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Highlights: 9 

⚫ The convolutional neural network is investigated for monthly streamflow forecasting. 10 

⚫ The input selection process can be automatically completed by the convolutional neural network. 11 

⚫ The performance of the CNN is superior to the ANN and ELM with smaller errors and better stability. 12 

 13 

Abstract: Monthly streamflow forecasting is vital for the management of water resources. Recently, numerous studies have 14 

explored and evidenced the potential of artificial intelligence (AI) models in hydrological forecasting. In the current study, 15 

the feasibility of a relatively new AI model, namely the convolutional neural network (CNN), is explored for forecasting 16 

monthly streamflow. The CNN is a method of deep learning, the unique convolution-pooling mechanism in which creates 17 

its superior attribute of automatically extracting critical features from input layers. Hydrological and large-scale 18 

atmospheric circulation variables including rainfall, streamflow, and atmospheric circulation factors (ACFs) are used to 19 

establish models and forecast streamflow for Huanren Reservoir and Xiangjiaba Hydropower Station, China. The ANN and 20 

ELM with inputs identified based on cross-correlation analysis (CC) and mutual information analysis (MI) are established 21 

for comparative analysis. The performances of these models are assessed with several statistical metrics and graphical 22 

evaluation methods. The results show that CNN performs better than ANN and ELM across all the statistical measures. 23 

Moreover, CNN shows better stability in forecasting accuracy. 24 

Keywords: monthly streamflow forecasting, atmospheric circulation factors, inputs selection, artificial intelligence, 25 
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convolutional neural network 26 

1 Introduction 27 

Long-term hydrological streamflow forecasting has been considered an important basis for the design, construction, 28 

and management of water conservancy and hydropower projects. This type of forecasting has a long forecast period, which 29 

gives water managers sufficient time to allocate water to different sectors. But the complex nature of the processes such as 30 

mechanism of runoff generation, climatic variation, the effect of human activity make it difficult to simulate and forecast 31 

them with desirable accuracy. Therefore, favorable long-term streamflow forecasting is a challenging task (Yaseen et al. 32 

2016).  33 

During the past few decades, numerous methods have been developed to forecast long-term streamflow (Zhang et al. 34 

2015). These models can be classified into physical models and data-driven models (Sahay and Srivastava 2014). Typically, 35 

physical models have the advantage of assisting the physical understanding of the hydrological process, but complex 36 

physical equations, parametric assumptions, and the variables involved in the modeling process make them difficult to be 37 

designed and implemented (Wu and Chau 2006; Yaseen et al. 2016). Data-driven models find relationships between system 38 

state variables without explicit knowledge of the physical behavior using statistic or machine learning algorithms (Ghorbani 39 

et al. 2016). Due to their advantages including simplicity in design and implementation, minimum information requirements, 40 

and relatively high accuracy, the data-driven models are becoming increasingly popular in hydrological forecasting (Yaseen 41 

et al. 2016; Adamowski and Sun 2010).  42 

Classical regression techniques such as autoregressive model (AR), moving average model (MA) and autoregressive 43 

moving average (ARMA) model may be the earlier tools that have been used in streamflow forecasting (Abrahart and See 44 

2000; Montanari et al. 2000; YU and TSENG 1996). But the assumptions of stationary and linearity have limited their 45 

capacity in capturing the non-linear pattern of streamflow (Yaseen et al. 2019). To overcome this drawback, AI models with 46 



3 

 

the ability in nonlinear mapping have been vastly developed as alternatives in the last several decades. 47 

The ANN is one of the most popular examples of AI techniques since the 1990s, and it has been applied in various 48 

areas of water-related research, particularly in streamflow forecasting (Samsudin et al. 2011; Afan et al. 2020). However, 49 

ANN also has some drawbacks. As an example, the determination of its optimal network structure is difficult and usually 50 

requires a trial-and-error process (Ozgur Kisi 2004). The SVM proposed by (Vapnik 1995) is a more advanced AI model, 51 

which is based on the principle of structural risk minimization, theoretically minimizes the expected error of a learning 52 

machine and therefore reduces the phenomenon of overfitting (Yu et al. 2017). This AI model has gained the attention of 53 

many researchers and been applied to streamflow forecasting with promising results (LIN et al. 2006; Samsudin et al. 2011; 54 

Shabri and Suhartono 2012). However, this method has the disadvantages of time-consuming and facing a high 55 

computational burden. As an emerging class of ANN, ELM proposed by (Huang et al. 2006) is another powerful tool. In 56 

this model, the input weights and hidden biases are randomly initialized, and the output weights are directly calculated by 57 

the least squares method. Therefore, it has a fast learning speed for its iterative-free learning mechanism. Moreover, this 58 

model overcomes some disadvantages including over-fitting and stucking in local minima that some traditional models 59 

suffer from (Yaseen et al. 2016). The ELM has been successfully used in streamflow forecasting and proven to have good 60 

generalization capability (Li and Cheng 2014; Yaseen et al. 2016; Deo and Şahin 2016). But there is still room for 61 

improvement. Like some other ANN-based models, the random assignment of weight parameters may cause inferior values 62 

(Li et al. 2016).  63 

Although a lot of research efforts have been devoted to improve the reliability and accuracy of streamflow forecasting, 64 

up to date, there has been no approach that can achieve the best accuracy for all catchments (Fu et al. 2020). Sometimes, 65 

one model outperforms other models in one catchment may not exhibit good accuracy in another. This phenomenon may 66 

be caused by some complex physical processes that characterize different catchments and directly affect the streamflow 67 

datasets (Yaseen et al. 2019; Fu et al. 2020). Given this situation, it is necessary for scholars to continuously investigate the 68 
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reliability in streamflow forecasting of newly developed models. Therefore, this study attempts to investigate the potential 69 

of another AI approach, CNN, for monthly streamflow forecasting. Compared to the ANN, CNN adds the convolution, 70 

pooling, and fully connected layers and thus has much deeper and more complex architectures. The add of such layers 71 

allows CNN to extract critical features from the input layer automatically without prior knowledge and human effort. 72 

According to the form of the input layer, CNN currently used in the field of hydrology can be designed into one-dimensional 73 

or two-dimensional CNN (namely 1D-CNN and 2D-CNN). The 1D-CNN involves vectors as inputs, while 2D-CNN 74 

employs two-dimensional matrixes as inputs. In this study, we use the 2D-CNN for one-step-ahead monthly streamflow 75 

forecasting due to its stronger feature extracting capability. This capability makes the 2D-CNN immune to the step of 76 

selecting appropriate input variables from a large amount of historical data time series, which is the merit of 2D-CNN.  77 

During the past two years, CNN has been gradually used in hydrological forecasting (Huang et al. 2020; Haidar and 78 

Verma 2018; Chong et al. 2020; Hussain et al. 2020). But these researches mainly focused on the applications of 1D-CNN. 79 

(Haidar and Verma 2018) applied a 1D-CNN to forecast monthly rainfall for a suburb in eastern Australia. The results 80 

evidenced its good capacity in monthly rainfall forecasting. (Chong et al. 2020) developed a hybrid 1D-CNN coupled with 81 

a wavelet transform technique to forecast daily and monthly rainfall over the Langat River Basin in Malaysia. The results 82 

showed that the 1D-CNN could capture patterns of the rainfall time series for both monthly forecasting and daily forecasting. 83 

(Hussain et al. 2020) performed a study on the 1D-CNN to forecast the streamflow for four rivers in the UK. Compared to 84 

1D-CNN, the 2D-CNN is rarely investigated. (Huang et al. 2020) applied a 2D-CNN to forecast daily streamflow and the 85 

forecasting accuracy of the proposed 2D-CNN was reported to be much better than that of comparative models.  86 

Motivated by its automatically feature extracting ability, outperformance in daily streamflow forecasting, and limited 87 

applications in streamflow forecasting, this paper attempts to investigate the potential of the 2D-CNN to accurately forecast 88 

monthly streamflow. Antecedent rainfall, streamflow, and ACFs data are converted into two-dimensional matrixes and they 89 

are utilized to drive CNNs to forecast one-month-ahead streamflow, which, to the best of our knowledge, has not been 90 
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conducted by others to date. The ANN and ELM are chosen as comparative methods. Two cases, Huanren Reservoir and 91 

Xiangjiaba Hydropower Station of China are used to verify the feasibility of CNN. 92 

2 Theoretical Overview 93 

2.1 Convolutional neural network 94 

CNN is an efficient image processing algorithm. Generally, CNN refers to a two-dimensional convolutional neural 95 

network, the inputs of which are two-dimensional matrixes (Hussain et al. 2020). However, there are also other types of 96 

CNN such as one-dimensional CNN and three-dimensional CNN. All types of CNN share the same characteristics but differ 97 

in the dimension of the input matrix and the way the filters slide over the data. The CNN employed in this study is the two-98 

dimensional CNN. Two salient characteristics contribute to the uniqueness of CNN. First, a neuron is only connected to 99 

their local nearby neurons in the previous layer. Second, the pooling mechanism is introduced to significantly reduce the 100 

number of coefficients in the network while preserving the most important features scanned from its receptive region (Mozo 101 

et al. 2018). A standard CNN is generally composed of five types of layers: input layer, convolution layer, pooling layer, 102 

fully connected layer, and output layer, as shown in Fig. 1.  103 

 104 

 105 

Fig. 1 Typical convolutional network architecture for image recognition 106 
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The input layer provides input information for the whole model and is usually a two-dimensional matrix. In this study, 107 

antecedent data with time and space dimensions are employed to forecast streamflow. Let x- and y-axis denote the time and 108 

space of a matrix, respectively. The elements in the matrix are observations of different input variables at different times. 109 

In the time dimension, time ranges from the past to the present, and the time interval, which is usually 1 hour, 1 day, or 1 110 

month, depends on the type of forecasting. For the one-month-ahead streamflow forecasting, the time interval is 1 month. 111 

In the space dimension, different variables are viewed as a sequence of dots. Suppose the length and width of the input 112 

matrix are m and n, respectively, the input matrix X can be written as: 113 

  114 

  (1) 115 

where i denotes different time series, j denotes the periods, m represents the number of time series that are employed, n is 116 

the length of time series; xij represents the value of ith time series at the jth period.  117 

The convolution layer is the core building block of a CNN (Haidar and Verma 2018). This layer is composed of several 118 

convolution kernels and aims to learn feature representations from the input layer. The outputs of a convolution layer are 119 

passed through a linear operation and a nonlinear activation function processing before being fed into the next layer. Denote 120 

the parameters, input, and output of the jth kernel in the lth convolution layer by ,  and , respectively, the 121 

output of the jth kernel can be written as: 122 

  (2) 123 

where j is the index of the convolution kernel in the convolution layer, is the ith channel of the , l
M is the number of 124 

kernels in the lth layer; is the activation function and j

l
b  represents a bias item. 125 

The pooling layer is used to decrease the size of the outputs from convolution layers with pooling methods, such as 126 

max-pooling and average-pooling. The max-pooling layer selects the highest value in each scanned region of its inputs 127 
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whereas the average-pooling layer calculates the average value. In this study, the average-pooling operation is employed. 128 

Since only one value, the maximum or the average value, in each scanned region are selected, the number of CNN 129 

parameters after the pooling operation is greatly reduced. The alternation of the convolution and pooling layers can not only 130 

reduce the network scale of a CNN but also identify the most prominent features of input layers. 131 

In the fully connected layer, different features learned by the convolution and pooling layers are converted into a dense 132 

vector. The output layer is used to establish the equation  among the dense vector o, bias item b, and the 133 

forecasted value y. Once these parameters (the vector W and b) are determined, a final forecasted result can be obtained 134 

when giving a dense vector o. 135 

2.2 Artificial neural network 136 

ANN is a nonlinear dynamic system whose original development was based on simulating the structure and function 137 

of the human brain (Imrie et al. 2000). This method was reported that can approximate any nonlinear mathematical input-138 

output relations (Cichocki and Unbehauen 1993; Pashova and Popova 2011). There are many variants of ANN (Yılmaz and 139 

Yuksek 2008). In this study, we employ the feed-forward backpropagation (BP) network as a comparative model. The 140 

training of a BP neural network is an optimization process (Kuang and Xu 2018), which consists of two parts: the forward 141 

pass and the backward pass. In the forward pass, the input is processed through the ANN, and then the forecasted results 142 

are obtained. If the deviation between the forecast and the observation is large, the backward pass will be carried out to 143 

modify the parameters of each layer. After enough iterations of the forward and backward pass, an ANN model will be able 144 

to make forecasting correctly. 145 

2.3 Extreme learning machine 146 

The ELM was first proposed by (Huang et al. 2006) as a learning algorithm for a single hidden layer feed-forward 147 

neural networks (Hadi et al. 2020). This model exhibits several important advantages, which make it an appealing method 148 
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for streamflow forecasting (Li et al. 2016). Here, we present a brief description of the ELM. 149 

Considering a set of training samples  , where l

iX R  is the input 150 

vector of the ith sample, iy  is the corresponding observation, and N is the size of training samples. The ELM with P hidden 151 

neurons can be modeled as:  152 

  (3) 153 

where
j

 is the weight vector connecting the input variables to the jth hidden neuron, 
j

  is the weight vector connecting 154 

the jth hidden neuron to the output neuron, and 
j

b  is the bias of the jth hidden neuron. The Eq.(3) can be expressed in 155 

matrix form as , where , and H  defined by: 156 

  (4) 157 

The solution of the ELM is , where † 1( )T −=H H H H  is called Moore-Penrose generalized inverse of H (Huang 158 

et al. 2004). Finally, the forecasted value is given by: 159 

  (5) 160 

where testX  is the input vector in the testing period. For a more detailed evaluation of the ELM algorithm, readers can refer 161 

to the studies of (Huang et al. 2006). 162 

2.4 Input selection methods for ANN and ELM 163 

In this study, two widely used input selection techniques, cross-correlation analysis and mutual information analysis, 164 

are used to determine the most informative variables. The cross-correlation function measures how two random variables 165 

X and Y co-vary linearly by calculating the linear correlation coefficient : 166 
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  (6) 167 

where ,  are sample values of X and Y, N is the sample size, and ,  are the mean value of the samples.168 

means a perfect linear correlation while an intermediate value corresponds to partial correlations, and means X is 169 

uncorrelated with Y. 170 

MI is a measure that quantifies the stochastic dependency between two random variables without making any 171 

assumptions about the nature of their relation (Babel et al. 2015). It can capture more general relationships between 172 

variables (Quilty et al. 2016). In the case of two discrete variables X and Y, the index MI can be expressed as follows 173 

(Siqueira et al. 2018):  174 

  (7) 175 

where the is the joint probability density function,  and  are the marginal distribution function of X 176 

and Y, respectively. The value of MI ranges between 0 and infinity ( ).  means that X and Y are independent 177 

of each other. If the X and Y are dependent, the MI value will be greater than 0, and the larger the value, the stronger the 178 

dependence. 179 

2.5 Model performance evaluation 180 

The following three statistical indices are used to evaluate the performance of the models developed in this study (Hadi 181 

et al. 2019).  182 

I. Mean absolute error (MAE), expressed as: 183 

  (8) 184 

II. Root mean square error (RMSE), expressed as: 185 



10 

 

  (9) 186 

III. Nash-Sutcliffe efficiency coefficient (NSE), expressed as: 187 

  (10) 188 

where   and  are the forecasted and observed ith value of the streamflow,  is the average of observed 189 

streamflow, N is the number of the observations. 190 

3 Case study 191 

3.1 Description of catchments and data 192 

Huanren Reservoir and Xiangjiaba Hydropower Station are taken as case studies (see Fig. 2). The Huanren Reservoir 193 

Basin, located in the upper reaches of the Hunjiang River in China with a drainage area of 10400 km2, is characterized by 194 

a mountainous environment with good vegetation. The annual average rainfall is about 860 mm with average annual 195 

streamflow of 142 m3/s, 70% of which are from May-October. The Xiangjiaba Hydropower Station, located on the 196 

Jinshajiang River, is China's third-biggest hydropower station, following the Three Gorges Hydropower Station and 197 

Xiluodu Hydropower Station. The annual average streamflow in the river is about 3810 m3/s and the annual average rainfall 198 

of the whole basin is about 756.4mm, 90% of which concentrates in the summer season. 199 

The ACFs data, including 66 variables monitored by 160 nationwide stations is provided by the National Climate 200 

Center, China. Together with rainfall and streamflow, a total of 68 kinds of variables are taken as candidate inputs. The 201 

dataset for Huanren covers 600 months (1967-2016) and is partitioned into three parts, which are the training dataset (1967-202 

1997), the cross-validation dataset (1998-2005), and the testing dataset (2006-2016). The dataset for Xiangjiaba covers a 203 

period of 528 months from 1967 to 2010, among which, 1967 to 1993, 1994 to 2000, and 2001 to 2010 are partitioned as 204 
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the training, cross-validation, and testing period, respectively. 205 

 206 

Fig. 2 Locations of Xiangjiaba and Huanren 207 

3.2 Model development 208 

In this subsection, the CNN, ANN, and ELM models are established to forecast the monthly streamflow in flood season 209 

(from May to October) for Huanren and the monthly streamflow in the whole year for Xiangjiaba.  210 

(1)  CNN model 211 

Considering the relatively strong capability of CNN in data processing, 68 variables during the past 36 months are 212 

employed as predictors, and thus the size of the input layer is 36×68 pixels. The structure of CNN used in this study includes 213 

two convolution layers, two pooling layers, and a fully connected layer. Each convolution layer has only 1 channel and the 214 

hyper-parameters including learning rate, batch size, and the number of epochs are set as 1.0, 3, and 80, respectively. The 215 

kernel size in convolution and pooling layers are determined by trial and error, shown as follows: 216 

a. Generate parameter combinations of model structure, which include kernel size in the two convolution layers and 217 
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pooling layers. The parameter combinations are sampled with kernel size in the convolution layer and pooling layer ranging 218 

from 1-20 and 1-8, respectively, and there are 25600 sets in total.  219 

b. Exclude the infeasible parameter combinations, of which the dimension of the output matrix in the convolution layer 220 

or pooling layer violates the integer constraint.  221 

c. Model training with feasible parameter combinations.  222 

d. Eliminate relatively poor parameter combinations. When different parameter combinations lead to the same dense 223 

vector dimension, we only reserve the parameter combination that achieves the smallest MAE in the training period. 224 

In order to avoid over-fitting in CNN (also do the same for the ANN and ELM), the training process is subjective to 225 

the stopping criteria where the cross-validation error increases for a specified number of iterations or the training reaches 226 

the scheduled maximum iterations. After the operation from step a to d, there are still many feasible structures. Among 227 

these different feasible structures, 9 parameter combinations, representing different structures listed in Table 1 were finally 228 

chosen for forecasting. 229 

Table 1 Structure parameters of CNN models selected for monthly streamflow forecasting  230 

Structure 
No. 

Size of filters 
The dimension of dense vector in the fully 

connected layer 
 Convolution 

layer 1 

Pooling 
layer 1 

 Convolution 
layer 2 

Pooling 
layer 2 

1 13 4 5 2 5 

2 13 4 3 2 12 

3 17 1 19 2 17 

4 7 2 12 2 20 

5 15 1 19 2 36 

6 5 2 14 1 57 

7 13 4 2 1 65 

8 7 2 12 1 80 

9 19 1 16 1 105 

（2）ANN and ELM models 231 

For the ANN and ELM, their inputs are determined with CC and MI method, and four kinds of comparative models 232 

are established, i.e., CC-ANN, CC-ELM, MI-ANN, and MI-ELM. According to the previous introduction, we notice that 233 

the convolution and pooling operation in the CNN is a feature extraction process, which is equivalent to the input selection 234 
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process for the ANN and ELM. From this view, the dense vector can be considered as a selected input combination for the 235 

forecasting part in a CNN. Hence, the number of inputs for the ANN and ELM is designed to be consistent with the 236 

dimension of dense vectors in fully connected layers listed in Table 1. The input combinations for the ANN and ELM are 237 

listed in Table 2. 238 

To identify the best architecture for the ANN, we follow the approach in (Zhang et al. 2015). A three-layer BP network 239 

model structure is used and the optimal number of neurons in the hidden layer is determined by using a heuristic method. 240 

Specifically, different numbers of neurons from 1 to 10 are tried 20 times and the architecture that acquires the smallest 241 

value of the MAE in the training period is taken as the optimal model. For the ELM, different numbers of hidden neurons 242 

( from 1 to 30) and different types of activation functions ( sig, sine, hardline, tribas, radbas ) are trained 20 times, and the 243 

model that achieves the smallest value of the MAE in the training period is determined as the optimal model. 244 

Table 2 Input combinations for ANN and ELM  245 

Method of 
selection 

input 
combination 

Number of the 
input variables 

Method of 
selection 

input 
combination 

Number of the 
input variables 

CC C5 5 MI M5 5  
C12 12 

 
M12 12  

C17 17 
 

M17 17  
C20 20 

 
M20 20  

C36 36 
 

M36 36  
C57 57 

 
M57 57  

C65 65 
 

M65 65  
C80 80 

 
M80 80  

C105 105 
 

M105 105 

4 Results and discussions 246 

The one-month-ahead streamflow forecast performance in the testing period of the three models for Huanren and 247 

Xiangjiaba are listed in Tables 3 and 4, respectively. As can be seen, CNN outperforms ANN and ELM, achieving higher 248 

NSE, lower MAE, and RMSE when the number of inputs is equal, and ELM presents a better performance in comparison 249 

with ANN in most situations. Taking the Xiangjiaba as an example, the error is reduced by 15.7 % and 25.5 % in MAE, 250 
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19.7 % and 37.9 % in RMSE from CNN to ELM and ANN for input combination C5 (  ,251 

 ,  ,  ,  , 252 

 ). When using the M20 input combination, a similar conclusion can be drawn 253 

(  ,  ,  ,  ,254 

 ,  ). The results also show that there is no strict increasing or 255 

decreasing trend for each performance index for any model, which implies that the inclusion of more inputs does not 256 

necessarily lead to better forecasts. Moreover, it can be noted that the forecasting for Xiangjiaba is more accurate than that 257 

for Huanren with NSE varies in the ranges of 0.13-0.84 and -0.55-0.37, respectively. 258 

Table 3 Statistical indices for forecasts of Huanren by the CNN, ANN, and ELM in the testing period  259 

Evaluation metric Model 
Number of inputs 

5 12 17 20 36 57 65 80 105 

MAE CNN 119.02 122.02 110.75 108.80 111.83 117.99 117.73 123.21 129.28 
 CC-ANN 138.85 157.77 137.31 141.33 160.44 172.59 186.60 194.20 194.77 

 CC-ELM 145.69 132.20 122.87 132.62 129.17 130.96 143.59 136.88 133.77 

 MI-ANN 125.88 160.57 183.69 157.55 188.56 137.84 191.13 179.43 176.60 
 MI-ELM 120.79 146.48 144.22 135.66 138.60 128.37 140.94 133.94 135.25 
           

RMSE CNN 201.05 207.57 195.82 196.25 211.01 188.94 208.66 214.27 215.93 
 CC-ANN 203.18 246.93 210.73 212.04 253.42 295.83 292.43 258.29 257.66 

 CC-ELM 223.54 214.19 208.60 215.52 216.30 216.01 211.34 223.48 216.62 

 MI-ANN 210.87 291.60 290.01 261.07 285.76 227.34 282.06 255.87 249.40 
 MI-ELM 211.14 237.67 237.76 241.84 263.58 229.79 231.81 231.93 220.13 
           

NSE CNN 0.28 0.24 0.32 0.32 0.21 0.37 0.23 0.19 0.17 
 CC-ANN 0.27 -0.08 0.21 0.20 -0.14 -0.55 -0.52 -0.18 -0.18 

 CC-ELM 0.11 0.19 0.33 0.18 0.17 0.17 0.21 0.11 0.17 

 MI-ANN 0.21 -0.51 -0.49 -0.21 -0.45 0.08 -0.41 -0.16 -0.10 
 MI-ELM 0.21 0.00 0.00 -0.04 -0.23 0.06 0.05 0.05 0.14 

 260 

Table 4 Statistical indices for forecasts of Xiangjiaba by the CNN, ANN, and ELM in the testing period 261 

Evaluation metric Model 
Number of inputs 

5 12 17 20 36 57 65 80 105 

MAE CNN 891.21 889.42 947.59 904.52 945.90 947.38 952.75 915.25 988.88 
 CC-ANN 1118.96 1072.87 1035.89 1180.75 1207.65 1521.14 2058.99 2049.68 2037.72 
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 CC-ELM 1030.85 976.47 1016.09 956.84 1042.07 1025.97 1099.43 1119.85 1114.16 

 MI-ANN 1189.31 1043.08 1718.60 1152.26 1553.53 1887.29 1671.96 1812.35 2138.22 
 MI-ELM 932.70 1052.34 983.96 962.03 1013.46 1002.38 1136.28 1080.84 1179.70 
           

RMSE CNN 1386.78 1454.04 1521.66 1375.02 1455.98 1428.12 1437.22 1406.16 1470.65 
 CC-ANN 1913.02 1842.85 1671.74 2006.48 2106.44 2361.55 3391.41 3043.03 2974.89 

 CC-ELM 1659.43 1687.11 1518.36 1504.38 1708.49 1527.15 1656.86 1632.24 1706.22 

 MI-ANN 1917.73 1813.27 3112.44 1940.13 2622.58 2962.95 2817.73 3070.36 3251.38 
 MI-ELM 1727.11 1861.02 1626.48 1555.57 1579.54 1616.53 1689.03 1631.86 1750.68 
           

NSE CNN 0.84 0.83 0.81 0.84 0.83 0.83 0.83 0.84 0.82 
 CC-ANN 0.70 0.72 0.77 0.67 0.64 0.54 0.06 0.24 0.27 

 CC-ELM 0.77 0.77 0.81 0.81 0.76 0.81 0.77 0.78 0.76 

 MI-ANN 0.70 0.73 0.20 0.69 0.43 0.28 0.35 0.23 0.13 
 MI-ELM 0.76 0.72 0.78 0.80 0.80 0.79 0.77 0.78 0.75 

 262 

Fig. 3 shows the detail of the best forecast results from each model in the testing period for Xiangjiaba, including the 263 

observed and forecasted data, absolute errors (forecasted value minus observed value), and relative errors (RE). As can be 264 

seen, the forecasts from the three models all fit well with the observations with an average relative error smaller than 10%. 265 

But the CNN underestimates the peaks of streamflow, while the ANN and ELM are more likely to overestimate the peaks. 266 

For medium flow, the forecast results of each model are close and all fit well with the observations. In terms of low flow, 267 

all the models underestimate the streamflow.  268 
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 269 

  Fig. 3 The best forecast results achieved from CNN, ANN, and ELM for one-month-ahead streamflow on Xiangjiaba: 270 

(a) forecasted and observed value, (b) absolute errors, and (c) RE 271 

Fig. 4 illustrates the best forecast results from each model in the testing period for Huanren. As shown in the figure, 272 

the peaks of streamflow in this region are mostly overestimated by each model except for some extremely high peaks. For 273 

the medium and low flow, the average mean of REs for each model is about 50% and the maximum RE is up to 500%. 274 
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Compared with the Xiangjiaba, the forecast performances by each model in Huanren are relatively poor, which might be 275 

attributed to the characteristics of the Huanren Reservoir basin. The Huanren is located in northern China, where the 276 

formation of rainfall in the flood season is strongly influenced by the mutual effects of Siberian cold air and the summer 277 

monsoon. The interaction between the Siberian cold air and the summer monsoon is very complicated and varies a lot, and 278 

thus leads to the difficult forecasting of the long-term streamflow. Besides, compared with Xiangjiaba, the streamflow in 279 

Huanren has a greater variation, which may also increase the difficulty in forecasts. 280 
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 281 

Fig. 4 The best forecast results achieved from CNN, ANN, and ELM for one-month-ahead streamflow in Huanren: (a) 282 

forecasted and observed value, (b) absolute errors, and (c) RE 283 

The scatter-plots as well as the linear correlation coefficients (r) for the best forecast results from each model are 284 

shown in Fig. 5. As shown in Fig. 5 (1), the data points of each model are scattered, which confirms the conclusion that the 285 
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forecast results for Huanren are relatively poor. Nevertheless, the CNN is still slightly better than the other two models with 286 

a relatively high r-value of 0.615. In Fig. 5 (2), the data points of each model are concentrated in the vicinity of the diagonal287 

and the correlation coefficients of all the three models are above 0.9. Although the r-value of the CNN is the lowest 288 

( , , ), it is only a 2.04% and 2.99% reduction compared with the ANN and ELM, 289 

respectively. Table 5 presents the metrics improvement of the CNN compared with the other two models in terms of their 290 

best forecast results. In Table 5, the metrics of the CNN are all better than that of ANN and ELM for the Huanren. For the 291 

Xiangjiaba, all of the metrics except for r outperform that of ANN and ELM. 292 

 293 

Fig. 5 Scatter-plots of observed and forecasted values within the testing period from optimal CNN, ANN, and ELM for 294 

Huanren and Xiangjiaba 295 

Table 5 The performance metrics improvement achieved by CNN comparing the optimal forecast results among each 296 

model (%) 297 

Station Compared model MAE RMSE NSE r 

Huanren ELM 3.97  9.42  12.12  21.54   
ANN 14.07  10.34  76.19  1.15  

      

Xiangjiaba ELM 5.47  8.60  3.75  -2.99   
ANN 12.68  17.75  9.62  -2.05  
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In the process of establishing forecast models, it is not easy to catch the optimal input combination for a specific model. 298 

Therefore, the sensitivity of the model performance to input combinations is also a key indicator and worthy of attention. 299 

A lower sensitivity can make forecasts closer to the optimal value although the optimal input combination is not employed. 300 

Fig. 6 displays the overall distribution of the performance metrics. It should be noted that for the metrics of MAE and RMSE, 301 

smaller median and shorter box height represent higher accuracy and stability, while for the metric of NSE, a larger median 302 

and shorter box height stand for more satisfying forecasts and lower sensitivity. For the Huanren, it can be seen that the 303 

ANN has a high sensitivity to the input combinations with a large box height of each performance metric. The CNN and 304 

ELM have nearly the same but better stability than the ANN. In comparison with the ELM, the CNN shows better accuracy 305 

because of its smaller box median of MAE and RMSE, and larger median of NSE. For the Xiangjiaba, a similar result can 306 

be seen. 307 

 308 

 309 

Fig. 6 Box-plots of the performance metrics from forecasted results of CNN, CC-ANN, MI-ANN, CC-ELM, and MI-310 

ELM for Huanren and Xiangjiaba 311 

From the results of applications in Huanren and Xiangjiaba, it can be seen that CNN outperforms its comparative 312 
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models with better forecast results and stable forecasting ability. Therefore, we can assert that CNN is an effective model 313 

and can be used for monthly streamflow forecasting.  314 

5 Conclusions 315 

An attempt is made in this paper to explore the potential of the CNN for monthly streamflow forecasting. The monthly 316 

streamflow and rainfall data from Huanren Reservoir and Xiangjiaba Hydropower Station and ACFs data from the National 317 

Climate Center, China are employed for model training, validation, and testing. Nine cases of different structures of CNN 318 

are designed with ACFs, rainfall and streamflow delayed for 1 to 36 months as inputs. The ANN and ELM are employed 319 

as benchmarking yardsticks. 320 

The results demonstrate that the CNN can be successfully applied to forecast the monthly streamflow. Comparing the 321 

results of CNN, ANN, and ELM, it is seen that the CNN outperforms the ANN and ELM with smaller values of MAE and 322 

RMSE, and higher values of NSE. With the change of model structure or input combinations, the CNN shows better stability 323 

in forecasting accuracy than the ANN and ELM. The results also demonstrate that CNN, ANN, and ELM give satisfactory 324 

forecasts for Xiangjiaba but are unable to maintain their accuracy for Huanren. Overall, the results and analysis presented 325 

in this study demonstrate that the CNN is a superior and an alternative to the ANN and ELM in monthly streamflow 326 

forecasting.  327 

Although the results presented here are encouraging and the potential of the CNN for monthly streamflow forecasting 328 

has been demonstrated, the CNN tends to underestimate or overestimate the peaks of streamflow and give relatively poor 329 

forecasting for the streamflow with greater irregularity in some area. More case studies should be carried out to verify the 330 

validity of the CNN for monthly streamflow forecasting. Besides, the implementation of feature extraction in CNN is a 331 

two-dimensional scanning process in which multiple variables are involved in calculation simultaneously. This could raise 332 

another drawback that lacks the capability of identifying specific variables dominating the variability of streamflow at a 333 
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specific location and requires further research. 334 
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