
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2023) 37:26
https://doi.org/10.1007/s10458-022-09596-0

1 3

Monte Carlo tree search algorithms for risk‑aware
and multi‑objective reinforcement learning

Conor F. Hayes1  · Mathieu Reymond2 · Diederik M. Roijers2,3 · Enda Howley1 ·
Patrick Mannion1

Accepted: 12 December 2022
© The Author(s) 2023

Abstract
In many risk-aware and multi-objective reinforcement learning settings, the utility of the
user is derived from a single execution of a policy. In these settings, making decisions
based on the average future returns is not suitable. For example, in a medical setting a
patient may only have one opportunity to treat their illness. Making decisions using just
the expected future returns–known in reinforcement learning as the value–cannot account
for the potential range of adverse or positive outcomes a decision may have. Therefore, we
should use the distribution over expected future returns differently to represent the critical
information that the agent requires at decision time by taking both the future and accrued
returns into consideration. In this paper, we propose two novel Monte Carlo tree search
algorithms. Firstly, we present a Monte Carlo tree search algorithm that can compute poli-
cies for nonlinear utility functions (NLU-MCTS) by optimising the utility of the different
possible returns attainable from individual policy executions, resulting in good policies for
both risk-aware and multi-objective settings. Secondly, we propose a distributional Monte
Carlo tree search algorithm (DMCTS) which extends NLU-MCTS. DMCTS computes an
approximate posterior distribution over the utility of the returns, and utilises Thompson
sampling during planning to compute policies in risk-aware and multi-objective settings.
Both algorithms outperform the state-of-the-art in multi-objective reinforcement learning
for the expected utility of the returns.

Keywords  Multi-objective · Risk-aware · Decision making · Distributional · Reinforcement
learning · Monte Carlo tree search

An earlier version of this work was presented as an extended abstract at the International Conference
of Autonomous Agents and Multi-Agent Systems 2021 [27] and at the Adaptive and Learning Agents
Workshop 2021 [28]. This article extends our previous work with additional theoretical analysis and
new empirical results.

 *	 Conor F. Hayes
	 c.hayes13@nuigalway.ie

1	 University of Galway, Galway, Ireland
2	 Vrije Universiteit Brussel, Brussels, Belgium
3	 City of Amsterdam, Amsterdam, The Netherlands

http://orcid.org/0000-0003-4783-7126
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-022-09596-0&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 2 of 37

1  Introduction

In real-world decision making, a policy is often only executed once. For example, consider
a government planning to build an off-shore wind farm to generate electricity. To ensure
electricity generation is maximised, the wind farm must be located in an area with suffi-
cient wind while also not interfering with any fishing routes or protected marine life. Given
the off-shore wind farm will only be constructed once, the government must consider each
potential outcome and likelihood of each outcome to ensure an optimal decision can be
made.

In reinforcement learning (RL), the expected return is used to make decisions [71].
However, in many scenarios the utility of a user is derived from a single execution of a
policy, and, therefore, the utility of the returns must be optimised [61]. For example, in a
medical setting a patient may only have one opportunity to select a treatment. In this exam-
ple, a patient will aim to cure their illness based on a single course of a treatment. As such,
the user’s utility is derived from the single execution of a policy. Moreover, computing a
policy based on applying a utility function to expected return is incompatible with how the
user’s utility is derived because the expected return considers the average outcome over
multiple policy executions. Therefore, the utility of the expectation is computed. In con-
trast, a policy that maximises utility of the return considers the utility obtained from each
individual outcome, which is compatible with how the user’s utility is derived. Therefore,
the expected utility must be maximised (see Sect. 2.4).

When optimising for expected utility the underlying distribution of the returns must be
used differently. Therefore, decisions must be made using the utility of the returns of a full
policy. Under these conditions, an agent must be able to sample from the underlying return
distribution to calculate the future returns. The agent must also be able to calculate the
returns accrued at each timestep. Therefore, we theorise that for an agent to have sufficient
critical information at decision time the agent must apply the utility function to the cumu-
lative returns, which is the sum of the accrued and future returns [61].

To calculate the utility, we apply the utility function to the returns where a user’s util-
ity function is known a priori. In other words, in the taxonomy of multi-objective sequen-
tial decision making [62], we are in the known utility function scenario. When optimising
under the expected utility, it is critical to only apply the utility function to the returns of a
full execution of a policy [61] because nonlinear utility functions do not distribute across
the sum of immediate and future returns [31, 61]. In this case, the agent must know the
returns it has already accrued and the future returns before applying the utility function.
For example, before the 2008 financial crash, many investment bankers were guaranteed
their base salaries regardless of their losses, but their bonuses were dependent on their
returns from investments. In the case of an investor incurring a loss, the only policy that
would result in a bonus would be one that executes an increasingly risky strategy to win
back the losses and receive some bonus.

Learning the utility of the returns is thus naturally risk-aware. Optimising the utility of
the sum of the accrued and future returns to make decisions enables an agent to avoid cer-
tain undesirable outcomes. Without knowing the accrued returns, an agent cannot under-
stand how future actions could affect the cumulative return. To make decisions that max-
imise the user’s utility, the agent must have information about both the accrued and the
future returns.

A further complicating factor is that, in the real world, decision making often involves
trade-offs based on multiple conflicting objectives [17, 60, 75]. For example, we may want

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 3 of 37  26

to maximise the power output of coal-burning electrical generators while minimising CO2
emissions. Many approaches to multi-objective decision making only consider linear util-
ity functions; this limitation severely restricts the real-world applicability of these methods
[76], given that utility in many real-world problems is derived in a nonlinear manner.

In the multi-objective case, optimising under the expected utility is known as optimising
the expected scalarised returns (ESR) criterion. For multi-objective reinforcement learning
(MORL), the utility function expresses the user’s preferences over objectives. If the utility
function is linear and is known a priori, it is possible to translate a multi-objective decision
problem to its single-objective equivalent. Once translated, we can then apply single objec-
tive methods to solve the decision problem. However, if the utility function is nonlinear, as
human preferences often are, explicitly multi-objective methods are required to find optimal
solutions [62]. The majority of MORL algorithms focus on the scalarised expected returns
(SER) criterion. It has been shown that for nonlinear utility functions the policies learned
under the ESR criterion and the SER criterion can be different [64]. Futhermore, nonlinear
utility functions invalidate the Bellman equation, given nonlinear utility functions do not
distribute across the sum of the immediate and future returns, which restricts the number of
usable algorithms in this setting [31]. Therefore, to increase MORL’s usability in the real
world, dedicated multi-objective algorithms for the ESR criterion and the SER criterion
that can learn policies for nonlinear utility functions must be formulated. We note that the
MORL literature focuses almost exclusively on the SER criterion, leaving the ESR crite-
rion largely understudied with a few exceptions [29, 30, 32, 33, 42, 61, 74].1

We propose a novel algorithm that can optimise for nonlinear utility functions for
expected utility by taking both the accrued and future returns into consideration. To do
so, we define a nonlinear utility function Monte Carlo tree search (NLU-MCTS) algorithm
that performs Monte Carlo roll-outs to calculate the future returns while also calculating
the accrued returns. Therefore, NLU-MCTS can make decisions using the expected utility
of the returns over multiple policies. NLU-MCTS builds upon Monte Carlo tree search and
uses UCB to explore during planning.

In sequential decision making settings, one of the fundamental challenges is the explo-
ration versus exploration dilemma [71]. Thompson sampling is an algorithm that has been
shown to address this dilemma in bandit settings [15]. Thompson sampling selects actions
based on the probability matching principle, where actions are selected stochastically
based on the probability of the action being optimal. Thompson sampling has been shown
to empirically outperform UCB in bandit settings, and under a wide range of problems
shows a more robust convergence compared to UCB [7]. Therefore, to exploit the potential
performance gains of Thompson sampling we propose a new algorithm known as distribu-
tional Monte Carlo tree search (DMCTS) which computes an approximate posterior distri-
bution over the expected utility over the returns. Using the computed approximate posterior
distribution it is possible to use Thompson sampling methods to explore during planning.

Both NLU-MCTS and DMCTS overcome the issues present when making decisions
solely with the expected return [11, 38, 53, 70, 80]. As we will show, computing the utility
of the returns of a policy is useful when optimising for risk-aware RL and under the MORL
ESR criterion, given utility of the returns of a policy contains more information about the
range of potential negative and positive outcomes during planning and at decision time.
NLU-MCTS achieves good performance in both risk-aware and multi-objective settings,

1  We will make the distinction between the SER and ESR criterion clear in a later section.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 4 of 37

while DMCTS achieves good performance in risk-aware settings and state-of-the-art per-
formance under multi-objective ESR settings.

2 � Background

In this section we introduce necessary background material, including multi-objective
Markov decision processes, the known utility function scenario, commonly used optimality
criteria in multi-objective decision making, risk-aware utility functions, Bootstrap Thomp-
son Sampling, Expected Utility Policy Gradient and Monte Carlo tree search.

2.1 � Multi‑objective reinforcement learning

In multi-objective reinforcement learning (MORL), we deal with decision problems with
multiple objectives [44, 62], often modelled as a multi-objective Markov decision process
(MOMDP). A MOMDP is a tuple, M = (S,A, T, � ,R) , where S and A are the state and
action spaces, T ∶ S ×A × S → [0, 1] is a probabilistic transition function, � is a discount
factor determining the relative importance of future rewards and R ∶ S ×A × S → ℝ

n is
an n-dimensional vector-valued immediate reward function. In MORL, n > 1.

2.2 � The known utility function scenario

In MORL, an agent seeks to maximise a user’s utility function, where a user’s utility func-
tion describes their preferences over objectives. In certain scenarios the utility function of
a user can be known at the time of learning or planning. In the taxonomy of MORL we are
deemed to be in the known utility function scenario [31, 62]. When the utility function of
a user is known, a single optimal policy can be computed. Figure 1 describes the phases
of the known utility function scenario. There are two phases in the known utility function
scenario: the planning or learning phase and the execution phase. During the planning or
learning phase a multi-objective reinforcement learning or planning algorithm is deployed
in the MOMDP to compute a single optimal policy for the known utility function. A single
optimal policy is computed once the algorithm has completed planning or learning. The
computed policy is then executed during the execution phase.

2.3 � Risk‑aware utility functions

In single-objective decision making under uncertainty, utility functions are often utilised
[79]. In scenarios where risk is considered, utility functions are often used to represent a
user’s preference for risk. In risk-aware settings the utility function is applied to the returns

Fig. 1   The known utility function scenario [31]

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 5 of 37  26

and the expected utility is maximised. When making decisions in scenarios with risk, a
user can be described as risk-averse, risk-seeking or risk-neutral.

A user’s preference for risk can be described by the shape of their utility function [5,
21]. The shape of a risk-seeking utility function is convex. For example the nonlinear util-
ity function u(x) = x2 is a risk-seeking utility function given its shape is convex [21, 41].
For a user that is risk-averse their utility function is concave. For example the nonlinear
utility function u(x) = x0.5 is risk-averse given the utility function has a concave shape from
below [21, 36]. In contrast to risk-averse and risk-seeking utility functions, risk-neutral
utility functions are linear [36]. A user who has a risk-neutral utility function has no pref-
erences for risk and therefore the utility is a linear function of the returns. For example,
u(x) = x is a risk-neutral and linear utility function. In this paper we only consider nonlin-
ear utility functions, therefore we focus on risk-seeking and risk-averse utility functions.

2.4 � Scalarised expected returns versus expected scalarised returns

In MORL, the user’s utility derives from the vector-valued outcomes (returns). This is typi-
cally modelled as a utility function that needs to be applied to these outcomes in one way
or another. For this, we consider two choices [31, 62]. Calculating the expected value of
the return of a policy before applying the utility function leads to the scalarised expected
returns (SER) optimisation criterion:

SER is the most commonly used criterion in the multi-objective (single agent) planning
and reinforcement learning literature [62]. For SER, a coverage set is defined as a set of
optimal policies for all possible utility functions.

In contrast to the SER criterion, if the utility function is applied before computing the
expectation, then the expected scalarised returns (ESR) criterion is being optimised [61]:

Similar to risk-aware settings for single objectives (see Sect. 2.3), the ESR criterion max-
imises the expected utility. Therefore, the ESR criterion is naturally risk-aware while con-
sidering multiple objectives. ESR is the most commonly used criterion in the game theory
literature on multi-objective games [59], with some exceptions (e.g. [64]).

2.5 � Monte Carlo tree search

One way of approaching a decision problem is to use tree search. Perhaps the most popular
of such methods is Monte Carlo tree search (MCTS) [16], which employs heuristic explo-
ration to construct its search tree. MCTS builds a search tree of nodes, where each node
has a number of children. Each child node corresponds to an action available to the agent.
MCTS has two phases: the planning phase and the execution phase.

In the planning phase the agent implements the following four steps [11]: selection,
expansion, simulation and backpropagation. Selection: the agent traverses the search tree
until it reaches a node for which not all of its possible child nodes have been explored.

(1)V�

u
= u

(
�

[
∞∑

t=0

� trt |�,�0

])
.

(2)V�

u
= �

[
u

(
∞∑

t=0

� trt

)
|�,�0

]
.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 6 of 37

Expansion: at a node whose children have not all been expanded, the node must be
expanded. The agent creates a random child node and then must simulate the environment
for the newly created child node. Simulation: the agent executes a random policy through
Monte Carlo simulations until a terminal state of the environment is reached. The agent
then receives the returns. Backpropagation: the agent must backpropagate the returns
received at a terminal state to each node visited during selection where a predefined algo-
rithm statistic e.g. UCB [16, 38] is updated. Each step is repeated a specified number of
times, which incrementally builds the search tree. Or, as we will discuss in the next subsec-
tion, a posterior belief on the returns, from which we can draw actions using Thompson
sampling [8].

During the execution phase the agent must select a child node, corresponding to an
action and associated state transition, to traverse to next. The agent evaluates the statistic
at each node that is reachable from the root node and moves to the node which returns the
maximum value. Once the execution phase has completed, the agent repeats the planning
phase.

As already highlighted MCTS makes decisions and explores based on a predefined
algorithm statistic. One such version of MCTS is UCT [38] which uses the following for-
mula to derive the optimal action at decision time while also incorporating exploration
during learning:

where vi is the approximated value of the node i, ni is the number of the times the node i
has been visited and N is the total number of times that the parent of node i has been vis-
ited. C is a hyperparameter that can be tuned for exploration, however C is often set to

√
2.

2.6 � (Bootstrap) Thompson sampling

As previously mentioned, during the planning phase of MCTS, we can use Thompson
sampling to take exploring actions [8]. However, it is not always possible to get an exact
posterior. In this case a bootstrap distribution over means can be used to approximate a
posterior distribution [20, 49]. Eckles et al. [18, 19] use a bootstrap distribution to replace
the posterior distribution used in Thompson Sampling. This method is known as Bootstrap
Thompson Sampling (BTS) [18] and was proposed in the multi-arm bandit setting. The
bootstrap distribution contains a number of bootstrap replicates, j ∈ {1,… , J} , where J
is a hyper-parameter that can be tuned for exploration. For a small J, BTS can become
greedy. A larger J value increases exploration, but at a computational cost [18].

Each bootstrap replicate, j, in the bootstrap distribution contains two parameters, �j and
�j , where �j

�j
 is an is an estimate of replicate j’s expected utility. At decision time, to deter-

mine the optimal action the bootstrap distribution for each arm, i, is sampled. The observa-
tion for the corresponding bootstrap replicate, j, is retrieved and the arm with the maxi-
mum expected utility is pulled [18].

The distribution which corresponds to the maximum arm is randomly re-weighted by
simulating a coin-flip (commonly known as sampling from a Bernoulli bandit) for each
bootstrap replicate, j, in the bootstrap distribution (see Algorithm 1). If the coin-flip is

(3)vi + C ×

√
ln(N)

ni
,

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 7 of 37  26

heads, the � and � parameters for j is re-weighted.2 To do so, the return is added to the �j
value and 1 is added to �j [18].

Bootstrap methods with random re-weighting [65] are more computationally appealing
as they can be conducted online rather than re-sampling data [52]. BTS addresses problems
of scalability and robustness when compared to Thompson Sampling [18]. Furthermore,
bootstrap distributions can approximate posteriors that are difficult to represent exactly.

2.7 � Expected utility policy gradient

We now introduce Expected Utility Policy Gradient (EUPG) [61], a state-of-the-art MORL
algorithm for ESR that we will use as a benchmark algorithm in our experiments. EUPG is
an extension of Policy Gradient [72, 83], where Monte Carlo simulations are used to com-
pute the returns and optimise the policy. EUPG calculates the accrued returns, R−

t
 , which is

the sum of the immediate returns received as far as the current timestep, t. EUPG also cal-
culates the future returns, R+

t
 , which is the sum of the immediate returns from the current

timestep, t, to the terminal state. Using both the accrued and future returns enables EUPG
to optimise over the utility of the full returns of an episode, where the utility function is
applied to the sum of R−

t
 and R+

t
.

In policy gradient the policies are adapted towards the attained utility by gradient
descent. For EUPG the utility of the sum of the accrued and future returns is calculated
inside the loss function, which results in the following:

Roijers et al. [61] demonstrated for the ESR criterion the accrued and future returns must
be considered when learning in order to learn a good policy. Applying this consideration to
EUPG, the algorithm achieves the state-of-the-art performance under the ESR criterion. In
this paper, we use the same method of adding past and future returns together before apply-
ing the utility inside of the search scheme of our novel DMCTS algorithm.

(4)L(�) = −

T∑

t=0

u(R−

t
+ R

+

t
) log(��(a|s,R−

t
, t)).

2  Updating the distribution in this way is known as "double-or-nothing" or online half sampling [18]. It is
important to note that the absolute scale of the weights does not matter for most estimators [18]. In the liter-
ature various other weight distributions have been used. For example, Rubin [65] uses a Bayesian bootstrap
which uses exponential weights. While this overcomes some numerical problems, it requires updating all
replicates and therefore can be more computationally expensive. For an extensive study on weight distribu-
tions for bootstrapping the sample mean see Owen and Eckles [51].

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 8 of 37

3 � Expected scalarised returns

In the known utility function scenario, there are two phases: the planning phase and the
execution phase. During the learning phase a policy is computed and returned to the user.
After planning has completed the user executes the computed policy during the execution
phase. In scenarios where the utility of a user is derived from the single execution of a
policy, the expected scalarised returns (ESR) criterion must be optimised. Under the ESR
criterion, the user will only execute the computed policy once in the execution phase.3 The
majority of RL research focuses on the SER criterion [54, 58], while the ESR criterion
has been largely overlooked with some exceptions [32, 34, 42, 61, 74]. Additionally, the
majority of RL research only considers linear utility functions. However, in the real world,
utility functions can be nonlinear. A potential reason why the RL community has focused
on linear utility function is that nonlinear utility functions invalidate the Bellman equation,
given nonlinear utility functions do not distribute across the sum of the immediate and
future returns [61],

where u is a nonlinear utility function4 and �−
�
 =

∑t−1

i=0
� iri . It has also been shown that

for nonlinear utility functions the policies computed under the ESR criterion and the SER
criterion can be different [59]. Therefore, to enhance RL’s usability in real-world problem
domains, new methods must be formulated that can compute policies for the ESR criterion
and the SER criterion for nonlinear utility functions.

When making decisions under the SER criterion, the expected returns is computed
before the utility function is applied. A decision is then selected based on the scalar utility
of the expectation [77]. SER methods learn policies that optimise a user’s utility function
over multiple policy executions. Therefore, a user will execute a policy computed under the
SER criterion multiple times during the execution phase. Under the SER criterion, mak-
ing decisions on an expected value vector is optimal [62]. However, a user optimising for
the ESR criterion may only have one opportunity to execute a policy. Therefore, making
decisions based on a single expected value vector is not sufficient because the user must
have sufficient critical information available about each potential return vector and the
associated likelihood [32, 33]. Therefore, applying the utility function to each return vector
before computing the expectation ensures the user has taken into consideration each poten-
tial outcome a policy may have and the associated utility. We outline two new algorithms
that compute policies under the ESR criterion in Sects. 4 and 5.

(5)

max
�

�

[

u

(

R−
t +

∞
∑

i=t
� iri

)

|

|

|

|

�, st

]

≠ u(R−
t) +max

�
�

[

u

(∞
∑

i=t
� iri

)

|

|

|

|

�, st

]

,

3  It is important to note that in order to compute policies during the planning phase multiple policy execu-
tions must take place. However, it is important to remember that the computed policy may then be executed
once (ESR) or multiple times (SER) during the execution phase.
4  For nonlinear utility functions the accrued returns must be included in the state, s

t
 [61].

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 9 of 37  26

4 � Monte Carlo tree search for nonlinear utility functions

To compute policies for the ESR criterion when the utility function is nonlinear and
known a priori [31], we present a novel Monte Carlo tree search algorithm, known as
NLU-MCTS. As shown by Roijers et al. [61], in order to compute optimal policies under
the ESR criterion, both the accrued and future returns must be taken into consideration
before applying the utility function. Therefore, an algorithm must either maintain a dis-
tribution over the returns or have some method which allows the agent to sample from
the underlying return distribution of the environment. NLU-MCTS utilises the latter, by
performing Monte Carlo simulations to compute the future returns. Usually in single
objective MCTS an expectation of the returns is maintained at each chance node and the
agent seeks to maximise the expectation. When the utility function is nonlinear, mak-
ing decisions based on the expected returns does not account for the potential undesired
outcomes a decision may have. For risk-aware RL and MORL under the ESR criterion,
we need to be able to make decisions with sufficient information to avoid undesirable
outcomes and exploit positive outcomes. Our key insight is that computing the utility
of the cumulative returns, the returns received from executing a policy, can be used
to replace the expected future returns (of vanilla MCTS) at each node. We outline our
algorithm for single-objective risk-aware RL and MORL that can compute policies for
the ESR criterion.

Before we outline how the accrued and future returns are computed, we must describe
the structure of the search tree constructed by NLU-MCTS. Under the ESR criterion, the
environment must be stochastic, where the state transitions or reward function are stochas-
tic. To handle this uncertainty, NLU-MCTS builds an expectimax search tree using the
same planning phase as MCTS (see Sect. 2.5). A search tree is a representation of the state-
action space that is incrementally built via the steps of the underlying MCTS algorithm.
An expectimax search tree [78] uses both decision and chance nodes. Figure 2 describes
a search tree constructed by NLU-MCTS which contains both decision and chance nodes.
Each decision node represents a state, action and reward of a MOMDP, where each deci-
sion node has a child chance node per action. In this paper we examine environments with
stochastic rewards. Each chance node represents the state and action of a MOMDP. At each
chance node, the environment is sampled. For NLU-MCTS, if a new observation-reward
combination is generated when sampling the environment, a new child decision node is
created. This process repeats as the agent traverses the search tree. It is important to note
that each chance node and its parent decision node share the same state and action. A child
decision node is only created when a new observation-reward combination is received
when sampling the environment. To build and traverse a search tree similar to MCTS,
NLU-MCTS uses the following phases: selection, expansion, simulation and backpropaga-
tion (Sect. 2.5).

Now that the structure of the underlying search tree has been outlined it is possible to
describe how the cumulative returns and future returns are calculated. The accrued returns
is the sum of returns the NLU-MCTS algorithm receives during the execution phase from
timestep 0, t0 , to timestep, t − 1 , where rt is the reward vector received at each timestep,

R
−

t
=

t−1∑

t0

rt.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 10 of 37

Given we utilise the underlying planning phases of Monte Carlo tree search, we can use the
simulation phase to compute the future returns. As already mentioned during the simula-
tion phase the agent performs a random rollout, also known as a Monte Carlo simulation,
until a terminal state. NLU-MCTS utilises Monte Carlo simulations of the environment
until a terminal state is reached. Therefore, the future returns can be computed from Monte
Carlo simulations performed at each node during planning. Taking this into consideration
the future returns, R+

t
 , is the sum of the rewards received when traversing the search tree

during the planning phase and Monte Carlo simulations from timestep, t, to a terminal
node, tn,

Finally, before the utility function is applied the cumulative returns must be calculated. The
cumulative returns, Rt , is the sum of the accrued returns, R−

t
 , and the future returns, R+

t
,

In other words, the cumulative returns is the returns received from a full policy execution.
Once the cumulative returns, Rt , have been calculated, it is possible to compute the utility
of the returns, u(Rt) , to optimise for the ESR criterion.

As already highlighted, NLU-MCTS builds an expectimax search tree and utilises
both decision and chance nodes. Over multiple iterations of the planning phase, NLU-
MCTS constructs a search tree using the selection, expansion, simulation and backpropa-
gation phases used by traditional MCTS [70]. We outline the NLU-MCTS algorithm in
Algorithm 2.

Firstly, NLU-MCTS utilises the selection phase (Algorithm 3, see Fig. 3), where the
agent traverses the search tree starting at the current root decision node [68]. During the
selection phase, we utilise outcome selection for chance nodes and action selection for
decision nodes. When the agent arrives at a chance node, we perform outcome selection
where the agent simulates the environment model (Algorithm 5). The agent then moves
to the child decision node corresponding to the observation-reward combination received
from the simulation [68]. When the agent arrives at a decision node, nd , the agent must
decide which of its child chance nodes, Cnd

 , to select. Therefore, NLU-MCTS selects the
chance node, nc , which maximises the UCB term:

the UCB term is defined as follows:

(6)R
+

t
=

tn∑

t

rt.

(7)Rt = R
−

t
+ R

+

t
.

(8)BestChild = arg maxnc∈Cnd

UCB(nd, nc)

Fig. 2   A representation of a
search tree constructed using
NLU-MCTS for a problem
with stochastic rewards and two
actions. The search contains both
decision nodes, represented by
circular nodes, and chance nodes,
represented by octagons

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 11 of 37  26

where vnc is the total utility of the child node nc , Nnc
 is the number of times child node nc

has been visited, vnc
Nnc

 is the expected utility of the child node nc , C is an exploration value,
and Nnd

 and Nnc
 are the number of times nd and nc have been visited respectively. Equa-

tion 9 ensures that the agent explores areas of the tree which have not been visited often
while also ensuring that the agent exploits nodes which have good returns. The agent then
traverses to the chance node corresponding to the best action. The agent continues to trav-
erse the search tree until a decision node is encountered which has not had all of is children
expanded. The agent then progresses to the expansion phase (Algorithm 4) where the
selected decision node is utilised. It is important to note that, as the agent traverses the
search tree, the future returns, R+

t
 , is being computed incrementally.

During the expansion phase (Algorithm 4, see Fig. 4), the agent considers a decision
node selected during the previous phase which has not had all of its children expanded.
There are three steps to the expansion phase. Firstly, for the decision node, a child chance
node corresponding to a previous remaining action is created for a randomly selected
action. Secondly, the agent simulates the environment model for the newly created chance
node. Finally, for the previously created chance node, the agent creates a child decision
node corresponding to the observation-reward combination received. It is important to note
that both a chance node and a decision node are generated during the expansion phase. The
newly created decision node is then utilised in the next phase, known as the simulation
phase.

After expansion, the created decision node must be simulated. Figure 5 highlights the
simulation phase (Algorithm 6) for NLU-MCTS. When a decision node is simulated,
a random rollout is executed. During the rollout, a random policy is followed until a
terminal state is reached. Once the simulation has completed, the cumulative returns,
Rt , can be computed. The future returns, R+

t
 , is equal to the sum of the rewards received

when traversing the search tree and the returns from the random rollout in the simula-
tion phase. The cumulative returns, Rt , is then computed by adding both the accrued
returns, R−

t
 , and the future returns, R+

t
 . We note that Rt is the same for every node dur-

ing backpropagation.
Figure 6 and Algorithm 7 outlines the backpropagation phase of NLU-MCTS. Once

the simulation phase has completed, the cumulative returns, Rt , is backpropagated to each
node visited during the previous phases of the search tree. As the agent backpropagates the
cumulative returns, the agent updates the required statistic for each node.

(9)UCB(nd, nc) =
vnc

Nnc

+ C ×

√
ln(Nnd

)

Nnc

,

Fig. 3   During the selection
phase, NLU-MCTS starts at the
root node and traverses down the
search tree (nodes highlighted
in red). The agent traverses the
search tree until a leaf decision
node is found

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 12 of 37

Under the ESR criterion, the utility of the cumulative returns, u(Rt ), is computed during
the backpropagation phase5 by applying the known utility function, u, to the cumulative
returns, Rt . Therefore during backpropagation, the statistics at chance node are updated by
updating the total utility, v, of the node as follows:

The visit count for both chance node and decision nodes is also updated as follows:

(10)vnc ← vnc + u(Rt).

(11)Nnc
← Nnc

+ 1,

Fig. 4   During the expansion
phase of NLU-MCTS (nodes
highlighted in red), a child
chance node is created. The
newly generated chance node
simulates the environment and
creates a child decision for the
corresponding reward received

Fig. 5   During the simulation
phase of NLU-MCTS (nodes
highlighted in red), the decision
node generated in the expansion
phase executes a random policy
until a terminal state. Finally,
the cumulative returns Rt is
computed

5  To compute policies under the ESR criterion it is also possible to backpropagate the utility of the cumula-
tive returns, u(R

t
 ). The relevant statistics can then be updated using the utility of the cumulative returns.

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 13 of 37  26

The NLU-MCTS algorithm runs each step of the planning phase (selection, expansion,
simulation and backpropagation) a specified number of times. We denote the number of
times the planning phase is run as nexec . Once the NLU-MCTS algorithm has run the plan-
ning phase an nexec number of times, the algorithm returns the best action to take from the
current root node, nr . Under the ESR criterion, the best action, a∗ , can be calculated by
evaluating the expected utility of each of the current root nodes, nr , children, Cnr

 and taking
the action which returns the maximum expected utility as follows:

(12)Nnd
← Nnd

+ 1.

(13)a∗ = arg max
n∈Cnr

vn

Nn

.

Fig. 6   During the backpropa-
gation phase, the cumulative
returns, Rt , is backpropagated
to each node visited during the
planning phase

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 14 of 37

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 15 of 37  26

5 � Distributional Monte Carlo tree search

Monte Carlo tree search for nonlinear utility functions (NLU-MCTS) utilises the UCB sta-
tistic to explore during planning. However, Thompson sampling methods have been shown
to outperform UCB methods in bandit settings [15, 66]. Therefore, to exploit the potential
performance increases associated with Thompson sampling methods, we present a novel
distributional Monte Carlo tree search algorithm (DMCTS) that learns a posterior distribu-
tion over the expected utility of the returns.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 16 of 37

Firstly, it is important to discuss how DMCTS (Algorithm 8) builds an underlying
search tree. DMCTS builds an expectimax search tree using the same planning phase as
NLU-MCTS (see Sect. 4). However, DMCTS takes a distributional approach to decision
making.

DMCTS aims to maintain a posterior distribution over the expected utility of the returns
at each chance node. However, because the utility function may be nonlinear, a parametric
form of the posterior distribution may not exist. Since a bootstrap distribution can be used
to approximate a posterior [20, 49], it is much more suitable to maintain a bootstrap distri-
bution over the expected utility of the returns at each chance node.

Each bootstrap distribution contains a number of bootstrap replicates, j ∈ {1,… , J}
[18] (see Sect. 2.6). It is important to note the number of bootstrap replicates, J, is a hyper-
parameter that can be tuned for exploration [18]. Each bootstrap replicate, j, in the boot-
strap distribution has two parameters, �j6 and �j , where �j

�j
 is the expected utility for replicate

j. On initialisation of a new node, for each bootstrap replicate, j, the parameters �j and �j are
both set to 1. Moreover, �j can be set to positive or negative values to increase initial explo-
ration without a computational cost. Figure 7 outlines a bootstrap distribution learned by
the DMCTS algorithm. For ESR settings, the expected utility of each bootstrap replicate, j,
can be computed as follows:

It is important to note that, similarly to NLU-MCTS, DMCTS requires the utility function
of the user to be known a priori. The bootstrap distribution is updated during the back-
propagation phase of the DMCTS algorithm.

(14)�(u(j)) =
�j

�j
.

6  In this work our use of � differs slightly from that of Kaptein and Eckles [18]. We utilise � to track the
sum of the utility, which can then be utilised to compute the expectation. Whereas, Kaptein and Eckles uti-
lise � as a count for the returns of a Bernoulli bandit.

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 17 of 37  26

During the backpropagation phase (Algorithm 10) the cumulative returns is backpropa-
gated and the bootstrap distribution at each chance node is updated. Algorithm 11 outlines
how a bootstrap distribution for a node is updated for the ESR criterion. In this paper, we
do not use discounting as we perform evaluations only on finite horizon tasks. We note that
DMCTS can easily be adapted to discounted settings. At chance node, i, for each bootstrap
replicate, j, a coin flip is simulated (See Algorithm 11, Line 4). If the result of the coin flip
is equal to 1 (heads), �ij and �ij are updated:

To select actions while planning (Algorithm 9), we use the previously computed statistics.
At each timestep the agent must choose which action to execute in order to traverse the
search tree (as outlined in Algorithm 12). At decision node n, we select an action by sam-
pling the bootstrap distribution at each child chance node, i. For each sampled bootstrap
replicate, j, the �ij and �ij values are retrieved and �ij

�ij
 is computed. Since the following

approximation is true,

by maximising over i in Eq. 15, we select an action corresponding to j approximately
proportional to the probability of that action being optimal–per the Bootstrap Thompson

�ij ← �ij + u(Rt)

�ij ← �ij + 1

(15)
�ij

�ij
≡ �[u(R−

t
+ R

+

t
)],

Fig. 7   A bootstrap distribution
learned by DMCTS with the
number of bootstrap replicates, J,
set to 8. The expected utility for
each bootstrap replicate, j, can be
calculated by �j

�j
 . For example, the

expected utility for bootstrap
replicate j

4
 can be calculated as

follows: �(u(j
4
)) =

�j4

�j4

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 18 of 37

Sampling exploration strategy. The agent then executes the action, a∗ , which corresponds
to the following:

We note that, at execution time, we can calculate the best action (Algorithm 8, Line 11)
by simply selecting the overall maximising action by averaging over all the acquired data,
thereby maximising the ESR criterion:

Using the outlined algorithm, DMCTS is able to learn policies for risk-aware settings and
under ESR for multi-objective settings. In Sect. 6, we evaluate DMCTS for risk-aware settings
and multi-objective settings for the ESR criterion.

6 � Experiments

In order to evaluate NLU-MCTS and DMCTS, we test both algorithms in multiple set-
tings. Firstly, we perform an ablative study to outline the effect on computation and
performance the J parameter has when computing the BTS distribution for DMCTS.
We then evaluate NLU-MCTS and DMCTS in a risk-aware setting. Finally, we evaluate

(16)a∗ = argmax
i

�ij

�ij
.

(17)ESR = �[u(R−

t
+ R

+

t
)].

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 19 of 37  26

both algorithms in multi-objective settings under the ESR criterion. In multi-objective
settings, we test our algorithms on variants of standard benchmark problems from the
MORL literature.

We also evaluate NLU-MCTS and DMCTS against two other state-of-the-art RL
algorithms: Expected Utility Policy Gradient (EUPG) [61] and C51 [10]. EUPG is the
only MORL algorithm that can compute policies under the ESR criterion and is there-
fore the state-of-the-art performance in this setting [61]. We use C51 as a baseline
algorithm for our evaluation of DMCTS given C51 is a distributional RL algorithm
and has achieved state-of-the-art performance [10].

At each timestep for NLU-MCTS and DMCTS, the planning phase is performed
multiple times before an action is selected during the execution phase. To fairly evalu-
ate all other algorithms against NLU-MCTS and DMCTS, we have altered each bench-
mark algorithm to have the same number of policy executions of each environment at
each timestep as NLU-MCTS and DMCTS. At each timestep, each algorithm gets nexec
full policy executions worth of learning from that state and timestep onward. There-
fore, if nexec = 10 , NLU-MCTS and DMCTS perform the planning phase ten times
before selecting an action. To ensure a C51 and EUPG get the same opportunity to
learn, both algorithms are altered to execute a policy nexec number of times from the
current state. For the other algorithms (except NLU-MCTS and DMCTS) this has the
effect of increasing the learning speed. The number of policy executions nexec varies for
each problem domain. All experiments are averaged over 10 runs.

6.1 � Ablation study

Before we evaluate both NLU-MCTS and DMCTS in risk-aware and multi-objective
sequential decision making problems, we empirically evaluate how the Bootstrap Thomp-
son Sampling (BTS) parameter settings affect performance and run time. We also provide a
visualisation that shows how a BTS distribution is updated over time to estimate the under-
lying posterior distribution over the expected utility. Finally, we evaluate the performance
of DMCTS under different J values in a MOMDP, to highlight how the selection of the J
value can effect performance in sequential settings.

6.1.1 � Bootstrap Thompson sampling J values and runtime

To illustrate how a BTS distribution evolves over time, we update a single BTS distribu-
tion based on the returns of a simple multi-objective bandit. In this setting the bandit has
one arm, where there is a 0.5 chance of receiving the following return: r = [1, 1] , and a 0.5
chance of receiving the following return: r = [0, 0] . The returns are then scalarised using
the following utility function:

where r1 and r2 are the returns for objective 1 and objective 2 respectively. In this example,
expected utility is 0.5.

Using this bandit we update a single BTS distribution and show how the distribution
evolves over a number of updates using the utility of the returns. Figure 8 outlines how
a BTS distribution with 25 bootstrap replicates evolves after 1, 8, 32, 128, 250 and 500
updates.

(18)u = r1r2,

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 20 of 37

Next, we investigate the computational run time for a BTS distribution with varying
number of replicates, J. To evaluate the run time for each chosen J value we compute the
time in seconds taken to perform 1, 000 updates of a BTS distribution. This experiment
was performed 10 times for each J value and the average run time was computed. To evalu-
ate the run time we use the following J values: 10, 100, 200, 300, 400, 500, 600, 700, 800,
900 and 1000 and present the results in Fig. 9.

Figure 9 shows that the run time in seconds increases linearly with the number of repli-
cates J. Therefore, the hyperparameter J can have an impact on the run time of the algorithm
and therefore should be taken into consideration in order to optimise performance. Next we
will evaluate the performance of a BTS distribution for multiple J values in a multi-objective
multi-armed bandit setting. By comparing run time and performance it should be possible to
determine which J values can be selected for good performance and efficiency.

6.1.2 � Bootstrap Thompson sampling J values & performance

To investigate the effect the hyperparameter J on the performance of DMCTS we consider
a multi-objective multi-armed bandit (MOMAB) setting where a BTS distribution is uti-
lised per arm to determine which arm is optimal for a given utility function.

We utilise a MOMAB setting from the literature [63], with 5 arms, and each of the fol-
lowing ground truth mean vectors: (0, 0.8), (0.4, 0.4), (0.8, 0.0) and (0.9, 0.1). Each reward
distribution is multi-variate Gaussian with correlations 0 and in-objective variance 0.0005
[63]. We utilise the following utility function:

In this setting, the arm with mean vector (0.4, 0.4) is optimal and returns an expected util-
ity of 1. We run BTS for 10, 000 trials for the following J values: 10, 100, 500 and 1000.

Figure 10 presents the results for each J value in the MOMAB setting. In this case it is
clear that the choice of J value has little impact on the algorithms ability to compute the
optimal utility. Therefore, given the computational results presented in Fig. 9 a lower J
value may be preferred.

(19)u = 6.25 max(r0, 0) max(r1, 0).

Fig. 8   A BTS distribution after 1, 8, 32, 128, 250 and 500 updates. After 500 updates the distribution con-
verges to the correct expected utility, where expected utility is on the x-axis

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 21 of 37  26

Although the results presented in Fig. 10 show that the choice of J has little impact on
the BTS distributions, it has been shown by Eckles and Kaptein [18] that J values lower
than 100 lead to higher levels of regret in single-objective bandit settings. Therefore, we
aim to utilise a J value of around 100 for DMCTS given the run time for J values of around
100 are relatively low. Such values also provide good performance while avoiding the limi-
tations highlighted by Eckles and Kaptein [18]. However, we acknowledge that the J value
is problem dependent and certain problems may require a higher J.

6.1.3 � Bootstrap Thompson sampling J values in MOMDPs

To evaluate the selection of the J parameter for the BTS distribution has on the perfor-
mance of DMCTS, we run DMCTS using different J values in a MOMDP. To do so, we
have utilised a random MOMDP from the literature [61]. The random MOMDP is config-
urable based on the requirements of the experiments, where the numbers of states, actions,
objectives, timesteps, and possible successor states can be determined a priori. The ran-
dom MOMDP can then be initialised for each experiment by selecting a consistant seed.
We generate a random MOMDP with 20 states, 2 actions, and 2 objectives. The transition
function T(s, a, s�) is generated using N = 8 possible successor states per action, with ran-
dom probabilities drawn from a uniform distribution [61]. We use the following nonlinear
utility function:

We evaluate DMCTS using the following J values of 1, 2, 10, 100, 500 and 1000 for the
BTS distributions. Figure 11 outlines the results from the random MOMDP. Utilising a J
value of 1 has an impact on performance, given DMCTS with J set to 1 achieves a lower
utility compared to the other parameter settings. As we increase the J value to 2 we can
see that performance begins to improve. However, for a very low J value ( J = 1 or J = 2 )
DMCTS will select actions greedily and will not explore the environment enough to obtain
a good utility. As we increase the J value we can see that the performance increase. Once
the J value is set to 10, DMCTS has a large increase in performance. Similarly, once the
J value increases to 100 we can see even better performance. However, we do not see any
more performance increases for DMCTS in the random MOMDP when we set the J value
to a higher value. When the J value is set to 500 or 1000 the performance does not increase

(20)u = r2
1
+ r2

2
.

Fig. 9   The run time is seconds
required to complete 1000
updates of a BTS distribution for
different J values. The run time
required increases linearly with
the increase in the J value

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 22 of 37

relative to J = 100 . However, the computational cost of updates the BTS for higher J val-
ues increases. Therefore, it is important to ensure that the J value is set sufficiently high for
exploration, while also avoiding J values with a high computational cost. Therefore, it may
be important to tune the J value depending on the evaluation setting.

6.2 � Risk‑Aware MDP

Before testing NLU-MCTS and DMCTS on benchmark problems from the MORL litera-
ture, we evaluate both algorithms in a risk-aware problem domain under the ESR criterion.
Shen et al. [69] define a Risk-Aware MDP where an agent must decide from a number
of stocks in which to invest. The underlying MDP which has 4 actions (each action is a
monetary amount, in Euros, of investment) and 7 states. At each timestep the agent must
select a monetary amount to invest in the stock for a given state. We can invest €0, €1, €2
or €3 in a stock at each timestep. Each stock has a probability of making a profit and a
probability of making a loss where the agent’s return is the action multiplied by the stock
price. All remaining implementation details can be found in the work of Shen et al. [69].
In risk-aware decision making a user can be risk seeking, risk averse or risk neutral. A
user’s preference for risk is described by their individual utility function, which can often

Fig. 10   The performance of BTS
algorithm is a multi-objective
multi-armed bandit setting for
different J values. For each J
value the algorithm converges to
the optimal utility of 1

Fig. 11   Evaluation of different
J values in a random MOMDP
with 20 states, 2 actions, 2
objectives and 8 successor states
reachable from each state

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 23 of 37  26

be nonlinear. Given risk-based decision making scenarios are ubiquitous in the real world
[23] it is important that algorithms can compute policies for risk-aware nonlinear utility
functions. Therefore, to highlight the usability of NLU-MCTS and DMCTS in risk-aware
decision making scenarios, we evaluate NLU-MCTS and DMCTS using the outlined Risk-
Aware MDP. For the Risk-Aware MDP we use a nonlinear risk-seeking and risk-averse
utility functions to evaluate the performance of NLU-MCTS and DMCTS.

6.2.1 � Risk‑seeking utility function

Firstly, we evaluate DMCTS and NLU-MCTS in the Risk-Aware MDP using the follow
risk-seeking utility function:

In the Risk-Aware MDP, utilising the risk-seeking utility function presented in Sect. 2.3,
would reward the agent with a positive utility when the returns are negative. Therefore, we
have used the utility function in Eq. 21 to ensure that negative returns are not seen as a pos-
itive outcome by the agent. The nonlinear utility function outlined in Eq. 21 is risk-seeking
given the shape of the utility function is convex.

For all experiments in the Risk-Aware MDP with the risk-seeking utility function, the
parameter nexec is set to 10 for each algorithm and each experiment lasts for 1000 episodes.
For DMCTS we set the number of bootstrap replicates, J, for the bootstrap distribution as
follows: J = 500 . For NLU-MCTS we set C =

√
2.

Figure 12 describes the experimental results for the risk-seeking utility function in the
Risk-Aware MDP. While both algorithms learn good stable policies, DMCTS achieves a
higher utility when compared to NLU-MCTS for the risk-seeking utility function.

6.2.2 � Risk‑averse utility function

Secondly, we evaluate DMCTS and NLU-MCTS using the following risk-averse utility
function:

The utility function in Eq. 22 is risk-averse given the shape of the utility function is
concave.

For all experiments in the Risk-Aware MDP with the risk-averse utility function, the
parameter nexec is set to 10 for each algorithm and each experiment lasts for 1000 epi-
sodes. For DMCTS we set the number of bootstrap replicates, J, for the bootstrap dis-
tribution as follows: J = 500 . For NLU-MCTS we set C =

√
2 . In the Risk-Aware MDP

the returns can be negative. Therefore, for the risk-averse utility function, we add 150
the returns because this is the minimum returns that the agent can achieve.

Figure 13 shows that both NLU-MCTS and DMCTS can compute good policies for
the risk-averse utility function. DMCTS achieves a higher utility when compared to
NLU-MCTS.

(21)u(x) = (max(0, x))2.

(22)u(x) = x
1

2 .

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 24 of 37

6.2.3 � Discussion of experimental results for risk‑aware MDP

Both NLU-MCTS and DMCTS learn good policies for the risk-seeking and risk-averse
utility functions. However, DMCTS achieves a higher utility in both settings. It is
important to note that both the risk-seeking and risk-averse utility function are nonlin-
ear. Therefore for any algorithm to compute good policies the cumulative returns must
be taken into consideration. Both NLU-MCTS and DMCTS compute policies based on
the expected utility by computing the cumulative returns. If the cumulative returns were
not taken into consideration we would expect the utility obtained by both algorithms
to be lower, given that nonlinear utility functions do not distribute across the sum of
the future and immediate returns. Therefore, for risk-aware settings it is important that
the cumulative returns are calculated before the utility function is applied. Taking this
approach ensures that an agent can make decisions with knowledge of how future out-
comes may affect utility. This is important in risk-aware settings given an agent may
only have one opportunity to execute a policy, and having access to the expected utility
of a policy ensures sufficient information is available to the agent so utility can effec-
tively be optimised.

Fig. 12   Results from the
Risk-Aware MDP environment
where DMCTS is evaluated
against NLU-MCTS using a
risk-seeking utility function.
DMCTS achieves a higher utility
compared to NLU-MCTS for a
risk-seeking utility function

Fig. 13   Results from the
Risk-Aware MDP environment
where DMCTS is evaluated
against NLU-MCTS using a
risk-averse utility function.
DMCTS achieves a higher utility
compared to NLU-MCTS for a
risk-averse utility function

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 25 of 37  26

While both NLU-MCTS and DMCTS learn good polices for both risk-aware utility
functions, DMCTS achieves a higher utility. The key difference between NLU-MCTS and
DMCTS is how each algorithm explores during planning. NLU-MCTS utilises UCB while
DMCTS uses the Thompson sampling method, Bootstrap Thompson sampling. In the ban-
dit literature Thompson sampling methods have been shown to empirically outperform
UCB [15]. Thompson sampling selects actions proportional to the probability of an action
being optimal [67]. Therefore, by maintaining an approximate posterior distribution via a
bootstrap distribution, and using Thompson sampling to sample from each approximate
posterior distribution at each chance node to select actions, DMCTS can exploit the perfor-
mance gains of Thompson sampling to achieve a higher utility than NLU-MCTS.

6.3 � Multi‑objective MDPs

To evaluate NLU-MCTS and DMCTS in multi-objective settings under the ESR criterion,
we use a number of problem domains. Firstly, we evaluate NLU-MCTS and DMCTS in the
Fishwood problem [61], given this is one of the very few domains for which ESR results
have been published. Secondly, we evaluate NLU-MCTS and DMCTS in the Renewable
Energy Dynamic Economic Emissions Dispatch (REDEED) problem domain7.

6.3.1 � Fishwood

Fishwood is a multi-objective benchmark problem proposed by Roijers et al. [61]. In Fish-
wood the agent has two states: in the woods or at the river. The goal of the agent is to catch
fish and collect wood. The Fishwood environment is parameterised by the probabilities of
successfully obtaining fish and wood at these respective states. In this paper we use the fol-
lowing values: at the river the agent has a 0.25 chance of catching a fish and in the woods
the agent has a 0.65 chance of acquiring wood. For every fish caught, two pieces of wood
are required to cook the fish, which results in a utility of 1. The goal in this setting is to
maximise the following nonlinear utility function:

As demonstrated by Roijers et al. [61], to maximise utility in Fishwood it is essential that
both past and future returns are taken into consideration when learning. For example, if
there are 5 timesteps remaining and the agent has received 2 pieces of wood, the agent
should go to the river and try to catch a fish to ensure a utility of 1 [61].

We evaluate NLU-MCTS and DMCTS in the Fishwood domain against Expected Util-
ity Policy Gradient (EUPG) [61] and C51 [10]. EUPG achieves state-of-the-art results in
the Fishwood problem under ESR [61]. C51 [10] is a distributional deep reinforcement
learning algorithm that achieved state-of-the-art results in the Atari game problem domain.

For C51 the learning parameters were set as follows: Vmin = 0 , Vmax = 2 , � = 0.01 , � = 1
and � = 0.0001 . For DMCTS we set the number of bootstrap replicates, J, in the bootstrap

(23)u = min
(
����,

⌊
����

2

⌋)
.

7  It is important to note, in Sect. 6.3 we evaluate NLU-MCTS and DMCTS (both model-based algorithms)
against a number of model-free algorithms. Therefore, to fairly evaluate model-based and model-free
approaches, both NLU-MCTS and DMCTS maintain the search tree across episodes. This has the effect of
both algorithm need less simulations during experimentation.

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 26 of 37

distribution as follows: J = 100 . For NLU-MCTS we set C =
√
2 . EUPG is conditioned on

the accrued returns and the current timestep, t. We set nexec = 2 and run each experiment
for 10, 000 episodes where each episode has 13 timesteps.

As shown in Fig. 14, the utility for C51 fluctuates throughout experimentation and it
fails to learn a consistent policy. Given C51 does not take the accrued returns into con-
sideration during learning the utility function is applied directly to the reward received by
the agent. The reward received by an agent in the Fishwood domain can be [0, 1] or [1, 0].
Thereby applying the utility function, presented in Eq. 23, to the reward the C51 agent can
only receive a utility of 0. DMCTS, NLU-MCTS and EUPG all take the accrued and future
returns into consideration and can learn better policies when compared to C51.

DMCTS, NLU-MCTS and EUPG outperform C51. DMCTS and NLU-MCTS achieve
a higher utility when compared to EUPG. All algorithms, except C51, use Monte Carlo
simulations of the environment and optimise over the expected utility of the returns of a
full episode. Although EUPG uses Monte Carlo simulations of the environment, policy
gradient algorithms are sample inefficient. DMCTS and NLU-MCTS are sample efficient
given both algorithms utilise the planning phase steps, which has been shown to be sample
efficient [4, 14].

In the Fishwood environment, the agent is not guaranteed to obtain a fish or a piece of
wood. For an action in a particular state the agent may need multiple simulations to under-
stand the underlying distribution of the stochastic rewards. Both DMCTS and NLU-MCTS
build a search tree, which enables the agent to re-sample the environment at each chance
node during learning. However, DMCTS achieves an overall higher utility when compared
with NLU-MCTS despite both algorithms utilising repeated sampling at each chance node
and Monte Carlo simulations.

6.3.2 � Renewable energy dynamic economic emissions dispatch

Next, we evaluate NLU-MCTS and DMCTS in a complex problem domain with a large
state action space. Renewable Energy DEED (REDEED) is a variation of the traditional
DEED problem [9]. In REDEED, the power demand for a city must be met over 24 h.
To supply the city with sufficient power, a number of generators are required. There are
9 fossil fuel-powered generators, including a slack generator and 1 generator powered by
renewable energy which is generated by a wind turbine. The optimal power output for each

Fig. 14   Results from the
Fishwood environment where
DMCTS achieves state-of-the-art
performance in a multi-objective
setting over EUPG

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 27 of 37  26

generator was derived by Mannion et al. [43] and the derived values are used for the both
the fossil fuel generators and the renewable energy generator. In this example, Generator 3
is controlled by an agent, Generator 1 is a slack generator and Generator 4 is powered by a
wind turbine.

In this setting we imagine a period of 24 h and for each hour we receive a weather fore-
cast for a city. For hours 1–15, the weather is predictable and the optimal power values
derived by Mannion et al. [43] can be used to generate power. From hours 16–24, a storm
is forecast for the city. During the storm, both high and low levels of wind are expected and
the weather forecast impacts how much power the wind turbine can generate. At each hour
during the storm, there is a 0.15 chance the wind turbine will produce 25% less power than
optimal, a 0.7 chance the wind turbine will produce optimal power and a 0.15 chance the
wind turbine will produce 25% more power than optimal. In the REDEED problem we aim
to learn a policy that can ensure the required power is met over the entire day while reduc-
ing both the cost and emissions created by all generators.

The goal is to maximise the following nonlinear utility function under the ESR criterion,

where fo is the objective function for each objective, o ∈ O [26, 43].
The following equation calculates the local cost for each generator n, at each hour m:

Therefore the global cost for all generators can be defined as:

The local emissions for each generator, n, at each hour, m, is calculated using the following
equation:

Therefore the global emissions for all generators can be defined as:

It is important to note the emissions for the generator controlled by the wind turbine are set
to 0.

If the agent exceeds the ramp and power limits a penalty is received. A global penalty
function f G

p
 is defined to capture the violations of these constraints,

Along with cost and emissions, the penalty function is an additional objective that will
need to be optimised. Some parameters for this problem domain have not been included, all

(24)R+ =

O∏

o=1

fo,

(25)f L
c
(n,m) = an + bnPnm + cn(Pnm)

2 + |dnsin{en(Pmin
n

− Pnm)}|.

(26)f G
c
(m) =

N∑

n=1

f L
c
(n,m).

(27)f L
e
(n,m) = E(an + bnPnm + �n(Pnm)

2 + � exp �Pnm).

(28)f G
e
(m) =

N∑

n=1

f L
e
(n,m).

(29)f G
p
(m) =

V∑

v=1

C(|hv + 1|�v).

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 28 of 37

equations and parameters absent from this paper that are required to implement this prob-
lem domain can be found in the works of Basu [9] and Mannion et al. [43].

To evaluate NLU-MCTS and DMCTS in the REDEED domain, we compare against
EUPG and C51. For DMCTS we set the number of bootstrap replicates, J, for the bootstrap
distribution as follows: J = 100 . For NLU-MCTS we set C =

√
2 . For C51 the learning

parameters were set as follows: Vmin = −8e22 , Vmax = 0 , � = 0.01 , � = 1 and � = 0.0001 .
For the REDEED problem the agent learns for 10,000 episodes and nexec = 2 for each
algorithm.

As seen in Fig. 15, DMCTS outperforms EUPG, NLU-MCTS and C51 in the REDEED
domain. C51 struggles to learn a consistent policy and C51’s utility fluctuates throughout
experimentation. The hyper-parameters chosen for C51 provide good performance but are
difficult to tune. Although the learning speed of EUPG is slow, EUPG achieves a higher
utility than C51.

Both DMCTS and NLU-MCTS learn good policies faster than EUPG. MCTS algo-
rithms are much more sample efficient when compared to policy gradient algorithms like
EUPG. Figure 15 highlights the difference in sample efficiency of DMCTS, NLU-MCTS
and EUPG given the differences in the number episodes required for each of the aforemen-
tioned algorithms to compute stable policies for the defined nonlinear utility function.

Fig. 15   Results from the
REDEED environment DMCTS
outperforms EUPG, C51 and
NLU-MCTS. DMCTS achieves
a higher utility compared to
other algorithms used throughout
experimentation in the REDEED
domain under the ESR criterion

Fig. 16   Results from the final
4000 episodes of the REDEED
environment to highlight how
DMCTS outperforms NLU-
MCTS, EUPG and C51

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 29 of 37  26

DMCTS, NLU-MCTS and EUPG all learn stable policies. However, DMCTS achieves
a higher utility when compared to NLU-MCTS and EUPG. DMCTS converges to a pol-
icy with an average utility of −1.54 × 1021 . In comparison, NLU-MCTS converges to a
policy with an average utility of −1.80 × 1021 , while EUPG converges to a stable policy
with an average utility of −1.75 × 1021 . Given the scale of the utility computed through-
out REDEED experimentation, it is difficult to see the final difference in utility in Fig. 15.
Therefore, to highlight the difference in utility between DMCTS, NLU-MCTS and EUPG
we have plotted the final 4, 000 episodes in Fig. 16. It is important to note, given C51 has
performed poorly in the REDEED domain, we have not included C51 in Fig. 16. For the
highlighted episodes in Fig. 16, it is clear that DMCTS achieves a higher utility when com-
pared to both NLU-MCTS and EUPG.

The REDEED environment has a large state action space with complex returns.
Although C51 has achieved state-of-the-art results in the Atari environment [10], C51 fails
to learn any meaningful policy for REDEED. We hypothesise that a reason for poor per-
formance is C51’s inability to learn a distribution over the full returns and the level of dis-
cretisation of the distribution. The distribution for C51 uses 51 bins to discretise the algo-
rithm’s categorical distribution. In the work presented by Bellemare et al. [10] the number
of bins is set to 51. While this provides good performance, Bellemare et al. [10] highlight
that increasing the number of parameters may lead to increased performance. However,
we fix the number of bins to 51 to remain consistant with the literature, given the potential
added performance when increasing the number of bins has not been thoroughly explored.
The results presented in this paper for C51 show this parameter setting is sub-optimal in
scenarios where the returns are not simple scalars over small ranges. The results present
in Fig. 15 show that C51 struggles to scale to large problem domains with complex returns
over large ranges.

6.3.3 � Discussion of experimental results for multi‑objective MDPs

In multi-objective settings both NLU-MCTS and DMCTS learn good policies for the
specified nonlinear utility functions. Similarly to the Risk-Aware MDP, applying the utility
function to the cumulative returns (rather than just the expected future return) ensures that
both NLU-MCTS and DMCTS can learn good policies. It is clear from the performance of
C51 that applying the utility function to the cumulative returns is crucial for good perfor-
mance in multi-objective settings when the utility function is nonlinear.

As previously highlighted, the difference between NLU-MCTS and DMCTS is the
method used to explore during planning. NLU-MCTS uses UCB to determine which action
to take during planning. UCB selects actions deterministically based on the expected utility
and an exploration bonus [6, 66]. In contrast DMCTS selects actions using Thompson sam-
pling, which stochastically samples from the underlying approximate posterior distribution
(BTS distribution) and selects the action proportional to the probability of the action being
optimal [15, 18]. In the bandit literature Thompson sampling has been shown to empiri-
cally outperform UCB [15, 66, 67]. Monte Carlo tree search methods utilise independent
nodes, therefore we can consider each node itself to be a bandit. In this case, we expect
Thompson sampling methods to also outperform UCB in sequential settings. Our findings
for sequential settings in risk-aware and multi-objective settings are consistent with prior
bandit literature that suggests that Thompson sampling can outperform UCB [15].

Additionally, UCB makes highly pessimistic assumptions regarding the underly-
ing reward/return distributions, in order to guarantee a bound on the regret of its action

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 30 of 37

selection procedure [66]. For known parametric distributions, tighter bounds have been
proven using tighter upper confidence bounds (e.g. for Gaussian reward distributions [66]).
However, doing something similar in our setting isn’t opportune, because even if the return
distributions are nicely parametric, the nonlinear transformation resulting from the applica-
tion of the utility function would no longer allow for a closed-form distributions [66]. As
such, we are either stuck with highly pessimistic assumptions (and therefore suboptimal
performance) or we need to have a different method. Bootstrap distributions and the result-
ing Bootstrap Thompson sampling algorithm for action selection is able to approximate,
and effectively exploit knowledge about the utility distributions, regardless of the shape of
this underlying distribution.

6.4 � Nonlinear utility functions

During experimentation DMCTS has been evaluated using previously defined utility func-
tions for each experimental benchmark. To show that DMCTS can learn a good policy for
any nonlinear utility function we have evaluated DMCTS in the Fishwood problem domain
using four nonlinear utility functions under the ESR criterion. The following nonlinear util-
ity functions are used to evaluate DMCTS in the Fishwood domain:

where r1 is the returns received for the fish objective and r2 is the returns received for the
wood objective.

For this demonstration, we set nexec = 2 and each experiment lasts 10, 000 episodes. For
DMCTS we set the number of bootstrap replicates, J, for the bootstrap distribution as fol-
lows: J = 100.

In Fig. 17, for each utility function we have scaled the utility between 0 and 1. For
the scaled utility, 1 represents the maximum utility and 0 represents the minimum utility

u1 =max(
r1

2
,
r2

2
),

u2 =
r1

2
+ r4

2
,

u3 =min(
r1

2
,
r2

4
),

u4 =r
2
1
+ r2

2
,

Fig. 17   Results from the
Fishwood environment where
DMCTS is evaluated against
multiple nonlinear utility func-
tions

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 31 of 37  26

obtained by DMCTS. We have scaled the utility to show the performance of DMCTS for
each utility function on a single plot.

Figure 17 outlines the performance of DMCTS when optimising for each nonlinear util-
ity function. It is clear from Fig. 17 that DMCTS converges to a good policy for each util-
ity function. Therefore, DMCTS can learn a good policy for each of the outlined nonlinear
utility functions and is not limited to the utility functions associated with predefined bench-
mark problems. The ability of DMCTS to learn a good policy for a range of nonlinear utility
showcases how DMCTS could potentially be used in real-world scenarios, where different
decision makers may have very different nonlinear utility functions for the same problem.

7 � Related Work

Many risk-aware RL approaches seek to learn policies to maximise the expected return.
Some research in this area focuses on learning policies which maximise the expected expo-
nential utility [46]. Other approaches take the weighted sum of the return and risk into
consideration when learning policies [22, 24]. Although most risk-aware RL approaches
aim to maximise the expected utility, they often do not take into consideration the utility
of the return of a full episode. It is also important to note that little research exists where
decisions are made based on a learned distribution over the expected returns [47, 48] for
risk-aware RL.

Many MCTS methods have developed for situations involving reward uncertainty. For
example, Tesauro et al. [73] take a Bayesian approach to UCT with Gaussian approxima-
tion. Their method backpropagates probability distributions over rewards. To select actions
Tesauro et al. [73] use UCB1 while taking the distributions into consideration. Cazenave
and Saffidine [13] define a MCTS algorithm that takes into account the bounds on the
possible values of a node to select nodes for exploration. They apply their algorithm to
problems that have more than two outcomes and show that taking the bounds into consid-
eration can increase performance. Kaufmann and Koolen [37], and Huang et al. [35] also
have developed MCTS algorithms which can compute policies for settings with reward
uncertainty.

As previously highlighted, the majority of RL research focuses on the SER criterion.
Multi-objective MCTS (MOMCTS) [80] was shown to be able to learn a coverage set
under SER. However, MOMCTS can only learn a coverage set in deterministic environ-
ments. Convex Hull MCTS [53] is able to learn the convex hull of the Pareto front but
focuses solely on linear utility functions. A number of other multi-objective MCTS meth-
ods exist [39, 56, 57], but no method has previously been shown to learn the Pareto front
for both deterministic and stochastic environments for any unknown utility function. In
contrast to the SER criterion, no method exists that can learn a set of optimal policies under
the ESR criterion in sequential settings. Hayes et al. [33] compute a set of ESR non-dom-
inated return distributions, known as the ESR set, in a multi-objective multi-armed bandit
setting. However, the method proposed by Hayes et al. [33] cannot be applied to sequen-
tial decision making problems. An interesting opportunity for future work is the possibil-
ity of building on the methods of Wang and Sebag [80] and Painter et al. [53] to extend
DMCTS to learn the optimal coverage set under both SER and ESR for any unknown util-
ity function.

Zhang et al. [87] compute a multi-variate distribution over the returns for RL settings.
While this work considers reward vectors, we believe this algorithm will suffer from

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 32 of 37

similar limitations to traditional RL algorithms when applied to nonlinear utility functions.
The method proposed by Zhang et al. [87] does not take the accrued returns into consid-
eration. Therefore we believe that such an approach would fail to achieve a high utility
[61]. However, this method could be an interesting starting point for developing model-free
multi-objective distributional RL algorithms.

A key argument in this paper is that the expected utility of the future returns under ESR
must be replaced with a posterior distribution over the expected utility of the returns. Bai
et al. [8] extend MCTS to maintain a distribution at each node using Thompson Sampling
as an exploration strategy. However, the work presented in this paper is significantly dif-
ferent. In their work, Bai et al. [8] do not learn a posterior distribution over the expected
utility of the return, apply their work to multi-objective settings, or incorporate the accrued
returns as part of their algorithm. It is also important to note the C51 algorithm proposed
by Bellemare et al. [10] achieves state-of-the-art performance in single-objective settings
and learns a distribution over the future returns. Abdolmaleki et al. [1] learn a distribution
over actions based on constraints set per objective. This approach ignores the utility-based
approach [62] and uses constraints set by the user to learn a coverage set of policies where
the value of constraints is dependent on the scale of the objectives. Abdolmaleki et al. [1]
claim setting the constraints for this algorithm is a more intuitive approach when compared
to setting weights for a linear utility function. We theorise that if the user’s utility function
is nonlinear, this approach would fail to learn a coverage set.

8 � Conclusion and future work

In this paper we propose a novel Monte Carlo tree search algorithm that can compute
good policies for nonlinear utility functions (NLU-MCTS). We then extend NLU-MCTS,
to define a new distributional Monte Carlo tree search (DMCTS) algorithm. Both NLU-
MCTS and DMCTS are able to learn good policies in MORL settings, under the ESR cri-
terion for nonlinear utility functions in problem domains with stochastic rewards. DMCTS
replaces the expected utility of the future returns with a bootstrap distribution over the util-
ity of the returns, and achieves state-of-the-art performance in MORL domains under the
ESR criterion. We achieve this by using a bootstrap distribution as an approximate pos-
terior over the expected utility of the returns of the episode. It is our hope that this paper
will inspire further work on algorithms that replace the expected returns with a distribution
over the expected utility of the returns for risk-aware and ESR settings.

Although DMCTS achieves state-of-the-art performance under the ESR criterion, as the
size of the problem domain increases we expect the bootstrap distribution may encounter
limitations. In order to apply DMCTS to real-world problem domains like, [3], distribu-
tions like Dirichlet [50] may be better suited to high dimensional state spaces especially
when dealing with multi-variate scenarios when learning policies for the SER criterion.

We also aim to extended both NLU-MCTS and DMCTS to learn policies in multi-
objective environments with continuous state spaces. For example, Abels et al. [2] define a
multi-objective benchmark problem known as Minecart that has a continuous state space.
In the future we plan to extend DMCTS to learn policies in problem domains with continu-
ous action spaces [85].

DMCTS initialises the � and � values for each bootstrap replicate to 1. However, not
much is known about the impact of such an initialisation. It is possible that varying this

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 33 of 37  26

value could increase performance. Therefore, we plan to investigate the potential perfor-
mance gains possible from altering this parameter on initialisation.

In the work of Martin et al. [45] stochastic dominance [25, 40, 84] is used to deter-
mine optimal actions by comparing learned categorical distributions over the returns. Mar-
tin et al. [45] demonstrate good performance in risk-based scenarios. Hayes et al. [32, 33]
present ESR dominance as a dominance criteria for distributional multi-objective decision
making under the ESR criterion. In future work we aim to utilise stochastic dominance
with DMCTS for single objective risk-based problems. We also plan to extend DMCTS to
utilise ESR dominance as a dominance criterion for multi-objective decision making prob-
lems under the ESR criterion.

In this paper, the utility function is known a priori. In different MORL scenarios, the
utility function can be unknown at the time of learning or planning [31, 59, 62]. In these
scenarios, an algorithm must recover a coverage set of optimal policies. Under the SER
criterion many methods have been developed that compute sets of optimal policies [12, 55,
81, 82, 86]. For example, multi-objective MCTS [80] can learn a coverage set for deter-
ministic environments under SER. Currently, no method exists that can compute a set of
optimal policies for the ESR criterion by interacting with the environment in a sequential
setting. In future work, we aim to extend our DMCTS algorithm to be able to learn cover-
age sets for unknown utility functions under the ESR criterion and the SER criterion for
stochastic environments.

Acknowledgements  Conor F. Hayes is funded by the University of Galway Hardiman Scholarship. This
research was supported by funding from the Flemish Government under the “Onderzoeksprogramma Arti-
ficiële Intelligentie (AI) Vlaanderen” program.

Funding  Open Access funding provided by the IReL Consortium.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Abdolmaleki, A., Huang, S. H., Hasenclever, L., Neunert, M., Song, H., Zambelli, M., Martins, M. F.,
Heess, N., Hadsell, R., & Riedmiller, M. A. (2020). A distributional view on multi-objective policy
optimization. ArXiv.

	 2.	 Abels, A., Roijers, D. M., Lenaerts, T., Nowé, A., & Steckelmacher, D. (2019). Dynamic weights in
multi-objective deep reinforcement learning. In International conference on machine learning (pp.
11–20). PMLR.

	 3.	 Abrams, S., Wambua, J., Santermans, E., Willem, L., Kuylen, E., Coletti, P., et al. (2021). Model-
ling the early phase of the Belgian covid-19 epidemic using a stochastic compartmental model and
studying its implied future trajectories. Epidemics, 35, 100449. https://​doi.​org/​10.​1016/j.​epidem.​2021.​
100449

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.epidem.2021.100449
https://doi.org/10.1016/j.epidem.2021.100449

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 34 of 37

	 4.	 Abramson, B. (1987). The expected-outcome model of two-player games. Ph.D. thesis, Columbia
University.

	 5.	 Arrow, K. J. (1965). Aspects of the theory of risk-bearing. Yrjo Jahnssonin Saatio: Yrjo Jahnsson
lectures.

	 6.	 Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research 3(Nov), 397–422.

	 7.	 Bai, A., Wu, F., Zhang, Z., & Chen, X. (2014). Thompson sampling based monte-carlo planning in
pomdps. In Twenty-fourth international conference on automated planning and scheduling.

	 8.	 Bai, A., Wu, F., Zhang, Z., & Chen, X. (2014). Thompson sampling based monte-carlo planning in
pomdps. In Proceedings of the twenty-fourth international conference on international conference
on automated planning and scheduling, ICAPS’14 (pp. 29–37). AAAI Press.

	 9.	 Basu, M. (2008). Dynamic economic emission dispatch using nondominated sorting genetic algo-
rithm-ii. International Journal of Electrical Power and Energy Systems, 78, 140–149.

	10.	 Bellemare, M. G., Dabney, W., & Munos, R. (2017). A distributional perspective on reinforcement
learning. In Proceedings of the 34th international conference on machine learning-volume (Vol 70,
pp. 449–458). JMLR. org.

	11.	 Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al.
(2012). A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intel-
ligence and AI in Games, 4(1), 1–43. https://​doi.​org/​10.​1109/​TCIAIG.​2012.​21868​10

	12.	 Bryce, D., Cushing, W., & Kambhampati, S. (2007). Probabilistic planning is multi-objective.
Technical Report ASU-CSE-07-006, Arizona State University.

	13.	 Cazenave, T., & Saffidine, A. (2010). Score bounded monte-carlo tree search. In International con-
ference on computers and games (pp. 93–104). Springer.

	14.	 Chang, H. S., Fu, M. C., Hu, J., & Marcus, S. I. (2005). An adaptive sampling algorithm for solving
Markov decision processes. Oper. Res., 53(1), 126–139. https://​doi.​org/​10.​1287/​opre.​1040.​0145

	15.	 Chapelle, O., & Li, L. (2011). An empirical evaluation of Thompson sampling.
	16.	 Coulom, R. (2006). Efficient selectivity and backup operators in Monte-Carlo tree search.
	17.	 Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., & Hester, T.

(2021). Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. In
Machine learning. https://​doi.​org/​10.​1007/​s10994-​021-​05961-4

	18.	 Eckles, D., & Kaptein, M. (2014). Thompson sampling with the online bootstrap. arxiv:​abs/​1410.​
4009.

	19.	 Eckles, D., & Kaptein, M. (2019). Bootstrap Thompson sampling and sequential decision problems
in the behavioral sciences. SAGE Open, 9(2).

	20.	 Efron, B. (2012). Bayesian inference and the parametric bootstrap. The Annals of Applied Statistics,
6(4), 1971–1997. https://​doi.​org/​10.​1214/​12-​AOAS5​71

	21.	 Friedman, M., & Savage, L. J. (1948). The utility analysis of choices involving risk. Journal of
Political Economy, 56(4), 279–304. http://​www.​jstor.​org/​stable/​18260​45.

	22.	 Geibel, P., & Wysotzki, F. (2005). Risk-sensitive reinforcement learning applied to control under
constraints. Journal of Artificial Intelligence Research, 24(1), 81–108.

	23.	 Gerber, H. U., & Pafum, G. (1998). Utility functions: from risk theory to finance. North American
Actuarial Journal, 2(3), 74–91.

	24.	 Gosavi, A. (2009). Reinforcement learning for model building and variance-penalized control. In
Winter simulation conference, WSC ’09 (pp. 373–379). Winter Simulation Conference.

	25.	 Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. The Review of
Economic Studies, 36(3), 335–346. http://​www.​jstor.​org/​stable/​22964​31.

	26.	 Hayes, C. F., Howley, E., & Mannion, P. (2020). Dynamic thresholded lexicograpic ordering. In
Proceedings of the adaptive and learning agents workshop at AAMAS 2020.

	27.	 Hayes, C. F., Reymond, M., Roijers, D. M., Howley, E., & Mannion, P. (2021). Distributional monte
carlo tree search for risk-aware and multi-objective reinforcement learning. In Proceedings of the
20th international conference on autonomous agents and multiagent systems (pp. 1530–1532).

	28.	 Hayes, C. F., Reymond, M., Roijers, D. M., Howley, E., & Mannion, P. (2021). Risk-aware and
multi-objective decision making with distributional monte carlo tree search. In Proceedings of the
adaptive and learning agents workshop at AAMAS 2021).

	29.	 Hayes, C. F., Roijers, D. M., Howley, E., & Mannion, P. (2022). Decision-theoretic planning for
the expected scalarised returns. In Proceedings of the 21st international conference on autonomous
agents and multiagent systems (pp. 1621–1623).

	30.	 Hayes, C. F., Roijers, D. M., Howley, E., & Patrick, M. (2022). In Adaptive and learning agents
workshop (AAMAS: Distributional multi-objective value iteration, 2022).

https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1287/opre.1040.0145
https://doi.org/10.1007/s10994-021-05961-4
http://arxiv.org/abs/abs/1410.4009
http://arxiv.org/abs/abs/1410.4009
https://doi.org/10.1214/12-AOAS571
http://www.jstor.org/stable/1826045
http://www.jstor.org/stable/2296431

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 35 of 37  26

	31.	 Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M., Ver-
straeten, T., Zintgraf, L. M., Dazeley, R., Heintz, F., Howley, E., Irissappane, A. A., Mannion, P.,
Nowé, A., Ramos, G., Restelli, M., Vamplew, P., & Roijers, D. M. (2022). A practical guide to
multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems,
36(1), 26. https://​doi.​org/​10.​1007/​s10458-​022-​09552-y

	32.	 Hayes, C. F., Verstraeten, T., Roijers, D. M., Howley, E., & Mannion, P. (2021). Dominance criteria
and solution sets for the expected scalarised returns. In Proceedings of the adaptive and learning
agents workshop at AAMAS 2021.

	33.	 Hayes, C. F., Verstraeten, T., Roijers, D. M., Howley, E., & Mannion, P. (2022). Expected scalar-
ised returns dominance: A new solution concept for multi-objective decision making. Neural Com-
puting and Applications, 1–21.

	34.	 Hayes, C. F., Verstraeten, T., Roijers, D. M., Howley, E., & Mannion, P. (2022). Multi-objective
coordination graphs for the expected scalarised returns with generative flow models. European
workshop on reinforcement learning (EWRL).

	35.	 Huang, R., Ajallooeian, M. M., Szepesvári, C., & Müller, M. (2017). Structured best arm identifi-
cation with fixed confidence. In S. Hanneke, L. Reyzin (Eds.) Proceedings of the 28th international
conference on algorithmic learning theory, proceedings of machine learning research (Vol. 76, pp.
593–616). PMLR. https://​proce​edings.​mlr.​press/​v76/​huang​17a.​html

	36.	 Karni, E., & Schmeidler, D. (1991). Utility theory with uncertainty. Handbook of Mathematical
Economics, 4, 1763–1831.

	37.	 Kaufmann, E., & Koolen, W. M. (2017). Monte-carlo tree search by best arm identification.
Advances in Neural Information Processing Systems, 30.

	38.	 Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning, pp. 282–293.
	39.	 Lee, J., Kim, G. h., Poupart, P., & Kim, K. E. (2018). Monte-carlo tree search for constrained pom-

dps. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.)
Advances in neural information processing systems (Vol. 31, pp. 7923–7932). Curran Associates,
Inc.

	40.	 Levy, H. (1992). Stochastic dominance and expected utility: Survey and analysis. Management Sci-
ence, 38(4), 555–593.

	41.	 Machina, M. J. (1987). Choice under uncertainty: Problems solved and unsolved. The Journal of
Economic Perspectives, 1(1), 121–154. http://​www.​jstor.​org/​stable/​19429​52.

	42.	 Malerba, F., & Mannion, P. (2021). In Multi-objective decision making workshop (MODeM: Evalu-
ating tunable agents with non-linear utility functions under expected scalarised returns, 2021.

	43.	 Mannion, P., Devlin, S., Duggan, J., & Howley, E. (2018). Reward shaping for knowledge-based
multi-objective multi-agent reinforcement learning. The Knowledge Engineering Review, 33, e23.
https://​doi.​org/​10.​1017/​S0269​88891​80002​92

	44.	 Mannion, P., Heintz, F., Karimpanal, T. G., & Vamplew, P. (2021). Multi-objective decision mak-
ing for trustworthy ai. In Multi-objective decision making workshop (MODeM).

	45.	 Martin, J., Lyskawinski, M., Li, X., & Englot, B. (2020). Stochastically dominant distributional
reinforcement learning. In International conference on machine learning (pp. 6745–6754). PMLR.

	46.	 Moldovan, T., & Abbeel, P. (2012). Risk aversion in Markov decision processes via near-optimal
Chernoff bounds. Advances in Neural Information Processing Systems, 4, 3131–3139.

	47.	 Morimura, T., Sugiyama, M., Kashima, H., Hachiya, H., & Tanaka, T. (2010). Nonparametric
return distribution approximation for reinforcement learning. In ICML (pp. 799–806).

	48.	 Morimura, T., Sugiyama, M., Kashima, H., Hachiya, H., & Tanaka, T. (2010). Parametric return
density estimation for reinforcement learning. In Proceedings of the twenty-sixth conference on
uncertainty in artificial intelligence, UAI’10 (pp. 368-375). AUAI Press, Arlington, Virginia, USA.

	49.	 Newton, M., & Raftery, A. (1994). Approximate Bayesian inference by the weighted likelihood
bootstrap. Journal of the Royal Statistical Society Series B-Methodological, 56, 3–48.

	50.	 Olkin, I., & Rubin, H. (1964). Multivariate beta distributions and independence properties of the
wishart distribution. The Annals of Mathematical Statistics, 261–269.

	51.	 Owen, A. B., & Eckles, D. (2012). Bootstrapping data arrays of arbitrary order. The Annals of
Applied Statistics, 6(3), 895–927. http://​www.​jstor.​org/​stable/​41713​508.

	52.	 Oza, N. C., & Russell, S. (2005). Online Bagging and Boosting, 3, 2340–2345.
	53.	 Painter, M., Lacerda, B., & Hawes, N. (2020). Convex hull monte-carlo tree-search. In Proceed-

ings of the thirtieth international conference on automated planning and scheduling (pp. 217–225),
Nancy, France, October 26-30, 2020. AAAI Press.

	54.	 Pan, A., Xu, W., Wang, L., & Ren, H. (2020). Additional planning with multiple objectives for rein-
forcement learning. Knowledge-Based Systems, 193, 105392.

https://doi.org/10.1007/s10458-022-09552-y
https://proceedings.mlr.press/v76/huang17a.html
http://www.jstor.org/stable/1942952
https://doi.org/10.1017/S0269888918000292
http://www.jstor.org/stable/41713508

	 Autonomous Agents and Multi-Agent Systems (2023) 37:26

1 3

 26   Page 36 of 37

	55.	 Parisi, S., Pirotta, M., & Restelli, M. (2016). Multi-objective reinforcement learning through con-
tinuous pareto manifold approximation. Journal of Artificial Intelligence Research, 57, 187–227.

	56.	 Perez, D., Mostaghim, S., Samothrakis, S., & Lucas, S. (2015). Multiobjective Monte Carlo tree
search for real-time games. IEEE Transactions on Computational Intelligence and AI in Games,
7(4), 347–360.

	57.	 Perez, D., Samothrakis, S., & Lucas, S. (2013). Online and offline learning in multi-objective monte
carlo tree search. In 2013 IEEE conference on computational inteligence in games (CIG) (pp. 1–8).

	58.	 Perny, P., & Weng, P. (2010). On finding compromise solutions in multiobjective Markov decision
processes. ECAI, 215, 969–970.

	59.	 Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multi-agent deci-
sion making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems,
34(10).

	60.	 Reymond, M., Hayes, C. F., Willem, L., Rădulescu, R., Abrams, S., Roijers, D. M., Howley, E.,
Mannion, P., Hens, N., Nowé, A., & Libin, P. (2022). Exploring the pareto front of multi-objective
covid-19 mitigation policies using reinforcement learning. arXiv preprint arXiv:​2204.​05027.

	61.	 Roijers, D. M., Steckelmacher, D., & Nowé, A. (2018). Multi-objective reinforcement learning for
the expected utility of the return. In Proceedings of the adaptive and learning agents workshop at
FAIM 2018.

	62.	 Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research, 48, 67–113.

	63.	 Roijers, D. M., Zintgraf, L. M., Libin, P., Reymond, M., Bargiacchi, E., & Nowé, A. (2021). Inter-
active multi-objective reinforcement learning in multi-armed bandits with gaussian process utility
models. In F. Hutter, K. Kersting, J. Lijffijt, & I. Valera (Eds.), Machine learning and knowledge
discovery in databases (pp. 463–478). Springer International Publishing.

	64.	 Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2019). Equilibria in multi-objective
games: A utility-based perspective. In Adaptive and learning Agents workshop (at AAMAS 2019).

	65.	 Rubin, D. B. (1981). The bayesian bootstrap. The Annals of Statistics, 9(1), 130–134. http://​www.​
jstor.​org/​stable/​22408​75.

	66.	 Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4), 1221–1243.

	67.	 Russo, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on thompson
sampling. Foundations and Trends® in Machine Learning 11(1), 1–96.

	68.	 Shen, W., Trevizan, F., Toyer, S., Thiébaux, S., & Xie, L. (2019). Guiding mcts with generalized
policies for probabilistic planning. HSDIP, 2019, 63.

	69.	 Shen, Y., Tobia, M. J., Sommer, T., & Obermayer, K. (2014). Risk-sensitive reinforcement learn-
ing. Neural Computation, 26(7), 1298–1328.

	70.	 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalch-
brenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D.
(2016). Mastering the game of go with deep neural networks and tree search. Nature.

	71.	 Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning (Vol. 135). MIT Press
Cambridge.

	72.	 Sutton, R. S., McAllester, D., Singh, S., & Mansour, Y. (1999). Policy gradient methods for rein-
forcement learning with function approximation. In Proceedings of the 12th international confer-
ence on neural information processing systems, NIPS’99 (pp. 1057-1063). MIT Press.

	73.	 Tesauro, G., Rajan, V. T., & Segal, R. (2010). Bayesian inference in monte-carlo tree search. In
Proceedings of the twenty-sixth conference on uncertainty in artificial intelligence, UAI’10 (pp.
580–588). AUAI Press.

	74.	 Vamplew, P., Foale, C., & Dazeley, R. (2021). The impact of environmental stochasticity on value-
based multiobjective reinforcement learning. In Neural Computing and Applications. https://​doi.​
org/​10.​1007/​s00521-​021-​05859-1

	75.	 Vamplew, P., Smith, B. J., Kallstrom, J., Ramos, G., Radulescu, R., Roijers, D. M., Hayes, C.
F., Heintz, F., Mannion, P., Libin, P. J. K., Dazeley, R., & Foale, C. (2022). Scalar reward is not
enough: A response to silver, singh, precup and sutton (2021). Autonomous Agents and Multi-Agent
Systems, 36(2), 41. https://​doi.​org/​10.​1007/​s10458-​022-​09575-5

	76.	 Vamplew, P., Yearwood, J., Dazeley, R., & Berry, A. (2008). On the limitations of scalarisation for
multi-objective reinforcement learning of pareto fronts. In Australasian joint conference on artifi-
cial intelligence (pp. 372–378). Springer.

http://arxiv.org/abs/2204.05027
http://www.jstor.org/stable/2240875
http://www.jstor.org/stable/2240875
https://doi.org/10.1007/s00521-021-05859-1
https://doi.org/10.1007/s00521-021-05859-1
https://doi.org/10.1007/s10458-022-09575-5

Autonomous Agents and Multi-Agent Systems (2023) 37:26 	

1 3

Page 37 of 37  26

	77.	 Van Moffaert, K., Drugan, M. M., & Nowé, A. (2013). Scalarized multi-objective reinforcement
learning: Novel design techniques. In 2013 IEEE symposium on adaptive dynamic programming
and reinforcement learning (ADPRL) (pp. 191–199).

	78.	 Veness, J., Ng, K. S., Hutter, M., Uther, W., & Silver, D. (2011). A Monte-Carlo aixi approxima-
tion. Journal of Artificial Intelligence Research, 40(1), 95–142.

	79.	 Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior, 2nd rev.
	80.	 Wang, W., & Sebag, M. (2012). Multi-objective Monte-Carlo tree search. (pp. 507–522) PMLR,

Singapore Management University, Singapore.
	81.	 White, D. (1982). Multi-objective infinite-horizon discounted Markov decision processes. Journal

of Mathematical Analysis and Applications, 89(2), 639–647.
	82.	 Wiering, M. A., Withagen, M., & Drugan, M. M. (2014). Model-based multi-objective reinforcement

learning. In 2014 IEEE symposium on adaptive dynamic programming and reinforcement learning
(ADPRL) (pp. 1–6). IEEE.

	83.	 Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3–4), 229–256.

	84.	 Wolfstetter, E. (1999). Topics in microeconomics: Industrial organization, auctions, and incentives.
Cambridge University Press. https://​doi.​org/​10.​1017/​CBO97​80511​625787

	85.	 Xu, J., Tian, Y., Ma, P., Rus, D., Sueda, S., & Matusik, W. (2020). Prediction-guided multi-objective
reinforcement learning for continuous robot control. In Proceedings of the 37th international confer-
ence on machine learning.

	86.	 Yang, R., Sun, X., & Narasimhan, K. (2019). A generalized algorithm for multi-objective reinforce-
ment learning and policy adaptation. In Advances in neural information processing systems (pp.
14636–14647).

	87.	 Zhang, P., Chen, X., Zhao, L., Xiong, W., Qin, T., & Liu, T. Y. (2021). Distributional reinforcement
learning for multi-dimensional reward functions. Advances in Neural Information Processing Systems,
34, 1519–1529.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1017/CBO9780511625787

	Monte Carlo tree search algorithms for risk-aware and multi-objective reinforcement learning
	Abstract
	1 Introduction
	2 Background
	2.1 Multi-objective reinforcement learning
	2.2 The known utility function scenario
	2.3 Risk-aware utility functions
	2.4 Scalarised expected returns versus expected scalarised returns
	2.5 Monte Carlo tree search
	2.6 (Bootstrap) Thompson sampling
	2.7 Expected utility policy gradient

	3 Expected scalarised returns
	4 Monte Carlo tree search for nonlinear utility functions
	5 Distributional Monte Carlo tree search
	6 Experiments
	6.1 Ablation study
	6.1.1 Bootstrap Thompson sampling J values and runtime
	6.1.2 Bootstrap Thompson sampling J values & performance
	6.1.3 Bootstrap Thompson sampling J values in MOMDPs

	6.2 Risk-Aware MDP
	6.2.1 Risk-seeking utility function
	6.2.2 Risk-averse utility function
	6.2.3 Discussion of experimental results for risk-aware MDP

	6.3 Multi-objective MDPs
	6.3.1 Fishwood
	6.3.2 Renewable energy dynamic economic emissions dispatch
	6.3.3 Discussion of experimental results for multi-objective MDPs

	6.4 Nonlinear utility functions

	7 Related Work
	8 Conclusion and future work
	Acknowledgements
	References

