. In this case, the probabilities of spon-
taneous and stimulated emission are in the ratio Ėsp

κ :Ėst
κ ,

where

Ėsp
κ = αsp

i` nκεκ` and Ėst
κ = αst

i`nκεκ` (16)

are the contributions to ĖRκ from spontaneous and stim-
ulated emissions. Thus ν is selected by first deciding be-
tween spontaneous and stimulated emission and then ran-
domly sampling the energy distribution of the chosen
process’s recombination continua.

4.1.4. Direction of propagation

If the above selection procedure rules that an r-packet is
emitted spontaneously, then a new direction of propaga-
tion is chosen in accordance with this process’s isotropic
emission. On the other hand, for stimulated emission, the
new direction of propagation is that of the stimulating
photon. Thus, the new direction will be in solid angle
dω at θ, φ with probability dω/4π × Iν(θ, φ)/Jν , where
ν is the frequency of the emitted r-packet. Accordingly,
a Monte Carlo code that treats stimulated emission sepa-
rately must store a complete description of the radiation
field – i.e., Iν(θ, φ).

4.2. Standard case

For problems where population inversions are not antic-
ipated, we can usefully make the traditional assumption
that lines have identical emission and absorption profiles
and treat stimulated emissions as negative absorptions –
see Mihalas (1978, p. 78).
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4.2.1. Definitions of rates

The radiative rates for b-b transitions are then

Rij = Aijni and Rji = (Bjinj −Bijni)J̄ji. (17)

Similarly, for f-b and b-f transitions, we define

Rκi = αsp
i nκne and Riκ = γcorr

i ni, (18)

where the photionization coefficient is now corrected for
stimulated recombinations.

For collisions, the absence of population inversions
allows us to treat de-excitations as negative excitations
without the risk that Eqs. (7) and (9) will give negative
probabilities. Accordingly, we now define

Cij = 0 and Cji = (qjinj − qijni)ne. (19)

This then implies that ĖCi and therefore also pCi = 0 for all
i. Energy transfer from the radiation field to the thermal
pool then occurs explicitly only via f-f absorptions.

4.2.2. Absorption of packets

Because R`u and therefore ȦRi are here defined with the
correction for stimulated emission included, the macro-
scopic line- and continuum-absorption coefficients must
also include this correction. In the posited absence of
population inversions, these absorption coefficients are
positive.

4.2.3. Emission of packets

Because Ri` and therefore ĖRi now exclude stimulated
emission, the process that radiatively de-activates a
macro-atom is always a spontaneous emission. If i is a
bound state, the frequency ν of the emitted r-packet is
then decided as follows: the transition i → j is selected
with probability Aijniεij/Ė

R
i , and then ν is selected by

randomly sampling this transition’s emission profile, as in
Sect. 4.1.3.

For de-activation from a continuum state, ν is selected
by randomly sampling the energy distribution of the spon-
taneous recombination continua.

4.2.4. Direction of propagation

Because the de-activating process is in this case sponta-
neous emission, the new direction of propagation is se-
lected according to isotropic emission. Thus, we now do
not need to store Iν(θ, φ). In fact, from the Monte Carlo
radiation field generated at one iteration, we only require
the mean intensities Jν . These allow us to compute tran-
sition probabilities from Eqs. (7) and (9) for use during
the next iteration.

4.3. Large velocity gradients

The procedures described in Sects. 4.1 and 4.2 apply to
both static and moving media. But for some important

problems involving moving media, a substantial speeding
up of the calculation with negligible loss of accuracy is
possible by applying Sobolev’s theory of line formation.
In doing so, we take advantage of a small dimensionless
quantity – the ratio of a line’s Doppler width to the typical
flow velocity, which implies an essentially constant velocity
gradient over the zone in which a given pencil of radiation
interacts with a particular line. The Monte Carlo codes for
hot star winds and SNe cited in Sect. 1 treat line formation
in the Sobolev approximation.

The simplest case of this kind is that of homologous
spherical expansion, as is commonly assumed for SNe.
This case will be treated here since it will be used in
the test calculations of Sect. 5. But generalization to a
spherically-symmetric stellar wind is readily carried out
by referring to Castor & Klein (1978). We also assume no
population inversions and so treat stimulated emissions as
negative absorptions, as in Sect. 4.2.

4.3.1. Definitions of rates

The radiative rates for b-b transitions are then

Rij = Aijβjini and Rji = (Bjinj −Bijni)βjiJb
ji. (20)

Here Jb
ji is the mean intensity at the far blue wing of the

transition j → i, and βji is the Sobolev escape probability
for this transition, given by

βji =
1
τji

[1− exp(−τji)], (21)

where τji, the transition’s Sobolev optical depth, is

τji = (Bjinj −Bijni)
hctE
4π

, (22)

with tE being the elapsed time since the SN exploded. For
f-b and b-f transitions, the rates are as in Eq. (18). For
collisions, the rates are as in Eq. (19).

4.3.2. Absorption of packets

The absorption of r-packets by lines is determined by the
Sobolev optical depths given by Eq. (22). Absorption of
an r-packet to the continuum is determined by the con-
ventional macroscopic absorption coefficient corrected for
stimulated emission.

4.3.3. Emission of packets

The frequency of an emitted r-packet is decided as follows:
for de-activation from a bound state i, the transition i→ j
is selected with probability Aijβjiniεij/ĖRi , where ĖRi is
evaluated with Eq. (1) using the decay rates from Eq. (20),
and the emitted packet is assigned frequency ν−ij – i.e.,
it is in the far red wing of a line whose emission profile
is approximated by a delta function. The packet’s next
possible b-b transition is therefore with the next line to
the redward of νij (Abbott & Lucy 1985).
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For de-activation from a continuum state, the new fre-
quency is, as in Sect. 4.2.3, selected by randomly sampling
the energy distribution of the spontaneous recombination
continua.

4.3.4. Direction of propagation

If an r-packet is emitted from a continuum state, the new
direction of propagation is selected according to isotropic
emission since the emission in this case is spontaneous.
For de-activation from a bound state, the emission is
also isotropic since, for homologous expansion, there is
no kinematically-preferred direction. This is not true for
a stellar wind.

5. Convergence tests

The Monte Carlo transition probabilities derived in Sect. 3
are designed to reproduce asymptotically the emissivity of
an atomic species whose level populations are in statistical
equilibrium. To test this, we now consider one-point prob-
lems with specified and fixed ambient conditions. Such
tests sensibly precede application to a general NLTE prob-
lem, for then the local ambient conditions are everywhere
being adjusted iteratively as the global solution is sought.

5.1. Fe II

In the initial tests, the Monte Carlo transition proba-
bilities are applied to the model Fe II ion with N =
394 levels used previously (Lucy 1999b) to investigate
the accuracy of approximate treatments of line forma-
tion in SNe envelopes. The energy levels of the Fe II ion
and the f-values for permitted transitions were extracted
from the Kurucz–Bell (1995) compilation by M. Lennon
(Munich). Einstein A-values for forbidden transitions are
from Quinet et al. (1996) and Nussbaumer & Storey
(1988). Collision strengths, needed for Sect. 5.1.5, are from
Zhang & Pradhan (1995) and van Regemorter (1962).

5.1.1. Radiative excitation

In the first Fe II test, we neglect collisional excitations
and, as previously (Lucy 1999b), take the ambient ra-
diation field determining the quantities Jb

ji in Eq. (20)
to be WBν(Tb) with Tb = 12 500 K and dilution factor
W = 0.5, corresponding to r = R. The density param-
eter is n(FeII) = 6.6 × 107cm−3, and the time since ex-
plosion is tE = 13 days. With parameters specified, this
one-point statistical equilibrium problem – Eq. (4) for N–
1 levels plus a normalization constraint – is non-linear in
the unknowns ni because the rate coefficients in Eq. (20)
depend on the ni through the Sobolev escape probabili-
ties. Fortunately, repeated back substitutions give a highly
accurate solution n(x)

i in ∼10 iterations.

5.1.2. Monte Carlo experiment

With n
(x)
i determined, the Fe II level emissivites ĖRi and

absorption rates ȦRi can be computed from Eq. (1). We
now test the Monte Carlo transition probabilities by see-
ing how accurately they reproduce these values ĖRi . Note
that it is sufficient to test level emissivities since if these
are exact so also are the line emissivities computed as de-
scribed in Sect. 4.3.3.

In the following Monte Carlo experiment,N packets of
radiant energy are absorbed and subsequently emitted by
a macro-atom representing a macroscopic volume element
of Fe II ions in the ambient conditions specified above.
The energies of these packets are taken to be equal and
given by ε0 = ȦR/N , where ȦR =

∑
i Ȧ

R
i . The calculation

proceeds step-by-step as follows:
1) Ni = N ȦRi /ȦR of the packets activate the macro-

atom to internal state i.
2) The transition probabilities pRi , piu and pi` for a

macro-atom in state i are computed from Eqs. (7) and (9).
3) The transition probabilities sum to one, so each cor-

responds to a segment (xk, xk+1) of the interval (0, 1). A
particular transition is therefore selected by computing a
random number x in (0, 1) and finding in which segment
it falls.

4) If the selected transition is the de-activation of the
macro-atom, we update ĖMC

i to ĖMC
i +ε0 and then return

to step 3) to process the next activation of state i, or to
step 2) to process the first of the packets that activate the
macro-atom to state i+ 1.

5) If the selected transition is an internal transition to
state j, then we return to step 2) with j replacing i.

6) When all N packets have been processed, the final
elements of the vector ĖMC

i are the estimates of the level
emissivities ĖRi .

5.1.3. Results of experiment

As a single measure of the accuracy of the estimated level
emissivities, we compute the quantity

δ =
∑
i

|ĖMC
i − ĖRi | /

∑
i

ĖRi . (23)

This is the mean of the absolute fractional errors of the
ĖMC
i when weighted by ĖRi .

Figure 2 shows the values of δ, expressed as percentage
errors, found in a series of trials with N increasing from
104 to 107. The values of δ decrease monotonically with
increasing N , falling to 0.36 percent for N = 107. More
importantly, the errors accurately follow an N−1/2 line, as
expected if the only source of error are the sampling error
at step 3) of the Monte Carlo experiments. Accordingly, to
the accuracy of these experiments, macro-atoms obeying
the transition probabilities derived in Sect. 3 do indeed
reproduce the emissivity of a gas in statistical equilibrium.

Also included in Fig. 2 are values of δ obtained when
the transition probabilities are computed with excitation
energies εi increased by 5 eV. This is to investigate the
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Fig. 2. Convergence test. The mean error δ defined by Eq. (23)
is plotted against N , the number of packets in the Monte Carlo
experiment. The open circles refer to the case where excitation
energies are increased by 5 eV. The straight line drawn by
eye has slope =−0.5. Also indicated is the mean error when
the level emissivities are assumed equal to the level absorption
rates.

consequences of the dependence of the energy flow terms in
Eq. (5) – and therefore also of the transition probabilities –
on the zero point of the scale of excitation energy. These
results also track an N−1/2 line and so indicate that the
predicted emissivities are asymptotically independent of
the zero point. But since the open circles are marginally
higher, there is an indication that increasing the zero point
gives slighty less accurate emissivities at a given N .

In the Monte Carlo codes for hot star winds and SNe
cited in Sect. 1, line formation is treated approximately,
with either resonant scattering or downward branching
being assumed. For both assumptions, ĖRi = ȦRi , corre-
sponding to a macro-atom for which de-activation always
immediately follows activation – i.e., pRi = 1 for all i. In
this case, as indicated on Fig. 2, δ = 7.28 percent. Thus,
when the points in Fig. 2 drop below this value, the suc-
cess must be due to the internal, radiationless transitions
governed by the probabilities piu and pi`.

5.1.4. Distribution of jumps

The above experiments show that despite the formidable
complexity of its level structure the Fe II ion’s repro-
cessing of radiation is accurately simulated by the Monte
Carlo transition probabilities. Nevertheless, from a com-
putational standpoint, a remaining concern is how many
internal transitions - or jumps - does this require? To an-
swer this, the number of jumps before de-activation was
recorded for each absorbed packet in the N = 107 trial
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Fig. 3. Histogram of N(j), the number of times in an experi-
ment with N = 107 that the macro-atom underwent j internal
transitions – or jumps – before de-activating with the emis-
sion of an energy packet. The mean number of jumps < j >
and the probabilities of de-activation after j = 0−2 jumps are
indicated.

and used to derive N(j), the number of packets requiring
j jumps.

From N(j), we find that the expected number of jumps
is <j>= 2.19 and that the probability of immediate de-
activation – i.e., zero jumps – is P0 = 0.425. Evidently,
fears of numerous, time- consuming internal transitions
are ill-founded.

Figure 3 is a logarithmic plot of N(j). This reveals a
power-law decline with increasing j but with alternating
deviations indicating that an even number of jumps before
de-activation is favoured. A simple model suggests the ori-
gin of this curious behaviour. Consider a 3-level atom with
ε3 > ε2 > ε1 = 0 and suppose that level 2 is metastable
with A21 = 0. Because B12 = 0, the macro-atom can only
be activated to state 3; and because A21 = B21 = 0, the
macro-atom cannot de-activate from state 2. Moreover,
since ε1 = 0, Eq. (9) gives p31 = p21 = 0, and so state
1 of the macro-atom cannot be reached. Accordingly, fol-
lowing activation at state 3, the macro-atom de-activates
with probability p or jumps to state 2 with probability
1− p, from whence it returns to state 3 with probability
p23 = 1. It is now simple to prove that the probabilty of j
jumps before de-activation is Pj = p(1− p)j/2 if j is even,
and Pj = 0 if j is odd. The Fe II ion’s numerous low-lying
metastable levels are presumably playing the role of level 2
and thereby favouring an even number of jumps.

Histograms N(j) have also been computed for two
other cases. First, the above trial was repeated with
the εi’s increased by 5 eV as in Sect. 5.1.3. This
change increases < j > – to 4.54 – as expected since
the probabilities piu and pi` are thereby increased and
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pRi correspondingly decreased. Evidently, the standard
choice of energy-level zero point leads to the most
computationally-efficient set of transition probabilities.

In the second case, W is decreased from 0.5 to 0.067,
corresponding to r = 2R. This change decreases < j > –
from 2.19 to 1.29 – as expected given the weakening of the
radiative excitation rates.

5.1.5. Collisional excitation

In the above experiment, the emission derives entirely
from radiative excitation since collisions were neglected.
Now we consider the opposite extreme by setting the am-
bient radiation field to zero but including collisions.

The only parameters of this test are the electron tem-
perature and density, and these are assigned the values
Te = 2× 104 K and Ne = 108 cm−3. The resulting statis-
tical equilibrium problem is linear and so solved without
iteration. For this solution, accurate values of the level
emissivities ĖRi are again computed from Eq. (1).

The next step is to derive estimates of the level
emissivities by repeating the Monte Carlo experiment of
Sect. 5.1.2. The only changes needed are the following:
first, since the solution has population inversions the gen-
eral formulation of Sect. 4.1 must be adopted to avoid
negative probabilities.

Secondly, since a macro-atom is now always activated
by a k-packet, their energies are taken to be ε0 = ȦC/N ,
where ȦC =

∑
i Ȧ

C
i . Correspondingly, at step 1) of the

experiment, Ni = N ȦCi /ȦC .
Thirdly, since a macro-atom can now de-activate by

emitting either an r- or a k-packet, only the former re-
sults in an updating of ĖMC

i . The emission of a k-packet
represents the return of energy ε0 to the therrmal pool.

Apart from these changes, the convergence experiment
proceeds as in Sects. 5.1.2 and 5.1.3. The result is a plot
similar to Fig. 2, but with δ = 0.19 percent for N = 107.
Evidently, the Monte Carlo transition probabilities are
equally applicable to problems where collisional excitation
is a source of emission.

5.2. Hydrogen

Although the Fe II experiments demonstrate the validity
of the Monte Carlo transition probabilities, a test includ-
ing b-f and f-b transitions is of interest. Accordingly, a con-
vergence experiment at one point in a SN’s envelope has
also been carried out for a 15-level model of the H atom,
with level 15 being the continuum κ. The 14 bound levels
correspond to principal quantum numbers n = 1−14, with
each level having consolidated statistical weight g = 2n2.

As for Fe II, the ambient radiation field incident on
the blue wings of the b-b transitions is WBν(Tb), but
now with Tb = 6000 K and W = 0.067. However,
beyond the Lyman limit, we assume zero intensity, so
that photoionizations occur only from excited states.
Correspondingly, recombinations to n = 1 are excluded on
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Fig. 4. Level emissivities (cgs) for hydrogen. Results for trials
with N = 104 (large open circles) and N = 105 (small open
circles) are compared with exact values (filled circles). The lines
contributing to the level emissivities are indicated for n = 2−4.

the assumption of immediate photoionization. Collisional
excitations and ionizations are neglected. The density pa-
rameter is N(H) = 1.88 × 109 cm−3, the electron tem-
perature Te = 4800 K, and the time since explosion
tE = 10 days. With parameters specified, this non-linear
statistical equilibrium problem can also be solved with
repeated back substitutions, giving a highly accurate so-
lution n

(x)
i in ∼30 iterations.

With n(x)
i determined, Monte Carlo experiments as de-

scribed in Sect. 5.1.2 were carried out to test if level emis-
sivities are also recovered in this case. In Fig. 4, two such
trials, with N = 104 and 105, are compared with the ex-
act solution. The results show that excellent agreement is
achieved for N = 105. Note in particular the success with
ĖRκ , which is the rate of ionization energy loss due to re-
combinations, and with ĖR2 , whose very low value is due
to the strong trapping of Lα photons.

5.3. Alternative test of convergence

Thus far, a Monte Carlo procedure has been used to vali-
date the transition probabilities developed in Sect. 3. This
has the advantage of following closely and therefore illus-
trating their use in realistic NLTE calculations. But for
feasible values of N , sampling errors limit the accuracy of
such tests.

In order to test to higher precision, approximate level
emissivities Ė(m)

i can be computed recursively according
to the following scheme:

Ė
(m)
i = pRi

m∑
r=1

G
(r)
i , (24)



L. B. Lucy: Monte Carlo transition probabilities 733

where pRi is the radiative de-activation probability from
Eq. (7) and G

(r)
i is the increment at cycle r to the sum-

mation approximating the rate at which level i gains en-
ergy – i.e. the right-hand side of Eq. (5). This increment
is derived from the previous increment by applying the
transition probabilities from Eq. (9). Thus

G
(r)
i =

∑
j

pjiG
(r−1)
j , (25)

and the recursion cycles are initiated by setting

G
(1)
i = ȦRi + ȦCi . (26)

This procedure is now applied to the Fe II test problem
of Sect. 5.1.1. As with that experiment, the accuracy of
the vectors Ė(m)

i are measured by computing δ defined by
Eq. (23). For m = 17, δ drops below the value 0.36 per-
cent found in Sect. 5.1.3 with N = 107 – see Fig. 2. As the
recursion procedure continues further, δ decreases mono-
tonically until at m ' 60 it drops to a value of '10−8, at
which point machine precision or accumulated roundoff er-
rors halt further progress. This test clearly confirms and
strengthens the earlier tests of the Monte Carlo transition
probabilities.

6. Sensitivity tests

The experiments of Sect. 5 demonstrate that, when
computed with the exact level populations n

(x)
i , the

Monte Carlo transition probabilities applied to indivis-
ible e-packets reproduce the exact level emissivities as
N → ∞. But this success, though necessary, does not of
itself imply that the technique will be successful when ap-
plied to NLTE problems. For example, if the Monte Carlo
emissivities were to undergo large changes in response to
small changes in ni, then we would reasonably suspect
that the iterations inevitably required for a NLTE prob-
lem would converge very slowly – or might even diverge.
On the other hand, if the emissivities are insensitive to
changes in ni, then the prospects for successful applica-
tions are excellent.

6.1. Fe II emissivities

This crucial question of sensitivity can be investigated by
repeating the calculations of Fe II emissivities reported in
Sect. 5.1, but with ni perturbed away from n

(x)
i . A conve-

nient way of doing this is to replace n(x)
i by the Boltzmann

distribution at excitation temperature Tex. Then, for given
Tex, the corresponding level emissivities ĖMC

i are obtained
from a Monte Carlo trial with N = 5× 106 packets, and
so are negligibly affected by sampling errors (cf. Fig. 2).

Now, for the given Tex, we can also compute ĖRi , the
level emissivities predicted by the fundamental formulae –
Eqs. (1) and (20) in this case. This represents the stan-
dard approach to NLTE transfer problems whereby the
radiation field is computed from the Radiative Transfer
Eq. (RTE) with emissivity coefficients evaluated using the
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Fig. 5. Sensitivity test. For a Boltzmann distribution over ex-
cited states at Tex = 12 500 K, the level emissivities (cgs)
obtained with the Monte Carlo transition probabilities (filled
circles) and with the basic formula (open circles) are plot-

ted against the exact emissivities obtained with n
(x)
i . The

Monte Carlo emissivities derive from a trial with N = 5 ×
106 packets.

current estimates of ni. Thus by comparing these two
emissivity estimates ĖMC

i and ĖRi , we can see whether
this Monte Carlo technique is potentally capable of yield-
ing a superior estimate of the radiation field.

In Fig. 5, the quantities ĖMC
i and ĖRi obtained for

Tex = 12 500 K are plotted against Ė(x)
i , the exact statis-

tical equilibrium level emissivities – i.e., the values corre-
sponding to n(x)

i .
Remarkably, Fig. 5 shows that the Monte Carlo emis-

sivities are far less sensitive to the departure of ni from
n

(x)
i than are the emissivities computed directly from the

fundamental formula. For the most part, the ĖMC
i are in

error by <0.1 dex, with little evidence of bias, while the
ĖRi are systematically offset by ∼+0.3 dex.

To investigate whether this insensitivity is character-
istic of the Monte Carlo procedure, the above test is now
repeated with Tex ranging from 7500 K to 20 000 K and
the resulting mean errors defined by Eq. (23) plotted in
Fig. 6. We see that ĖRi gives reasonably accurate emissivi-
ties only in the immediate neighbourhood of the minimum
at Tex ' 11 250 K. On the other hand, the values ĖMC

i are
accurate to <∼0.1 dex across the entire range.

The causes of these astonishing differences in sensitiv-
ity are of considerable interest. For ĖRi , the strong sen-
sitivity to Tex is readily understood. Because the sum
Ri`εi` ∝ ni, an error in the population of the emitting
level translates directly into an error in ĖRi .

Now consider ĖMC
i . This quantity is determined by the

rate at which active macro-atoms reach state i, and this
happens by direct absorptions of packets into this state or
by transitions from other states. Either way, the accuracy
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Fig. 6. Sensitivity test. Logarithmic errors of the emissivity
vectors ĖMC

i and ĖRi evaluated for Boltzmann distributions
over excited states plotted against Tex. The Monte Carlo emis-
sivities derive from trials with N = 5× 106 packets.

of the source vectors ȦRi and ȦCi is clearly fundamental
to the accuracy of the vector ĖMC

i . But the dominant
contributors to the elements of these source vectors – see
Eqs. (1) and (2) – are transitions from the ground state
and from low-lying metastable levels, and the estimated
populations of these levels are unlikely to be seriously in
error. In particular, with an assumed Boltzmann distri-
bution over excited states, the ni of these low levels is
insensitive to Tex and do not differ much from n

(x)
i . In

contrast, the populations of high levels are quite likely to
be badly estimated and are acutely sensitive to Tex.

6.2. Comments

Another way of appreciating the differences in these ap-
proaches to calculating emissivities is as follows. The
Monte Carlo procedure applies only to a state of statistical
equilibrium and, as such, constrains every level’s emissiv-
ity to be consistent with the rates of processes populating
that level. In contrast, the fundamental emissivity formula
applies also to states out of statistical equilibrium and so
takes no account of whether the levels’ populations can
be maintained. Accordingly, with this Monte Carlo tech-
nique, the principle of statistical equilibrium is incorpo-
rated (approximately) as the radiation field is being calcu-
lated. On the other hand, when emissivities are computed
from the fundamental formula, any consideration of sta-
tistical equilibrium is effectively being deferred until the
updated radiation field has been determined.

The likely beneficial impact of this insensitivity on
the iterations needed to derive NLTE solutions is worth
stressing. With the conventional RTE approach, an erro-
neously overpopulated upper level i pollutes the radiation

field with spurious line photons at frequencies νij (j < i),
and these are sources of excitation for level i when level
populations are next solved for. Similarly, an erroneously
overpopulated upper ion pollutes the radiation field with
recombination photons that are subsequent sources of pho-
toionization for the lower ion. To some degree, therefore,
such errors are self-perpetuating and so are not rapidly
eliminated. This persistency contributes to the slow con-
vergence typical of NLTE codes. In contrast, with the
Monte Carlo approach, this pollution does not happen and
so – for sufficiently large N – a high quality radiation field
is obtained immediately provided that the initial popula-
tions of the low-lying levels are estimated sensibly.

7. Implementation

The Monte Carlo transition probabilities allow statistical
equilibrium to be incorporated into the calculation of radi-
ation fields for NLTE problems. Moreover, this is achieved
without imposing the constraint of radiative equilibrium.
Accordingly, in principle at least, the technique applies
equally to problems with non-radiative heating, such as
stellar chromospheres.

7.1. Radiative equilibrium

In the absence of non-radiative heating, a NLTE transfer
problem must be solved subject to the constraint of ra-
diative equilibrium. The incorporation of this additional
constraint into the macro-atom formalism is readily un-
derstood. First suppose that collisional processes are ne-
glected. The absorbed and the emitted e-packets are then
always r-packets and they have identical energies – see
Fig. 1. Thus, the constraint of radiative equilibrium is
obeyed rigorously since it holds exactly for every activa-
tion – de-activation event, all of which are of the form
r → A∗ → r, where A∗ denotes an active macro-atom.
Note also that since active macro-atoms do not appear
spontaneously within the computational domain (D), ev-
ery Monte Carlo quantum’s interaction history starts and
ends as an r-packet crossing a boundary of D.

Now suppose that collisions are included. In this case,
a macro-atom activated by an r-packet can de-activate
itself by emitting a k-packet, so that radiative equilib-
rium no longer holds exactly for each individual activa-
tion – de-activation event. However, the emitted k-packet
is re-absorbed in situ by another macro-atom and thereby
(eventually) converted into an r-packet. Since this has the
same energy as the original r-packet, radiative equilib-
rium holds for every sequence of in situ events that starts
with the absorption of an r-packet and ends with the
next emission of an r-packet. A typical in situ sequence is
r → A∗ → k → A∗ → k → A∗ → r. If such sequences are
abbreviated as r → [A∗] → r, we see that the inclusion
of collisions has not fundamentally changed the procedure
and that radiative equilibrium is still rigorously obeyed.
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7.2. Non-radiative heating

In the presence of non-radiative heating, the NLTE prob-
lem is not subject to the additional constraint of radiative
equilibrium. Statistical equilibrium is incorporated with
the macro-atom formalism as before, and the challenge
now is to incorporate the creation of radiant energy within
D due to the additional heating. This is accomplished
by allowing for the spontaneous and random appearance
within D of active macro-atoms with their number, loca-
tions and internal states i all controlled by the collision
source vector ȦCi – cf. Sect. 5.1.5. Note that because this
sampling of ȦCi takes full account of the collisional cre-
ation of excitation, the emission of a k-packet is not now
followed by its in situ re-absorption; instead, the interac-
tion history of that Monte Carlo quantum then ends and
its energy is added to the thermal pool (cf. Sect. 5.1.5).
The radiation field generated by this procedure is not
divergence-free but reflects the collisional creation of ra-
diant energy due to an elevated temperature profile main-
tained by the non-radiative heating.

8. Conclusion

The limited aim of this paper has been to see if Monte
Carlo transfer codes whose quanta are indestructable en-
ergy packets can be constructed without resorting to sim-
plified treatments of line formation. To this end, the
concept of a macro-atom has been introduced and rules
established governing its activation and de-activation as
well as its transitions between internal states. These rules
– the Monte Carlo transition probabilities – have been
derived by demanding that the macro-atom’s emission of
r-packets asymptotically reproduces the local emissivity
of a gas in statistical equilibrium; and these rules’ validity
has been confirmed with one-point test problems.

Evidently, the next step is to implement these tran-
sition probabilities in a code to solve a realistic NLTE
problem for a stratified medium and thus to investigate
the practicality of this technique for problems of current
interest. In a companion paper, a Monte Carlo NLTE code
treating the formation of H lines in a Type II SN envelope
will be described and used to illustrate the convergence
behaviour of iterations to obtain both the level popula-
tions and the temperature stratification.
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