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Abstract
Monitoring-Oriented Programming (MOP1) [21, 18, 22, 19]
is a formal framework for software development and analy-
sis, in which the developer specifies desired properties using
definable specification formalisms, along with code to ex-
ecute when properties are violated or validated. The MOP
framework automatically generates monitors from the spec-
ified properties and then integrates them together with the
user-defined code into the original system.

The previous design of MOP only allowed specifications
without parameters, so it could not be used to state and mon-
itor safety properties referring to two or more related ob-
jects. In this paper we propose a parametric specification-
formalism-independent extension of MOP, together with an
implementation of JavaMOP that supports parameters. In
our current implementation, parametric specifications are
translated into AspectJ code and then weaved into the appli-
cation using off-the-shelf AspectJ compilers; hence, MOP
specifications can be seen as formal or logical aspects.

Our JavaMOP implementation was extensively evaluated
on two benchmarks, Dacapo [14] and Tracematches [8],
showing that runtime verification in general and MOP in
particular are feasible. In some of the examples, millions
of monitor instances are generated, each observing a set of
related objects. To keep the runtime overhead of monitor-
ing and event observation low, we devised and implemented
a decentralized indexing optimization. Less than 8% of the
experiments showed more than 10% runtime overhead; in
most cases our tool generates monitoring code as efficient as
the hand-optimized code. Despite its genericity, JavaMOP is
empirically shown to be more efficient than runtime verifica-
tion systems specialized and optimized for particular speci-
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fication formalisms. Many property violations were detected
during our experiments; some of them are benign, others in-
dicate defects in programs. Many of these are subtle and hard
to find by ordinary testing.

Categories and Subject Descriptors D.2.4 [SOFTWARE
ENGINEERING]: Software/Program Verification

General Terms Languages, Verification

Keywords runtime verification, aspect-oriented program-
ming, monitoring-oriented programming

1. Introduction
Runtime verification [29, 41, 11] aims at combining test-
ing with formal methods in a mutually beneficial way. The
idea underlying runtime verification is that system require-
ments specifications, typically formal and referring to tem-
poral behaviors and histories of events or actions, are rig-
orously checked at runtime against the current execution of
the program, rather than statically against all hypothetical
executions. If used for bug detection, runtime verification
gives a rigorous means to state and test complex temporal
requirements, and is particularly appealing when combined
with test case generation [5] or with steering of programs
[35]. A large number of runtime verification techniques, al-
gorithms, formalisms, and tools such as Tracematches [2],
PQL [38], PTQL [27], MOP [19], Hawk/Eraser [23], MAC
[35], PaX [28], etc., have been and are still being developed,
showing that runtime verification is increasingly adopted not
only by formal methods communities, but also by program-
ming language designers and software engineers.

We present a parametric extension together with a ma-
ture, optimized and thoroughly evaluated implementation of
monitoring-oriented programming (MOP). MOP was first
proposed in 2003 [21] as a software development and anal-
ysis framework based on runtime verification intuitions and
techniques. It was further described and extended in [18, 22,
19], but, up to now, it was not able to handle parameters in
specifications, and was not shown, through large-scale per-
formance tests measuring run-time overhead, to be feasible
in practice. An implementation of JavaMOP was carried out
to support these, together with decentralized monitor index-
ing algorithms for reducing the runtime overhead.

As shown in this paper, MOP is expressive, generic, and
efficient. MOP logic-plugins encapsulate monitor synthesis
algorithms for logics of interest; these allow users comfort-
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class Resource {
/*@

scope = class
logic = PTLTL
{

event authenticate: end(exec(* authenticate()));
event access: begin(exec(* access()));
formula: access -> <*> authenticate;

}
violation handler { @this.authenticate(); }

@*/
void authenticate() {...}
void access() {...}
...
}

Figure 1. MOP specification for resource safety

able with formal notation to declare properties using high-
level or application-specific requirements specification for-
malisms. Specifications using any of the logic-plugins are
allowed to have parameters; this way, multiple monitor in-
stances for the same property can coexist, one per collection
of objects of interest. MOP also allows its users to imple-
ment monitors manually, using the full strength of the target
language. In other words, MOP supports and encourages the
use of formal specifications, but it does not require it.

1.1 Examples

Let us consider a simple and common safety property for
a shared resource, namely that any access to the resource
should be authenticated. For simplicity, suppose that all
the operations on the shared resource are implemented
in the class Resource, including methods access() and
authenticate(). Then the safety property can be speci-
fied as a trivial “always past” linear temporal logic (LTL)
formula over method invocations, namely

access -> <*> authenticate,
stating that “if access then authenticateheld in the past”
(“<*>” reads “eventually in the past”); the “always” part is
implicit, since MOP properties are continuously monitored.

Using MOP like in Figure 1, one can enforce this policy
to hold in any system that manages the resource via the
Resource class; by “enforce” we mean that MOP ensures
that the system will satisfy the property even though it was
not originally programmed (intentionally or not) to satisfy it.

The first line of the MOP specification in Figure 1 states
that this property is a class invariant, i.e., it should hold
in the scope of this class (specification attributes are dis-
cussed in Section 4.1). The second line chooses a desired
formalism to express the corresponding formal requirement,
in this case past-time LTL (PTLTL); MOP allows users
to “plug-and-play” new specification formalisms, provided
that they respect the standardized interface of logic-plugins
(these are discussed in Section 3.2). The content enclosed
by the curly brackets is specific to the chosen formalism.
For PTLTL, the user needs to first build an abstraction that
maps runtime events into logical elements, e.g., the in-
vocation of authenticate() being mapped to an event
authenticate. Using the elements produced by the ab-

/*+MonitorAspect+*/
public aspect MonitorAspect {

/*+ Generated by JavaMOP for javamop.monitor PTLTL_0 */
public boolean[] Resource.PTLTL_0_pre = new boolean[1];
public boolean[] Resource.PTLTL_0_now = new boolean[1];
pointcut PTLTL_0_Init(Resource thisObject):
execution(Resource.new(..)) && target(thisObject);

after(Resource thisObject): PTLTL_0_Init(thisObject) {
boolean authenticate = false;
boolean access = false;
thisObject.PTLTL_0_now[0] = authenticate;

}
pointcut PTLTL_0_authenticate0(Resource thisObject):
target(thisObject) && execution(* Resource.authenticate());

after (Resource thisObject) returning:
PTLTL_0_authenticate0(thisObject) {

boolean authenticate = false;
boolean access = false;
authenticate = true;
thisObject.PTLTL_0_pre[0] = thisObject.PTLTL_0_now[0];
thisObject.PTLTL_0_now[0] = authenticate ||

thisObject.PTLTL_0_pre[0];
if (access && ! thisObject.PTLTL_0_now[0]){

thisObject.authenticate(); }
}

pointcut PTLTL_0_access0(Resource thisObject):
target(thisObject) && execution(* Resource.access());

before (Resource thisObject):
PTLTL_0_access0(thisObject) {

boolean authenticate = false;
boolean access = false;
access = true;
thisObject.PTLTL_0_pre[0] = thisObject.PTLTL_0_now[0];
thisObject.PTLTL_0_now[0] = authenticate ||

thisObject.PTLTL_0_pre[0];
if (access && ! thisObject.PTLTL_0_now[0]){

thisObject.authenticate(); }
}

/* Generated code ends +*/
}

Figure 2. Generated monitor for the property in Figure 1

straction, a PTLTL formula is given to describe the desired
property. The last part of the MOP specification contains the
code that will be triggered when the specification is violated
and/or validated. It may be as simple as reporting errors,
or as sophisticated as taking recovery actions to correct the
execution to avoid crashes of the system. In this example,
when the safety property is violated, i.e., when some access
is not authenticated, we enforce the authentication simply by
making a call to authenticate(). The MOP tool is able to
analyze this specification, generate monitoring code for the
formula, and insert the monitor with the recovery handler
into appropriate points of the program.

There are two important observations regarding the ex-
ample above, each reflecting a crucial aspect of MOP:

1. By synthesizing monitoring code from specifications and
automatically integrating it together with the recovery
code at relevant points in the program, the developer
can and should have quite a high confidence that the
resource is used correctly throughout the system. In fact,
if we trust that the MOP tool generates and integrates the
monitoring code correctly, then we can also trust that the
resulting system is correct w.r.t. this safety property, no
matter how complicated the system is.
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/*@
scope = class
logic = ERE
{

[static int counter = 0; int writes = 0;]
event open : end(call(* open(..))) {writes = 0;};
event write : end(call(* write(..))) {writes ++;} ;
event close : end(call(* close(..)));
formula : (open write+ close)*

}
violation handler{ @RESET; }
validation handler{ synchronized(getClass()){

File.log((++counter) + ":" + writes); } }
@*/

Figure 3. MOP specification for file profiling

2. Suppose that authentication-before-access was not a re-
quirement of the system originally, but that it became a
desired feature later in the development process (e.g., be-
cause of a larger number of clients). Suppose also that,
as a consequence, one wants to add authentication to
an initial implementation of the system that provided
no support and no checking for authentication. Using
MOP, all one needs to do is to add an (unavoidable)
authenticate() method, together with the MOP spec-
ification in Figure 1. This way, the MOP specification to-
gether with its violation handler added non-trivial func-
tionality to the system, in a fast, elegant and correct way.

Monitors corresponding to specifications may need to ob-
serve the execution of the program at many different points,
which can be scattered all over the system. In this sense, ev-
ery monitor can be regarded as a crosscutting feature, like in
aspect-oriented programming (AOP) [33]. MOP can be re-
garded as a specialized instance of AOP, in which aspects
are (formal) specifications. Existing AOP tools provide cru-
cial support for MOP to integrate generated monitoring code
as well as recovery code into the system. From this point of
view, MOP acts as a supplier of aspects: it converts specifi-
cations into concrete aspects that can be handled by existing
AOP tools. For instance, our MOP front-end for Java dis-
cussed in Section 3.3, JavaMOP, translates the specification
in Figure 1 into the AspectJ code in Figure 2 (that code is
further compiled using off-the-shelf AspectJ compilers).

Comparing Figure 1 with Figure 2, one can see that
MOP provides an abstract programming environment, hid-
ing underlying implementation details. Low-level error-
prone tasks, such as transforming formulae into monitors or
choosing appropriate join points to integrate monitors and
recovery code, are all automatically handled by the MOP
framework; this way, the user is freed to focus on the inter-
esting and important aspects of the system.

The example above shows an “event-harmless” MOP
specification, i.e., one that executes no auxiliary code when
events are observed (except running the generated monitor),
with a violation handler encapsulating all desired recovery
code. Figure 3 depicts a more intrusive MOP specification
with both violation and validation handlers, also showing
how MOP can be used for profiling. The logic-plugin used

this time is for extended regular expressions (ERE), that is,
regular expressions extended with complement (no comple-
ment is needed here, but the ERE plugin generates optimal
monitors also for ordinary regular expressions).

Two auxiliary variables are defined as part of the MOP
specification, a static counter and a per-object writes. The
desired pattern to profile is (open write+ close)*, that
is, how many times we see an open followed by one or more
writes followed by a close. Each open event resets the
writes, which is then incremented at each write event. The
validation handler, which in the case of EREs is triggered
whenever the automaton monitor reaches its final state, logs
the writes and increments the static counter; note that this
handler needs to synchronize on the class to avoid potential
races. The violation handler, which for EREs is triggered
whenever the automaton monitor cannot advance to a next
state (in our case, that most likely happens when a file is
open then closed without any writes), resets the monitor to
its initial state using the MOP reserved command @RESET.

Both MOP specifications above are class scoped: they re-
fer to behaviors of individual objects. There are, however,
many safety properties of interest that refer to collections
of two or more objects. Some of these are considered so
important that language designers feel it appropriate to in-
clude corresponding runtime safety checks as built-in part
of programming languages. For example, Java 5 raises a
ConcurrentModificationExceptionwhen running

Vector v = new Vector();
v.add(new Integer(10));
Iterator i = v.iterator();
v.add(new Integer(20));
System.out.println(i.next());

That is because the Iterators returned by Vector’s iterator
methods are assumed fail-fast in Java: the Vector is not al-
lowed to be modified while the Iterator accesses its elements
However, the Enumerations returned by Vector’s elements
method are not assumed fail-fast in Java 5, and, obviously,
neither are any other user-defined iterator-like objects. One
can easily imagine many other similar tight relationships
among two or more objects, either language-specific as
above or application-specific. For example, a security policy
in an application can be: for any password p, string s and file
f , it is never the case that s is the decrypted version of p (as
returned by some decrypt method) and s is written on f .

To support such important properties referring to groups
of objects, MOP now provides a generic mechanism allow-
ing for universal parameters to requirements specified using
any of the logic-plugins. Figure 4 shows an MOP specifi-
cation making enumeration objects corresponding to vectors
also fail-fast. Note that this time the MOP specification is
globally scoped, because it refers to more than one object.
The property to check, which is also given an optional name
here, SafeEnum, has two parameters: a Vector v and an
Enumeration+ e; the “+” says that the property (and its
monitors) is inherited by all subclasses of Enumeration.
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/*@
scope = global
logic = ERE
SafeEnum (Vector v, Enumeration+ e) {

[String location = "";]
event create<v,e>: end(call(Enumeration+.new(v,..))) with (e);
event updatesource<v>: end(call(* v.add*(..))) \/

end(call(* v.remove*(..))) \/ ...
{location = @LOC;}

event next<e>: begin(call(* e.nextElement()));
formula : create next* updatesource+ next
}
validation handler { System.out.println("Vector updated at "

+ @MONITOR.location); }
@*/

Figure 4. MOP specification for safe enumeration

The event create<v,e> is parametric in both v and
e, and is generated whenever enumeration e is created for
vector v. The event updatesource<v> is generated when
methods that modify the vector are called; to save space,
we did not list all of them in Figure 4. The location (file
and line number) of the update is also stored in the variable
location, using the MOP reserved variable @LOC. An ERE
formula expresses the faulty pattern: an updatesource
event is seen after create and before a next; events in
this pattern are assumed parameterized as above.

The validation handler here simply reports the location
where the vector was wrongly updated (this info is useful
for debugging); the MOP reserved keyword @MONITOR gives
a reference to the corresponding monitor instance, which
has the declared monitor variables (only location here) as
fields. MOP will create as many monitors for this property
as corresponding instances of v and e are generated during
the execution of the application, and will dispatch the events
correspondingly; for example, if several enumerations are
created for the same vector v, then an updatesource<v>
event is sent to each instance monitor corresponding to each
enumeration of v. JavaMOP generates about 200 lines of
AspectJ code from the specification in Figure 4.

1.2 Contributions

As already mentioned, the basic idea of MOP and a first
JavaMOP prototype have already been discussed in several
places [21, 18, 19, 22]. However, the previous design and im-
plementation of MOP lacked parameters and thus had lim-
ited practical use. In particular, the safe enumerator example
in Figure 4, the examples supported by other runtime ver-
ification systems such as Tracematches [2], PQL [38] and
PTQL [27], as well as most of the examples in Sections 6
were previously not possible to define in MOP using formal
specifications. Our contributions in this paper are:

(1) Universal parameters, decentralized indexing
We present a generic technique to add universal param-

eters to trace-based logics, together with an optimized im-
plementation based on decentralized indexing. Logical for-
malisms used in runtime verification and monitoring have
traces as models; in particular, all our MOP logic-plugins
are trace-based. However, existing runtime verification sys-

tems supporting parametric properties use centralized mon-
itors and indexing, that is, all monitors are stored in a com-
mon pool and parametric events are resolved and dispatched
at this centralized level, incurring unavoidable runtime over-
head when the pool contains many objects. Our decentral-
ized indexing technique is logic-independent, so it can be
adopted by any runtime verification system. As empirically
shown in Section 6, despite its genericity with regard to log-
ical formalisms, MOP with decentralized indexing is more
efficient than the current state-of-the-art runtime verification
systems specialized and optimized for particular logics.

(2) New MOP language, raw MOP specifications
We defined a new MOP specification language, which al-

lows not only specifications of parametric properties using
MOP logic-plugins, but also definitions of raw MOP spec-
ifications. Raw MOP specifications require no logic-plugin
and consequently no logical formula, so they need to be ex-
plicitly implemented by users in the target language (e.g.,
Java); in this case, the MOP framework provides a useful
abstraction allowing users to define monitor variables and/or
event actions, to generate and handle violation or validation
signals, to use MOP reserved keywords and commands, etc.;
the developer of raw MOP specifications can fully utilize
the strength of the target language. Raw MOP specifications
may be preferred by users who are not comfortable with for-
mal notation. We use them to write hand-optimized monitors
for the experiments in Section 6. Due to its new enriched
specification language, MOP now captures many other run-
time verification frameworks as specialized instances (these
are discussed in Section 2); this genericity comes at no per-
formance penalty (on the contrary). Therefore, MOP is now
a viable generic platform for runtime verification projects,
allowing experimentation with new logics for monitoring,
safety policies, monitor synthesis algorithms, and so on.

(3) Evaluation and Experiments
A large number of experiments have been carried out to

evaluate the feasibility and effectiveness of MOP: we used
JavaMOP to check more than 100 property-program pairs.
The results are encouraging: in most cases, the runtime over-
head was negligible; only 8% of experiments showed noti-
cable slow-down of 10% or more. In some purposely de-
signed extreme cases, the runtime overhead was still less
than 200%, but we were able to write raw MOP specifica-
tions for the same properties, reducing the overhead below
30%. We did not focus on error detection, in the sense that
no test generation techniques were used. However, many vi-
olations of specified properties were revealed; some of these
are benign (but still interesting to be aware of), others in-
dicate possible defects of programs: an inappropriate us-
age of StringWriter leads to a write-after-close violation
in Xalan [42]; possible resource leaks in Eclipse [25] GUI
packages; a violation of SafeEnum caused by concurrency
in jHotDraw [32]; etc. (see Section 6.2). These subtle prob-
lems are difficult to detect using ordinary testing, but Java-

OOPSLA'07, ACM press, pp 569-588. 2007



MOP provided good support to locate their root causes. Our
experiments show that runtime verification in general and
MOP in particular are feasible and effective in practice. Both
JavaMOP and the experiments are publicly available at [20].

2. Related Work
We next discuss relationships between MOP and other re-
lated paradigms, including AOP, design by contract, runtime
verification, and other trace monitoring approaches. Broadly
speaking, all the monitoring approaches discussed below
are runtime verification approaches; however, in this section
only, we group into the runtime verification category only
those approaches that explicitly call themselves runtime ver-
ification approaches. Interestingly, even though most of the
systems mentioned below target the same programming lan-
guages, no two of them share the same logical formalism
for expressing properties. This observation strengthens our
belief that probably there is no silver bullet logic (or super
logic) for all purposes. A major objective in the design of
MOP was to avoid hardwiring particular logical formalisms
into the system. In fact, as shown in Sections 3 and 4, MOP
specifications are generic in four orthogonal directions:

MOP[logic, scope, running mode, handlers].
The logic answers how to specify the property. The scope
answers where to check the property; it can be class invari-
ant, global, interface, etc. The running mode answers where
the monitor is; it can be inline, online, offline. The handlers
answer what to do if; there can be violation and validation
handlers. For example, a particular instance can be

MOP[ERE, global, inline, validation],
where the property is expressed using the ERE logic-plugin
for extended regular expressions (EREs), the corresponding
monitor is global and inline, and validation of the formula
(pattern matching in this case) is of interest.

Most approaches below can be seen as such special-
ized instances of MOP for particular logics, scopes, running
modes and handlers. There are, of course, details that make
each of these approaches interesting in its own way.

2.1 Aspect Oriented Programming (AOP) Languages

Since its proposal in [33], AOP has been increasingly
adopted and many tools have been developed to support
AOP in different programming languages, e.g., AspectJ and
JBoss [31] for Java and AspectC++ [4] for C++. Built on
these general AOP languages, numerous extensions have
been proposed to provide domain-specific features for AOP.
Among these extensions, Tracematches [2] and J-LO [15]
support history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the ex-
ecution of certain code by specifying a regular pattern of
events in a computation trace, where the events are defined
over entry/exit of AspectJ pointcuts. When the pattern is
matched during the execution, the associated code will be
executed. In this sense, Tracematches supports trace-based

pointcuts for AspectJ. J-LO is a tool for runtime-checking
temporal assertions. These temporal assertions are speci-
fied using LTL and the syntax adopted in J-LO is similar
to Tracematches’ except that the formulae are written in a
different logic. J-LO mainly focuses on checking at runtime
properties rather than providing programming support. In J-
LO, the temporal assertions are inserted into Java files as an-
notations that are then compiled into runtime checks. Both
Tracematches and J-LO support parametric events, i.e., free
variables can be used in the event patterns and will be bound
to specific values at runtime for matching events. Concep-
tually, J-LO can be captured by MOP, because LTL is sup-
ported by MOP and J-LO’s temporal assertions can be easily
translated into MOP specifications that contain only action
events and validation handlers.

Although MOP supports regular expressions as part of
its ERE logic plugin, they hold a different semantics from
Tracematches’ patterns. More specifically, the MOP regu-
lar pattern specifications are checked against the whole exe-
cution trace, while Tracematches’ patterns can be matched
with partial traces. For example, for a pattern “A* B”, a se-
quence of events “A B B” will trigger the validation handler
of the generated MOP monitor only at the first “B” event
and then the violation handler at the second “B”. In Trace-
matches, the pattern will be matched twice, once for each
“B” event: the first matches either the whole trace “A B” or
the partial trace consisting of just the first “B” with zero oc-
currences of “A”, while the second matches the subsequent
partial trace “B” (the second “B” in the trace) with zero
occurrences of “A”; thus, the related advice will executed
twice. Both semantics are useful for different purposes. For
example, in Tracematches one can count matches of a pat-
tern “open close” without a need to reset the monitor after
each match as in MOP. On the other hand, total trace match-
ing is more suitable for runtime verification of formal prop-
erties, because it is also the semantics adopted by conven-
tional formal verification techniques and tools.

Note, however, that it is relatively easy to support partial
trace matching in a total matching and vice versa. For exam-
ple, to capture partial matching in a total matching setting
such as MOP’s, all one needs to do is to maintain a set of
states, while a new monitor state is produced at each event;
the set will contain at most as many states as the property
monitor can have. Conversely, to capture total trace match-
ing in a partial matching setting such as Tracematches’, all
one needs to do is to generate an artificial event only once
at the beginning of the trace, say “start”, and then automati-
cally change any pattern “P” to “start P”.

Event though partial and total trace semantics are ulti-
mately equivalent as explained above, the partial trace one
is less conventional and thus can lead to confusing behav-
iors if one is not careful. For example, let us re-consider the
safety property in Figure 1. By exhaustively enumerating all
the methods in the Resource class, one may use a pattern,
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class Resource {
/*@

scope = class
logic = ERE
{

// not-authenticate includes all methods other than
// authenticate() and access()
event not-authenticate: end(exec(* ...));
event authenticate: end(exec(* authenticate()));
event access: begin(exec(* access()));
formula: not-authenticate* access;

}
validation handler { @this.authenticate(); }

@*/
void authenticate() {...}
void access() {...}
...
}

Figure 5. Regular MOP specification for resource safety

not-authenticate* access, to detect non-authenticated
accesses, as in Figure 5. If the authentication is carried out
before any access, this specified pattern will not be matched
by the monitor generated by MOP. Otherwise, when the first
unsafe access occurs, the MOP monitor will trigger the vali-
dation handler, enforcing the authentication right before the
access and ensuring all the following accesses safe. With-
out an explicit capturing of total trace matching in a partial
trace matching setting as explained above, it is difficult, if
not impossible, to achieve the same behavior using Trace-
matches. For instance, the above pattern will be matched
even for a correct execution, e.g., authenticate access,
because there exists a matching partial trace consisting of
only access.

In addition to inline and global monitors currently sup-
ported by Tracematches and J-LO, MOP also provides class-
scoped properties, outline and offline monitor settings, and
more. Fixing a logic allows for developing static analy-
sis and logic-specific optimizations. We have not attempted
to devise any logic-specific optimizations yet in MOP, be-
cause we do not regard MOP’s runtime overhead as a bot-
tleneck yet. In Section 6, we show that the MOP instance
MOP[ERE, class/global, inline, validation] using decentral-
ized indexing adds significantly less runtime overhead than
Tracematches with static analysis enabled. It is also worth
mentioning that Tracematches and J-LO are implemented
using Java bytecode compilation and instrumentation, while
MOP acts as an aspect synthesizer, making it easier to port to
other target languages provided they have AOP tool support.

2.2 Runtime Verification

In runtime verification, monitors are automatically synthe-
sized from formal specifications, and can be deployed offline
for debugging, or online for dynamically checking proper-
ties during execution. MaC [35], PathExplorer (PaX) [28],
and Eagle [12] are runtime verification frameworks for logic
based monitoring, within which specific tools for Java –
Java-MaC, Java PathExplorer, and Hawk [23], respectively
– are implemented. All these runtime verification systems
work in outline monitoring mode and have hardwired spec-

ification languages: MaC uses a specialized language based
on interval temporal logic, JPaX supports just LTL, and Ea-
gle adopts a fixed-point logic. Java-Mac and Java PathEx-
plorer integrate monitors via Java bytecode instrumentation,
making them difficult to port to other languages. Our ap-
proach supports inline, outline and offline monitoring, al-
lows one to define new formalisms to extend the MOP
framework, and is adaptable to new programming languages.

Temporal Rover [24] is a commercial runtime verification
tool based on future time metric temporal logic. It allows
programmers to insert formal specifications in programs via
annotations, from which monitors are generated. An Auto-
matic Test Generation (ATG) component is also provided to
generate test sequences from logic specifications. Temporal
Rover and its successor, DB Rover, support both inline and
offline monitoring. However, they also have their specifica-
tion formalisms hardwired and are tightly bound to Java.

Although our current JavaMOP prototype does not sup-
port all these techniques yet, it is expected that all the RV
systems would fall under the general MOP architecture, pro-
vided that appropriate logic-plugins are defined.

2.3 Design by Contract

Design by Contract (DBC) [39] is a technique allowing one
to add semantic specifications to a program in the form
of assertions and invariants, which are then compiled into
runtime checks. It was first introduced by Meyer as a built-
in feature of the Eiffel language [26]. Some DBC extensions
have also been proposed for a number of other languages.
Jass [13] and jContractor [1] are two Java-based approaches.

Jass is a precompiler which turns the assertion comments
into Java code. Besides the standard DBC features such as
pre-/post- conditions and class invariants, it also provides
refinement checks. The design of trace assertions in Jass
is mainly influenced by CSP [30], and the syntax is more
like a programming language. jContractor is implemented as
a Java library which allows programmers to associate con-
tracts with any Java classes or interfaces. Contract methods
can be included directly within the Java class or written as
a separate contract class. Before loading each class, jCon-
tractor detects the presence of contract code patterns in the
Java class bytecode and performs on-the-fly bytecode instru-
mentation to enable checking of contracts during the pro-
gram’s execution. jContractor also provides a support library
for writing expressions using predicate logic quantifiers and
operators such as Forall, Exists, suchThat, and implies. Us-
ing jContractor, the contracts can be directly inserted into the
Java bytecode even without the source code.

Java modeling language (JML)[36] is a behavioral inter-
face specification language for Java. It provides a more com-
prehensive modeling language than DBC extensions. Not
all features of JML can be checked at runtime; its runtime
checker supports a DBC-like subset of JML, a large part of
which is also supported by JavaMOP. Spec# [10] is a DBC-
like extension of the object-oriented language C#. It extends
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the type system to include non-null types and checked ex-
ceptions and also provides method contracts in the form of
pre- and post-conditions as well as object invariants. Us-
ing the Spec# compiler, one can statically enforce non-null
types, emit run-time checks for method contracts and invari-
ants, and record the contracts as metadata for consumption
by downstream tools.

We believe that the logics of assertions/invariants used in
DBC approaches fall under the uniform format of our logic
engines, so that an MOP environment following our princi-
ples would naturally support monitoring DBC specifications
as a special methodological case. In addition, our MOP de-
sign also supports outline monitoring, which we find impor-
tant in assuring software reliability but which is not provided
by any of the current DBC approaches that we are aware of.

2.4 Other Related Approaches

Acceptability-oriented computing [40] aims at enhancing
flawed computer systems to respect basic acceptability prop-
erties. For example, by augmenting the compiled code
with bounds checks to detect and discard out-of-bound
memory accesses, the system may execute successfully
through attacks that trigger otherwise fatal memory errors.
Acceptability-oriented computing is mainly a philosophy
and methodology for software development; one has to de-
vise specific solutions to deal with different kinds of failures.
We do believe though that MOP can serve as a platform
to experiment with and support acceptability-oriented com-
puting, provided that appropriate specification formalisms
express the “acceptability policy” and appropriate recovery
ensures that it is never violated.

Program Query Language (PQL) allows programmers
to express design rules that deal with sequences of events
associated with a set of related objects [38]. Both static and
dynamic tools have been implemented to find solutions to
PQL queries. The static analysis conservatively looks for
potential matches for queries and is useful to reduce the
number of dynamic checks. The dynamic analyzer checks
the runtime behavior and can perform user-defined actions
when matches are found, similar to MOP handlers.

PQL has a “hardwired” specification language based
on context-free grammars (CFG) and supports only in-
line monitoring. CFGs can potentially express more com-
plex languages than regular expressions, so in principle
PQL can express more complex safety policies than Trace-
matches. There is an unavoidable trade-off between the gen-
erality of a logic and the efficiency of its monitors; ex-
periments performed by Tracematches colleagues [6] and
confirmed by us (see Section 6) show that PQL adds, on
average, more than twice as much runtime overhead as
Tracematches. We intend to soon take a standard CFG-to-
pushdown-automata algorithm and to implement it as an
MOP logic-plugin; then MOP will also support (the rare)
CFG specifications that cannot be expressed using para-
metric extended regular expressions or temporal logics, and

MOP[CFG,global,inline,validation] will provide an alterna-
tive and more general implementation of PQL.

Program Trace Query Language (PTQL) [27] is a lan-
guage based on SQL-like relational queries over program
traces. The current PTQL compiler, Partiqle, instruments
Java programs to execute the relational queries on the fly.
PTQL events are timestamped and the timestamps can be
explicitly used in queries. PTQL queries can be arbitrary
complex and, as shown in [27], PTQL’s runtime overhead
seems acceptable in many cases but we were unable to obtain
a working package of PTQL and compare it in our experi-
ments because of license issues. PTQL properties are glob-
ally scoped and their running mode is inline. PTQL provides
no support for recovery, its main use being to detect errors.
It would be interesting to investigate the possibility of de-
veloping an SQL logic-plugin for MOP and then to compare
the corresponding MOP instance to Partiqle.

3. Overview of MOP and JavaMOP
We here briefly introduce MOP and JavaMOP. Interested
readers are referred to [19, 18] for more details, and also
to [20] for tool downloads and the latest development news.

3.1 MOP Monitoring Model

Many properties can be monitored at the same time in MOP.
The execution trace against which the various properties are
checked is extracted from the running program as a sequence
of events taking state snapshots. Events produce sufficient
information about the concrete program state in order for
the monitors to correctly check their properties. A monitor is
typically interested in a subset of events. Figure 6 illustrates
the monitoring model adopted by MOP.

… …

Property
Monitor1

Property
Monitor2

Property
Monitor2

snapshot1

snapshot2
snapshotn

event1 event2 eventn

Running Program

Concrete Trace

Abstract Traces

Monitors

Abstraction

Filtering

Figure 6. MOP Monitoring Model

In MOP, the runtime monitoring process of each property
consists of two orthogonal mechanisms: observation and
verification. The observation mechanism extracts property-
relevant and filtered system states at designated points,
e.g., when property-specific events happen. The verification
mechanism checks the obtained abstract trace against the
(monitor corresponding to the) property and triggers desired
actions in case of violations or validations. For instance, for
the simple global property “always (x > 0)”, the events
to observe are the updates of the variable x and the rele-
vant state information (or snapshot) to extract is the value
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of x. This observation process yields a sequence of values
of x: the relevant abstract trace. The corresponding monitor
checks whether the value of x is larger than zero. Observa-
tion and verification are therefore independent, in the sense
that the algorithm used within the monitor does not affect
how the execution is observed, and vice versa.

MOP is a highly configurable and extensible runtime
verification framework. Depending upon configuration, the
monitors can be separate programs reading events from a log
file, from a socket or from a buffer, or can be inlined within
the program at the event observation points. The various
MOP configuration attributes are discussed in Section 4.

3.2 MOP: An Extensible Monitoring Framework

MOP separates monitor generation and monitor integration
by adopting the layered architecture in Figure 7. This ar-
chitecture is especially designed to facilitate extending the
MOP framework with new formalisms or new programming
languages. By standardizing the protocols between layers,
new modules can be added easily and independently. Mod-
ules on lower layers can be reused by upper-level modules.

The topmost layer, called the interface layer, provides
user friendly programming environments. For example, the
reader is encouraged to try the web-based interface for Java-
MOP at [20] (no download needed, examples provided). The
second layer contains specification processors, which han-
dle monitor integration. Each specification processor is spe-
cific to a target programming language and consists of a pro-
gram scanner and a program transformer. The scanner ex-
tracts MOP specifications from the program and dispatches
them to appropriate modules on the lower layer to process.
The transformer collects the monitoring code generated by
the lower layer and integrates it into the original program.
AOP plays a critical role here: the program transformer syn-
thesizes AOP code and invokes AOP compilers to merge
the monitors within the program. In particular, as discussed
in Section 3.3, JavaMOP transforms generated monitoring
code into AspectJ code.

The two lower layers contain the logic-plugins, which
allow the user to add, remove, or modify specification for-
malisms. Logic-plugins are usually composed of two mod-
ules: a language shell on the third layer and a logic engine
on the bottom layer. The former generates programming lan-
guage and specification formalism specific monitoring code
in a standardized format, which can be understood by the
specification processor on the upper layer. The logic engine,
acting as the core of monitor generation, synthesizes mon-
itors from specifications in a programming language inde-
pendent way, e.g., as state machines. This way, logic engines
can be reused across different programming languages.

3.3 JavaMOP

JavaMOP is an MOP development tool for Java. It pro-
vides several interfaces, including a web-based interface, a
command-line interface and an Eclipse-based GUI, provid-
ing the developer with different means to manage and pro-
cess MOP specifications. To flexibly support these various
interfaces, as well as for portability reasons, we designed
JavaMOP following a client-server architecture(see [19]) as
an instance of the general MOP architecture in Figure 7. The
client part includes the interface modules and the JavaMOP
specification processor, while the server contains a message
dispatcher and logic-plugins for Java. The specification pro-
cessor employs AspectJ for monitor integration. In other
words, JavaMOP translates outputs of logic-plugins into As-
pectJ code, which is then merged within the original pro-
gram by the AspectJ compiler. The message dispatcher is re-
sponsible for the communication between the client and the
server, dispatching requests to corresponding logic-plugins.
The communication can be either local or remote, depending
upon the installation of the server.

An immediate advantage of this architecture is that one
logic server can provide and cache monitor generation ser-
vices, which can require intensive computation, to multiple
clients. Also, our clients are implemented in Java to run on
different platforms, while some of the logic engines are im-
plemented in non-conventional languages and consequently
run best on Linux or Unix. Therefore, this architecture in-
creases portability, since the client and the server are allowed
to run on different platforms; also the server can cache mon-
itors for common formulae.

Four logic-plugins are currently provided with JavaMOP:
Java Modeling Language (JML) [36], Extended Regular Ex-
pressions (ERE) and Past-Time and Future-time Linear Tem-
poral Logics (LTL) (see [19] for more details).

4. The MOP Specification Language
MOP provides a specification language to define safety
properties. The design of this language was driven by two
factors: uniformity in supporting different formalisms and
languages, and the ability to control monitor behaviors.
Language-specific and logic-specific notations are carefully
distinguished from other notations in MOP specifications.
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The developer is also given the possibility to directly pro-
gram the monitor if she/he wants to fully control the mon-
itoring process (see Section 4.4). The MOP specification
language can be regarded as a specialized AOP language,
tuned to support specifying monitors either formally using
logics or informally by programming.

MOP specifications can be either embedded into the
source code as special annotations or stored in separate
files. Each format has different advantages. Annotations are
more suitable for properties related to specific positions in
the source code, e.g., assertions and pre-/post-conditions for
methods. On the other hand, separate specification files are
conceptually clearer when their corresponding properties re-
fer to multiple places in the program, e.g., global properties.
JavaMOP supports both kinds of specifications.

〈Specification〉 ::= /*@ 〈Header〉 〈Body〉 〈Handlers〉 @*/
〈Header〉 ::= 〈Attribute〉*[scope =〈Scope〉][logic =〈Logic〉]
〈Attribute〉 ::= static | outline | offline | centralized
〈Scope〉 ::= global | class | interface | method
〈Name〉 ::= 〈Identifier〉
〈Logic〉 ::= 〈Identifier〉
〈Body〉 ::= [〈Name〉][(〈Parameters〉)]{〈LogicSpecificContent〉}
〈Parameters〉 ::= ( 〈Type〉 〈Identifier〉)+
〈Handlers〉 ::= [〈ViolationHandler〉] [〈ValidationHandler〉]
〈ViolationHandler〉 ::= violation handler { 〈Code〉 }
〈ValidationHandler〉 ::= validation handler { 〈Code〉 }

Figure 8. Syntax of MOP specifications

Figure 8 shows the syntax of MOP specifications. An
MOP specification is composed of three parts: the header,
the body and the handlers. We next discuss each of these.

4.1 Header: Controlling Monitor
Generation and Integration

The header contains generic information to control monitor
generation and integration, consisting of optional attributes,
the scope, and the name of the formalism (or logic-plugin)
used in the specification.

Attributes are used to configure monitors with different in-
stallation capabilities. They are orthogonal to the actual
monitor generation but determine the final code generated by
the MOP tool. Four attributes are available. One is static,
which has an effect only upon class/interface scoped prop-
erties, and says that the specification refers to the class, not
to the object. For a static specification, only one monitor
instance is generated at runtime and is shared by all the ob-
jects of the corresponding class. By default, monitors are
non-static, meaning that objects will be monitored individ-
ually. In JavaMOP, the variables used to represent the state
of the monitor are added to the corresponding class as ei-
ther static or non-static fields, according to staticness of the
monitor; inserting new class fields is done through the inter-
type member declaration of AspectJ (e.g., the declaration of
Resource.PTLTL 0 pre in Figure 2). To avoid name con-
flicts, these fields are renamed by the specification processor.

Two other attributes, outline and offline, are used to
change the running mode of the monitor. Different properties
may require different running modes. For example, a moni-
tor can be executed in the context (thread) of the monitored
system, or it can run outside of the monitored system, as a
standalone process or thread. We call the former an inline
monitor, which is also the default mode of the specification,
and the latter an outline monitor. An inline monitor can inter-
act with the system directly, facilitating information retrieval
and error recovery, but some problems, e.g., deadlocks, can-
not be detected by inline monitors. Besides, inline monitors
may cause significant runtime overhead when running the
monitor involves intensive computation. An outline monitor
provides a better solution for such cases. In the outline mode,
the monitored system sends messages that contain relevant
state information to the monitor. However, communication
with outline monitors may reduce the performance of the
system and, equally importantly, an outline monitor cannot
access the internal state of the monitored system, limiting its
capability for error recovery.

Another way to check an execution trace, which can
sometimes make expensive monitoring feasible by allow-
ing random access to the trace, is offline monitoring: log the
trace in a file and make it available to the “monitor”. Since
such monitors can run after the monitored system ceases,
they are called offline monitors. Offline monitors are suit-
able for properties that can be decided only after the system
stops or properties that require a backward traversal of the
trace; they may also be useful for debugging and analysis.

These running modes impose different requirements on
monitor synthesis. In JavaMOP, inline monitors are merged
into the program by encapsulating the monitoring code as an
aspect, such as the example in Figure 1 and Figure 2. For
outline and offline monitors a standalone monitor class is
synthesized, which can run independently as a new thread
or process. The MOP tool then generates aspects contain-
ing either message passing code (in outline mode) or event
logging code (in offline mode).

The last attribute, named centralized from “central-
ized indexing”, can only be combined with global paramet-
ric specifications. The default indexing is “decentralized” in
MOP, that is the references to monitors are piggybacked into
states of some objects in order to reduce the runtime over-
head. This technique is discussed in Section 5. As seen also
in Section 6, there are situations when a centralized pool of
monitors is more suitable; we therefore allow the users the
possibility to choose centralized indexing.

The scope of specifications defines the working scope of
monitors, determining the points where properties are checked.
Five scopes are supported: global, class, interface,
method, and a default scope. Properties which are global
may involve multiple components/objects in the system.
The scope class says that the property is a class invari-
ant; both global and class properties are checked when
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〈LogicBody〉 ::= [[〈VarDeclaration〉]]〈Event〉* [〈Formula〉]
〈Event〉 ::= 〈EventHeader〉:〈EventDecl〉 [{〈Code〉}];
〈EventHeader〉 ::= event〈Identifier〉[<〈Parameters〉>]
〈EventDecl〉 ::= 〈EventPoint〉[with(〈Type〉 〈Name〉)][ && 〈BExp〉]
〈EventPoint〉 ::= (begin | end)(〈EventPattern〉)
〈EventPattern〉 ::= (call|exec)(〈Method〉) | update(〈Field〉)
〈Formula〉 ::= formula : 〈LogicFormula〉
Figure 9. MOP syntax for trace-based logic formalisms

the involved fields are updated or the involved methods are
called. The scope interface denotes a constraint on the
interface, and is checked at every observable state change,
i.e., on boundaries of public method calls; MOP interface-
scoped properties are therefore similar to class invariants in
JML [36]. The scope method is used to specify constraints
on the designated method: pre-, post-, and exceptional con-
ditions. The default scope is “assertion” or “check point”:
the generated monitoring code replaces the specification and
is therefore checked whenever reached during the execution.

The logic name designates the formalism to use in the spec-
ification and also identifies the corresponding logic-plugin.
Logic-plugins should have different names. Presently, the
following logic names can be used in JavaMOP: JML, ERE,
FTLTL and PTLTL. If no logic is designated, the specification
is regarded as a raw MOP specification, where the user pro-
vides his/her own code to monitor the desired property. This
is explained in detail in Section 4.4.

4.2 Body: Describing Properties

The body of an MOP specification defines the desired prop-
erty, and is sent to the corresponding logic-plugin by the
specification processor. It starts with an optional name and
an optional list of parameters. The name, if provided, can
be useful for documentation purposes or as a reference; oth-
erwise, the MOP tool will generate a unique internal name.
The parameters can only be combined with global proper-
ties. MOP provides a generic, logic-independent way to add
parameters to specifications, discussed in Section 5.

Considering the diversity of specification formalisms, it
is difficult, and also undesirable, to design a uniform syntax
for all possible formalisms. So the syntax of the specifica-
tion body varies with the underlying formalism. For JML,
we adopted its original syntax. Since formalisms used to ex-
press properties over traces, such as ERE and LTL, show
many common features, we designed a general syntax for
all of them, shown in Figure 9. The body is composed of an
optional block for local variable declarations, a list of event
definitions and a formula specifying the desired property.

As discussed in Section 3.1, an execution trace is ab-
stracted as a sequence of events generated dynamically; they
usually correspond to concrete actions, e.g., invocation of
certain methods or updates of some variables, and contain
relevant information about the state of the program, e.g., val-
ues of accessed variables. Events are regarded atomic and
unique. In other words, two events are different even when

they are generated at the same point. When two events are
generated at the same point, the user should not assume any
pre-determined order between them, even though the under-
lying instrumentation mechanism, e.g., AspectJ, may impose
some implementation-specific ordering. Properties of traces
are then defined in terms of events. For example, the property
specified in Figure 1 involves two types of events, namely,
the end of the execution of authenticate() and the begin-
ning of the execution of access(). Definitions of events are
orthogonal to the particular formalism used for the property.

Events are related to entries and exits of actions during
the execution. An action can be one of calling a method
(in the caller’s context), executing a method (in the callee’s
context) and updating a variable. A with clause can be
attached to an event to fetch the return value of the event, i.e.,
the value returned from a method call or a variable update.
In parametric specifications, events can be parametric; the
event parameters, if any, must be a subset of the parameters
of the specification. A boolean expression can be associated
with each event, acting as a condition: the event is generated
only if the boolean expression evaluates to true.

To capture the defined events at runtime, MOP tools need
to statically insert the monitors at appropriate points in the
original program. AOP plays a critical role here: the MOP
tool chooses instrumentation points according to the event
definitions and then uses the AOP compiler to integrate the
monitor into the program. In order to ease the translation
from event definitions to join points in AOP, the syntax of the
〈Method〉 and 〈Field〉 may adopt the syntax of the employed
AOP tool. For example, JavaMOP uses AspectJ syntax.

Events can be used as atoms in formulae. During monitor
synthesis, the language shell extracts and sends the formula
to the logic engine, which then generates the monitoring
code from the formula. The monitor generated by the logic
engine can use some pseudo code that is independent of any
specific programming language. It will then be translated
into the target language by the language shell. Therefore,
the syntax of the formula varies with the formalisms. No
formula is needed for raw MOP specifications.

The developer can declare local variables in the specifica-
tion and associate actions to event definitions. The declared
variables are called monitor variables and are only visible
inside the monitor. They can be used in event actions and
in handlers. Event actions can be any code and are executed
upon occurrences of the corresponding events. Using moni-
tor variables and event actions, one can specify more com-
plex properties and implement more powerful handlers. For
example, one may add counters into regular expressions to
express properties like AB3A. Events defined in the specifi-
cation body are also monitor variables: they can be used in
event actions and handlers as boolean variables.

4.3 Handlers: Taking Actions

MOP users can provide special code to be executed when
the property is violated or validated. Although many errors
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are related to violations, sometimes it is easier to define pat-
terns of erroneous behaviors (e.g., patterns of security at-
tacks): the match, or validation, of the pattern means “error”.
In MOP, handlers can be associated not only to violations
but also to validations of properties. Even though handlers
support runtime error recovery, they need not necessarily be
“error recovery” code. An MOP specification can therefore
be regarded as a complex branch statement with the speci-
fied property (which can refer to past and future events) as
the condition and the handlers as true/false branches.

The handlers use the target programming language and
will be part of the generated monitoring code. Since mon-
itors are synthesized and integrated into the program after
one writes the handler code, the handlers do not have full
access to information about the context in which the mon-
itor will be executed. To mitigate this problem, MOP pro-
vides several built-in variables and commands: @this refers
to the current object; @RESET resets the state of the monitor
to the initial state; @LOC refers to the current location (file
and line number) – different events take place at different
locations. These variables are replaced with appropriate val-
ues or pieces of code during monitor synthesis. For example,
@this in Figure 1 is renamed to thisObject in Figure 2.

4.4 Raw MOP Specifications

MOP encourages the use of logical formalisms to specify de-
sired system behaviors concisely and rigorously. However,
there are cases where one may want to have full control over
the monitoring process; for example, some properties can be
difficult or impossible to specify using existing logical for-
malisms, or existing logic-plugins generate inefficient mon-
itoring code. Moreover, there may be developers who wish
to benefit from monitoring but who are not trained to or are
not willing to write formal specifications, preferring instead
to use the programming language that they are familiar with.

MOP supports raw specifications to implement and con-
trol the monitoring process exclusively by ordinary program-
ming, without any reference to or use of logic formalisms
and/or logic-plugins. As an example, Figure 10 shows a raw
MOP specification that detects SQL-injection attacks [3]:
malicious users try to corrupt a database by inserting unsafe
SQL statements into the input to the system.

In SQL injection, a string is “tainted” when it depends
upon some user input; when a tainted string is used as a SQL
query, it should be checked to avoid potential attacks. In
Figure 10, a HashSet is declared to store all tainted strings.
Three types of events need to be monitored: userInput
occurs when a string is obtained from user input (by calling
ServletRequest.getParameter()); propagate occurs
when a new string is created from another string; finally,
usage occurs at using a string as a query.

Appropriate actions are triggered at observed events: at
userInput, the user input string is added to the tainted
set; at propagate, if the new string is created from a
tainted string then it is marked as tainted, too; at usage,

/*@
scope = global
{
[Set taintedStrings = new IdentitySet();]
event userInput :

end(call(String ServletRequest.getParameter(..)))
with (String tainted)

{ taintedStrings.put(tainted); }
event propagate :

end(call(StringBuffer StringBuffer.new(String s)))
with (StringBuffer newS)

\/ end(call(StringBuffer StringBuffer.append(String s)))
with (StringBuffer newS)

...
{ if (taintedStrings.contains(s))

taintedStrings.put(newS.toString()); }
event usage :

begin(call(* Statement.executeQuery(String s)))
{ if taintedStrings.contains(s) Util.checkSafeQuery(s); }

}
@*/

Figure 10. Raw MOP specification for SQL injection

if the query string is tainted then a provided method, called
Util.checkSafeQuery, is called to check the safety of the
query. Thus the safety check, which can be an expensive
operation, is invoked dynamically, on a by-need basis. In
particular, for efficiency and separation of concerns reasons,
a developer may even ignore the SQL injection safety aspect
when writing code; the raw MOP specification above will
take care of this aspect entirely.

This example shows that the event/action abstraction pro-
vided by raw MOP specifications is easy to master and use-
ful for defining interesting safety properties compactly and
efficiently. Event names were not needed here, so they could
have been omitted. No formulae or violation/validation han-
dlers are needed in raw MOP specifications; the developer
fully implements the monitoring process by providing event
actions using the target programming language.

All logical MOP specifications can be translated into raw
specifications; in other words, each specification formalism
can be regarded as syntactic sugar within the raw MOP spec-
ification language. MOP thus provides a focused and expres-
sive AOP language for specifying safety properties and en-
forcing them by means of monitoring and recovery. How-
ever, the correctness of raw specifications is solely based on
the capability of the developer to understand and implement
the safety requirements. Formal specifications and their cor-
responding logic-plugins, on the other hand, can be assumed
(and even formally proved) to generate correct monitoring
code for the specified property. In Section 6 we use raw MOP
specifications to implement “hand-optimized” monitors.

5. Adding Parameters to Specifications
As discussed in Section 1.1, many safety properties of in-
terest in OO applications refer to groups of objects rather
than to individual objects. It is, however, a nontrivial matter
to support and efficiently monitor such parametric specifica-
tions. A natural solution is to use powerful logics that allow
universally quantified formulae (∀�p)ϕ and to treat paramet-
ric specifications as particular formulae universally quan-
tified over the parameters. The challenge that techniques
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based on this “super-logic” approach face is how to synthe-
size an efficient monitor from a universally quantified for-
mula. Several runtime verification systems follow this ap-
proach explicitly or implicitly, including Eagle/Hawk [23],
Tracematches [2], and PQL[38]. MOP does not prevent the
logic designer from employing logics with universal quanti-
fiers: once a logic-plugin is implemented for such a logic, the
logic can be immediately used to specify parametric proper-
ties in MOP. For example, Eagle or the publicly available
monitoring algorithms of PQL and Tracematches can be or-
ganized as MOP logic-plugins with little effort.

Synthesizing efficient monitors from formulae in logics
allowing quantification is hard. Such monitors need to keep
track of all the instances of all the quantified variables.
Large hash tables or other similar structures may need to be
generated, nested, garbage-collected and accessed multiple
times per event, making it difficult to maintain an acceptably
low runtime overhead in real-life applications. Even if one
disallows nested quantifiers in formulae and even if one
knows how to monitor an unquantified formula ϕ efficiently,
it is still non-trivial to monitor the quantified formula (∀�p)ϕ.

We next describe a novel logic-independent technique to
support universal, non-nested parameters in specifications
using any trace-related logics with no need to modify the
existing monitoring generation algorithm. One is then able
to write parametric specifications using any of the existing
logic-plugins in MOP. One would expect that such a generic-
ity must come at a performance price. However, as shown in
Section 6, our generic technique presented next, when used
with the ERE logic-plugin, produces significantly less run-
time overhead than Tracematches with all its optimizations
(including static ones) enabled (see Table 4).

In our solution, a monitor instance checking the specified
property will be created for every specific group of values
of parameters; if a monitor instance m is created for a group
of values containing o, then we say that m is related to o.
For the SafeEnum specification in Figure 4, a monitor in-
stance will be created for every pair of concrete v and e if e
is the enumeration of v. When a relevant event occurs, con-
crete values are bound to the event parameters and used to
look up related monitor instances; related monitors are then

invoked to handle the observed event. Several monitors can
be triggered by an event since the event may contain fewer
parameters than the parameters of the enclosing specifica-
tion. For the SafeEnum example, when an updatesource
event occurs, the target Vector object is bound to the pa-
rameter v and used to find all the related monitors to process
updatesource (there may be several enumerations of v).

The monitor lookup process is external to the monitor in
our approach and makes no assumption on the implementa-
tion of the monitor; consequently, it is independent of the
monitor generation algorithm. Also, the monitor does not
need to be aware of the parameter information and can pro-
ceed solely according to the observed event. Hence, the mon-
itoring process for parametric specifications is divided into
two parts in MOP: the logic-specific monitor (generated by
the logic plugin) and the logic-independent lookup process
(synthesized by the specification processor). Consequently,
given any logic-plugin, MOP allows one to write parametric
specifications using that logic with no additional effort.

Current runtime verification approaches supporting log-
ics with universal quantifiers construct a centralized monitor
whose state evolves according to the parameter information
contained in received events. Our approach, on the contrary,
creates many isolated monitor instances, but it maintains in-
dexing information so that it can quickly find relevant mon-
itors. Experiments (Section 6) show that our “decentralized-
monitoring” strategy performs overall better than the cen-
tralized ones. The rest of this section presents two instances
of our decentralized monitoring technique, both supported
by JavaMOP: one using centralized indexing and the other
using decentralized indexing.

5.1 Centralized Indexing

Efficient monitor lookup is crucial to reduce the runtime
overhead. The major requirement here is to quickly locate all
related monitors given a set of parameter instances. Recall
that different events can have different sets of parameters:
e.g., in Figure 4, all three events declare different param-
eter subsets. Our centralized indexing algorithm constructs
multiple indexing trees according to the event definitions to
avoid inefficient traversal of the indexes; more specifically,
for every distinct set of event parameters found in the speci-
fication, an indexing tree is created to map the set of param-
eters directly into the list of corresponding monitors.

The number and structure of indexing trees needed for a
specification can be determined by a simple static analysis of
event parameter declarations. For example, for the paramet-
ric specification in Figure 4, since there are three different
sets of event parameters, namely <v,e>, <v> and <e>, three
indexing trees will be created to index monitors, as illus-
trated in Figure 11: the first tree uses a pair of v and e to find
the corresponding monitor, while the other two map v and,
respectively, e to the list of related monitors.

We use hash maps in JavaMOP to construct the indexing
tree. Figure 12 shows the generated monitor look up code
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Map SafeEnum_v_map = makeMap();
pointcut SafeEnum_updatesource0(Vector v) :

call(* Vector.add*(..))&& target(v);
after (Vector v) : SafeEnum_updatesource0(v) {
Map m = SafeEnum_v_map;
Object obj = null;
obj = m.get(v);
if (obj != null){
Iterator monitors = ((List)obj).iterator();
while (monitors.hasNext()) {
SafeEnumMonitor monitor=(SafeEnumMonitor)monitors.next();
monitor.updatesource(v);
if (monitor.suceeded()) {

//validation handler
}

}//end of while
}//end of if

}

Figure 12. Centralized indexing monitoring code generated
by JavaMOP for updatesource (from spec in Figure 4)

for the updatesource event in Figure 4. This code is in-
serted at the end of every call to Vector.add or other vec-
tor changing methods, according to the event definition. One
parameter is associated to this event, namely, the vector v
on which we invoke the method. A map, SafeEnum v map,
is created to store the indexing information for v, i.e., the
{v}Map in Figure 11. When such a method call is encoun-
tered during the execution, a concrete vector object will be
bound to v and the monitoring code will be triggered to fetch
the list of related monitors using SafeEnum v map. Then all
the monitors in the list will be invoked to process the event.

An important question is when to create a new monitor
instance. This is a non-trivial problem in its full general-
ity, because one may need to create “partially instantiated”
monitors when events with fewer parameters are observed
before events with more parameters. While this partial in-
stantiation can be achieved in a logic-independent manner,
motivated by practical needs we adopted a simpler solu-
tion in JavaMOP: we let the logic-plugin tell which events
are allowed to create new monitors; these events are also
required to be parametric by all the specification parame-
ters, such as the create<v,e> event in Figure 4. All MOP’s
logic-plugins have been extended to mark their monitor-
initialization events. Thus, if an event is generated and a
monitor instance for its parameters cannot be found, then
a new monitor instance is created for its parameters only if
the event is marked; otherwise the event is discarded. This
way, no unnecessary monitor instances are created; indeed, it
would be pointless and expensive to create monitor instances
for all vector updates just because they can be potentially as-
sociated with enumerations – monitor instances are created
only when enumerations are actually created.

A performance-related concern in our implementation of
JavaMOP is to avoid memory leaks caused by hash maps:
values of parameters are stored in hash maps as key values;
when these values are objects in the system, this might pre-
vent the Java garbage collector from removing them even
when the original program has released all references to
them. We use weakly referenced hash maps in JavaMOP.

Monitor instances

… …
e1 e2

e3

v.{e} Map v.List e.List

v1 v2 v1 v2 e1 e2

Figure 13. Decentralized indexing for monitor in Figure 11

The weakly referenced hash map only maintains weak ref-
erences to key values; hence, when an object that is a key in
the hash map dies in the original program, it can be garbage
collected and the corresponding key-value pair will also be
removed from the hash map. This way, once a monitor in-
stance becomes unreachable, it can also be garbage collected
and its allocated memory released.

Note that a monitor instance will be destroyed only only
when it will never be triggered in the future. Since we have
an indexing tree per event parameter set, if a monitor m can
potentially be triggered in the future by some event e with a
parameter set (p1, .., pn), where n can also be 0, then:

1. m appears in the indexing tree corresponding to the pa-
rameters (p1, .., pn); that is also because of our assump-
tion/limitation that, when m is created, all its possible pa-
rameters, including p1, ..., pn but potentially more, were
available; when m was created, it was added to all the in-
dexing trees corresponding to (subsets of) its parameters,
including that of (p1, .., pn); and

2. if e is ever generated in the future, m will be referred
from the indexing tree for (p1, .., pn). This is because if
e really occurs at some moment in the future, then p1, ..,
pn should all be live objects and thus the mapping in the
corresponding indexing tree has not been destroyed.

Therefore, if a future event can ever trigger m, then m is
not garbage collectible. This guarantees the soundness of our
usage of weak references. One interesting corner case here
is when n is 0, i.e., when some event has no parameter. In
such case, the corresponding indexing tree (for the empty
set of parameters) is actually a list instead of a map. Thus,
even if all parameters die, the monitor will still be kept alive
because there is a reference to it in that list. But this only
happens when at least one of the events in the specification
has no parameters.

5.2 Optimization: Decentralized Indexing

The centralized-indexing-decentralized-monitor approach
above can be regarded as a centralized database of monitors.
This solution proves to be acceptable wrt runtime overhead
in many of the experiments that we carried out; in particular,
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List Vector.SafeEnum_v_List = null;
pointcut SafeEnum_updatesource0(Vector v) :

call(* Vector.add*(..))&& target(v);
after (Vector v) : SafeEnum_updatesource0(v) {
if (v.SafeEnum_v_List != null) {
Iterator monitors = (v.SafeEnum_v_List).iterator();
while (monitors.hasNext()) {

SafeEnumMonitor monitor=(SafeEnumMonitor)monitors.next();
monitor.updatesource(v);
if (monitor.suceeded()) {

//validation handler
}

}//end of while
}

}

Figure 14. Decentralized indexing monitoring code auto-
matically generated by JavaMOP for updatesource

it compares favorably with centralized-monitor approaches
(see Figure 15). However, reducing runtime overhead is and
will always be a concern in runtime verification. We next
propose a further optimization based on decentralizing in-
dexing. This optimization is also implemented in JavaMOP.

In decentralized indexing, the indexing trees are piggy-
backed into states of objects to reduce the lookup overhead.
For every distinct subset of parameters that appear as a pa-
rameter of some event, JavaMOP automatically chooses one
of the parameters as the master parameter and uses the other
parameters, if any, to build the indexing tree using hash
maps as before; the resulting map will then be declared as
a new field of the master parameter. For example, for the
updatesource event in Figure 4, since it has only the <v>
parameter, v is selected as master parameter and a new field
will be added to its Vector class to accommodate the list
of related monitor instances at runtime. Figure 13 shows the
decentralized version of the centralized indexing example in
Figure 11, and Figure 14 shows the generated decentralized
indexing monitoring code for the updatesource event.

Comparing Figures 14 and 12, one can see that the ma-
jor difference between the centralized and the decentralized
indexing approaches is that the list of monitors related to v
can be directly retrieved from v when using decentralized
indexing; otherwise, we need to look up the list from a hash
map. Decentralized indexing thus scatters the indexing over
objects in the system and avoids unnecessary lookup oper-
ations, reducing both runtime overhead and memory usage.
It is worth noting that decentralized indexing does not af-
fect the behavior of disposing unnecessary monitor instances
as discussed in the previous section: when an object is dis-
posed, all the references to monitor instances based on this
object will also be discarded, no matter whether they are
stored in maps using weak references or whether they are
embedded as fields of the object.

On the negative side, decentralized indexing involves
more instrumentation than the centralized approach, some-
times beyond the boundaries of the monitored program,
since it needs to modify the original signature of the master
parameter: for the monitoring code in Figure 14, the Java li-
brary class Vector has to be instrumented (add a new field).

This is usually acceptable for testing/debugging purposes,
but may not be appropriate if we use MOP as a development
paradigm and thus want to leave monitors as part of the re-
leased program. If that is the case, then one should use cen-
tralized indexing instead, using the attribute centralized.

The choice of the master parameter may significantly af-
fect the runtime overhead. In the specification in Figure 4,
since there is a one-to-many relationship between vectors
and enumerations, it would be more effective to choose the
enumeration as the master parameter of the create event.
Presently, JavaMOP picks the first parameter encountered in
the analysis of the MOP specification as the master param-
eter for each set of event parameters. Hence, the user can
control the choice of the master parameter by putting, for
each set of parameters P , the desired master parameter first
in the list of parameters of the first event parametric over P .

Decentralized indexing is not an entirely new technique
for reducing monitoring overhead; it is actually a natural ex-
tension to our previous MOP framework [21], which stores
monitors’ states as fields in objects when checking class in-
variants, i.e., one-parameter properties. Within the context
of multiple parameters (the major concern of this paper), in-
dexing information is embedded into the objects instead of
states. A similar idea of piggybacking the indexing informa-
tion into objects states was proposed in [8], called “inter-type
declaration”, but it had not been implemented when this pa-
per was written.

6. Experiments and Evaluation
We have applied JavaMOP on tens of programs, including
several large-scale open source programs, e.g., the DaCapo
benchmark suite [14], the Tracematches benchmark suite
[8], and Eclipse [25]. Our evaluation mainly focuses on two
aspects: the expressivity of the specification language and
the runtime overhead of monitoring. The properties used in
our experiments come from two sources: properties used in
other works (e.g., [27, 38, 8, 16]) and our own formalization
of informal descriptions in software documentation.

With the currently supported logic-plugins and the generic
support for parameters, JavaMOP is able to formally and
concisely express most of the collected properties. One inter-
esting exception is the SQL injection from PQL [38], which
we implemented using the raw MOP specification shown in
Figure 10. A large portion, nearly half, of the properties that
we have tried are recoverable/enforceable. Many violations
of properties were revealed in our experiments, although we
did not focus on error detection; when violations occurred,
we were able to quickly locate their causes using JavaMOP.

The rest of this section focuses on performance evalua-
tion, on discussing some of the detected violations, and on
current limitations of our implementation.

6.1 Performance Evaluation

The monitoring code generated by JavaMOP caused low
runtime overhead, below 10%, in most experiments even
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with centralized indexing. By turning on the decentralized
indexing, few experiments showed noticeable runtime over-
head. In what follows, we evaluate JavaMOP’s runtime over-
head using the DaCapo benchmark, and also compare Java-
MOP with other runtime verification techniques, namely,
Tracematches and PQL, using the Tracematches benchmark.

Our experiments were carried out on a machine with 1GB
RAM and P4 2.0Gz processor; the Sun Java HotSpot(TM)
Client VM (1.5.0 10) on Windows XP professional was used
as the running JVM. All the benchmark programs and prop-
erties discussed in this paper can be downloaded from Java-
MOP’s website [20].

We used the DaCapo benchmark version 2006-10; it con-
tains eleven open source programs [14]: antlr, bloat,
chart,eclipse,fop, hsqldb,jython,luindex,lusearch,
pmd, and xalan. The provided default input was used to-
gether with the -converge option to execute the benchmark
multiple times until the execution time falls within a coeffi-
cient of variation of 3%. The average execution time is then
used to compute the runtime overhead.

6.1.1 Properties

The following general properties borrowed from [16] were
checked using JavaMOP:

1. SafeEnum: Do not update Vector while enumerating its
elements using the Enumeration interface (Figure 4);

2. SafeIterator: Do not update a Collection when using
the Iterator interface to iterate its elements;

3. HashMap: The hash code of an object should not be
changed when the object is used as a key in a hash map;

4. HasNext: Always call the hasNext() method of an iter-
ator before calling its next() method;

5. LeakingSync: Only access a Collection via its syn-
chronized wrapper once the wrapper is generated by the
Collections.synchronized*methods;

6. ClosedReader: Do not read from a Reader if it or its
corresponding InputStream has been closed;

More properties have been checked in our experiments;
we choose these six properties to include in this paper be-
cause they generate a comparatively larger runtime over-
head. We excluded those with little overhead. Three of these
properties are recoverable: HashMap (the monitor can main-
tain a shadow map based on IdentityHashMap as backup),
HasNext (make a call to hasNext() before next()), and
LeakingSync (redirect call to the synchronized wrapper).

For every property, we provided three MOP specifica-
tions: an ERE formal specification, the same formal specifi-
cation for centralized indexing, and a (hand-optimized) raw
MOP specification. The last one is supposedly the best mon-
itoring code for that property and was used to evaluate the
effectiveness of our monitor generation algorithm. The As-

pectJ compiler 1.5.3 (AJC) was used in these experiments to
compile the generated monitoring AspectJ code.

6.1.2 Statistics and Results of the Evaluation

Tables 1 and 2 show the instrumentation and monitoring
statistics for monitoring the above properties in DaCapo: Ta-
ble 1 gives the number of points statically instrumented for
monitoring each of the properties; Table 2 gives the num-
ber of events and the number of monitor instances generated
at runtime using centralized indexing. Both these numbers
are collected from a single execution of the benchmark. The
first row in each table gives the names of the properties, and
the first column in Table 2 gives the programs. We do not
split the static instrumentation points by different programs
because they are merged together in the benchmark suite;
some of them even share common packages. Decentralized
indexing does not change the number of generated events or
monitor instances; it only affects the monitor indexing.

These two tables show that the properties selected in our
experiments imposed heavy runtime monitoring on the pro-
grams: a large number of points, ranging from one thou-
sand to twelve thousand, in the original programs were in-
strumented to insert the monitoring code. The monitoring
code was frequently triggered during the execution, espe-
cially for those properties involving the Java Collection
classes, e.g., SafeIterator,HashMap, and HasNext. Some
properties generated numerous runtime checks but only
a few, even zero, monitor instances were created (e.g.,
SafeEnum and LeakingSync). The reason is that these
properties observe some frequently visited methods, but the
events that we allowed to create monitor instances rarely
or never occurred. For example, LeakingSync checks all
the method calls on the Collection interface, but no calls
to Collections.synchronized* methods happened in
these experiments, so no monitor-initialization events were
created. Such experiments are particularly useful to evaluate
the effectiveness of the generated monitoring code to filter
dynamically irrelevant events, i.e., events that have no effect
on the current monitor states. Also, a big difference between
the number of events and the number of created monitor
instances (e.g., jython-SafeEnum and bloat-Leakingsync)
indicates a real potential for static analysis optimizations.

Table 3 summarizes the runtime overhead measured in
our experiments, represented as a slowdown percentage of
the monitored program over the original program. For ev-
ery property-program combination, three monitoring run-
time overhead numbers are given: with centralized indexing,
with decentralized indexing, and using a hand-optimized raw
MOP specification. Among all 66 experiments (recall that
we already excluded some results with little overhead), only
11 (bold) caused more than 10% slow-down with centralized
indexing; for the decentralized indexing version, this number
reduces to 4. Except for the 4 worst cases, with decentralized
indexing JavaMOP generates monitoring code almost as ef-
ficient as the hand-optimized code.
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SafeEnum SafeIterator HashMap HasNext LeakingSync ClosedReader
DaCapo 1147 5663 1729 2639 12855 2966

Table 1. Instrumentation statistics: instrumentation points in the DaCapo benchmark

SafeEnum SafeIterator HashMap HasNext LeakingSync ClosedReader
antlr 10K 0 1K 0 0 0 0 0 233K 0 3M 1K
bloat 0 0 90M 1M 391K 46K 155M 1M 6M 0 11K 0
chart 57 0 569K 815 8K 3K 6K 815 653K 0 208 2

eclipse 16K 0 38K 31 31K 19K 1K 31 230K 0 29K 165
fop 7 1 49K 79 17K 6K 277 79 3M 0 1K 3

hsqldb 174 0 0 0 0 0 0 0 686 0 0 0
jython 50K 0 174K 50 443 439 106 50 16M 0 1M 114
luindex 457K 14K 82K 8K 9K 9K 28K 8K 3M 0 19K 0
lusearch 335K 0 405K 0 416 416 0 0 1M 0 2M 0

pmd 717 0 25M 1M 11K 105 46M 8M 26M 0 28K 4
xalan 5K 0 119K 0 124K 78K 0 0 682K 0 98K 1K

Table 2. Monitoring statistics: generated events(left column) and monitor instances(right column). K = ×10 3, M = ×106

SafeEnum SafeIterator HashMap HasNext LeakingSync ClosedReader
antlr 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.4 0.0 2.7 0.0 0.0 22.1 5.8 0.0
bloat 2.4 0.0 0.0 385 176 24.2 2.4 1.8 1.4 323 154 36.3 13.5 3.2 2.2 0.1 0.0 2.3
chart 0.0 0.0 0.0 0.3 0.0 0.0 4.8 3.6 4.8 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0 0.0

eclipse 2.4 4.1 0.8 0.0 0.0 1.4 3.6 3.7 0.5 0.0 3.8 1.5 0.8 3.0 3.1 0.6 2.2 2.4
fop 0.4 1.2 0.6 1.7 1.5 0.0 0.0 0.0 0.0 1.7 0.8 1.5 14.7 0.5 1.0 1.9 0.0 0.0

hsqldb 0.0 3.3 0.0 0.0 0.9 1.2 0.0 0.0 2.1 0.0 0.8 0.0 1.1 1.4 1.4 1.6 0.0 0.0
jython 0.5 0.6 0.0 1.6 0.8 0.5 0.7 0.2 0.3 1.3 0.0 0.6 30.2 0.0 2.3 0.7 0.4 0.2
luindex 2.6 1.6 0.2 3.2 1.9 0.5 0.6 1.2 1.8 0.9 0.3 0.0 4.3 3.2 2.2 1.1 1.7 1.1
lusearch 6.6 0.5 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 32.4 1.1 0.6 75.7 0.0 0.1

pmd 0.0 0.0 0.0 272 44.8 11.3 0.5 0.0 0.0 353 25.4 13.7 34.3 5.4 8.0 0.0 0.0 0.0
xalan 0.0 3.5 4.4 4.8 6.7 5.4 7.2 4.7 6.5 4.6 0.0 2.8 3.0 1.5 1.7 8.5 2.2 4.5

Table 3. Runtime overhead (in percentage; e.g., 14.7 means 14.7% slower) of JavaMOP: centralized | decentralized | raw

Analyzing Tables 3 and 2, one can see that decentralized
indexing handles the dynamically irrelevant events much
better than centralized indexing, e.g., when checking the
LeakingSync property. This is caused by the fact that, when
there is no related monitor instance, decentralized index-
ing only checks an object field, while centralized indexing
needs to make an expensive hash map lookup. The run-
time overhead is determined not only by the frequency of
reaching monitoring code, but also by the execution time
of the monitored action. For example, HashMap required
quite heavy monitoring on many programs but did not cause
any noticeable performance impact. This is because the
methods checked for HashMap, including put, remove, and
contains, are relatively slow. On the other hand, checking
bloat and pmd against SafeIterator and HasNext is as
bad as it can be: the monitored actions take very little time to
execute (e.g., the hasNext and next methods of Iterator)
and they are used very intensively during the execution (in-
dicated by the massive numbers in Table 2). Even for such
extreme cases, the monitoring code generated by JavaMOP
with decentralized indexing may be considered acceptable:
slowdown between 2 and 3 times. However, one can always

choose to implement a hand-optimized raw MOP specifica-
tion for the property of interest; in our case, the raw MOP
specification reduced the runtime overhead to only 20-30%.

6.1.3 Comparing JavaMOP, Tracematches, and PQL

Attempts have also been made to compare JavaMOP with
other existing trace monitoring tools. However, some of
them are not publicly available, others have limitations that
prevented us from using them in our experiments. Con-
sequently, we only succeeded to compare JavaMOP thor-
oughly with Tracematches and partially with PQL.

As shown in [6], Tracematches is one of the most efficient
and mature trace monitoring tools to date. A benchmark for
trace monitoring tools and experiments has been proposed
by the Tracematches team in [8] (a March 2006 version pro-
vided with ABC 1.2.12), containing eight property-program
combinations. Detailed explanations of these properties and
programs can be found in [8, 9]; one of them had 0 runtime
overhead and apparently was not intended to measure run-

2 The Tracematches numbers in Table 4 were actually obtained using a
recent experimental Tracematches implementation provided to us by its
developers before the final version of this paper.
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Property Program LOC Original Hand JavaMOP JavaMOP-CI TM PQL
(seconds) Optimized

Listener ajHotDraw 21.1K 1.3 0.0 6.7* 139.3 354.0 2193.3
SafeEnum jHotDraw 9.5K 3.3 0.1 136.3 509.1 1509.1 7084.8
NullTrack CertRevSim 1.4K 0.12 210.1 - 232.0 452.7 n/a
Hashtable Weka 9.9K 2.8 3.3 3.3 6.7 15.2 n/a
HashSet Aprove 438.7K 560.0 21.2 23.9 51.9 124.3 n/a
Reweave ABC 51.2K 7.0 11.1 - 20.2 63.5 n/a

Table 4. Runtime overhead (in %) for JavaMOP, Tracematches, and PQL on the Tracematches Benchmark. (*: A class-
scoped specification was used. - : Decentralized indexing monitoring cannot be applied for these properties because it requires
instrumentation on non-modifiable classes in Java, e.g., Object and String. )

time overhead, and another makes use of an ABC-specific
feature (stack access, not provided by AJC) that we de-
cided not to support in order to keep JavaMOP compiler-
independent. Table 4 shows the results that we obtained for
the other six property-program combinations. These experi-
ments were run on the same machine mentioned above. Each
program was executed five times and the average running
time was used in computing the runtime overhead.

The first two columns in Table 4 list the properties and
the programs; the third column gives the sizes of the pro-
grams; the fourth shows the running time of the original,
unmonitored program; the remaining columns give the run-
time overhead caused by hand-optimized monitors, (decen-
tralized indexing) JavaMOP monitors, centralized indexing
JavaMOP monitors, Tracematches monitors, and PQL mon-
itors. We take no credit for the hand-optimized code: it was
implemented by Tracematches developers using AspectJ and
offered with the benchmark. The Tracematches properties
were also contained in the benchmark package. To achieve
a direct comparison, all the MOP specifications used the
ERE logic-plugin and were essentially identical to the Trace-
matches specifications. The Tracematches specifications and
the monitoring code generated by JavaMOP were compiled
with the ABC compiler [7] for direct comparison. Due to im-
plementation limitations of PQL, only two properties could
be specified using PQL; we could not apply the static ana-
lyzer in the PQL distribution due to lack of documentation.

Two properties in these experiments, NullTrack and
Reweave, involve non-modifiable Java classes (Object and
String) as parameters. Consequently, the generated decen-
tralized indexing code cannot be weaved into the original
programs. In such cases, we applied only centralized index-
ing monitoring. Also, for the Listener property, we used
a class invariant for the decentralized mode equivalent to
the two-parameter specification proposed by Tracematches
(and checked in the centralized mode), resulting in a signif-
icant performance difference between the two modes. This
strengthens our belief that one should be provided the free-
dom to choose what suits one’s needs most, in particular
one should not have to write parametric specifications if the
property is essentially a class invariant.

Table 4 shows that JavaMOP generates more efficient
monitoring code than Tracematches and PQL, often close to
the hand-optimized code when using decentralized indexing.
Since JavaMOP generates standard AspectJ code, it gives
us the freedom to choose off-the-shelf compilers. In our
experiments, ABC tended to take more time to compile the
code than AJC, e.g., it took ABC nearly an hour to compile
Aprove but AJC needed only a few minutes.

PQL and Tracematches have their own strengths and the
above comparison should not be interpreted as an argument
against them. PQL provides a general specification formal-
ism extending context-free grammars; it is therefore not sur-
prising that it generates a larger runtime overhead. Trace-
matches implements a sound and specialized algorithm to
support universally quantified regular patterns. The paramet-
ric framework discussed in our paper is generic and logic-
independent, therefore the present JavaMOP implementation
does not provide any logic-specific optimizations or special-
izations like those in Tracematches.

The paper [9] discusses in some depth differences be-
tween JavaMOP[ERE,inline,validation,centralized]and Trace-
matches, and also shows the results of their performance
comparison between the two systems on the same property-
program pairs as ours. However, their numbers are rather
different. Briefly, the results in [9] show that JavaMOP-CI
and Tracematches overall have comparable runtime over-
heads, while our experiments show that JavaMOP-CI pro-
duces significantly less overhead than Tracematches. The
explanation derived from discussions with the Tracematches
developers is that these apparently conflicting results are
mainly caused by the different JVM implementations on
Linux and Windows. However, it also appears that a new
feature, “frequency”, supported by an experimental, not-yet-
public implementation of Tracematches was utilized in their
experiments. This feature allows one to manually tune a
specification to reduce the runtime overhead. Because the
Tracematches benchmark suite does not make use of this
feature, because of its limited benefit (it only helps in the
case of SafeEnum), and ultimately because it and an exam-
ple using it were made available to us only the day before
the deadline for the final version of this paper, we have not
considered it in our experiments yet.
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6.1.4 Comparing JavaMOP and Statically Optimized
Tracematches

An important advantage of building a runtime verification
tool on top of an instrumentation package, like Tracematches
and PQL do, is that one can have more control over instru-
mentation and thus facilitate the use of static analysis. A
static analyzer has been recently proposed for Tracematches
in [16] 3 and it was also evaluated on the property-program
combinations using the DaCapo benchmark. This allows for
another comparison, between JavaMOP and Tracematches
with static analysis. The results are shown in Figure 15.
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Figure 15. Runtime overhead of JavaMOP and Trace-
matches on DaCapo (CI: centralized indexing; TM: Trace-
matches; TM-static: TM with static analysis). The runtime
overhead is represented as the ratio of monitored execution
over non-monitored execution; e.g., 1 means no overhead
and 10 means ten times slower.

Figure 15 compares those examples with more than 10%
overhead in Table 3 or more then 20% for Tracematches
without static analysis according to [16]. We did not re-
peat the 16 experiments for Tracematches in our environ-
ment, and all the numbers for Tracematches are taken from
[16]. Without using static analysis, Tracematches caused
less overhead than centralized JavaMOP monitors in four
cases (Jython-LeakingSync, lusearch-ClosedReader, pmd-
SafeIterator, and pmd-HasNext), and it was always less

3 a newer static analysis was proposed [17] after our paper was finalized

efficient than decentralized JavaMOP monitors. After us-
ing static analysis to eliminate unnecessary instrumentation
points, there are still three cases (bloat-SafeIterator, bloat-
HasNext, and pmd-HasNext) in which JavaMOP outper-
formed Tracematches, while for the others both systems had
similar performance.

We are not arguing against static analysis; on the contrary,
we believe that static analysis can and should be combined
with MOP to further reduce the runtime overhead, but that is
out of the scope of this paper.

6.2 Violation Detection

As mentioned, error detection was not the main focus in our
experiments; we consider that, for error detection, runtime
verification needs to be combined with test case generation.
However, we still encountered unexpectedly many violations
during the evaluation of JavaMOP. One reason is that many
safety properties in our experiments were devised for check-
ing performance, and are therefore not strictly required to
hold in all programs. Consequently, many violations do not
lead to actual errors in the program. For example, violations
of the hasNext property were found in some Java library
classes, e.g., AbstractCollection and TreeMap. It turned
out that these implementations use the size of the collection
instead of the hasNext method to guard the iteration of ele-
ments. We also found violations indicating possible semantic
problems of programs, which are subtle and thus difficult to
find by ordinary testing. We next discuss some of these.

6.2.1 Potential Errors.

There is a known problem in jHotDraw about using objects
of Enumeration: one can edit a drawing, which may update
a vector in the program, while making the animation for
the drawing, which uses an enumerator of the vector. As
expected, JavaMOP was able to find this problem.

We also found violations of some interface contracts,
i.e., rules to use interfaces, in Eclipse. These can lead to
resource leaks as pointed out in [27] and [38]. Three kinds
of properties were checked in our Eclipse experiments:

1. The dispose method needs to be called to release ac-
quired resources before a GUI widget is finalized.

2. The remove*Listener should be called by a host object
to notify its listeners (registered by calling add*Listener)
to release resources before it is finalized. * represents the
name of the listener.

3. Eclipse uses Lucene [37] as its search engine; in Lucene,
it is required that, before a Dir object is closed (by calling
its close method), all the file readers created by the Dir
object should be closed.

We instrumented the GUI package of Eclipse with these
three properties and also the JDT package with the second
property (note that there are many different add*Listener-
remove*Listener pairs in these two packages). Then we
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used the instrumented Eclipse in our development work (no
noticeable slow-down was experienced during the evalua-
tion). More than 30 violations were detected in the GUI
package, while none was found in the JDT package – this
may indicate the importance of the second property. In sum-
mary, the GUI package, which is more complex and harder
to test, seems less reliable w.r.t. to memory leaks.

6.2.2 Inappropriate Programming Practice

Several unexpected violations were encountered during our
experiments. For example, we ran into some violations in
Xalan [42] when checking a simple property about the
Writer class in Java: no writes can occur after the writer
is closed (by calling the close method). This is, according
to the Java documentation which states that an exception
should be raised, a must-have property. Despite these vio-
lations, no errors occurred in Xalan. Using JavaMOP, we
located the places causing the violations without much in-
sight of the program and a quick review showed that a pool
of writer instances is used in Xalan to avoid unnecessary re-
creations, but the writer can be closed before it is returned to
the pool. However, the program uses StringWriter, whose
close method happens to have no effect. Although it is not
an error in this implementation, we believe that it is inappro-
priate programming practice: the writer should be cleared
instead of closed when returned to the pool.

6.3 Limitations of MOP and JavaMOP

The current MOP logic-plugins encapsulate monitor synthe-
sis algorithms only for non-parametric trace logics. Even
though the new MOP specification language allows univer-
sal parameters to be added to any of these logics, there is no
way to add nested parameters, or existential ones. We intend
to soon add a logic-plugin for Eagle [12], a “super-logic”
generalizing both ERE and LTL, and also allowing arbitrary
quantification and negation, but do not expect it to have a
stimulating runtime overhead.

Our current JavaMOP implementation assumes that, in
a parametric specification, the events marked by the logic-
plugin to create monitor instances contain all the parameters
of the specification. This limitation can be avoided by imple-
menting a more complicated monitor creation strategy; how-
ever, we were not motivated to it because all the properties
that we have checked so far fall under this restriction.

The gap between dynamic events for monitoring and
static monitor integration based on AOP can lead to some
limitations of MOP tools. Ideally, for variable update events,
the MOP tool should instrument all the updates of involved
variables. But, statically locating all such updates requires
precise alias analysis. Therefore, JavaMOP only allows up-
date events for variables of primitive types. In addition,
static instrumentation may cause extra performance penalty
of monitoring. For the specification in Figure 4, one can
see that the monitor is not “interested” in next events af-
ter create until an updatesource event is encountered.

But since we instrument the program statically, the monitor
keeps receiving next events even when they are not needed.
These limitations may be relaxed by utilizing dynamic AOP
tools, but more discussion on this direction is out of the
scope of this paper. However, since MOP can also be used
to add new functionality to a program, one may not want to
miss any related event: some action may be executed even
when the event does not affect the monitor state.

7. Conclusion
We presented a generic, logic-independent approach to sup-
port parametric specifications in Monitoring-Oriented Pro-
gramming (MOP). A novel optimization technique, called
decentralized indexing, was proposed to reduce the runtime
overhead of monitoring parametric properties. A new, en-
riched MOP specification language was also proposed, that
supports parameters and raw specifications; one can use raw
MOP specifications to fully implement and control the de-
sired monitoring process using the target programming lan-
guage. An extensive evaluation of JavaMOP and compar-
isons with other runtime verification tools have been car-
ried out; results are encouraging: less than 8% experiments
showed more than 10% runtime overhead, and JavaMOP
generated overall more efficient monitoring code than other
runtime verification tools.

The techniques presented in this paper are purely dy-
namic. Although we showed that runtime verification is fea-
sible, we also believe that static analysis can and should
be used to further reduce the runtime overhead of moni-
toring: by statically analyzing the program against the de-
sired property, one can eliminate irrelevant instrumentation
points. Since static analysis is closely related to the particu-
lar logic-plugin, to add static analysis to MOP we will prob-
ably need static logic-plugins. Also, MOP can be combined
with test generation techniques to provide an effective test-
ing framework for safety properties.
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correcting behaviors of Java programs at runtime with

JavaMOP. In RV’05, volume 144(4) of ENTCS, 2005.
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