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ABSTRACT 

 

 

     This study explores human-robot interaction during a 16-hour high-fidelity Urban 

Search and Rescue (USAR) disaster response drill with teleoperated robots. Situation 

awareness and team interaction were examined using communication analysis.  Operators 

(n=5) sought assistance from team members to compensate for difficulties building or 

maintaining situation awareness. Operator-team member communication focused on 

relating what was seen through the robot’s eye view with prior knowledge and planning 

search strategies. Results suggest operators need a new cognitive mental model to filter 

and comprehend data provided by the robot, and that robot-assisted search is a team task 

rather than an individual one. USAR technical search teams need a new shared mental 

model of robot-assisted search in order to coordinate activities effectively. 
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CHAPTER I 

INTRODUCTION 

 

Urban search and rescue (USAR) has been posed by the DARPA/NSF study on 

human-robot interaction (Murphy & Rogers, 2001) as an exemplar domain for human-

robot interaction (HRI).  USAR involves the rescue of victims from the collapse of a 

man-made structure.  The environment can be characterized as a pile of steel, concrete, 

dust, and other rubble and debris.  The areas are perceptually disorienting; they no longer 

look like recognizable structures due to the collapse, it is dark, and everything is covered 

in gray dust from concrete or sheet rock. Robot assisted search and rescue in this field 

domain, requires that small shoe-box sized physically situated robots operate under these 

unstructured, outdoor environmental conditions in real-time to visually search areas that 

are either too narrow for safe human or canine entry or generally unsafe for human 

exploration The robots are short, providing a viewpoint from less than one foot off the 

ground. This exacerbates any “keyhole effects” (Woods, Tittle, Feil & Roesler, in press). 

These domain and agent characteristics present many challenges that distinguish USAR 

from other HRI settings, e.g. manufacturing, entertainment and office-oriented 

applications.  

The relationship between humans and robots in USAR is different than 

manufacturing, office, or even security applications of robots. Possibly the most 

interesting HRI aspect is that robots, much like search dogs, must physically team with 

people to perform any activity. Because of their small size and the mobility challenges 
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imposed by the USAR environment, robots must be carried in backpacks to the voids 

targeted to be searched. Second, humans must interpret the video, audio, and thermal 

imaging data provided from the robots and fuse it with other data sources (e.g., building 

plans) and knowledge (e.g., time of day) in order to identify victims and structural 

anomalies as well as conduct and coordinate large-scale rescue efforts. The information 

extracted from the robot’s search must be abstracted and propagated up a hierarchy of 

decision makers as well as distributed laterally among search specialists. Therefore, the 

human-robot team must cooperatively transform data into information and levels of 

knowledge. This means HRI in USAR must consider distributed information transfer and 

cooperation. Third, the operators and decision-makers (consumers of information 

provided by the robots) are under extreme cognitive and physical fatigue, introducing 

new issues not commonly seen in industrial settings. Any progress in HRI for USAR 

applications would likely be applicable to military and security applications, which are 

also time-critical, high-stress domains. Fourth, the high degree of human involvement is 

not expected to change in the near future. The robots are not autonomously mobile for the 

demanding conditions of a rubble pile, and the most optimistic roadmap posits only 

navigational autonomy within 10 years (Murphy, 2002.) As a result robots require at least 

one operator, and often a robot will need a second operator to manipulate a tether or 

safety line for lowering into vertical voids. This introduces the possibility of a more 

diverse team, with humans serving multiple roles in controlling one robot. Fifth, USAR is 

a domain where the robots perform tasks that cannot be accomplished by a living 

creature; thus the operator has no higher metaphor or example of how to use the robot.  
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By studying human interactions with USAR robots, it may be possible to learn how to 

accelerate the generation of new strategies for deploying robots. 

This study investigates human-robot interaction during robot-assisted search and 

rescue activities observed as part of a high-fidelity USAR field training drill in Miami, 

Florida, managed by Rescue Training Associates. The 16-hour drill was conducted on 

November 30, 2001, in collapsed buildings and rubbles piles, creating a realistic physical 

setting. It was the “final exam” for two days of classes in urban search and rescue for 75 

firefighters and USAR workers. The Center for Robot-Assisted Search and Rescue 

(CRASAR) was permitted to tape how the robots were used by the students and 

instructors during the drill in exchange for providing a short classroom training session 

on how the robots were used for visual technical search at the World Trade Center 

response (Casper and Murphy, 2003; Casper, 2002; Micire, 2002). It should be 

emphasized that data collection was opportunistic and observational: the drill was not 

structured for a formal HRI study and there were no hypotheses generated before hand. 

The conditions of the drill (most night-time, exposed rubble and rebar) made roving 

videotaping particularly unsafe, and only stationary activities (the operator at the control 

station after it was set up) could be recorded without risking injury. Although data 

collection was conducted without a particular hypothesis, the analyses reported in this 

article focus on situation awareness (SA), and team process and communication.  

Previous work suggests SA and teamwork are needed for effective task performance in 

complex, high stress work domains similar to USAR (Prince & Salas, 2000; Stout, 

Cannon-Bowers, Salas & Milanovich, 1999; Sonnenwald & Pierce, 2000) and HRI 
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studies of USAR (Casper & Murphy, 2003; Casper & Murphy, 2002) support the need 

for SA. By establishing indicators of situational awareness in robot assisted search and 

rescue, the study serves as a foundation for creating the appropriate cognitive 

augmentation needed for effective technical search. The findings concerning human-to-

robot ratios have profound ramifications not only for USAR operations, but also for other 

robotic domains. In addition, investigation of the rescue teams’ communication as they 

work with the robots may provide insight into the development of both individual and 

shared mental models of the robot, the environment and the search task needed for robot-

assisted search operations  

The rest of this study is organized as follows. Chapter 2 provides an overview of 

the USAR domain and the activities in technical search task. Chapter 3 provides an 

overview of robotics and a summary of related HRI work in observational field studies, 

and defines situation awareness for the purposes of this study. Chapter 4 details the 

methodology used for the observational study, coding of the video data, and analyses. 

Results, including patterns of team communication and indicators of situation awareness 

are presented in Chapter 5.  Chapter 6 discusses the implications and questions raised by 

the findings, and notes the need for cognitive augmentation to improve human 

performance.  
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CHAPTER 2 

OVERVIEW OF USAR AND TECHNICAL SEARCH 

 

The organizational structure of USAR poses interesting challenges for effective 

human-robot interaction. This section summarizes salient points about the technical 

search task and the use of robots; the reader is directed to Casper (2002) for a more in-

depth description of USAR from a HRI viewpoint. It is important to note that rescue 

robots are not used by traditional response teams; instead the Center for Robot-Assisted 

Search and Rescue (CRASAR) maintains an independent team which deploys with 

national or international teams. The intent is to integrate mature robot technologies into 

the standard team cache. The description below represents the deployment strategy 

recommended by the CRASAR response team at the time of the Miami drill. 

Technical search is one of many emergency response tasks. In the USA, operations at a 

mass-casualty incident are divided into twelve emergency support functions (ESF), 

ranging from medical support (organizing hospitals and ambulances) through logistics 

(making sure that food and portable toilets are available to workers).  Each ESF is 

conducted by a specially trained task force and coordinated through an incident 

commander and the incident command staff. USAR is only one function, designated ESF 

9, within the larger incident organization. Technical search is one task within USAR. 

Personnel who conduct technical search are highly trained members of a cohesive 

team and generally work in pairs (the “buddy system”) for safety. USAR functions and 

personnel require advanced training and equipment; as a result it is generally conducted 
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by a designated federal or state task force. There are currently 28 federal task forces 

recognized by the Federal Emergency Management Agency and possibly up to four times 

as many teams responsible for highly populated urban areas of states. Both federal and 

regional teams typically share the same organization, fielding a 56-person Task Force in 

order to sustaining operations around the clock (in 12-hour shifts) for a maximum of 10 

consecutive days. The teams are composed of a) firefighters, paramedics and Emergency 

Medical Technicians and b) civilians, most often in canine search, structures, and 

hazardous materials. USAR workers routinely log over 200 hours of USAR-specific 

training each year. Most firefighters have not had four years of college, while most 

civilians have. Task forces are usually elite and highly cohesive, where the members are 

hand-picked for both skills and social dynamics.  

USAR operations are physically and cognitively fatiguing. Every member who 

works in the hot zone (collapse site) must be able to physically negotiate rubble piles and 

uneven surfaces, work in confined spaces, climb ladders and work at heights, and quickly 

exit void spaces to avoid secondary collapses. Task force members wear specialized 

safety equipment, and are closely monitored for signs of physical exhaustion or stress 

(particularly Critical Incident Stress Syndrome) when working. Although the teams work 

in 12-hour shifts, the reality of both shifts setting up operations and infrastructure and 

working in the field during the first 24 hours leads to sleep deprivation. It is conventional 

wisdom that a responder will get less than 3 hours of continuous sleep during the first 48 

hours of an incident. The sleep deficit does not decrease during the 10 day deployment. 
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Technical search, as seen in Figure 1, is one of the four USAR functions: search, 

technical support, medical, and rescue or extrication. These four operations represent 

sub-specialties within the task force.  While no two disasters are managed precisely the 

same way, USAR operations often begin with a manual reconnaissance of the area of 

damage, called the hot zone. Victims on the surface or easily removed from light rubble 

are extracted immediately as encountered. After reconnaissance, the command staff 

determines what the safest strategy is to effectively search the hot zone for survivors 

within the rubble. In areas that are deemed safe for humans to investigate, canine teams 

may be sent forward. 
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Figure 1. Organizational structure of USAR Task Force (FEMA, 1992). 

 

In most cases, technical search specialists wait until called for. When a dog has 

indicated signs of a survivor in an area, technical search specialists are summoned onto 
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the pile. The command staff attempts to minimize the number of people in the hot zone, 

so technical search specialists wait at the “forward station” of the hot zone perimeter until 

called over the radio or assigned an area to search. A technical search specialist may 

carry a fiber-optic boroscope, thermal imager, or a video camera mounted on a wand for 

a visual inspection of the rubble, depending on the verbal description of the void or the 

specific request of a particular device by the leader. If a survivor is found, the search 

team and command staff brings in the medical and rescue teams, who call on members of 

the technical support team as needed. Before leaving the void, the technical search 

specialists mark the exterior of the void with symbols indicating that it has been searched, 

the structural condition, and presence of survivors/remains. 

The visual inspection of a void is most often done with a boroscope or a camera 

on a wand. These technologies generally cannot penetrate more than 12 feet into a void, 

whereas robots are well-suited for voids longer than 20 feet. Regardless of tool, the 

search activity takes on the order of 3-30 minutes, and a technical search specialist may 

spend most of a 12-hour shift waiting, and then work furiously for a few minutes. The 

command staff may periodically evacuate the hot zone and cease all operations so that 

technical search specialists can apply sensitive acoustic listening devices. This also adds 

to the cognitive stress. No evacuations were called for during the Miami drill while the 

robots were deployed. 

The field data collected in the Miami drill used the robots for a   visual technical 

search task, where robots served as “cameras on wheels.” The visual technical search task 

consists of four activities in order of importance: search for signs of victims, report of 
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findings to the team or task force leader, note any relevant structural information that 

might impact the further investigation of the void, and estimate the volume that has been 

searched and map it relative to the rubble pile. In this case, the technical search specialist 

operated a robot instead of a boroscope or thermal imager. It should be noted that the 

team leader is responsible for integrating the information about maps, safety risks, 

location of victims, and coverage of the pile. Thus, technical search task is highly focused 

and generally limited to a short period of time where the searcher is called onto the pile, 

carries the technical equipment to the site, sets it up, gets results, and then returns to the 

forward station. The data collected during the drill attempted to capture how the operator 

was searching for signs of survivors and noting structural information, since these were 

the activities with direct human-robot interaction. 
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CHAPTER 3 

ROBOTS ON THE SCENE 

 

What is a Robot? 

 

The term robot came from Karl Capek’s 1921 play R.U. R. (Rossum’s Universal 

Robots). It was used to describe a race of menial workers, “artificial humans” created 

from a vat of biological parts to serve as slave labor for real humans. Science fiction 

books and movies transformed robots into mechanical creatures, and propitiated their 

menial stance by portraying them as factual-minded automatons that mimicked human 

qualities without understanding.   

In reality, an intelligent robot is a mechanical creature which can function 

autonomously and interact with its world (Murphy, 2000). Intelligence implies it does not 

perform in a mindless fashion, while autonomy means it can adapt to changes in the 

environment (or itself) and continue to reach its goal. Brooks (2002) defines two 

principles that distinguish robots from computers: situatedness and embodiment. Robots  

are situated in that they are embedded in the world, and interact with the world through 

sensors which influence their behavior. They are embodied in that sense of having a 

physical body that experiences the world in part through the influence of the world on 

that body. Like computers, robots have evolved from research laboratories and 

military/industrial applications, and are rapidly gaining a presence in the worlds of 

entertainment, work and everyday life.  
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Robots have traditionally been used for the three D’s: dull, dangerous or dirty 

work. Industrial robots have been developed for economic reasons in manufacturing, 

agriculture and service industries, to increase productivity and reduce inefficient human 

resource allocation, particularly in hard-to-staff menial labor positions. Because the 

original goal was precision and repeatability for use in mass production, little effort was 

put into machine intelligence or human factors considerations. As the space program 

evolved, the need for artificial intelligence, i.e. robots capable of learning, planning, 

reasoning and problem-solving, spurred research sponsored not only through NASA, but 

also by the Defense Advanced Research Projects Agency (DARPA). Mobile robots have 

developed more from safety and humanitarian concerns, and are the primary focus in 

nuclear, space exploration, military and rescue applications. This study is directed toward 

human-robot interaction with mobile robots. While the pervading notion in past research 

has been the substitution of robots for people, the current trend is toward robots as 

assistive technology, i.e. designed to complement humans rather than replace them.  

The current state of the art in mobile robots is situated autonomy (the robot acts 

on its own using information from its sensors), though teleoperation is more common in 

practice. Teleoperation is when a human operator controls a robot from a distance using 

sensors and a display. (This differs from remote-control operation, where the operator has 

visual contact with the robot). Some applications have moved to semi-autonomous 

control, where the robot is given an instruction or task to do on its own (but under 

supervision). Others have built upon the notion of shared control, where the robot does 

the dirty work and the human does that which requires finesse. Certainly there are more 
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autonomous applications in the commercial sector (Honda’s Asimo, Sony’s Aibo robotic 

dog), but systemic problems have slowed the rate of development in military and 

governmental application. 

 

Related Work 

 

Human-robot interaction is a relatively new field. For an overview, the reader is 

referred to the DARPA/NSF study on human-robot interaction (Murphy & Rogers, 

2001). Our study differs from existing research in HRI in three dimensions: goals, 

methodology, and focus.  Of the relatively small number of studies in HRI, only three 

studies address HRI in field domains, one using data from a USAR exercise in July 2001, 

one using data from the WTC, and the third with SWAT teams. Situation awareness 

emerged as a common theme across the three studies, and shared mental models of the 

problem space were a critical factor in the SWAT team study. Endsley’s three-level 

model of situation awareness (1988) is used in analysis of the data collected, and is 

briefly reviewed. 

HRI Studies 

Human-robot interaction is significantly different from human-computer 

interaction in several ways (Scholtz, 2003.)  Robots are embodied and can move and 

interact with humans in dynamic, real-world environments. Their platforms hold sensors 

that can fail or degrade. Users may interact with more than one independent system, and 

systems may have varying degrees of autonomy and cognition. These dimensions pose 
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challenges for designers of human-robot systems, and those who seek to best utilize the 

rich potential of complementary relationships between the two. 

Human-robot interaction, in turn, is a relatively new field, and this study differs 

from existing research in HRI in three dimensions: goals, methodology and focus.  Most 

studies have addressed social acceptance of robots or interface design (Breazeal, 2000; 

Arkin, R., Fujita, M., Takagi, T., and Hasegawa, R., 2003; Draper, Pin, Rowe & Jansen, 

1999; Wilkes, Alford, Cambron, Rogers, Peters & Kawamura, 1999; Khatib, Yokoi, 

Brock, Chang & Casal, 1999; Thrun, 1998; Nicolescu & Mataric, 2001.) In contrast, this 

study examines direct relationships between humans and robots performing tasks in work 

contexts. Experiments in laboratory or other controlled settings, simulations and 

modeling techniques are the most common methods of HRI study, with few studies 

conducted in the field (Breazeal, 2003; Kiesler & Goetz, 2002; Kawamura, Nilas, 

Muguruma, Adams & Zhou, 2003; Severinson-Eklundh, Green & Huttenrauch, 2003; 

Langle & Worn, 2001; Nakamura, Ota & Arai, 2002; Fong, Thorpe & Baur, 2001.) .  

This study is an observational field study of users working with robots in real 

environments. Current theoretical models and taxonomies of human-robot interaction 

focus on levels of autonomy-existing or hypothesized- for known human tasks (Murphy 

& Rogers, 2001; Scholtz, 2003; Woods et al., in press.) This study is concerned with 

identifying new tasks for robots in the search and rescue domain, with robots that are, for 

the present, teleoperated. 

There is some research that is similar to the current study, i.e. applies to robots 

and humans in field work settings, rather than office, web, or manufacturing-type 

http://www.ri.cmu.edu/people/fong_terrence.html
http://www.ri.cmu.edu/people/thorpe_charles.html
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scenarios: current work in the USAR domain (Casper, 2002; Casper & Murphy, 2002; 

Micire, 2002), a field study of SWAT teams (Jones & Hinds, 2002), NASA’s Robonaut 

research (Bleuthmann et al., 2003) and Kraut, Fussell & Siegel’s (2003) related remote 

collaboration study.  

Existing research in robot-assisted USAR from pre-9/11 field trials and the first 

known deployment of robots in a disaster response (Casper, 2002; Casper & Murphy, 

2002) revealed difficulties in operator teleproprioception and telekinesthesis, as described 

in  Sheridan (1992.) Prior to the World Trade Center disaster, one ethnographic study 

conducted (Casper & Murphy, 2002) documented workflow patterns in field trials with 

rescue workers and two types of tactical mobile robots. The study identified collaborative 

teleoperation, i.e., two operators with two robots assisting one another, as a team-based 

work strategy for efficient navigation and error avoidance. While formal ethnographic 

methods were not used to study robot-assisted operations at the WTC, video data was 

collected and analyzed post 9/11 in Casper (2002) and Micire (2002). Important findings 

emerged regarding the environment, tasks, communication and logistics requirements, 

and social informatics (Casper, 2002).  The high stress environment present on-site 

quickly revealed the need to address cognitive deficits brought on by fatigue and lack of 

sleep, both ever-present conditions in USAR operations. Issues such as packability of the 

robots and complexity of the interfaces influenced rescue workers’ willingness to use the 

robots in technical search tasks.  Acceptance of the robots also appeared to be related to 

workers’ prior experience with other technical search tools. Robot failures due to traction 

slippage, camera occlusion and lighting adjustments retarded the search process. Findings 
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suggested that tether management, the lack of image processing, and difficulties in size 

and depth estimation must be addressed in order to aid fast and accurate victim detection 

(Micire, 2002.) Finally, robot information is a one-to-many mapping with temporal and 

abstraction hierarchies. The timely and appropriate distribution of information is critical 

to effective use of rescue robotics.  

In a domain very similar to USAR, Jones and Hinds (2002) observed police 

SWAT teams in training exercises, and identified leader roles in establishing common 

ground and coordinating distributed team member actions as factors transferable to 

system design for coordinating distributed robots. Like search and rescue teams, SWAT 

teams operate in high stress, time-critical work environments. In this qualitative field 

study, researchers observed leaders’ roles and actions in four field exercises as they 

coordinated and directed distributed SWAT teams. Leaders formed global mental models 

to build common ground (shared situation awareness) among distributed team members. 

They found SWAT teams use objects and spatial relations to coordinate actions, and that 

sharing common ground from the recipient’s perspective increased situation awareness 

and team performance. These findings were incorporated into a system design using an 

object-centered electronic dialogue between an operator and multiple, distributed robots. 

A Correspondence Agent was created to assist the operator in building global SA, and to 

send commands to distributed robots using their own frame of reference.  

This field study of team-based USAR operations differs from Jones and Hinds’ 

work in that I am observing real robot-user interaction as it occurs between operator(s) 

and a single robot to inform present, not future, coordinated human-robot systems. Their 
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findings regarding the criticality of shared awareness in team-based, dynamic work 

domains, however, are certainly applicable. 

Though studied through simulation rather than functional application, NASA’s 

Robonaut research platform (Bluethmann et al., 2003) shares some commonality with 

USAR HRI, as well, in that the focus is on the operator-robot relationship in a work 

context. Robonaut is designed to work in close proximity to humans, performing existing 

human tasks with existing tools, however, while robots in rescue operations go in places 

humans cannot (or should not) go, and perform tasks that are yet to be fully defined.   

The remote collaborative physical task studies reported in Kraut, Fussell & Siegel 

(2003) are not robot-related; however, there are important aspects that are relevant to 

human-robot interaction in search and rescue operations, namely, the contribution of 

shared visual space to situation awareness. In two experiments examining the effects of 

visual information on a collaborative repair task, the researchers used conversation 

analysis to compare differences between expert assistance given side-by-side, remotely 

using shared visual space, and remotely through audial channels only. Researchers 

observed a worker wearing a head-mounted video system that provided a remote helper 

with a view of what the worker was looking at during a collaborative bicycle repair task. 

Findings were that side-by-side assistance was more effective than remote assistance 

augmented with shared visual information, due to the limitations in shared visual space, 

the lack of spatial orientation and other physical-perceptual cues, and the consequent 

need to spend more time establishing common ground. Remote visual assistance was 

more effective than audial-only assistance, however, emphasizing the increased situation 
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awareness made possible through the visual information that was shared. Conversation 

analysis results showed the advantage of shared visual space in establishing common 

ground (shared situation awareness) between the worker and the remote helper. 

Recommendations included suggestions for video configurations for remote 

collaboration. 

The findings from these studies all point to situation awareness, perception and 

communication during tasks as critical aspects of human-robot interaction. Operators in 

field tests and at the WTC did not know how to interpret what they saw through the 

robot’s camera, partly because of fatigue, and partly because of the lack of expected 

perceptual cues (Casper, 2002; Casper & Murphy, 2002.) Like the remote helper in the 

distributed collaborative task, what they saw did not match their internal mental model.   

While no formal hypotheses are posed, I anticipate these will be salient factors in USAR 

robotics. 

 

Situation Awareness 

 

The exploration of SA in robot-assisted search operations in Chapter 5 is based 

upon Endsley’s three-level model, which defines situation awareness as “…the 

perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning and the projection of their status in the near future 

(1988, p.97) (italics added).  Perception (Level 1 SA) is detection of sensory information: 

the perception of elements in the environment within a volume of time and space. 
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Comprehension (Level 2 SA) is divided into two subcategories, identification and 

interpretation. Identification is defined as comprehension of perceived cues in terms of 

subjective meaning: e.g., identifying objects, locations and victims. Interpretation is 

defined as comprehension of perceived cues in terms of objective significance or 

importance to the current situation. Projection (Level 3 SA) is defined as the projection of 

future situation events and dynamics through projecting, generating and activating 

solutions/plans.     

Endsley’s model is based on an information-processing theory (Wickens, 1992), 

in which SA is acquired largely through sensory input: sight, sound, touch, taste and 

smell. Perception and attention are important elements in taking sensory data into 

working memory, where it is coded and pattern-matched with existing goals and mental 

models in long-term memory. Jones & Endsley (1996) noted that 76% of SA errors in 

pilots were due to problems in perception. This is of particular interest to this study, 

where the impact of perception on the control of robots is expected to be similar. 

SA also comes from many other sources in addition to sensory input, e.g. system 

knowledge, prior knowledge, and from other people in the environment. Mental models 

play an important role in dealing with the limitations of working memory. Operators 

develop internal representations of the technology they use and the environment in which 

they use it. These mental models help direct limited attention efficiently, integrate 

information and provide a way of projecting future events or states. As Endsley (2000)  

states, “The use of mental models in achieving SA is considered to be dependent on the 

ability of the individual to pattern match between critical cues in the environment and 
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elements in the mental model”(p.16.) Mental models support SA; they can also hinder it 

if the mental models are inaccurate. In the Jones & Endsley study referenced earlier, 20% 

of SA errors were associated with problems with mental models (1996.)  

Research on teams and mental models has suggested that having a shared mental 

model of the problem space can increase SA and team performance (Stout, Cannon-

Bowers, Salas & Milanovich, 1999; Sonnenwald & Pierce, 2000.) Effective planning and 

communication strategies were found to increase team shared mental models and 

correspondingly team performance. In a study of military command and control 

exercises, Sonnenwald & Pierce (2000) found frequent communications between team 

members about the work context and situation, work process and domain-specific 

information were needed to maintain shared situation awareness in dynamic, constraint-

bound contexts.  
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CHAPTER 4 

METHOD 

 

This chapter describes the participants, apparatus and setting of the field study, the 

Robot-Assisted Search and Rescue Communication Coding System (RASAR-CSS), and 

the method of analysis used to interpret the data. Five operators were videotaped 

operating one of three Inuktun robots in a 16-hour disaster response drill. A description 

of the drill site, the training conducted prior to the drill, and timeline of the exercise are 

presented. Statements made by or to the operators were coded by two independent raters 

into categories generated by a content analysis of the operator statements. Reliability 

analyses conducted showed acceptable ranges of Cohen’s kappas for interrater reliability. 

Following the coding of each operator, raters through consensus assigned a global rating 

of situation awareness using a 5-point Likert scale. Correlational and chi-squared 

analyses were conducted based on the data collected. 

 

Participants, Apparatus, Setting and Procedure 

 

The five participants in the study were three student participants of the disaster 

response training exercise and two instructors. Though demographic information for the 

five study participants was not available, they were a subset of the approximately 75 

students and approximately 15 instructors involved in the drill, who can be characterized 

as a) current USAR Task Force members serving as instructors or completing required 
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recertification training hours; or b) first responders (firefighters and emergency medical 

technicians) seeking USAR certification in order to be eligible to serve on a regional 

Task Force team.  The majority of students had no urban search and rescue experience for 

a weapon of mass destruction event or natural disaster (e.g., collapse of a large building 

due to an explosion or earthquake).  

The apparatus used in the study consisted of three robotic systems: two Inuktun 

Microtracs System robots and an Inuktun MicroVGTV robot (see Figure 2).  The user 

interface offers little information beyond a visual view of the environment from the 

robot’s camera. Scale, dimensionality and color resolution are known constraints. The 

three robots are small, tracked platforms equipped with a color CCD camera on a tilt unit 

and two-way audio through a set of microphones and speakers on the robot and operator 

control unit. The VGTV (Variable Geometry Tracked Vehicle) is a polymorphic robot 

which can change from a flat position to a raised, triangular position. Its design allows 

the vehicle to change shape while moving to meet terrain and obstacle challenges, and it 

is capable of lifting the camera up to a higher vantage point (about 10.5 inches high when 

raised to maximum height). All three robots are powered and controlled through a 100-

foot tether cord that connects the operator control unit (OCU) and the robot. The Inuktun 

robots have limited communication capability. The operator is given basic control 

capability: traversal, power, camera tilt, focus, illumination, and height change for the 

VGTV.  

The setting for this study was a 3-day disaster response training exercise offered by 

Rescue Training Associates, Inc. in Miami, FL on November 28-30, 2001. The exercise 
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consisted of 2 days of intensive hands-on training which included collapse shoring, 

concrete breaching & breaking, heavy metal cutting and crane operations, technical 

search operations and WMD/HazMat operations followed by a 16-hour deployment drill 

on an actual collapse site. As part of the Technical Search Operations module, which 

exposes course participants to the latest technical search innovations, all students 

received  20 minutes of awareness-level instruction in rescue robotics conducted by 

researchers from USF’s Center for Robot-Assisted Search and Rescue.   

 

Figure 2. Inuktun Microtrax and VGTV robots. 
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The awareness training course was designed to provide the students with a mental 

model of how the robot worked, and to provide an opportunity for hands-on experience 

teleoperating a robot (though time constraints precluded all students from having the 

chance to do so). The course did not cover any strategies for deployment, because 

CRASAR had not identified and codified any strategies at that time. 

For the 16-hour high fidelity response drill, a 2-story warehouse in a light 

industrial park near the airport was partially collapsed, creating a large rubble pile. In 

addition to the collapsed building, two large rubble piles and an abandoned automobile 

that was set on fire were used for training operations. Figure 3 shows the layout of the 

collapse site and debris and rubble piles. The site was not simplified and significant 

safety hazards were present. Large chunks of concrete walls, tangled rebar, and loose 

electrical wiring posed the main hazards to people on the piles. Weather and visibility 

conditions are not always conducive to rescue operations, but in this case the night was 

clear (almost full moon) and the temperature normal for the area (@70°F). 

The drill was attractive because it duplicated a real incident in terms of physical 

setting and in how the response was conducted. At the start of the drill, participants were 

checked in, divided into three teams, assigned roles and transported to the site. Once at 

the site, they established scene security, set up the Base of Operations, and conducted site 

safety and operational surveys. Field operations commenced at 10:30 P.M., 

approximately 4 hours after the drill began. During field operations, the robot cache was 

available for deployment on call. Robots were deployed in three areas of the hot zone, as 

shown in Figure 3. When a team requested a robot via radio, two or three researchers 
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would move to the requested location and set up the robot for use, explaining the controls 

to the operator as needed. A student or researcher was designated as tether manager for 

the operator, i.e. uncoiled and recoiled the tether cord, and sometimes shook or popped 

the cord to free it from debris.  

 

Figure 3. Map of disaster response training site and robot run locations. 

 

The data collection process was a modified version of the procedure used by 

Casper (2002.) Two cameras simultaneously recorded 1) the view through the robot’s 

camera (what it sees) and 2) a view of the operator and the Operator Control Unit (what 

the operator is seeing and doing.) When the robot was visible, a third video unit recorded 

an external view of the robot in use.  
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The robot was deployed five times (see Table 1). Three of the five runs (runs 1, 2 

and 5) were initiated on request by the teams. The first two runs searched the main rubble 

pile located next to the collapsed building.  The fifth run used the robot during victim 

recovery operations on the smaller rubble pile in an attempt to get a visual of or pathway 

to the victim. The other two runs (runs 3 and 4) were initiated by instructors to gain 

hands-on experience with the robots. In these runs, areas that had already been searched 

by the teams were explored. In each run, members of the team self-organized to run the 

robot, with runs 2, 4 and 5 involving 2 members of the team. In runs 1 and 3, an 

additional participant became spontaneously involved by looking over the shoulder of the 

operator and interacting. The remainder of the team was either occupied with other tasks 

or passively observed. The five runs yielded a total of 66 min 16 sec of videotape for 

analysis. 

 

Table 1. Operator metrics. 

Operator 

# 

Start Time 

(approximate) 

Duration 

(min-

sec) 

Robot 

Used 

H-R 

Ratio 

Total # Operator 

Statements 

Statements: 

Minute Ratio 

1(S) 10:45 P.M. 14:20 VGTV 3:1 82 5.73:1 

2(S) 11:25 P.M. 13:48 VGTV 2:1 66 4.78:1 

3(I) 12:45 P.M. 14:39 VGTV 3:1 54 3.68:1 

4(I) 1:05 A.M. 14:52 VGTV 2:1 60 4.03:1 

5(S) 3:15 A.M. 3:42 MicroTrax 2:1 10 2.70:1 

  M=12:16   M=54 M=4.4:1 

  SD=4:48   SD=24 SD=1.17:1 

(S)=student 

(I)=instructor 
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Robot Assisted Search and Rescue Communication Coding Scheme 

 

Since Robot Assisted Search and Rescue is a relatively new field, there are no 

existing domain-relevant methods of analysis (e.g. communication coding schemes).  The 

FAA’s Controller-to-Controller Communication and Coordination Taxonomy (C
4
T; 

Peterson, Bailey, & Willems, 2001) uses verbal information to assess team member 

interaction from communication exchanges in an air traffic control environment.  The 

C
4
T is applicable to this work in that it captures the “how” and “what” of team 

communication by coding form, content and mode of communication.  The goal, 

however, is two-fold, not only to capture the “how” and “what” of USAR robot operator 

teams, but also the “who”, and to capture observable indicators of robot operator 

situational awareness.  Therefore I developed a new coding scheme, the Robot Assisted 

Search and Rescue Communication Coding Scheme (RASAR-CCS). Although the 

development of the RASAR-CCS is guided by the structure of the C
4
T, and incorporates 

relevant portions of the C
4
T, the RASAR-CCS is domain-specific. It was developed to 

examine USAR robot operator interactions with team members and to capture observable 

indicators of robot operator situational awareness.  

 

The RASAR-CCS addresses the goals of capturing team process and situational 

awareness by coding each statement on four categories: 1) speaker-recipient dyad, 2) 

form or grammatical structure of the communication, 3) function or intent of the 
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communication, and 4) content or topic of the communication.  By examining dyad, form 

and content, one can determine which team members are interacting and what they are 

communicating about.  Similarly, exploring elements of content and function allows one 

to examine indicators of operator situation awareness. The development of the RASAR-

CCS is described below and the complete coding scheme is provided in Appendix A. 

Speaker-recipient dyad codes were developed as a function of speaker-recipient 

pairs of individuals anticipated in a USAR environment. Nine dyads were constructed to 

describe conversations between individuals. Five dyad codes classify statements made by 

the operator to another person (or persons): operator-tether manager, operator- another 

team member, operator-researcher/robot technician, operator-group, or operator- other. 

The remaining four classify statements received by the operator from another person: 

tether manager-operator, another team member-operator, researcher/robot technician-

operator, or other- operator.  

The primary dyads involve the operator and tether manager (the person 

manipulating the robot’s tether during teleoperation), operator and researcher, or operator 

and another team member. The element operator-other is used when the operator 

addresses a specific person who does not match one of those roles. The operator-group 

dyad is used when the operator is addressing those present as a group, or when the 

operator’s statements are not clearly addressed to a specific individual. Verbalizations 

between individuals which did not include the operator were not coded. 

Similar to the C
4
T taxonomy, the form category contains the elements: question, 

instruction, comment or answer. (RASAR-CCS uses the label instruction, while the C
4
T 
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uses the label command to describe statements dictating that some task or action take 

place). Statements not matching these categories are classified as undetermined.  

To establish content and function codes a subset of operator statements (177 of 

the 272 total statements) were subjected to a Q-sort content analysis (Sachs, 2000).  Two 

subject matter experts (SMEs) not involved in the study sorted operator statements on 

content - according to the topic being discussed, and on function – according to the high 

level purpose of the statement.  Q-sort categories were reviewed and refined by two 

additional SMEs to ensure the elements reflected the domain of content and function.  

The Q-sort analysis based on content yielded seven elements representing the 

content category: 1- statements related to robot functions, parts, errors, or capabilities 

(State of the robot), 2- statements describing characteristics, conditions or events in the 

search environment (State of the environment), 3- statements reflecting associations 

between current observations and prior observations or knowledge (State of information 

gathered), 4- statements surrounding the robot’s location, spatial orientation in the 

environment, or position (Robot situatedness), 5- indicators of direction of movement or 

route, (Navigation), 6- statements reflecting search task plans, procedures or decisions 

(Search Strategy), and finally 7- statements unrelated to the task (Off Task).  

 The first four content elements are necessary for building and maintaining SA in 

search operations, while the elements of navigation and search strategy require SA. 

Situation awareness is generated through information perceived (Level 1) and 

comprehended (Level 2) about the robot and environment.  Since navigation and search 
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strategy are elements that cannot be executed efficiently without SA, statements 

reflecting these are indicators of operator SA (Level 3).   

Eight elements were identified from the Q-sort to represent the function category: 

1- Asking for information from someone (Seek information), 2- Sharing observations 

about the robot or environment (Report), 3- Making a previous statement or observation 

more precise (Clarify), 4- Affirming a previous statement or observation (Confirm), 5- 

Expressing doubt, disorientation, or loss of confidence in a state or observation (Convey 

uncertainty), 6- Projecting future goals or steps to goals (Plan), 7- Sharing information 

other than that described in report,  either in response to a question, or offering 

unsolicited information (Provide information). For this study, the focus is on operator 

SA; hence an eighth element was included as a default for statements made by 

individuals other than the operator (Non-operator). 

The function elements of reporting and providing information merit explanation, 

as they appear very similar. Reporting involves perception and comprehension of the 

state of the robot, robot situatedness, the environment or the state of information 

gathered. Any other information shared by an operator, in answer to a question or on his 

own, is classified as providing information (for example search strategy or navigation). 

Indicators of SA are captured in the function category primarily through the elements 

reporting and planning.  When operator shares information (reports) based on the robot’s 

eye view, one can infer the first two levels of SA, perception and comprehension, have 

taken place. The third SA level, planning and projection, is captured in the function 

category as the element “plan.” 
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The RASAR-CCS also obtains a global assessment of situational awareness, rated 

on a 5-point Likert scale (1=low, 5=high). This observer rating is a subjective measure 

reached by consensus between the two raters. Video recordings of the operators 

manipulating the robot were used to code statements made by both the operators and 

surrounding personnel. 

 Two raters were trained to code videotapes using the RASAR-CCS. One rater (the 

author) was involved in data collection.  The second rater, though not naïve, was not on 

site during data collection.  Raters reviewed descriptions of the disaster drill and data 

collection procedures, and then reviewed definitions for all the codes. Coding guidelines 

were developed to reduce ambiguity and to enhance reliability. Behavioral examples 

selected from the videotapes were also reviewed.  The majority of the training centered 

on coding statements together and reaching consensus. Training continued until both 

raters felt comfortable rating independently (approximately 8 hours).  

 A written transcript of each videotape was produced yielding a fixed number of 

statements to be coded (502 statements across the five operators).  Using the Noldus 

Observer Video-Pro (Noldus, Trienes, Hendriksen, Jansen & Jansen, 2000) observational 

coding software, raters coded 181 statements (36%) in the transcripts along the four 

RASAR-CCS dimensions: dyad (speaker-recipient pair), form (grammatical structure of 

the communication), function (intent of the communication) and content (topic). Cohen’s 

kappa (қ) was computed to measure interrater agreement for each of the four coding 

dimensions: dyad, form, function, and content. Reliability analyses verified that raters 

agreed more than chance would predict, with Cohen’s kappas of .72 for dyad, .78 for 
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statement type, .64 for statement content and .72 for statement function. The remaining 

statements were coded by a single rater. 

Codes for each of the 502 statements are used in data analyses. Frequencies, 

percentages and correlations of the RASAR-CCS categories and elements are generated 

to explore team process and communication: who’s talking to whom (dyad), how (form), 

about what (content) and for what purpose (function). This is an exploratory study, in that 

I am looking for relationships that may have some bearing on effective human-robot 

interaction in the USAR domain. Therefore, all operator statement categories are 

included in analysis. Significant relationships emerged and are presented in each of the 

four categories. All correlations reported are significant at p<.05 unless otherwise noted. 

 

As mentioned previously, the RASAR-CSS obtains global assessments of 

situation awareness for each operator (5-point scale; 1=low, 5=high). These ratings were 

used to identify operators with high versus low situation awareness.  Data from two 

operators receiving a rating of one were combined to form a low SA group and similarly, 

data from operators receiving a four or five were combined to form a high SA group (data 

from one operator receiving a three were not used in this analysis). Chi-square analyses 

are computed to determine differences in high and low SA operator statements relative to 

who the operator was communicating with (dyad), and the statement form, content and 

function.  
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CHAPTER 5 

RESULTS 

 

This section presents findings related to situation awareness and team 

communication. Correlational analyses, chi-square analyses and statement category 

frequencies/percentages are presented in three major areas: SA, team process and 

communication, and the interaction of SA and team communication. 

Situation Awareness 

Operators had difficulty building or maintaining SA, and spent over half of their 

time trying to do so. As shown in Figure 4, 54% of operator statements were related to 

gaining situation awareness at Levels 1 and 2 (state of  robot & robot situatedness- 38%, 

state of environment- 13% and information gathered- 3%) and considerably less time 

talking about factors requiring situation awareness (Level 3)  to perform (navigation-

21% and search strategy-16%.)  

Relationships between elements in the dimensions of content and function 

captured indicators of operator situation awareness (see Chapter 4 for a description of SA 

identifiers in the RASAR-CCS.) The correlation matrix of operator statement categories 

(Appendix B) revealed operator statements related to search strategy were strongly 

correlated with statements related to the state of the environment (r=.94) and state of 

information gathered (r=.89). These two SA-related content areas were closely tied to 

each other (r=.91) as well, indicating the importance of linking what is being observed in 

the environment with what the operator already knows about the environment.  
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Figure 4. Percentages of operator statements by content. 

 

Search strategy and planning are an intuitive fit because of the need to plan search 

activities, and indeed, search strategy statements correlated with statements coded as 

planning (r=.95) in the function category. However, the significant correlation of 

planning (a SA Level 3 indicator) with the state of the environment (r=.98, p<.001) 

emphasizes the necessity of perception and comprehension in performing search 

operations. This is confirmed by another important relationship in this category between 

the two functions of plan and report (r=.93.)  The report element is used strictly when the 

operator is reporting on the state of the robot (including situatedness), environment or 
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information gathered, all indicators of perception and comprehension (Levels I and II 

SA.) This clearly ties situation awareness to operator planning (SA Level 3) in HRI. 

 

Team Process and Communication 

 

Operators demonstrated team-based processes and communication techniques 

while using the robot in search operations, a finding supported by statement frequencies, 

percentages, and correlations between statement categories.  Results are first presented 

for the 272 statements made by the operators to team members, since the study’s focus is 

on the operator’s mental model and situational awareness. Additional results examining 

operator & team member statements are then presented. Table 2 provides frequency and 

percentage of occurrence of each descriptor by coding category. As seen in Table 1, 

operators spoke to other participants approximately 4 times per minute while 

teleoperating the robot (M=4.4, SD=1.17 stmts/min.) 

Almost 30% of the operators’ statements were directed to team members directly 

connected to the task of navigating the robot in search of a victim (the tether manager, 

and the other team member; see Table 2.) Correlations (Appendix B) of operator-team 

member dyad with other variables in the coding system also depict the team-oriented 

nature of the robot search task.  The operator’s statements to his or her teammate 

correlated significantly with statements coded as instructions (r=.97, p<.001.)  The 

content categories related to operator-team member statements were state of information 

gathered and search strategy (r=.94 for each), suggesting that in conversations with a 
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teammate, the operator related what he was seeing to something he had seen before (or 

had prior knowledge of), and articulated search strategies.  

 

Table 2. Operator statement category frequencies and percentages. 

Category/Subcategory Frequency Percentage of  

Total by Category 

Dyad     

               Operator-Tether Manager 46 17 

               Operator-Researcher 109 40 

               Operator-Team Member 30 11 

               Operator-Other 10 4 

               Operator-Group 77 28 

Form      

              Question 45 17 

               Instruction 8 3 

               Answer 99 36 

               Comment 120 44 

Content   

               State of the Robot 62 23 

               State of the Environment 36 13 

               State of Information Gathered 9 3 

               Robot Situatedness 38 14 

               Search Strategy 43 16 

               Navigation 57 21 

               Off Task 23 9 

              (Missing content) (4) 1 

Function   

               Seek Information 29 11 

               Report 62 23 

               Clarify 11 4 

               Confirm 17 6 

               Convey Uncertainty 18 7 

               Provide Information 88 32 

               Plan 27 10 

              ( Missing function) (20) 7 

Total number of statements = 272 
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Correlations of operator statement form with content suggest operators’ 

instructions were related to search strategy, the state of the environment and state of 

information gathered (r=.99, .95, .92 respectively.) In addition, instruction statements 

made by operators correlated significantly with statements coded as having a planning 

function (r=.94.)    

 Although the primary focus of this paper is on operator situation awareness and 

how operators talk to team members to facilitate SA, further analyses were conducted to 

explore information exchange between dyad members (see Figure 5). That is, operator 

statements to primary rescue team members (operator, tether manager, team member, and 

researcher – robot specialist) and from primary rescue team members to the operator 

were examined. 

 

Figure 5. Team member interactions. 
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Previously I examined the frequency of statements for each element within a 

category (e.g., 45 questions, or 62 statements regarding the state of the robot). In this 

analysis I examined, by dyad, the frequency of statements based on form, content and 

function combined to give an integrated picture of information exchange between rescue 

team members (e.g., the operator asked a question of the tether manager seeking 

information about the state of the robot).   

 Naturally, at this level of detail, the number of possible combinations (4 forms, 7 

topics, and 7 functions) is formidable.  Therefore, Table 3 presents only the three highest 

frequency statement types (including ties), broken down by speaker-recipient (i.e., 

operator – tether manager exchanges are presented as statements from the operator to the 

tether manager and by statements from the tether manager to the operator) for each dyad.  

 Operators clearly had distinct expectations for information exchange between 

themselves and members of their team. Operators requested information from tether 

managers regarding the state of the robot (9%), its situatedness (6%) and navigation (6%) 

and gave tether managers information and instructions (6% and 6%, respectively) 

regarding the state of the robot.  Conversely, operators asked team members for 

information on the robot (7%), the environment (7%), and search strategy (7%), and 

offered information to team members regarding robot situatedness (7%), the environment 

(7%), and search strategy (7%).  
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Table 3. Dyad frequencies and percentages for tether managers and team members. 

Statement Type  

% of Speakers 

Statements Statement Type  

% of Speakers 

Statements  

Operator - Tether Manager Exchanges (n=83) 

Operator to Tether Manager (n=47) 

 
Tether Manager to 

Operator (n=36) 

 

Question seeking information about 

State of the Robot  9% 

Instructions regarding 

navigation   22% 

Question seeking information about 

Robot Situatedness  6% 

Comment on Robot 

Situatedness   11% 

Question seeking information about 

navigation  6% Comment on navigation  11% 

Instruction planning State of the 

Robot  6% 

Answer about State of 

the Robot  11% 

Comment providing information on 

the State of the Robot  6% 

  

Answer reporting navigation  6% 

  

Answer confirming navigation  6% 

  

Operator - Team Member Exchanges (n=76) 

Operator to Team Member (n=27) 

 
Team to Member 

Operator (n=49) 

 

Question seeking information about 

State of the Robot  7% 

Comment on State of 

the Robot  14% 

Question seeking information about 

St Environment  7% Instruction, navigation  12% 

Question seeking information about 

search strategy  7% Comment St Environ   10% 

Comment St Environ report  7% 

  

Comment Robot Situatedness report 7% 

  

Comment planning search strategy  7% 

  

Answer providing information about 

search strategy  7% 

  

*Percentages do not total 100% since only the three highest frequency statement types (including ties) are shown. 
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Interaction of SA and Team Communication 

 

Comparisons between operators rated as having high versus low SA on a global 

rating scale offer support for the influence of team behaviors on situation awareness. Chi-

square results (Table 4) suggest operator communication with the tether manager (χ2
 = 

16.2, p<.001) and with other team members (χ2
 = 18.6, p<.001) was related to high 

Situation Awareness.  High SA operators also provided instructions more frequently then 

their low SA counterparts (χ2
 = 4.5, p<.05.)   

Furthermore, chi-square reveals that regardless of who they were speaking to, 

high SA operators made more statements than low SA operators about robot situatedness 

(χ2
 = 5.4, p<.05) and about search strategy (χ2

 = 12.9, p<.001) This suggests high SA 

operators had more knowledge of the robot’s location and spatial orientation in the void 

space, and were more focused on goal-directed cues.  It follows that the operator’s 

situation awareness is a key factor in planning and executing search operations.  

Operators with low SA did not seem to have a plan as to how to search using the robot.  

Finally, high SA operators engaged in higher levels of reporting, i.e. they talked 

more to their teammates about SA-related factors in the search environment (χ2
 = 4.74, 

p<.05.) And though not significant at the .05 level, the data suggests that low SA 

operators convey uncertainty more frequently than high SA operators (χ2
 = 3.55, p=.06, 

ns).     
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Table 4. Chi-square results for high and low SA operator statements. 

  Low SA Operators 

(frequency) (N=2) 

High SA Operators 

(frequency) (N=2) 

Chi-

Square 

p-value 

Dyad Operator-Tether 

Manager 

9 36 16.2 .000** 

 Operator- Team 

Member 

2 24 18.6 .000** 

 Operator-Researcher 56 52 .15 .70 

 Operator-Other 5 4 .11 .74 

 Operator-Group 42 32 1.35 .25 

Form Question 16 37 2.81 .09 

 Instruction 1 7 4.5 .03* 

 Answer 46 49 .09 .76 

 Comment 51 65 1.69 .19 

Topic State of the Robot 30 30 0 1 

 State of the 

Environment 

14 20 1.06 .30 

 State of Information 

Gathered 

3 5 .5 .48 

 Robot Situatedness 11 25 5.4 .02* 

 Search Strategy 9 32 12.9 .000** 

 Navigation 32 24 1.14 .29 

 Off Task 8 15 2.13 .14 

 (missing) 0 4 4 .04* 

Function Seek Information 10 17 1.81 .17 

 Reporting 22 39 4.74 .03* 

 Clarify 5 6 .09 .76 

 Confirm 5 11 2.25 .13 

 Convey Uncertainty 13 5 3.55  .06 

 Provide Information 36 47 1.46 .23 

 Plan 10 16 1.38 .24 

 (missing) 13 7 1.8 .18 
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CHAPTER 6 

DISCUSSION 

 

Several aspects of the results merit further discussion below: the challenges in 

perception and situation awareness, the importance of team communication in developing 

mental models of the problem space and the support for findings of previous studies.  

Key Points 

 

SA is critical to effective utilization of rescue robots in USAR, and operators had 

difficulty building and maintaining SA. The most important (and perhaps surprising) 

finding is that fully half of the operators’ communication surrounds perceiving and 

interpreting (or trying to interpret) what is happening in the world, with the robot, and 

relating that information to what information is already known, with the remaining half 

related to planning search strategy, navigating and teleoperating. This finding is based on 

the fact that over half (54%) of the statements made by the five operators were coded as 

content associated with situation awareness (Levels 1 and 2), an important aspect of 

human-robot interaction (Scholtz, 2003). It is also supported by the correlations of SA-

related content categories with search strategy and planning. This contradicts traditional 

wisdom in robotics, which assumes navigation and mission tasks are conducted 

simultaneously. However, it confirms Sheridan’s findings regarding the difficulties in 

teleproprioception and telekinesthesis during teleoperation (1992).    
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This suggests one of the main challenges in achieving effective human-robot 

interaction is bridging the cognitive gaps between the two entities. The cognitive control 

tasks of navigating, searching, mapping, interpreting what is being seen on the video 

monitor, and making decisions about what to do with that information are overloading the 

operator. Training and experience may assist the USAR robot operator in forming a 

mental model of how “robot’s eye” information is conveyed and then interpreted. What is 

clear, however, is that the information being received from the robot does not match the 

operator’s current mental model. One explanation may be that the perceptual cues, e.g. 

the “keyhole effect” noted by Woods et al. (in press) are indeed challenging the operator, 

and that’s where the cognitive deficits begin to appear. This difficulty in integrating the 

“robo-immersed view” with expectancies regarding the search process mirrors Casper’s 

observations at WTC. In both cases fatigue certainly played a part; it seems likely, 

however, that lack of a cognitive model of how a robot “sees” is also a factor.  

On an interesting note, videotapes recording the robot’s eye view during the 5 

operator deployments revealed an almost even split between the amounts of time 

operators spent actually moving the robot (51%) as opposed to remaining stationary 

(49%.) The percentage of time the robot spent stationary is very similar to the percentage 

of statements devoted to SA Levels 1 and 2 (both are around 50%). Correlational 

analyses of operator statements and robot movements are outside the scope of this study. 

However, it will be explored in future work.     

The second key point is that it takes a team to use a robot in search operations, 

and not just physically: operators used team processes & communication to compensate 
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for the lack of SA—i.e., they tried to pool their perceptions to create a shared mental 

model, since they had difficulty coming up with one on their own. The significance of the 

operators’ communication with teammates is important in terms of frequency, form, 

content and function. The team-oriented organizational structure of USAR stresses the 

interdependence between team members in getting the job done effectively. Operators 

discussed search strategy with their teammates using information about the environment, 

and relating it to what they already knew. Yet only 16% of their statements concerned the 

state of the environment, or related what they were seeing to known information, a telling 

percentage in light of the necessity of this information in search operations.  

This suggests operators were attempting to develop a shared mental model with 

teammates in order to increase situation awareness. They also used this information to 

plan and devise search strategies. The report function used in the coding scheme was 

defined as “reporting about the state of the robot, environment or information 

gathered”—all SA-related topics. What is exciting is that reporting and planning were 

clearly related, i.e. operators were using what they were seeing through the robot’s eye to 

form a mental model of the search space (and the robot’s position in that space) in order 

to devise search strategies. Planning not only facilitates the building of shared mental 

models with teammates, it is also can result in improved team performance (Stout et al., 

1999.) While it is surprising that navigation statements correlated only with statements 

function-coded as conveying uncertainty (r=.93), this may be artifactual, reflecting the 

lack of SA in two of the operators. 



 

 45

The effective use of team processes and communication to compensate for the 

lack of SA suggests there is an interaction between SA and team communication. 

Operators with high SA talked to their teammates more about search strategies and robot 

situatedness, gave more instructions, and reported more on the state of the environment, 

robot, and information gathered. Talking about it helps create a mental model of what’s 

happening. 

This is important for future training and development in USAR, and also for robot 

system design. Confirming/disconfirming their interpretation of what was seen with 

another individual, collaborating with a teammate to project, plan and make decisions, 

and sharing information with other team members were not necessarily new strategies to 

the Task Force workers; the application of those strategies to working with a new 

technology, however, definitely was. This finding supports previous findings from an Air 

Force study of F-15C pilots (Bell & Lyon, 2000) in which the most highly rated elements 

of SA were a) use of communication information and b) information integration from 

multiple sources. Other studies have noted the interrelation of team communication and 

situation awareness. Mosier & Chidester (1991) found the number of situation awareness-

related communications predicted team performance, and Bailey & Willems (2002) 

reported air traffic controllers increased communications to maintain situation awareness 

under conditions of high workload.   

Operator statements reflect specific expectations regarding the nature of each 

team member’s roles (see Figure 5). The data suggests team members did not share the 

operator’s role expectations.  For example, although team members provided information 



 

 46

on the robot and the environment, and provided instructions for navigation, they paid 

little attention to search strategy.  In addition, tether managers provided information on 

the robot, and its situatedness; however, they mainly provided instructions regarding 

navigation.  This suggests operators saw tether managers as a resource for obtaining 

information; whereas tether managers saw their role as providing assistance with 

navigation.  While the operator saw team members as problem-holders, sharing pertinent 

information about the state of the robot and the environment and collaborating on search 

strategy, team members did not address operator needs regarding search strategy.  

Lastly, quantitative analyses confirm previous research on HRI in search and 

rescue operations (Casper, 2002; Casper & Murphy, 2003) which suggested that these 

tasks will be short and require two operators, not one. Time-on task with the robots was 

of short duration, with the average deployment drop lasting less than 15 minutes. (Time-

on-task describes the time elapsed from the initial drop of the robot until the conclusion 

of the operator’s run.) Four of the five operators utilized the robot for slightly under 15 

minutes each (M=12.26 min, SD=4.8 min) in search operations. The fifth operator used 

the robot briefly during a rescue operation to try to see or get to the victim through a 

small void. When he saw that was not feasible, he terminated the run. These run times are 

similar to those of operators at the WTC (Casper, 2002). Actual drop times at the World 

Trade Center were even less, averaging 6-7 minutes. The ability to complete the search in 

a short time is a significant factor in the rescue worker’s perception of the utility of a 

rescue robot. As new control tasks evolve utilizing the robots (e.g., carrying medical 

payloads to victims), operators may spend longer periods of time deploying them.  
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Conclusions 

 

This study reports on human-robot data from a disaster response training exercise 

conducted on a collapsed building site. While the number of operators video recorded is 

small, the data are rich and the findings lend support to prior research in the USAR 

domain and results from the WTC which indicated that perception, not navigation, is 

more significant than previously thought. The major findings of the study lead to the 

following conclusions: 

• Cognitive augmentation in the form of intelligent perceptual assistance is needed. 

On average, the operator is actively engaged in the search task only 32% of the time. In 

addition, 54% of the operators’ statements centered on perception and comprehension of 

the robot and environment. Finally, the amount of time the robot was stationary was close 

to 50%. This suggests that it is extremely difficult for operators to establish situational 

awareness due to inherent perceptual challenges (the world is being perceived from an 

unnatural viewpoint, the lighting is uncontrolled, etc.) and lack of information in the user 

interface about the state of the robot (Is it upside down? What pose is it in?). This is 

consistent with the results of the previous studies of HRI in USAR (Casper & Murphy, 

2002; Casper & Murphy, 2003). 

• Robot-assisted technical search is a team task rather than an individual one. The 

human-robot ratio was never less than 2:1, in part, because physical robot operations 

require at a minimum, an operator and a tether manager.  In addition, the search task 

itself demands information exchange among team members.  More frequent 
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communication with team members was related to higher ratings of operator SA (see 

Table 4).  Furthermore, operator-team member communication was significantly related 

to statements involving search, instructions, and state of information gathered (Appendix 

B).  

• Robot operators need a new cognitive mental model to filter and comprehend data 

provided by the robot, and to plan effective search strategies. More than half of operator 

statements were related to perception and comprehension of the robot and the 

environment perceived through the robot’s eye view. Even so, the low frequency of 

statements regarding information needed to plan search (the state of the environment, 

13%; state of information gathered, 3%) suggests operators had difficulty reconciling 

information obtained from the robot’s eye view with their existing knowledge of the 

search environment.  

• USAR technical search teams need a new shared mental model of the technical 

search task in order to coordinate activities effectively. Operators and their teammates did 

not have shared expectations regarding their roles in the search process (Figure 5). 

Operators saw tether managers as a resource for obtaining information about the robot in 

the environment along with navigation; whereas tether managers saw their role as 

primarily providing assistance with navigation.  Similarly, the operator saw team 

members as problem-holders, sharing pertinent information about the state of the robot 

and the environment and collaborating on search strategy, however, team members did 

not address operator needs regarding search strategy (Figure 5).  
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 Though the results of this study are preliminary, and must be replicated, the 

findings give rise to numerous new questions: 

• Is the amount of time spent building or maintaining situation awareness stable, or 

will it change as operators gain experience?    

• Will cognitive augmentation shorten the time operators spend gaining SA? 

• What perceptual cues are critical for gaining situation awareness in technical 

search operations? 

• Will shared mental models of the robot, the environment and the search task 

improve operator performance in search operations? 

 Future research should examine these and other issues that emerge as USAR 

personnel acquire more experience working with increasingly sophisticated robotic 

technology. In particular, the use of visual information (the robot’s eye view) as a 

resource has implications for new ways of conducting USAR operations. Sharing the 

robot information across various problem-holders in the organization (structural and 

medical specialists, incident commanders) could prove invaluable in reducing the time 

required to rescue disaster victims. The fact that these problem-holders may be physically 

remote suggests distributing robot information could reduce the effects of cognitive 

fatigue or localized noises and distractions that accompany search activities.    

 In addition, the RASAR Communication Coding Scheme generated to organize 

and examine human-robot interaction may provide insight into the nature of the man-

machine relationship in USAR and in other robotic domains as robots continue to evolve 

and become a part of the workplace. Patterns of team process and communication may 
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emerge through analysis that will be useful in training, e.g. robot operators may train in 

teams rather than individually in order to capitalize on the interaction between SA and 

team communication.  

Currently, research is ongoing that applies the techniques described in this study 

to new data collected from 40 rescue professionals in two similar 24-hour high fidelity 

disaster response drills conducted in 2002-2003. The goals are to 1) identify operator and 

team mental models of robot-assisted search 2) pinpoint the perceptual cues that increase 

situation awareness and spur development of these models, and 3) continue to study the 

evolving processes of team communication and collaboration as robots are incorporated 

into USAR operations. It is expected that the study results will be useful for the larger 

case of anticipating (and facilitating) roles, tasks, and strategies that emerge when a new 

technology is introduced. 
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Appendix A: Robot Assisted Search and Rescue Communication Coding Scheme 

(RASAR-CCS) 

Category Subcategories Definitions 

Sender/Recipient Dyad Operator-Tether 

Manager 

Operator: individual teleoperating the robot 

 Tether Manager-

Operator 

Tether manager: individual manipulating the tether 

and assisting operator with robot 

 Team member-

Operator 

Team member: one other than the tether manager 

who is assisting the operator (usually by 

interpreting) 

 Operator- Team 

member 

 

 Researcher-Operator Researcher: individual acting as scientist or robot 

specialist 

 Operator-Researcher  

 Other-Operator Other -individual interacting with the operator who 

is not a tether manager, team member or researcher  

 Operator-Other  

 Operator-Group Group -set of individuals interacting with the 

operator 

Statement Form Question Request for information 
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 Instruction Direction for task performance 

 Comment General statement, initiated or responsive, that is not 

a question, instruction or answer 

 Answer Response to a question or an instruction 

Content State of the robot Robot functions, parts, errors, capabilities, etc. 

 State of the 

environment 

Characteristics, conditions or events in the search 

environment 

 State of information 

gathered 

Connections between current observation and prior 

observations or knowledge 

 Robot situatedness Robot’s location and spatial orientation in the 

environment; position 

 Victim Pertaining to a victim or possible victim 

 Navigation Direction of movement or route 

 Search Strategy Search task plans, procedures or decisions  

 Off task Unrelated or extraneous subject 

Function Non-operator Default for statements made by individuals other 

than the operator 

 Seek information Asking for information from someone 

 Report Sharing observations about the robot, environment, 

or victim 
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 Clarify Making a previous statement or observation more 

precise 

 Confirm Affirming a previous statement or observation 

 Convey uncertainty Expressing doubt, disorientation, or loss of 

confidence in a state or observation 

 Plan Projecting future goals or steps to goals 

 Provide information Sharing information other than that described in 

report,  either in response to a question, or offering 

unsolicited information 
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                       Operator Statement 

Categories 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 

Sender/Recipient Dyad 

 1. Operator-tether 

 

 

1.00 

                      

 2. Operator-researcher .03 .0                    

2 35 .00                   

                  

                 

                 

                     

                

                 

                

                    

                

               

              

                  

              

               

               

              

                       

                      

                       

                       

                       

                       

                      

 1

.

0   

 3. Operator-team mbr -. 6  1   

 4. Operator-other .02 .04 .20 1.00   

 5. Operator-group .19 .68 -.03 .63 1.00   

 6. Question .14 .82 .59 -.28 .23 1.00   

Statement Form   

 7. Instruction -.15 .43 .97** .41 .22 .57 1.00   

 8. Answer .31 .89* .08 -.23 .55 .83 .15 1.00   

 9. Comment .45 .41 .28 .80 .80 .22 .52 .30 1.00

 

   

Content   

10. State of the Robot .65 .58 -.38 -.15 .57 .45 -.26 .84 .35 1.00   

11. State of 

Environment 

-.22 .62 .87 .50 .46 .59 .95* .30 .61 -.12 1.00   

12. State of Information -.30 .63 .94* .10 .16 .77 .92* .37 .28 -.15 .91* 1.00   

13. Robot Situatedness .69 .53 .42 .00 .31 .77 .49 .67 .57 .58 .44 .47 1.00 

14. Search -.04 .44 .94* .44 .26 .58 .99** .19 .60 -.18 .94* .89* .57 1.00 

15. Navigation .56 .30 -.45 .53 .84 -.08 -.20 .39 .71 .71 -.01 -.34 .28 -.12 1.00 

16. Off Task -.04

 

 .76 -.27

 

-.37

 

 .46 .51 -.24

 

.84 -.07

 

 .72 -.02

 

 .08 .16 -.25 .31 1.00

 

 

Function   

17. Seek Information .28 .75 .46 -.39 .17 .98**

 

.44 .85 .16 .54 .43 .65 .81 .46 -.05 .53 1.00

18. Report .35 .68 .66 .43 .60 .71 .80 .57 .82 .35 .83 .72 .84 .85 .34 .09 .65 1.00

19. Clarify .28 .65 -.09 -.66 .13 .74 -.13 .88* -.15 .76 -.06 .19 .52 -.11 .09 .83 .82 .22 1.00

20. Confirm .72 .44 .06 -.45 .09 .72 .06 .76 .17 .75 .01 .18 .86 .13 .20 .41 .84 .48 .81 1.00

21. Convey uncertainty .26 .17 -.49 .67 .81 -.34 -.25 .13 .62 .44 -.03 -.41 -.07 -.19 .93* .21 -.36 .14 -.19 -.18 1.00

22. Provide Information .52 .49 .31 .70 .79 .35 .53 .42 .99* .44 .61 .33 .69 .62 .70 .01 .30 .87 -.01 .32 .56 1.00

23. Plan -.01 .65 .83 .52 .53 .64 .94* .39 .73 .04 .98*

* 

.86 .60 .95* .13 .00 .51 .93* .02 .18 .04 .75 1.00
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