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Abstract

We show that the multiplication operation c = a � b �r�1 in the �eld GF(2k) can be implemented

signi�cantly faster in software than the standard multiplication, where r is a special �xed element of

the �eld. This operation is the �nite �eld analogue of the Montgomery multiplication for modular

multiplication of integers. We give the bit-level and word-level algorithms for computing the product,

perform a thorough performance analysis, and compare the algorithm to the standard multiplication

algorithm in GF(2k). The Montgomery multiplication can be used to obtain fast software imple-

mentations of the discrete exponentiation operation, and is particularly suitable for cryptographic

applications where k is large.

1 Introduction

The arithmetic operations in the Galois �eld GF(2k) have several applications in coding theory,
computer algebra, and cryptography. We are especially interested in cryptographic applications
where k is very large. Examples of the cryptographic applications are the Di�e-Hellman key
exchange algorithm [3] based on the discrete exponentiation and elliptic curve cryptosystems [7, 11]
over the �eld GF(2k). The Di�e-Hellman algorithm requires implementation of the exponentiation
ge, where g is a �xed primitive element of the �eld and e an integer. The exponentiation operation
can be implemented using a series of squaring and multiplication operations in GF(2k) using the
binary method [6].

Cryptographic applications require fast hardware and software implementations of the arith-
metic operations in GF(2k) for large values of k. The most important advance in this �eld has been
the Massey-Omura algorithm [14] which is based on the normal bases. Subsequently, the optimal
normal bases were introduced [13], and their hardware [1, 2] and software [5, 15] implementations
were given. While the hardware implementations are compact and fast, they are also inexible
and expensive. The change of the �eld in a hardware implementation requires a complete redesign.
Software implementations, on the other hand, are perhaps slower, but they are cost-e�ective and
exible, i.e., the algorithms and the �eld parameters can easily be modi�ed without requiring re-
design. Recently, there has been a growing interest to develop software methods for implementing
GF(2k) arithmetic operations for cryptographic applications [15, 16].

�This research is supported in part by Intel Corporation.
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In this paper, we present an algorithm for multiplication in GF(2k), which is signi�cantly faster
than the standard multiplication, and is particularly useful for obtaining fast software implemen-
tation of the discrete exponentiation operation. The algorithm is based on Montgomery's method
for computing the modular multiplication operation. We use the polynomial representation of the
�eld GF(2k), and show that Montgomery's technique is also applicable here. We have performed
a thorough analysis of the Montgomery multiplication algorithm, and compared it to the standard
multiplication algorithm in GF(2k). We show that this operation would be signi�cantly faster in
software with the availability of a fast method for multiplying two w-bit polynomials de�ned over
GF(2), where w is the wordsize. For example, the Montgomery multiplication is about 5 times
faster for w = 8, and about 20 times faster for w = 32.

2 Polynomial Representation

The elements of the �eld GF(2k) can be represented in several di�erent ways [9, 10, 8]. We �nd
the polynomial representation useful and suitable for software implementation. The algorithm for
the Montgomery multiplication described in this paper is based on the polynomial representation.
According to this representation an element a of GF(2k) is a polynomial of length k, i.e., of degree
less than and equal to k � 1, written as

a(x) =
k�1X

i=0

aix
i = ak�1x

k�1 + ak�2x
k�2 + � � �+ a1x+ a0 ,

where the coe�cients ai 2 GF(2). These coe�cients are also referred as the bits of a, and the
element a is represented as a = (ak�1ak�2 � � � a1a0). In the word-level description of the algorithms,
we partition these bits into blocks of equal length. Let w be the wordsize of the computer, also
assume that k = sw. We can write a as an sw-bit number consisting of s blocks, where each block
is of length w. Thus, we have a = (As�1As�2 � � �A1A0), where each Ai is of length w such that

Ai = (aiw+w�1aiw+w�2 � � � aiw+1aiw) .

In the polynomial case, this is equivalent to

a(x) =
s�1X

i=0

Ai(x)x
iw = As�1(x)x

(s�1)w +As�2(x)x
(s�2)w + � � �+A1(x)x

w +A0(x) ,

where Ai(x) is a polynomial of length w such that

Ai(x) =
w�1X

j=0

aiw+jx
j = aiw+w�1x

w�1 + aiw+w�2x
w�2 + � � � + aiw+1x+ aiw .

The addition of two elements a and b in GF(2k) are performed by adding the polynomials a(x)
and b(x), where the coe�cients are added in the �eld GF(2). This is equivalent to bit-wise XOR
operation on the vectors a and b. In order to multiply two elements a and b in GF(2k), we need
an irreducible polynomial of degree k. Let n(x) be an irreducible polynomial of degree k over the
�eld GF(2). The product c = a � b in GF(2k) is obtained by computing

c(x) = a(x)b(x) mod n(x) ,

where c(x) is a polynomial of length k, representing the element c 2 GF(2k). Thus, the multiplica-
tion operation in the �eld GF(2k) is accomplished by multiplying the corresponding polynomials
modulo the irreducible polynomial n(x).
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3 Montgomery Multiplication in GF(2k)

Instead of computing a � b in GF(2k), we propose to compute a � b � r�1 in GF(2k), where r is a
special �xed element of GF(2k). A similar idea was proposed by Montgomery in [12] for modular
multiplication of integers. We show that Montgomery's technique is applicable to the �eld GF(2k)
as well. The selection of r(x) = xk turns out to be very useful in obtaining fast software implemen-
tations. Thus, r is the element of the �eld, represented by the polynomial r(x) mod n(x), i.e., if
n = (nknk�1 � � �n1n0), then r = (nk�1 � � �n1n0). The Montgomery multiplication method requires
that r(x) and n(x) are relatively prime, i.e.,

gcd(r(x); n(x)) = 1 .

For this assumption to hold, it su�ces that n(x) be not divisible by x. Since n(x) is an irreducible
polynomial over the �eld GF(2), this will always be case. Since r(x) and n(x) are relatively prime,
there exist two polynomials r�1(x) and n0(x) with the property that

r(x)r�1(x) + n(x)n0(x) = 1 , (1)

where r�1(x) is the inverse of r(x) modulo n(x). The polynomials r�1(x) and n0(x) can be computed
using the extended Euclidean algorithm [8, 9]. The Montgomery multiplication of a and b is de�ned
as the product

c(x) = a(x)b(x)r�1(x) mod n(x) , (2)

which can be computed using the following algorithm:

Algorithm for Montgomery Multiplication

Input: a(x); b(x); r(x); n0(x)
Output: c(x) = a(x)b(x)r�1(x) mod n(x)

Step 1. t(x) := a(x)b(x)
Step 2. u(x) := t(x)n0(x) mod r(x)
Step 3. c(x) := [t(x) + u(x)n(x)]=r(x)

In order to prove the correctness of the above algorithm, we note that u(x) = t(x)n0(x) mod r(x)
implies that there is a polynomial K(x) over GF(2) with the property

u(x) = t(x)n0(x) +K(x)r(x) . (3)

We write the expression for c(x) in Step 3, and then substitute u(x) with the expression (3) as

c(x) =
1

r(x)
[t(x) + u(x)n(x)]

=
1

r(x)
[t(x) + t(x)n0(x)n(x) +K(x)r(x)n(x)]

Furthermore, we have n0(x)n(x) = 1 + r(x)r�1(x) according to (1). Thus, c(x) is obtained as

c(x) =
1

r(x)
[t(x) + t(x)[1 + r(x)r�1(x)] +K(x)r(x)n(x)]

=
1

r(x)
[t(x)r(x)r�1(x) +K(x)r(x)n(x)]

= t(x)r�1(x) +K(x)n(x)

= t(x)r�1(x) mod n(x)

= a(x)b(x)r�1(x) mod n(x) ,
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as required. The above algorithm is similar to the algorithm given for the Montgomery multiplica-
tion of integers. The only di�erence is that the �nal subtraction step required in the integer case is
not necessary in the polynomial case. This is proved by showing that the degree of the polynomial
c(x) computed by this algorithm is less than and equal to k� 1. Since the degrees of a(x) and b(x)
are both less than and equal to k � 1, the degree of t(x) = a(x)b(x) will be less than and equal
to 2(k � 1). Also note that the degrees of n(x) and r(x) are both equal to k. The degree of u(x)
computed in Step 2 will be strictly less than k since the operation is performed modulo r(x). Thus,
the degree of c(x) as computed in Step 3 of the algorithm is found as

degfc(x)g � max[degft(x)g ; degfu(x)g + degfn(x)g]� degfr(x)g

� max[2k � 2 ; k � 1 + k]� k

� k � 1

Thus, the polynomial c(x) is already reduced.

4 Computation of Montgomery Multiplication

The computation of c(x) involves a regular multiplication in Step 1, a modulo r(x) multiplication in
Step 2, and �nally a division by r(x) operation in Step 3. The modular multiplication and division
operations in Steps 2 and 3 are intrinsically fast operations since r(x) = xk. The remainder
operation in modular multiplication using the modulus xk is accomplished by simply ignoring the
terms which have powers of x larger than and equal to k. Similarly, division of an arbitrary
polynomial by xk is accomplished by shifting the polynomial to the right by k places. A drawback
in computing c(x) is the precomputation of n0(x) required in Step 2. However, it turns out the
computation of n0(x) can be completely avoided if the coe�cients of a(x) are scanned one bit at a
time. Furthermore, the word-level algorithm requires the computation of only the least signi�cant
word N 0

0(x) instead of the whole n0(x).
Recall that we need to compute c(x) = a(b)b(x)r�1(x) mod n(x), where r(x) = xk. This

product can be written as

c(x) = x�ka(x)b(x) = x�k
k�1X

i=0

aix
ib(x) (mod n(x)) .

The product
t(x) = (ak�1x

k�1 + ak�2x
k�2 + � � �+ a1x+ a0)b(x)

can be computed by starting from the most signi�cant digit, and then proceeding to the least
signi�cant, as follows:

t(x) := 0
for i = k � 1 to 0

t(x) := t(x) + aib(x)
t(x) := xt(x)

The shift factor x�k in x�ka(x)b(x) reverses the direction of summation. Since

x�k(ak�1x
k�1 + ak�2x

k�2 + � � �+ a1x+ a0) = ak�1x
�1 + ak�2x

�2 + � � �+ a1x
�k+1 + a0x

�k ,

we start processing the coe�cients of a(x) from the least signi�cant, and obtain the following
bit-level algorithm in order to compute t(x) = a(x)b(x)x�k.
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t(x) := 0
for i = 0 to k � 1

t(x) := t(x) + aib(x)
t(x) := t(x)=x

This algorithm computes the product t(x) = x�ka(x)b(x), however, we are interested in computing
c(x) = x�ka(x)b(x) mod n(x). Following the analogy to the integer algorithm, we achieve this
computation by adding n(x) to c(x) if c0 is 1, making the new c(x) divisible by x since n0 = 1.
If c0 is already 0 after the addition step, we do not add n(x) to it. Therefore, we are computing
c(x) := c(x) + c0n(x) after the addition step. After this computation, c(x) will always be divisible
by x. We can compute c(x) := c(x)x�1 mod n(x) by dividing c(x) by x since c(x) = xu(x) implies
c(x) = xu(x)x�1 = u(x) mod n(x). The bit-level algorithm is given below:

Bit-Level Algorithm for Montgomery Multiplication

Input: a(x); b(x); n(x)
Output: c(x) = a(x)b(x)x�k mod n(x)

Step 1. c(x) := 0
Step 2. for i = 0 to k � 1 do
Step 3. c(x) := c(x) + aib(x)
Step 4. c(x) := c(x) + c0n(x)
Step 5. c(x) := c(x)=x

The bit-level algorithm for the Montgomery multiplication given above is generalized to the word-
level algorithm by proceeding word by word, where the wordsize is w � 2 and k = sw. Let Ai(x)
represent one word of the polynomial a(x). The addition step is performed by multiplying Ai(x)
by b(x) at the ith step. We then need to multiply the partial product c(x) by x�w modulo n(x).
In order to perform this step using division, we add a multiple of n(x) to c(x) so that the least
signi�cant w coe�cients of c(x) will be zero, i.e., c(x) will be divisible by xw. Thus, if c(x) 6=
0 mod xw, then we �nd M(x) (which is a polynomial of length w) such that c(x) +M(x)n(x) = 0
(mod xw). Let C0(x) and N0(x) be the least signi�cant words of c(x) and n(x), respectively. We
calculate M(x) as

M(x) = C0(x)N
�1
0 (x) mod xw .

We note that N�1
0 (x) mod xw is equal to N 0

0(x) since the property (1) implies that

xswx�sw + n(x)n0(x) = 1 (mod xw)

N0(x)N
0

0(x) = 1 (mod xw)

The word-level algorithm for the Montgomery multiplication is obtained as

Word-Level Algorithm for Montgomery Multiplication

Input: a(x); b(x); n(x); N 0

0(x)
Output: c(x) = a(x)b(x)x�k mod n(x)

Step 1. c(x) := 0
Step 2. for i = 0 to s� 1 do
Step 3. c(x) := c(x) +Ai(x)b(x)
Step 4. M(x) := C0(x)N

0

0(x) (mod xw)
Step 5. c(x) := c(x) +M(x)n(x)
Step 6. c(x) := c(x)=xw
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The word-level algorithm requires the computation of the w-length polynomial N 0

0(x) instead of
the entire polynomial n0(x) which is of length k = sw. It turns out that the short algorithm
developed for computing n00 in the integer case [4] can also be generalized to the polynomial case.
The inversion algorithm is based on the observation that the polynomial N0(x) and its inverse
satisfy

N0(x)N
�1
0 (x) = 1 (mod xi)

for i = 1; 2; : : : ; w. In order to compute N 0

0(x), we start with N 0

0(x) = 1, and proceed as

Inversion Algorithm

Input: w;N0(x)

Output: N 0

0(x) = N�1
0 mod xw

Step 1. N 0

0(x) := 1
Step 2. for i = 2 to w
Step 3. t(x) := N0(x)N

0

0(x) mod xi

Step 4. if t(x) 6= 1 then N 0

0(x) := N 0

0(x) + xi�1

5 Computation of Montgomery Squaring

The computation of the Montgomery multiplication for a(x) = b(x) can optimized due to the fact
that cross terms disappear because they come in pairs and the underlying �eld is GF(2). It is easy
to show that

a2(x) =
k�1X

i=0

aix
2i ,

and thus, the multiplication steps in the bit-level and word-level algorithms can be skipped. The
Montgomery squaring algorithm starts with the degree 2(k � 1) polynomial c(x) = a2(x), i.e.,

c(x) = ak�1x
2(k�1) + ak�2x

2(k�2) + � � �+ a1x
2 + a0

= (ak�10ak�20 � � � 0a10a0) ,

and then reduces c(x) by computing c(x) := c(x)x�k mod n(x). The steps of the bit-level algorithm
are illustrated below:

Bit-Level Algorithm for Montgomery Squaring

Input: a(x); n(x)
Output: c(x) = a2(x)x�k mod n(x)

Step 1. c(x) :=
Pk�1

i=0 aix
2i

Step 2. for i = 0 to k � 1 do
Step 3. c(x) := c(x) + c0n(x)
Step 4. c(x) := c(x)=x

Similarly, the word-level algorithm starts with the same polynomial c(x), however, then performs
the reduction steps by proceeding word by word, as follows:

Word-Level Algorithm for Montgomery Squaring

Input: a(x); n(x); N 0

0(x)
Output: c(x) = a2(x)x�k mod n(x)
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Step 1. c(x) :=
Pk�1

i=0 aix
2i

Step 2. for i = 0 to s� 1 do
Step 3. M(x) := C0(x)N

0

0(x) (mod xw)
Step 4. c(x) := c(x) +M(x)n(x)
Step 5. c(x) := c(x)=xw

6 Examples

We take the �eld GF(24) to illustrate the Montgomery product computation. The irreducible
polynomial is selected to be n(x) = x4 + x+ 1. Furthermore, we have k = 4 and r(x) = x4. Since
n = (10011), the special �eld element r is (0011). The inverse of r(x) modulo n(x) is computed
as r�1(x) = x3 + x2 + x = (1110) using the extended Euclidean algorithm. This result is easily
veri�ed by computing

r(x)r�1(x) = x4(x3 + x2 + x) (mod x4 + x+ 1)
= x7 + x6 + x5 (mod x4 + x+ 1)
= 1 (mod x4 + x+ 1)

Furthermore, we compute n0(x) using the property (1) as

n0(x) =
1 + r(x)r�1(x)

n(x)
=

1 + x4(x3 + x2 + x)

x4 + x+ 1
=

x7 + x6 + x5 + 1

x4 + x+ 1
= x3 + x2 + x+ 1 .

Let a(x) = x3 + x2 + 1 = (1101) and b(x) = x3 + 1 = (1001). In order to compute the product
c = a � b � r�1 in GF(24), we use the algorithm for the Montgomery multiplication, and compute
t(x), u(x), and c(x) as follows:

Step 1: t(x) = a(x)b(x) = (x3 + x2 + 1)(x3 + 1)
= x6 + x5 + x2 + 1 .

Step 2: u(x) = t(x)n0(x) = (x6 + x5 + x2 + 1)(x3 + x2 + x+ 1)
= x9 + x4 + x+ 1 = x+ 1 (mod x4) .

Step 3: c(x) = [t(x) + u(x)n(x)]=r(x)
= [(x6 + x5 + x2 + 1) + (x+ 1)(x4 + x+ 1)]=x4

= (x6 + x4)=x4 = x2 + 1 .

Thus, we conclude that a � b � r�1 is equal to c = (0101). This result is obtained using the bit-level
algorithm without computing n0(x) or r�1(x). The bit-level algorithm starts with c(x) = 0, and
obtains c(x) = x2 + 1 using the following steps:

Step 3 Step 4 Step 5

i ai aib(x) c(x) := c(x) + aib(x) c0 c(x) := c(x) + c0n(x) c(x) := c(x)=x

0 1 x3 + 1 x3 + 1 1 x4 + x3 + x x3 + x2 + 1

1 0 0 x3 + x2 + 1 1 x4 + x3 + x2 + x x3 + x2 + x+ 1

2 1 x3 + 1 x2 + x 0 x2 + x x+ 1

3 1 x3 + 1 x3 + x 0 x3 + x x2 + 1

7
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We now illustrate the steps of the word-level algorithm to compute c(x). The word-level algorithm
�rst computes N 0

0(x) using the inversion algorithm. Let w = 2. Since n(x) = x4 + x + 1, we have
N0(x) = x+ 1. The inversion algorithm starts with N 0

0(x) = 1, and then computes

t(x) = N0(x)N
0

0(x) = (x+ 1)(1) = x+ 1 (mod x2) .

Since t(x) 6= 1, the value of N 0

0(x) is updated as N 0

0(x) = N 0

0(x) + x = 1 + x. Therefore, we obtain
N 0

0(x) = x+ 1 using the inversion algorithm. This result is easily veri�ed since

N0(x)N
0

0(x) = (x+ 1)(x+ 1) = x2 + 1 = 1 (mod x2) .

The word-level algorithm starts with c(x) = 0. Since a(x) = (1101), we have A0(x) = (01) = 1 and
A1(x) = (11) = x+ 1. Furthermore, N 0

0(x) = (11) = x+ 1. The steps of the word-level algorithm
for computing the result c(x) = x2 + 1 are given below:

i = 0 Step 3: c(x) = c(x) +A0(x)b(x) = (0) + (1)(x3 + 1) = x3 + 1
Step 4: M(x) = C0(x)N

0

0(x) = (1)(x+ 1) = x+ 1 (mod x2)
Step 5: c(x) = c(x) +M(x)n(x) = (x3 + 1) + (x+ 1)(x4 + x+ 1) = x5 + x4 + x3 + x2

Step 6: c(x) = c(x)=x2 = (x5 + x4 + x3 + x2)=x2 = x3 + x2 + x+ 1

i = 1 Step 3: c(x) = c(x) +A1(x)b(x) = (x3 + x2 + x+ 1) + (x+ 1)(x3 + 1) = x4 + x2

Step 4: M(x) = C0(x)N
0

0(x) = (0)(x+ 1) = 0 (mod x2)
Step 5: c(x) = c(x) +M(x)n(x) = (x4 + x2) + (0)(x4 + x+ 1) = x4 + x2

Step 6: c(x) = c(x)=x2 = (x4 + x2)=x2 = x2 + 1

Finally, we give an example illustrating the word-level Montgomery squaring algorithm. We com-
pute c = a � a � r�1 where a = (1101) = x3 + x2 + 1. The word-level Montgomery algorithm starts
with c(x) = a2(x) = x6 + x4 + 1, and performs the following steps in order to compute the �nal
result.

i = 0 Step 3: M(x) = C0(x)N
0

0(x) = (1)(x+ 1) = x+ 1 (mod x2)
Step 4: c(x) = c(x) +M(x)n(x) = (x6 + x4 + 1) + (x+ 1)(x4 + x+ 1) = x6 + x5 + x2

Step 5: c(x) = c(x)=x2 = (x6 + x5 + x2)=x2 = x4 + x3 + 1

i = 1 Step 3: M(x) = C0(x)N
0

0(x) = (1)(x+ 1) = x+ 1 (mod x2)
Step 4: c(x) = c(x) +M(x)n(x) = (x4 + x3 + 1) + (x+ 1)(x4 + x+ 1) = x5 + x3 + x2

Step 5: c(x) = c(x)=x2 = (x5 + x3 + x2)=x2 = x3 + x+ 1

7 Analysis of the Word-Level Algorithm

In this section, we give a rigorous analysis of the word-level algorithm for computing the Mont-
gomery product. We calculate the number of word-level GF(2) addition and multiplication oper-
ations. The word-level addition is simply the bitwise XOR operation which is a readily available
instruction on most general purpose microprocessors and signal processors. The word-level mul-
tiplication operation receives two 1-word (w-bit) polynomials a(x) and b(x) de�ned over the �eld
GF(2), and computes the 2-word polynomial c(x) = a(x)b(x). The degree of the product polyno-
mial c(x) is 2(w � 1). For example, given a = (1101) and b = (1010), this operation computes c
as

a(x)b(x) = (x3 + x2 + 1)(x3 + x)

= x6 + x5 + x4 + x

= (0111 0010) .
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Unfortunately, none of the general purpose processors contains an instruction to perform the above
operation. The implementation of this operation, which we call MULGF2, can be performed in two
distinctly di�erent ways:

� Emulation using SHIFT and XOR operations.

� Table lookup approach.

The emulation approach is usually slower than the table lookup approach, particularly for w � 8.
The following function can be used to compute the 2-word result H,L given the inputs A and B. The
MULGF2 algorithm given below requires 2w SHIFT and w XOR operations.

H := 0 ; L := 0

for j=w-1 downto 0 do

L := SHL(L,1)

H := RCL(H,1)

if BIT(B,j)=1 then L := L XOR A

On the other hand, a simple method for implementing the table lookup approach is to use 2 tables,
one for computing H and the other for computing L. The tables are addressed using the bits of A
and B, and thus, each table is of size 2w � 2w � w bits. We obtain the values of H and L using two
table reads. Other approaches are also possible. However, we note that these tables are di�erent
from the tables in [5, 16], which are used to implement GF(2w) multiplications. Here we are using
the tables to multiply two (w � 1)-degree polynomials over the �eld GF(2) to obtain the product
polynomial which is of degree 2(w � 1).

In Table 1, we give the the number of MULGF2 and XOR operations required in each step of the
word-level Montgomery multiplication algorithm.

Table 1: Operation counts for the word-level Montgomery multiplication algorithm.

MULGF2 XOR

for i=0 to s do - -
C[i]:=0 - -

for i=0 to s-1 do - -
for j=0 to s-1 do - -

MULGF2(H,L,A[j],B[i]) s2 -
C[j]:=C[j] XOR L - s2

C[j+1]:=C[j+1] XOR H - s2

MULGF2(H,M,C[0],N0') s -
MULGF2(P,L,M,N[0]) s -
for j=1 to s-1 do - -

MULGF2(H,L,M,N[j]) s2 � s -
C[j-1]:=C[j] XOR L XOR P - 2s2 � 2s
P:=H - -

C[s-1]:=C[s] XOR P XOR M - 2s
C[s]:=0 - -

2s2 + s 4s2

We now compare the word-level Montgomery multiplication algorithm to the standard GF(2k)
multiplication using the polynomial representation. The standard GF(2k) multiplication can be
accomplished in several di�erent ways. We select the word-level interleaving and reduction method
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for comparison since this algorithm is very similar to the word-level algorithm for the Montgomery
multiplication in terms of its data structure and the general ow. This algorithm computes c = a �b
using the polynomial representation by computing c(x) = a(x)b(x) (mod n(x)).

Word-Level Standard Multiplication Algorithm

Input: a(x); b(x); n(x)
Output: c(x) = a(x)b(x) mod n(x)

Step 1. c(x) := 0
Step 2. for i = s� 1 downto 0 do
Step 3. c(x) := c(x)xw

Step 4. c(x) := c(x) +Bi(x)a(x)
Step 5. c(x) := c(x) (mod n(x))

In Step 5, the modular reduction is performed by aligning the most signi�cant word of n(x) with the
most signi�cant word of c(x), and then by performing a series of bit-level right shift and polynomial
additions until the most signi�cant word of c(x) becomes zero. Table 2 gives the number of MULGF2,
XOR, and SHIFT operations required in each step of the word-level standard multiplication algorithm.

Table 2: Operation counts for the word-level standard multiplication algorithm.

MULGF2 XOR SHIFT

for i=0 to s do - - -
C[i]:=0 - - -

for i=s-1 downto 0 do - - -
P:=0 - - -
for j=s-1 downto 0 do - - -

MULGF2(H,L,A[j],B[i]) s2 - -
C[j+1]:=C[j] XOR H XOR P - 2s2 -
P:=L - - -

C[0]:=P - - -
for j=s downto 1 do - - -

U[j]:=SHL(N[j],w-1) XOR SHR(N[j-1],1) - s2 2s2

U[0]:=SHL(N[0],w-1) - - s
for j=w-1 downto 0 do - - -

if DEGREE(C)>=DEGREE(U) then - - -
for k=0 to s do - - -

C[k]:=C[k] XOR U[k] - sw(s+ 1)=2 -
for k=0 to s-1 do - - -

U[k]:=SHR(U[k],1) XOR SHL(U[k+1],w-1) - s2w 2s2w
U[s]:=SHR(U[s],1) - - sw

s2 3s2(w=2 + 1)+ 2s2(w + 1)+
sw=2 s(w + 1)

As can be seen from Tables 1 and 2, the word-level Montgomery multiplication algorithm performs
about twice as many MULGF2 operations as the standard algorithm, however, it requires much
fewer XOR operations and no SHIFT operation. Thus, if the MULGF2 operation can be performed
in a few clock cycles, the word-level Montgomery multiplication algorithm would be signi�cantly
faster. In Table 3, we tabulate the total number of operations for the Montgomery and standard
multiplication algorithms for w = 8; 16; 32 for comparison purposes.. According to the operation
counts seen in Table 3, the word-level Montgomery multiplication algorithm is only slightly faster
than the standard multiplication algorithm if the MULGF2 operation is emulated using SHIFT and
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XOR operations. However, with a fast implementation of MULGF2, the Montgomery multiplication
algorithm is signi�cantly faster.

Table 3: Comparing the Montgomery and standard multiplication.

Emulation Table Lookup
w Standard Montgomery Speedup Standard Montgomery Speedup

8 57s2 + 13s 52s2 + 24s 1.09 34s2 + 13s 6s2 + s 5.67
16 109s2 + 25s 100s2 + 48s 1.09 62s2 + 25s 6s2 + s 10.33
32 213s2 + 49s 196s2 + 96s 1.09 118s2 + 49s 6s2 + s 19.67

We have also implemented these two algorithms in C, and obtained timings on a 100-MHz Intel
486DX4 processor running the NextStep 3.3 operating system. We summarize the experimental
speedup values in Table 4.

Table 4: Experimental speedup values.

w Method k ! 64 128 256 512 1024

8 Table Lookup 4.51 3.82 3.17 2.94 2.83
8 Emulation 1.25 1.15 1.13 1.10 1.06
16 Emulation 1.27 1.10 1.02 0.98 0.92
32 Emulation 2.35 1.69 1.34 1.18 1.08

As was mentioned, the table lookup approach can be implemented using 2 tables each of which is
of size 2w� 2w�w bits. For w = 8, each of the tables is of size 64 Kilobytes. For w = 16, the table
size increases to 216 � 216 � 16 bits, or 8 Gigabytes. Thus, we have implemented the table lookup
MULGF2 algorithm for only w = 8.

8 Conclusions

We have described the bit-level and word-level algorithms for computing the Montgomery product
a � b � r�1 in the �eld GF(2k). It turns out that this operation would be signi�cantly faster in
software with the availability of a fast method for multiplying two w-bit polynomials de�ned over
GF(2), where w is the wordsize. This can be achieved using a table lookup approach when the
wordsize is small; another method is to implement an instruction on the underlying processor for
performing this operation which is much simpler than the integer multiplication due to the lack of
carry propagation.

The Montgomery multiplication can be used to obtain fast software implementation of the
exponentiation over the �eld GF(2k). Let the �eld element a and the m-bit positive integer e be
given. In order to compute c = ae 2 GF(2k), we can use the binary method [6]. The algorithm �rst
computes �c = 1 � r and �a = a � r using the standard multiplication, and then proceeds to compute
c using only Montgomery squarings and multiplications.

for i = m� 1 downto 0 do
�c := �c � �c � r�1

if ei = 1 then �c := �c � �a � r�1

c := �c � 1 � r�1

We are currently working on implementing the Montgomery exponentiation algorithm, and extend-
ing the Montgomery multiplication and squaring to the normal bases.
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