
MOPED: A Scalable and Low Latency Object Recognition and Pose

Estimation System

Manuel Martinez Alvaro Collet Siddhartha S. Srinivasa

Abstract— The latency of a perception system is crucial for
a robot performing interactive tasks in dynamic human envi-
ronments. We present MOPED, a fast and scalable perception
system for object recognition and pose estimation. MOPED
builds on POSESEQ, a state of the art object recognition
algorithm, demonstrating a massive improvement in scalability
and latency without sacrificing robustness. We achieve this with
both algorithmic and architecture improvements, with a novel
feature matching algorithm, a hybrid GPU/CPU architecture
that exploits parallelism at all levels, and an optimized resource
scheduler. Using the same standard hardware, we achieve up
to 30x improvement on real-world scenes.

I. INTRODUCTION

The reaction time of robots operating in dynamic environ-

ments is limited by the latency of their perception systems.

Robots equipped with low latency perception systems can

quickly perceive dynamic environments, enabling improved

feedback control. An impressive example of such a fast react-

ing robot is the batting robot[1] from the Kamuro Ishikawa

Laboratory which uses customized vision hardware[2] with

an integrated vision chip. From a 16x16 image from the

chip, the system segmented a light object against a dark

background and extracted moments at a latency of 1ms.
While low latency perception systems like the afore-

mentioned have excelled in controlled environments with

relatively simple objects, real human environments that a

personal service robot operates in may be cluttered, dynamic

and unpredictable. These environments, like Fig. 1, for

example, are characterized by their complexity and lack of

structure, requiring a more general perception system.
Collet et al. [3] demonstrated a vision based perception

system called POSESEQ capable of object recognition and

full pose estimation in cluttered scenes. The system learned

metric 3D models using natural (marker-free) features of

objects and maintains a database. At runtime, it detected

multiple objects and multiple instances of the same object

from its database, and provided 6D pose estimation.
POSESEQ was designed to produce accurate pose es-

timates that were critical for mobile manipulation. It was

robust to outliers, partial occlusions, and changes in illumi-

nation, scale and rotation. However, its latency scaled poorly

with respect to the number of objects in the database and the

resolution of the input image. On 640x480 images from real-

world scenes, POSESEQ had a latency of about 2000ms.
Motivated by these shortcomings, we present MOPED, a

system for Multiple Object Pose Estimation and Detection

M. Martinez and A. Collet are with The Robotics Institute, Carnegie
Mellon University, 5000 Forbes Ave., Pittsburgh, PA - 15213, USA.
{manelm, acollet}@cs.cmu.edu

Siddhartha S. Srinivasa is with Intel Labs Pittsburgh, 4720
Forbes Avenue, Suite 410, Pittsburgh, PA - 15213, USA.
siddhartha.srinivasa@intel.com

Fig. 1. A cluttered real-world scene. MOPED finds 27 objects partially-
occluded, repeated and non-planar objects. The database contains 91 models
and the source image is 1600x1200. In this scene, MOPED is 30.78 times
faster than POSESEQ [3] .

that improves the scalability of POSESEQ and optimizes

speed (Fig. 1) without trading off its robustness and accuracy.

Algorithmically, MOPED uses a novel feature matching

algorithm optimized for large databases with logarithmic

complexity and a robust pose merging algorithm capable

of efficiently rejecting outliers. Architecturally, MOPED is

optimized for bandwidth and cache management and SIMD

instructions. Components like feature extraction and match-

ing have been implemented on a standard GPU. Furthermore,

a novel scheduling scheme (Fig. 2) enables the efficient use

of symmetric multiprocessing(SMI) architectures, utilizing

all available cores on modern multi-core CPUs.

We demonstrate the speed and scalability of MOPED on a

real-world object dataset of 91 objects in high clutter, as well

as synthetic scenes with 400 objects. On the same 640x480
real-world images, MOPED demonstrates a latency of about

300ms., a 7x increase over POSESEQ. The gap widens to

over 30x as the number of objects and the resolution of the

image are scaled up.

MOPED demonstrates that novel algorithmic and architec-

tural modifications that exploit the structure and workflow of

a method can enable tremendous improvements.



Fig. 2. The MOPED workflow and an illustration of the seven steps. Number in the upper right corner of rounded boxes represent corresponding keypoints.
TEAPOT, RICE and CAN designate objects in the database. Numbers are assigned to separate instances of the same object.

Fig. 3. Final output of MOPED after Pose Refinement

II. RELATED WORK

The fast and efficient tracking of objects in scenes is an

ongoing goal of augmented reality research, with a focus

on obtaining the camera pose with respect to an object or

scene, and accurately registering camera movement across

frames. Gordon and Lowe [4] provide a method for accurate

camera tracking using learned models of a scene and SIFT

features [5]. SIFT descriptors, albeit accurate and robust,

are computationally very expensive, and multiple alterna-

tive descriptors have been proposed [6–8], which in some

cases allow the tracking of objects at up to 1000Hz [7].

On the other hand, object recognition and pose estimation

for robotics are often explored in terms of accuracy and

recognition rate [3, 9] but seldom in terms of efficiency and

speed. However, recent advances in household robotics [10–

13] are pushing the limits of efficiency and accuracy.

III. ALGORITHM OUTLINE

MOPED starts with a precomputed database of objects

learned offline. Each object consists of of 3D points with

associated SIFT descriptors, constructed as described in [3].

MOPED recognizes and extracts the pose of all objects in

the database (Fig. 3) that are present in the image using the

following operations (also detailed in Fig. 2):

1. Feature Extraction. Extract salient features from im-

age.

2. Feature Matching. Create correspondences between

extracted features in the image and object features stored

in the database. For efficiency, approximate matching tech-

niques are used, but produce more outliers.

3. Keypoint Clustering. Cluster in image space features

matched to a particular object. Spatially close features are

more likely to belong to the same object instance.

4. Coarse object detection. Process each cluster inde-

pendently in search of objects. RANSAC and Levenberg-

Marquardt (LM) are used to find object instances that are

loosely consistent with each object’s geometry in spite of

outliers. The number of RANSAC and LM iterations are

kept low to accept very coarse object detections.

5. Cluster merging. As the same object might be present

in multiple clusters, re-cluster image space features using

poses resulting from Step 4. New, larger clusters are created,

that often contain all consistent features for a whole object.

6. Fine object detection. After Steps 4 and 5, most

outliers have been removed, and it is reasonable to assume

that each of the new clusters contain features corresponding

to only one instance of an object. Repeat LM and RANSAC

with a larger number of iterations to estimate a single pose

from each cluster.

7. Pose Filtering. A final merging step removes any mul-

tiple detection that might have survived, by again merging

together object instances with similar poses.



Fig. 4. MOPED Benchmarks. For the sake of clarity, only half of the detected objects are marked. (a) The Rotation Benchmark: MOPED processes
this scene 36.4x faster than POSESEQ. (b) The Zoom Benchmark: MOPED processes this scene 23.4x faster than POSESEQ. (c) The Simple Movie
Benchmark. (d) The Complex Movie Benchmark.

IV. BENCHMARKS

We present four novel benchmarks (Fig. 4) designed to

stress test every component of our system. We performed

all experiments on a 2.33GHz quad-core Intel(R) Xeon(R)

E5345 CPU, 4 GB of RAM and a nVidia GeForce GTX 260

GPU running Ubuntu 8.04 (32 bits).

A. The Rotation Benchmark

The Rotation Benchmark is a set of synthetic images that

contains highly cluttered scenes with up to 400 cards in

different sizes and orientations. This benchmark is designed

to test MOPED’s scalability with respect to the database size,

while keeping a constant number of features and objects.

We have generated a total of 100 independent images for

different resolutions (1400 × 1050, 1000 × 750, 700 × 525,

500×375 and 350×262). Each image contains from 5 to 80

different objects and up to 400 simultaneous object instances.

B. The Zoom Benchmark

The Zoom Benchmark is a set of synthetic images that

progressively zooms in on 160 cards until only 12 cards are

visible. This benchmark is designed to check the scalability

of MOPED with respect to the total number of detected

objects in a scene. We generated a total of 145 independent

images for different resolutions (1400 × 1050, 1000 × 750,

700× 525, 500× 375 and 350× 262). Each image contains

from 12 to 80 different objects and up to 160 simultaneous

object instances. This benchmark simulates a board with 160

cards seen by a 60◦ FOV camera at distances ranging from

1100mm to 300mm. The objects were chosen to have the

same number of features at each scale. Each image has over

25000 features.

C. The Simple Movie Benchmark

Synthetic benchmarks are useful to test a system in

controlled conditions, but are a poor estimator of the per-

formance of a system in the real world. Therefore, we

provide two real-world scenarios for algorithm comparison.

The Simple Movie Benchmark consists of a 1900-frame

movie at 1280 x 720 resolution, each image containing up

to 18 simultaneous object instances.

D. The Complex Movie Benchmark

The Complex Movie Benchmark consists of a 3542-frame

movie at 1600 x 1200 resolution, each image containing up

to 60 simultaneous object instances. The database contains

91 models and 47342 SIFT features when running this

benchmark. It is noteworthy that the scenes in this video

present particularly complex situations, including: several

objects of the same model contiguous to each other, which

stresses the clustering step; overlapping partially-occluded

objects, which stresses RANSAC; and objects in particularly

ambiguous poses, which stresses both LM and the merging

algorithm, that encounter difficulties determining which pose

is preferable.



TABLE I

SIFT VS. SURF: RECOGNITION PERFORMANCE IN ZOOM BENCHMARK.

Avg. Processing Time (ms) Avg. Recognized Objects

SIFT 223.072 13.83

SURF 86.136 6.27

V. ALGORITHMIC IMPROVEMENTS

A. Feature Extraction

The most computationally expensive step of MOPED is

the extraction of point features from each new image, for

which the original POSESEQ used a CPU-optimized version

of SIFT. We considered SURF features[6], considered as a

fast alternative to SIFT. Table I compares the usage of SURF

vs. SIFT in terms of computation time and object recognition

performance. SURF proves to be 2.59x faster than SIFT at

the cost of detecting 54% less objects. In addition, the per-

formance gap between both methods decreases significantly

as the size of the images increases, as shown in Fig. 7. On

our benchmarks we found SIFT to be the almost always the

better alternative.

B. Feature Matching

Computing the correspondences between image features

and the object database can be expensive. Matching is done

in the 128-dimensional space of SIFT features. Depending

on the number of objects, the database can contain over

50,000 features. Depending on the resolution and complexity

of the scene, the image can contain over 10,000 features.

Approximate approaches to compute correspondences build

kd-trees out of sets of points. POSESEQ, following [5], uses

Approximate 2-Nearest Neighbors (2-ANN) and performs a

distance ratio test between the first 2 NNs to remove outliers.

A kd-tree is built for each model in the database once offline,

and is independently matched against every new image, with

a complexity of O(FimMdb log(Fm)), where Fim is the

number of features on the image, Mdb the number of models

in the database, and Fm the mean number of features for each

model.

When Mdb is large, this approach is vastly inefficient

as the cost of accessing each object kd-tree dominates. A

naı̈ve alternative, which we term SIMPLE, builds just one

kd-tree containing the features from all models. This solution

has a complexity of O(Fim log(MdbFm)). However, the

distance ratio is not an adequate measure when using such a

large number of features, because of the presence of similar

features in different objects.

Alternatively, one can consider a k-ANN approach (with

k > 2). k-ANN implementations using kd-trees can provide

more neighbors without significantly increasing their com-

putational cost, as they are often a byproduct of the process

of obtaining the nearest neighbor. The distance ratio is then

applied to the 2 nearest neighbors from the same model, if

available. If the nearest neighbor is the only neighbor for

a given model, we apply the distance ratio with the next

neighbor on the list. This algorithm is the default choice for

MOPED.

Finally, MOPED also supports a GPU-based exact feature

matching algorithm. The parallel nature of the brute force

Fig. 5. Scalability of feature matching algorithms with respect to the size
of the database, in the Rotation Benchmark 1400× 1050 resolution).

TABLE II

FEATURE MATCHING ALGORITHMS IN THE SIMPLE MOVIE

BENCHMARK.

Correspondences: After Matching After clustering Final

GPU 3893.7 853.2 562.1

POSESEQ 3893.6 712.0 449.2

SIMPLE 1778.4 508.8 394.7

MOPED 3624.9 713.6 428.9

Matching Time(ms) Objects Found

GPU 253.34 8.8

POSESEQ 498.586 8.0

SIMPLE 129.85 7.5

MOPED 140.36 8.2

matching algorithm suits the GPU, and allows it to be

faster than the ANN approach when Fm is not too large.

Given that this algorithm scales linearly with the number of

features instead of logarithmically, we can match each model

independently without performance loss.

Fig. 5 compares the cost of the different alternatives on the

Rotation Benchmark. POSESEQ and GPU scale linearly with

respect to Mdb, while SIMPLE and MOPED scale almost

logarithmically. We show MOPED using k = 90 and k = 30.

The value of k adjusts the speed and quality behavior of

MOPED between POSESEQ (k = ∞) and SIMPLE (k = 2).

The recognition performance of MOPED when using the

different strategies is shown in Table II. GPU provides the

ground truth as it is exhaustive. POSESEQ comes closest

in raw matching accuracy with MOPED a close second.

However, the number of objects detected are nearly the same.

The matching speed of MOPED is, however, significantly

better than POSESEQ. Feature matching in MOPED thus

provides a big speed increase without sacrificing much

accuracy.



Fig. 6. Total latency using single pass vs. double pass pose estimation, in
the Simple Movie Benchmark.

C. Decoupling Detection and Pose Estimation

The duplicated RANSAC-LM steps implemented in

MOPED represent an important advantage over the single-

step detection of POSESEQ. The first pass (Coarse Object

Detection) uses a low number of LM iterations, detecting

hypotheses with a coarse pose. The second pass (Fine Object

Detection) is performed only after filtering most outliers and

merging clusters together, so we use a higher number of

iterations to estimate object poses with high precision. The

combined result when tested on all benchmarks produced

equivalent robustness and precision, but required fewer total

iterations. A representative test on the Simple Movie Bench-

mark is shown in Fig. 6.

VI. ARCHITECTURE OPTIMIZATIONS

Our algorithmic improvements were focused mainly on

boosting the scalability and robustness of the system. The

architectural improvements of MOPED are obtained as a

result of a re-implementation designed to make the best

use of all the processing resources of standard compute

hardware. In particular, we use GPU-based processing, intra-

core parallelization using SIMD instructions, and multi-core

parallelization in coarse grained algorithms. The memory

subsystem, including bandwidth transfer and cache manag-

ing, has also been carefully optimized.

All optimizations have been devised to reduce the latency

between the acquisition of an image and the output of the

pose estimates, to enable faster response times from our

robotic platform.

A. GPU and Embarrassingly Parallel Problems

State-of-the-art CPUs have a peak performance of 12.8
GFLOPS, which can be extended to 76.8 GFLOPS if using

vectorization instructions like SSE and Single Precision

(SP) Floating Point. State-of-the-art GPUs have a theoretical

maximum performance of more than 2000 SP GFLOPS.

To use GPU resources efficiently, input data needs to be

transferred to the GPU memory. Then, algorithms are exe-

cuted simultaneously on all shaders, and finally recover the

results from the GPU memory. As communication between

shaders is expensive, the best GPU-performing algorithms

are those that can be divided evenly into a large number

of simple tasks. This class of easily separable problems is

called Embarrassingly Parallel Problems (EPP).

1) SIFT vs. SURF on GPU: Most feature extraction algo-

rithms consist of an initial keypoint detection step followed

by a descriptor calculation for each keypoint, and both of

them are EPP. Keypoint searching algorithms can process

Fig. 7. SIFT-CPU vs. SIFT-GPU vs. SURF-GPU, in the Rotation
Benchmark at different resolutions. (left) SIFT-CPU vs. SIFT-GPU: 658%
performance increase in SIFT extraction on GPU. (right) SIFT-GPU vs.
SURF-GPU: SURF is 91% faster than SIFT at the cost of lower matching
performance.

each pixel from the image independently. They may need

information about neighboring pixels, but they do not need

results from them. After obtaining the list of keypoints, the

respective descriptors are also calculated independently.
MOPED uses SIFTGPU[8] as its main feature extraction

algorithm. MOPED supports GPU-SURF[14], but it is not

used by default as it is less robust than SIFT. If compatible

graphics hardware is not detected MOPED automatically

reverts back to performing SIFT extraction on the CPU,

which is an OpenMP-enabled, CPU-optimized version of

SIFT. We compare the latency of the three implementations

in Fig. 7. The comparison is as expected: GPU versions of

both SIFT and SURF provide tremendous improvements over

their non-GPU versions. We were particularly impressed with

the almost tenfold increase in speed with SIFTGPU.
2) GPU Matching: Performing feature matching in the

GPU requires a different approach than the standard Approx-

imate Nearest Neighbor techniques. Using ANN, each match

involves searching in a kd-tree, which requires fast local

storage and a heavy use of branching that are not suitable

for GPUs.
Instead of using ANN, [8] suggest the use of brute force

nearest neighbor search on the GPU, which scales quite well

as vector processing matches perfectly the GPU structure. In

Fig. 5, brute force GPU matching is shown to be faster than

ANN and provide better quality matches because it is not

approximate. We believe that as graphics hardware becomes

cheaper and more powerful, brute-force feature matching

might be the inevitable choice.

B. Intra-core optimizations

SSE instructions allow MOPED to perform 12 floating

point instructions per cycle instead of just one. The 3D to

2D projection function, critical in the pose estimation steps,

is massively improved by using SSE-specific algorithms

from[15][16].
The memory footprint of MOPED is very lightweight

for current computers. In the case of a database of 100

models and a total of 102.400 SIFT features, the required

memory is less than 13MB. Runtime memory footprint is

also small: a scene with 100 different objects with 100

matched features each would require less than 10 MB of

memory to be processed. This is possible thanks to using

dynamic and compact structures, such as lists and sets, and

removing unused data as soon as possible. In addition, SIFT

descriptors are stored as integer numbers in a 128-byte array



Fig. 8. Intra-CPU performance of MOPED relative to POSESEQ, in the
Complex Movie Benchmark. (top) Total time/frame relative to POSESEQ.
(bottom) Time/frame without counting SIFT extraction.

Fig. 9. Pose estimation performance in multi-core CPUs, in the Complex
Movie Benchmark.

instead of a 512-byte array. Cache performance has been

greatly improved due to the heavy use of memory-aligned

and compact data structures [17].

The main data structures are kept constant throughout the

algorithm, so that no data needs to be copied or translated

between steps. k-ANN feature matching benefits from com-

pact structures in the kd-tree storage, as smaller structures

increase the probability of staying in the cache for faster

processing. In feature clustering, the performance of Mean

Shift is boosted 250 times through the use of compact data

structures.

The overall performance increase is over 67% in CPU

processing tasks (see Fig. 8).

C. Symmetric Multiprocessing

Symmetric Multiprocessing (SMP) is a multiprocessor

computer architecture with identical processors and shared

memory space. Most multi-core based computers are SMP

systems. OpenMP is a framework to use multi-processing in

SMP systems that we implement in MOPED.

We use Best Fit Decreasing to balance the load between

the cores using the size of a cluster as an estimate of its

processing time, given that each cluster of features can be

processed independently. Tests on a subset of 10 images

from the Complex Movie Benchmark show performance

improvements of 55% and 174% on dual and quad core

CPUs respectively (see Fig. 9).

D. Multi Frame Scheduling

In order to maximize the system throughput, MOPED can

benefit from GPU-CPU pipeline scheduling[18]. In order to

use all available computing resources, a second execution

thread can be added, as shown in Fig. 10. However, the

GPU and CPU execution times are not equal in real scenes,

and one of the execution threads often needs to wait for the

Fig. 10. (top) Standard MOPED uses the GPU to obtain the SIFT features,
and then uses the CPU to process them. (bottom) Addition of a second
execution thread does not substantially increase the system latency.

Fig. 11. (top) Limiting factor: CPU. GPU thread processing frame N+1
must wait for CPU processing frame N to finish, increasing latency. (bottom)
Limiting factor: GPU. No substantial increase in latency.

other (see Fig. 11), so the latency can increase significantly,

especially if using high resolution images (see Fig. 12).

VII. SCALABILITY

The Simple Movie Benchmark consists of a 1900-frame

movie at 1280 x 720 resolution, each image containing up

to 18 simultaneous object instances. This is the type of

scene that our robot HERB [10] encounters daily in its

environment. Using a database of 11 models, our results

show a 5.74x speed increase using Standard MOPED and a

7.44x speed increase with Pipelined MOPED (see Table III).

Mean latency is 303ms and 368ms, respectively.

The Complex Movie Benchmark consists of a 3542-frame

movie at 1600 x 1200 resolution, each image containing up

to 60 simultaneous object instances. The Complex Movie

Benchmark contains extreme clutter, seldom seen in the

real world. MOPED shines in this scenario, outperforming

POSESEQ by over 30x (Table III). This demonstrates the

extreme scalability of MOPED. This is further reinforced

in the synthetic benchmarks. In Fig. 13 and Fig. 14, we

Fig. 12. Impact of Pipeline Scheduling. (left) Throughput (FPS) compari-
son. (right) Added latency using pipeline scheduling. Since GPU processing
is the bottleneck on very small resolutions, these are the best scenarios for
pipeline scheduling. At 500x380, throughput is increased by 95.6% and
latency is increased by 9%.



Fig. 13. Scalability experiments in the Rotation Benchmark. (left) Latency
with respect to image resolution. (right) Latency with respect to database
size.

Fig. 14. Scalability with respect to the number of objects in the scene in
the Zoom Benchmark. There are 160 small objects at 1100mm and only 12
large objects at 300mm. (left) Scalability of POSESEQ. (right) Scalability
of MOPED.

show the processing time for SIFT extraction and model

matching as well as the total processing time per frame for

both methods. MOPED’s flat latency curve is particularly

encouraging.

Our experiments show that both MOPED and POSESEQ

scale quadratically in execution time with respect to image

resolution. However, POSESEQ’s performance is highly de-

pendent on the number of different objects in the database,

while MOPED’s performance is almost constant (Fig. 13).

The Zoom Benchmark shows a relatively constant number

of detected features (Fig. 14), although 160 objects are

detected at 1100mm and only 12 are visible at 300mm. It

is interesting to notice that the required time is inversely

proportional to the number of objects in the image, i.e. a

small number of large objects are more demanding than

large numbers of small objects. In addition, SIFTGPU exhibit

bimodal behavior at the memory limit of the graphics card.

TABLE III

PERFORMANCE IN SIMPLE AND COMPLEX MOVIE BENCHMARKS.

Simple Movie FPS Latency (ms) Latency Sd (ms)

Pipelined MOPED 3.49 368.445 92.3431

Standard MOPED 2.70 303.229 69.2581

POSESEQ 0.47 2124.30 286.538

Complex Movie Latency (ms)

MOPED 2173.83

POSESEQ 65568.2

VIII. CONCLUSIONS

We have demonstrated MOPED, an algorithmic and ar-

chitectural evolution of the state-of-the-art POSESEQ object

recognition and pose estimation algorithm. MOPED is scal-

able, fast, and robust, utilizing all of the processing power,

in- and out-of-core, available in modern computers. As a

result, it achieves low latency and high scalability, enabling

robots to perceive and interact in cluttered dynamic scenes.

IX. ACKNOWLEDGMENTS

This material is based upon work partially supported by
the National Science Foundation under Grant No. EEC-
0540865. Alvaro Collet is partially supported by Caja Madrid
fellowship. Special thanks to the members of the Personal
Robotics project at Intel Labs Pittsburgh, Lily Mummert and
Babu Pillai for useful discussions and comments.

REFERENCES

[1] T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-
speed batting motion using hybrid trajectory generator.” in
IEEE ICRA, 2006.

[2] A. Namiki, T. Komuro, and M. Ishikawa, “High-speed
sensory-motor fusion for robotic grasping,” Measurement Sci-
ence and Technology, vol. 13, pp. 1767–1778, Nov. 2002.

[3] A. Collet, D. Berenson, S. S. Srinivasa, and D. Ferguson,
“Object recognition and full pose registration from a single
image for robotic manipulation,” in IEEE ICRA. Kobe: IEEE,
May 2009, pp. 48–55.

[4] I. Gordon and D. G. Lowe, “What and where: 3d object
recognition with accurate pose,” in Toward Category-Level
Object Recognition, 2006, pp. 67–82.

[5] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, pp. 91–110, 2004.

[6] H. Bay, T. Tuytelaars, and A. L. Van Gool, “Surf: Speeded
up robust features,” in ECCV, 2006.

[7] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg, “Pose tracking from natural features on
mobile phones,” in Mixed and Augmented Reality, 2008.

[8] C. Wu, “SiftGPU: A GPU implementation of scale invari-
ant feature transform (SIFT),” http://cs.unc.edu/ ccwu/siftgpu,
2007.

[9] F. Vikstén, R. Söderberg, K. Nordberg, and C. Perwass,
“Increasing Pose Estimation Performance using Multi-cue
Integration,” in IEEE ICRA, 2006.

[10] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. C.
Romea, R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner,
and J. M. Vandeweghe, “Herb: a home exploring robotic
butler,” Auton. Robots, vol. 28, no. 1, pp. 5–20, Jan. 2010.

[11] A. Saxena, J. Driemeyer, and A. Ng, “Robotic Grasping of
Novel Objects using Vision,” IJRR, vol. 27, no. 2, pp. 157–
173, 2008.

[12] “The pr platform,” http://pr.willowgarage.com, 2008.
[13] H. Nguyen, C. Anderson, A. Trevor, A. Jain, Z. Xu, and

C. Kemp, “El-e: An Assitive Robot that Fetches Objects from
Flat Surfaces,” in Proc. Human Robot Interaction, 2008.

[14] N. Cornelis and L. Van Gool, “Fast scale invariant feature
detection and matching on programmable graphics hardware,”
in IEEE CVPR, 2008.

[15] J. van Waveren, “From quaternion to matrix and back,” 2005.
[16] G. Conte, S. Tommesani, and F. Zanichelli, “The long and

winding road to high-performance image processing with
MMX/SSE,” in Proceedings of the Fifth IEEE Int. Wshp. on
Comp. Architectures for Machine Perception, 2000, p. 302.

[17] T. J. Dysart, B. J. Moore, L. Schaelicke, and P. M. Kogge,
“Cache implications of aggressively pipelined high perfor-
mance microprocessors,” in Int. Sym. on Performance Analysis
of Systems and Software, 2004.

[18] K. S. Chatha and R. Vemuri, “Hardware-software partition-
ing and pipelined scheduling of transformative applications,”
IEEE Trans. VLSI, 2002.


