
[20:24 3/11/2009 Bioinformatics-btp554.tex] Page: 3181 3181–3182

BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 23 2009, pages 3181–3182
doi:10.1093/bioinformatics/btp554

Sequence analysis

MOODS: fast search for position weight matrix matches in DNA
sequences
Janne Korhonen1,∗, Petri Martinmäki1, Cinzia Pizzi2, Pasi Rastas1 and Esko Ukkonen1

1Department of Computer Science and Helsinki Institute for Information Technology, University of Helsinki, Helsinki,
Finland and 2Department of Information Engineering, University of Padova, Padova, Italy

Received on July 14, 2009; revised on September 3, 2009; accepted on September 15, 2009

Advance Access publication September 22, 2009

Associate Editor: Alex Bateman

ABSTRACT

Summary: MOODS (MOtif Occurrence Detection Suite) is a software
package for matching position weight matrices against DNA
sequences. MOODS implements state-of-the-art online matching
algorithms, achieving considerably faster scanning speed than
with a simple brute-force search. MOODS is written in C++, with
bindings for the popular BioPerl and Biopython toolkits. It can
easily be adapted for different purposes and integrated into existing
workflows. It can also be used as a C++ library.
Availability: The package with documentation and examples of
usage is available at http://www.cs.helsinki.fi/group/pssmfind. The
source code is also available under the terms of a GNU General
Public License (GPL).
Contact: janne.h.korhonen@helsinki.fi

1 INTRODUCTION
Position weight matrices (PWMs), also known as position-specific
scoring matrices or weighted patterns, are a simple, yet important
model for signals in biological sequences (Stormo et al., 1982). For
example, they are widely used to model transcription factor binding
sites in the DNA. Due to the vast amount of biological data, both in
PWM and DNA databases, high-performance algorithms for matrix
search are needed.

Recent theoretical developments into PWM search algorithms can
be roughly categorized into two groups, the index-based algorithms
and the online algorithms. The index-based algorithms preprocess
the target sequence into an index structure, typically a suffix tree or
a suffix array, and use the index structure to facilitate quick search
for matrix matches (Beckstette et al., 2006). The online algorithms,
on the other hand, perform a simple sequential search over the target
sequence. Most state-of-the-art algorithms of this type are based on
classical string matching algorithms (Liefooghe et al., 2009; Pizzi
et al., 2007, 2009; Salmela and Tarhio, 2007; Wu et al., 2000).

While index-based algorithms may offer significantly faster
search times, they also require a large amount of time and space
for the construction of the index structure. For this reason, online
algorithms are generally more practical in most situations, as typical
DNA databases offer only raw sequence data. However, the work
on advanced online algorithms has so far been mostly of theoretical
nature, and no implementation packages intended for end-users

∗To whom correspondence should be addressed.

have been published. To fill this gap, we have implemented a
suite of efficient algorithms, called Motif Occurrence Detection
Suite (MOODS). MOODS implements the algorithms developed
in Pizzi et al. (2007, 2009), where also an extensive performance
comparison of the new and old algorithms is reported. MOODS can
be used as an extension to various scripting languages popular in
bioinformatics. So far we have implemented bindings for the BioPerl
(http://www.bioperl.org) and Biopython (http://www.biopython.org;
Cock et al. 2009) toolkits.

2 ALGORITHMS AND IMPLEMENTATION
The core of MOODS is formed by the search algorithms themselves,
implemented in C++ and making use of the C++ Standard Template
Library. The package contains the following algorithms described
and experimentally compared in detail in Pizzi et al. (2009):

• The lookahead filtration algorithm (LF) and its multi-matrix
version [multi-matrix lookahead filtration algorithm (MLF)].
For a given input PWM M, these algorithms first find the
statistically most significant submatrix (i.e. the most selective
submatrix against the background) of fixed length h, called
the scanning window of M. Then the target DNA sequence is
scanned with a finite state automaton that finds subsequences
that score well against the scanning window. The full score
against M is calculated only at these sequence positions.
Scanning with the finite state automaton takes O(n) time,
where n is the length of the DNA sequence, leading to
nearly linear overall performance. The memory requirement
of the finite state automaton is limited by the length h of the
scanning window. In the multi-matrix variant, we combine all
the automata into a single automaton, making it possible to
efficiently find matches for a large PWM set in just one pass
over the sequence.

• The naive super-alphabet algorithm (NS), which is as the naive
matching algorithm, but uses a large alphabet consisting of
tuples of original alphabet symbols. It works well for very long
matrices (>30 bp).

The MLF algorithm is most suitable for PWM search tasks in
practice and has the best overall performance out of the algorithms of
MOODS. For completeness, we have also included implementations
of the naive algorithm, which directly evaluates the matrix score
at all sequence positions, and the permutated lookahead algorithm

© The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/23/3181/215705 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://www.cs.helsinki.%EF%AC%81/group/pssm%EF%AC%81nd%00
http://www.bioperl.org
http://www.biopython.org
http://creativecommons.org/licenses/


[20:24 3/11/2009 Bioinformatics-btp554.tex] Page: 3182 3181–3182

J.Korhonen et al.

(Wu et al., 2000). In addition, the package contains the well-known
dynamic programming algorithm for converting P-values into score
thresholds (Staden, 1989; Wu et al., 2000).

MOODS uses the standard scoring model (log-odds against the
background distribution) of PWMs, as described, e.g. in Pizzi et al.
(2009). A user can specify the pseudocounts for the calculation of
log-odds scores from matrices. This calculation can also account for
the background distribution of the alphabet in the DNA sequence,
which can be specified by the user or estimated directly from the
sequence. The scoring thresholds can be specified via P-values or
as absolute thresholds.

The package includes Perl and Python interfaces to the algorithms,
making use of the respective bioinformatics toolkits. These
interfaces can utilize classes from the existing toolkits as input and
return the results as Perl or Python data structures.

We have tested our software on Linux with gcc C++ compiler. It
should be usable on any UNIX-like operating system supported by
gcc and either BioPerl or Biopython.

3 DISCUSSION
With BioPerl and Biopython interfaces, the MOODS algorithms
can easily be included into existing workflows. Likewise, scripts
can be written to use the implemented algorithms for specific
purposes. Existing facilities can be used to load sequences from
formatted files or to fetch data from online databases. The results
can then be processed further, for example, to find subsequences with
statistically significant amounts of matches. On the other hand, the
C++ algorithm implementations can also be directly integrated into
existing or new software, thanks to the open source licensing. The
MOODS web page (http://cs.helsinki.fi/group/pssmfind) provides
several example scripts, as well as a simple C++ program for basic
usage and as an example of C++ integration.

To benchmark the performance of our package, we tested the
naive algorithm, the permutated lookahead algorithm and the MLF
algorithm with real biological data. We did similar benchmark
also for the Motility library (part of the Cartwheel bioinformatics
toolkit; Brown et al. 2005), TFBS BioPerl extension (Lenhard
and Wasserman, 2002) and Biopython’s built-in PWM matching
algorithm. These packages all use the naive algorithm.

The test setup was as follows. We used matrices from the
TRANSFAC public database (Matys et al., 2003) as our matrix set,
containing a total of 398 matrices. The target sequences were taken
from the human genome. We matched both the original matrices and
their reverse complements against the sequences, in effect searching
both strands of the DNA. This means that the MLF algorithm
scanned for 796 matrices simultaneously. We ran the tests on a 3.16
GHz Intel Core 2 Duo desktop computer with 2 GB of main memory,
running Linux operating system.

The results of our tests are displayed in Table 1. The
results illustrate the advantages of carefully tuned C++ algorithm
implementations and also indicate that more advanced algorithms
offer practical benefits. We also tested matching the TRANSFAC
matrices against both strands of the whole human genome with
P-value 10−6, using the MLF algorithm. The total scanning time
was about 42.1 min, with the number of matches being 29 354 584.
Overall, these experiments indicate that our implementations
perform well even on large datasets.

Table 1. Algorithm benchmarks

600k Chr20

P-value 10−6 10−4 10−6 10−4

MOODS
Naive algorithm 6.5 s 7.3 s 689 s 782 s
Permutated lookahead 3.8 s 6.3 s 405 s 677 s
MLF 0.4 s 1.1 s 16.0 s 117 s

TFBS 20.4 s 53.1 s – –
Motility 103 s 103 s 180 min 181 min
Biopython 42 min 41 min – –

Matches 952 7.3×104 1.1×105 6.7×106

We used two target sequences: ‘600k’ is a 600 kb long human DNA fragment, and
‘Chr20’ is the 62 Mb long human chromosome 20. The total scanning times for each
algorithm or package are given, with ‘–’ indicating that the dataset was too large to be
processed. The reported times include the construction of the data structures required
in scanning as well as the scanning itself. The ‘matches’ row gives the total number of
matches found for each P-value.

Funding: Academy of Finland (grant 7523004, Algorithmic Data
Analysis); the European Union’s Sixth Framework Programme
(contract LSHG-CT-2003-503265, BioSapiens Network of
Excellence).

Conflict of interest: none declared.

REFERENCES
Beckstette,M. et al. (2006) Fast index based algorithms for matching position specific

scoring matrices. BMC Bioinformatics, 7, 389.
Brown,C.T. et al. (2005) Paircomp, FamilyRelationsII and Cartwheel: tools for

interspecific sequence comparison. BMC Bioinformatics, 6, 70.
Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.
Lenhard,B. and Wasserman,W.W. (2002) TFBS: computational framework for

transcription factor binding site analysis. Bioinformatics, 18, 1135–1136.
Liefooghe,A. et al. (2009) Self-overlapping occurrences and Knuth-Morris-Pratt

algorithm for weighted matching. In Proceedings of Third International Conference
on Language and Automata Theory and Applications (LATA), Vol. 5457 of Lecture
Notes in Computer Science, Springer, Tarragona, Spain, pp. 481–492.

Matys,V. et al. (2003) TRANSFAC(R): transcriptional regulation, from patterns to
profiles. Nucleic Acids Res., 31, 374–378.

Pizzi,C. et al (2007) Fast search algorithms for position specific scoring matrices. In
Proceedings of Bioinformatics Research and Development Conference (BIRD),
Vol. 4414 of Lecture Notes in Bioinformatics. Springer, Berlin, Germany,
pp. 239–250.

Pizzi,C. et al. (2009) Finding significant matches of position weight matrices in linear
time. IEEE/ACM Trans Comput. Biol. Bioinform. (in press).

Salmela,L. and Tarhio,J. (2007) Algorithms for weighted matching. In Proceedings of
International Symposium on String Processing and Information Retrieval (SPIRE),
Vol. 4726 of Lecture Notes in Computer Science. Springer, Santiago, Chile,
pp. 276–286.

Staden,R. (1989) Methods for calculating the probabilities of finding patterns in
sequences. Comput. Appl. Biosci., 5, 89–96.

Stormo,G.D. et al. (1982) Use of the ‘perceptron’ algorithm to distinguish translational
initiation sites in e. coli. Nucleic Acids Res., 10, 2997–3012.

Wu,T.D. et al. (2000) Fast probabilistic analysis of sequence function using scoring
matrices. Bioinformatics, 16, 233–244.

3182

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/25/23/3181/215705 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://cs.helsinki.fi/group/pssmfind

