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Abstract. Global models of the oceanic nitrogen cycle are

subject to many uncertainties regarding the representation of

the relevant biogeochemical processes and of the feedbacks

between nitrogen sources and sinks that determine space- and

timescales on which the global nitrogen budget is regulated.

We investigate these aspects using a global model of ocean

biogeochemistry that explicitly considers phosphorus and ni-

trogen, including pelagic denitrification and nitrogen fixation

as sink and source terms of fixed nitrogen, respectively. The

model explores different parameterizations of organic matter

sinking speed, oxidant affinity of oxic and suboxic reminer-

alization, and regulation of nitrogen fixation by temperature

and different stoichiometric ratios. Examination of the initial

transient behavior of different model setups initialized from

observed biogeochemical tracer distributions reveal changes

in simulated nitrogen inventories and fluxes particularly dur-

ing the first centuries. Millennial timescales have to be re-

solved in order to bring all biogeochemical and physical pro-

cesses into a dynamically consistent steady state. Analysis of

global properties suggests that not only particularly particle

sinking speed but also the parameterization of denitrification

determine the extent of oxygen minimum zones, global nitro-

gen fluxes, and hence the oceanic nitrogen inventory. How-

ever, the ways and directions in which different parameter-

izations of particle sinking, nitrogen fixation, and denitrifi-

cation affect the global diagnostics are different suggesting

that these may, in principle, be constrained independently

from each other. Analysis of the model misfit with respect to

observed biogeochemical tracer distributions and fluxes sug-

gests a particle flux profile close to the one suggested by Mar-

tin et al. (1987). Simulated pelagic denitrification best agrees

with the lower values between 59 and 84 Tg N yr−1 recently

estimated by other authors.

1 Introduction

The balance of fixed, i.e., biotically available, nitrogen in

the global ocean is determined by processes that either re-

move it (denitrification, anammox, burial) from or add it (ni-

trogen fixation, atmospheric, riverine supply) to the ocean.

The magnitude of these biotic and abiotic fluxes, and there-

fore their combined effects on the oceanic fixed nitrogen

inventory, is currently not well constrained. A decade ago,

some geochemical and model-based studies suggested rather

high fluxes (Codispoti et al., 2001; Gruber, 2004), sometimes

with a high imbalance between sources and sinks (Codispoti,

2007), but more recent studies point towards lower, and bal-

anced fluxes (Eugster and Gruber, 2012; DeVries et al., 2013;

Somes et al., 2013), in accordance with earlier geochemical

estimates (Gruber and Sarmiento, 1997).

Water-column denitrification and anammox are restricted

to suboxic zones, i.e., regions with low oxygen, most notable

the Arabian Sea, the eastern tropical North Pacific (ETNP)

and the eastern tropical South Pacific (ETSP). Because ni-

trogen fixers experience their optimum growth in warm (sur-

face) waters they are not generally expected to thrive in wa-

ters colder than 18 ◦C (Breitbarth and LaRoche, 2005; Bre-

itbarth et al., 2007), and are therefore thought to be limited

to low latitudes. So far, it is not entirely clear, whether areas

of denitrification and nitrogen fixation are tightly coupled in

space (Deutsch et al., 2007) or not (Landolfi et al., 2013).

Some spatial decoupling could be deduced from the distri-

bution of reported direct measurements of nitrogen fixation

(Luo et al., 2012) and also from the temperature limitation of

nitrogen fixers and generally cold surface waters associated

with eastern boundary upwelling regions overlying regions

of nitrogen loss. In case of spatial segregation of nitrogen loss

processes and nitrogen fixation, not only the processes them-
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selves (and their representation in models) but also the feed-

back processes and the physical transport processes linking

the respective regions are of importance. Relatively slow bio-

geochemical turnover rates may also be the reason for rather

long residence times of nitrogen in the ocean, which are esti-

mated to range between ≈ 1000–4000 years (see Eugster and

Gruber, 2012, and citations therein).

Attempts to further constrain the residence time of ma-

rine nitrogen will benefit from a better understanding of both

the spatial relation of nitrogen loss processes and nitrogen

fixation, and the individual biogeochemical processes them-

selves. For example, nitrogen loss processes are associated

with, and sensitive to, low (and therefore difficult to mea-

sure) concentrations of organic substrates and oxidants. Di-

rect incubation measurements have led to different interpre-

tations of the relevance and magnitude of various processes

that determine the loss of fixed nitrogen in different ocean

regions (e.g., Kuypers et al., 2005; Ward et al., 2009; Bulow

et al., 2010). A possible explanation for the apparent discrep-

ancies is the dependence on substrate availability, which is

difficult to conserve in incubation experiments (Ward et al.,

2008; Galan et al., 2009; Kalvelage et al., 2013). Geochem-

ical estimates based on nutrient ratios and/or the distribution

of nitrogen isotopes, on the other hand, integrate over space

and time, and therefore depend on our knowledge and as-

sumptions of underlying physics.

Model-based studies, especially when combined with ob-

servations, may provide some insight into the associated pro-

cesses, and help to integrate over space and time. As noted

above, one of the two main drivers in setting the global bud-

get and distribution of nitrogen is denitrification, a process

confined to suboxic zones. Unfortunately, many models suf-

fer from systematic deficiencies in the spatial representation

of low oxygen areas, with often too large and too intense

oxygen minimum zones (OMZs). Possible reasons include

deficiencies in the description of diapycnal mixing (Duteil

and Oschlies, 2011) and an insufficient representation of

the equatorial current system and equatorial deep jets (Di-

etze and Loeptien, 2013). Applying strongly increased zonal

isopycnal diffusivities in the equatorial current band, Getzlaff

and Dietze (2013) could improve the performance of coarse-

resolution models with respect to oxygen and temperature

in the eastern equatorial Pacific (EEP). Duteil et al. (2014)

recently showed that a very fine (1/10◦) spatial resolution

can significantly improve the representation of the eastern

tropical Atlantic OMZs by lateral ventilation via the better-

resolved equatorial current system.

Another possible cause of model deficiencies is the repre-

sentation of the sensitivity of nitrogen loss processes to am-

bient oxygen as a rather abrupt switch that does not seem to

match recent observations made in the Peruvian upwelling

zone (Kalvelage et al., 2011). However, global models that

parameterize combined cycles of oxygen and nitrate often

represent oxidant dependency in a rather coarse manner, as a

hyperbolic or step function of oxygen only (e.g., Moore and

Doney, 2007; Schmittner et al., 2008), sometimes involving

switches to prevent nitrate from depletion (e.g., Moore and

Doney, 2007; Assmann et al., 2010; Ilyina et al., 2013). A re-

cent version of PISCES involves a complex parameterization

for denitrification of dissolved organic carbon, depending on

oxygen and different forms of dissolved inorganic nitrogen

(Aumont et al., 2015). Otherwise, more detailed models of

oxidant and substrate cycles are usually run on smaller spa-

tial and shorter temporal scales (e.g., Gutknecht et al., 2013).

On the other hand, given the long residence times of nitro-

gen mentioned above, model integration times of decades to

centuries (e.g., experiments carried out by Moore and Doney,

2007; Landolfi et al., 2013) may not be sufficient to fully ex-

amine effects of different parameterizations of nitrogen fixa-

tion and/or denitrification and their mutual interactions and

feedbacks mediated by oceanic transport and mixing pro-

cesses.

Therefore, a correct representation of nitrogen fluxes in

global biogeochemical ocean models is challenging as it en-

tails a large variety of spatial and temporal scales, from cell-

scale biological–chemical interactions up to global circula-

tion time and space scales. In order to investigate combined

effects of small scale, biogeochemical processes such as ox-

idant affinities, and large-scale, long-term nitrogen budgets,

we here present results from an efficient, global offline model

for passive tracers transport coupled to a detailed pelagic

model of combined phosphorus, nitrogen, and oxygen cy-

cles, simulated over millennia. Spin-up times of the model

experiments of several thousand years are sufficient to draw

conclusions about feedbacks and the net impact of these pro-

cesses on the global nitrogen distribution, budget, and fluxes.

We note that the model is meant as a first step towards

a global model that includes aerobic and anaerobic rem-

ineralization in the oceanic (both pelagic and benthic) en-

vironment, including all elemental cycles associated with

these processes. To address the abovementioned problems

in a stepwise manner, we here first focus on the sensitiv-

ity of nitrogen budgets to remineralization length scale, oxi-

dant affinity of remineralization under oxic and suboxic con-

ditions, temperature dependency, and stoichiometry of ni-

trogen fixation. Benthic denitrification is not explicitly in-

cluded in the current model that focuses on pelagic processes.

We also at this point neglect the iron cycle, and its effects

on autotrophic biomass production, particularly on that of

cyanobacteria. Both will be addressed in follow-up versions

of this model.

The paper is organized as follows: after an introduction

into the model structure and experimental setup, we present

model results against the background of observed concentra-

tions, inventories, and fluxes. We finally discuss some char-

acteristic features of the model that may shed some light on

the dynamics of other model simulations as well as oceanic

processes.
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Figure 1. Diagram depicting the model structure of the phosphorus core (grey boxes and arrows), associated oxygen fluxes (blue), and

nitrogen fluxes (purple). Nitrogen is coupled to the biogeochemical, phosphorus-based core via fixed stoichiometric ratios, which is indicated

by purple borders around these compartments. Fixed nitrogen loss and gain are indicated by minus and plus signs. Their magnitude for

different model setups, is shown in Figs. 10 and 9, as well as Table 2.

2 Model description and experiments

The model simulates the cycling of nutrients (N), phyto-

plankton (P), zooplankton (Z), detritus (D) and dissolved or-

ganic matter (DOM), as described for phosphorus by Kriest

et al. (2012). It further parameterizes burial of organic mat-

ter (as phosphorus and associated elements) at the sea floor,

and, to close the mass budget, its resupply via river runoff

(Kriest and Oschlies, 2013). Hereafter, we refer to these pre-

vious model types as CTL (no burial) and BUR (burial at the

sea floor). In Sect. 2.1, we only present a brief overview of

the P-based pelagic core of the model, which is common to

CTL and BUR, and refer the reader to Kriest et al. (2012)

and Kriest and Oschlies (2013) for a detailed presentation

and analysis of these models.

In these previous, phosphorus-only model versions, rem-

ineralization of organic matter back to inorganic nutrients

(i.e., phosphate) continued even in the absence of oxy-

gen, thereby parameterizing some implicit, non-oxygen oxi-

dants. We have now extended this model to include oxidant-

dependent remineralization, together with an explicit repre-

sentation of the nitrogen cycle, where both oxygen and ni-

trate may act as final electron acceptors for oxidation of

organic matter. Consistent stoichiometric balance of all or-

ganic substrates, products, and oxidants is achieved follow-

ing Paulmier et al. (2009). In Sect. 2.2 we describe in de-

tail this Model of Oceanic Pelagic Stoichiometry (hereafter

called MOPS; see also Fig. 1 for a sketch illustrating the

model structure, and the different elemental cycles).

The biogeochemical model description will be supple-

mented by a presentation of the different experiments carried

out with the biogeochemical model, and by a brief introduc-

tion into the Transport Matrix Method (TMM), the underly-

ing physical forcing, and some technical aspects.

2.1 The biogeochemical phosphorus core

We assume that different biogeochemical processes operate

in different domains of the water column, with fast and dy-

namic turnover of phosphorus in the upper ocean layers, and

a slow turnover of phosphorus below. To specify processes

operating only in the euphotic zone (0–100 m, or k ≤ 6 for

the chosen z level circulation model with level index k), we

use the symbol He(k) ≡ H(ke −k), where H(k) is the Heav-

iside step function. He(k) is 1 in the euphotic layers, and 0

outside.

2.1.1 Euphotic zone

Phytoplankton (P) light limitation f (I) is parameterized fol-

lowing Evans and Parslow (1985), using a globally uni-

form initial slope of the P–I curve of 0.025 (W m−2)−1 d−1

(see also Kriest et al., 2010). Its maximum growth rate

µPHY depends on temperature, with µPHY(T ) = 0.6e
T

15.65

(following Eppley, 1972, in the notation by Schmittner et al.,

2008) and T given in degrees Celsius. We assume that the

most limiting resource determines the phytoplankton growth

rate. Thus, phytoplankton growth is parameterized as PP =

µPHY PHY min(f (I ),g(X1,X2, ..)) where g(X1,X2, ..) is a

Monod function of only phosphate in models CTL and BUR,

and a function of both phosphate and nitrate in MOPS (see

Sect. 2.2 below). Phytoplankton experience a linear loss term

www.geosci-model-dev.net/8/2929/2015/ Geosci. Model Dev., 8, 2929–2957, 2015
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Table 1. Model parameters for aerobic and anaerobic remineralization and nitrogen fixation in different experimental setups of model MOPS.

BASE: reference experiment; NFixNoTemp: no temperature dependence of nitrogen fixation; NFixStoich: changed stoichiometry of nitrogen

fixation; DenHigh: increased nitrate affinity of denitrification; RemHigh: increased oxidant (nitrate and oxygen) affinity of total (oxic and

suboxic) remineralization. All other models parameters are as in Kriest and Oschlies (2013), experiment BUR.

Name BASE NFixNoTemp NFixStoich DenHigh RemHigh Unit

d 16 16 16 16 16 mmol N : mmol P

R−O2:P 170 170 170 170 170 mmol O2 : mmol P

minO2
4 4 4 4 1 mmol O2 m−3

KO2
8 8 8 8 2 mmol O2 m−3

R−NO3:P 120 120 120 120 120 mmol NO3 : mmol P

minNO3
4 4 4 4 4 mmol N m−3

KNO3
32 32 32 8 8 mmol N m−3

µ∗
NFix

2 2 2 2 2 nmol N L−1 d−1

yes no yes yes yes

d∗ 16 16 14.28 16 16 mmol N : mmol P

of λPHY = 0.03 d−1, and are grazed by zooplankton. Zoo-

plankton grazing (G) is described by a Holling III function,

i.e., via a quadratic dependence on phytoplankton, a maxi-

mum grazing rate of µZOO = 2 d−1, and half-saturation con-

stant of KZOO = 0.088 mmol P m−3. Only a fraction of graz-

ing, ǫZOO = 0.75, is effectively ingested, the rest is released

again via egestion. Zooplankton experience a quadratic mor-

tality κ = 3.2 (mmol P m−3)−1 d−1. We assume that a frac-

tion σDOP = 0.15 of egestion, zooplankton mortality, and

phytoplankton loss is released as dissolved organic phospho-

rus (DOP), the rest becomes detritus. Zooplankton further ex-

perience a linear loss term of λZOO = 0.03 d−1.

2.1.2 All layers

Phytoplankton and zooplankton die with a constant mor-

tality rate of λ′
PHY = λ′

ZOO = 0.01 d−1, again only when

present above the lower concentration threshold Pmin =

10−6 mmol P m−3. The dead organisms immediately disin-

tegrate to DOP.

SM
PHY =λ′

PHY max(0,PHY − Pmin) (1)

SM
ZOO =λ′

ZOO max(0,ZOO − Pmin) (2)

DOP in all layers remineralizes with a constant rate

λ′
DOP = 0.17/360 d−1, but only when present above lower

limit Pmin. In models CTL and BUR this is simply a linear

function of organic substrate:

SR
DOP = λ′

DOP max(0,DOP − Pmin). (3)

Likewise, modeled detritus remineralizes with a fixed rate

λ′
DET = 0.05 d−1:

SR
DET = λ′

DET max(0,DET − Pmin). (4)

In MOPS, remineralization of organic matter depends on

the availability of oxidants, as detailed below. Remineralized

DOP and detritus directly feed into the phosphate pool; there-

fore, phosphate gain due to remineralization is

SR
PO4

= SR
DOP + SR

DET. (5)

We assume that the sinking speed of detritus increases lin-

early with depth, according to w(z) = a z, where z is the cen-

ter of a layer. We note that in steady state, with constant λ′
DET

and in the absence of any other processes, this parameteri-

zation can be regarded as equivalent to the so-called Mar-

tin (power law) curve of particle flux: F(z) ∝ z−b, with the

exponent b given by b = λ′
DET/a (see Kriest and Oschlies,

2008, for a detailed discussion). Previous model experiments

have shown a large sensitivity of global tracer distributions

to variations in the particle flux profile (Kriest and Oschlies,

2008; Kriest et al., 2012; Kriest and Oschlies, 2013). We ad-

dress the potential sensitivity of model results to changes in

particle sinking speed via a set of experiments, as detailed

further below.

2.1.3 Oxygen and air–sea gas exchange

The air–sea gas exchange (top layer only) is parameter-

ized following the OCMIP-2 protocol, with piston veloc-

ity and saturation computed from a monthly mean wind

speed, temperature, and salinity derived from the MIT ocean

model, and interpolated linearly onto the current time step.

Oxygen also changes due to photosynthesis and reminer-

alization, using a fixed stoichiometric ratio of R−O2:P =

170 mmol O2/mmol P. While in earlier models CTL and

BUR, for O2 ≥ 4 mmol O2 m−3 oxygen decreased propor-

tionally to the concentration of organic matter:

SR
O2

= R−O2:P

(

SR
DOP + SR

DET

)

, (6)

in MOPS we will consider the dependence of remineraliza-

tion on oxygen explicitly, as described on in Sect. 2.2 below.

Geosci. Model Dev., 8, 2929–2957, 2015 www.geosci-model-dev.net/8/2929/2015/



I. Kriest and A. Oschlies: MOPS-1.0 2933

2.1.4 Benthic exchange

A fraction of detritus deposited at the sea floor (at the bot-

tom of the deepest vertical box) is buried instantaneously

in some hypothetical sediment. Non-buried detritus is resus-

pended into the water column, where it is treated as regular

detritus again. The phosphorus budget is closed on an annual

timescale through resupply via river runoff. For more details

about burial and its budget closure see Kriest and Oschlies

(2013).

2.1.5 Source-minus-sink terms

The following equations describe the source-minus-sink

terms for the earlier, phosphorus-based models presented in

Kriest et al. (2010), Kriest et al. (2012), and Kriest and Os-

chlies (2013), including oxygen, coupled via a constant sto-

ichiometry. Remineralization under oxic conditions is indi-

cated by terms SR
X, where X is the affected tracer. Additional

terms that account for processes in suboxic environments in

model MOPS are termed SD
X , and explained below. Super-

script M denotes mortality terms of phyto- and zooplankton.

S(PO4) =(−PP + λZOO ZOO)He(k) + SR
PO4

+ SD
PO4

(7)

S(PHY) =(PP − G − λP PHY)He(k) − SM
PHY (8)

S(ZOO) =

(

ǫZOO G − λZOO ZOO − κZOO ZOO2
)

He(k) − SM
ZOO (9)

S(DOP) =σDOP

[

(1 − ǫZOO)G + κZOO ZOO2
+ λPHY PHY

]

He(k) + SM
PHY + SM

ZOO − SR
DOP − SD

DOP (10)

S(DET) =(1 − σDOP)
[

(1 − ǫZOO)G + κZOO ZOO2
+ λPHY PHY

]

He(k) − SR
DET − SD

DET +
∂w DET∗

∂z
,

DET∗
= max(0,DET − Pmin) (11)

S(O2) =R−O2:P (PP − λZOO ZOO)He(k) − SR
O2

(12)

While in the earlier models, CTL and BUR described

above aerobic remineralization was not limited by oxygen

(see Eqs. 3 and 4), in MOPS we now assume a hyperbolic

limitation of this process, affecting terms SR
DET, SR

DOP, SR
O2

,

and SR
PO4

in Eqs. (7) and (10)–(12). Additionally, in suboxic

environments denitrification takes place, introducing terms

SD
DET, SD

DOP, SD
O2

, and SD
PO4

to Eqs. (7) and (10)–(12). Beside

the addition of nitrate as seventh state variable, in MOPS we

further account for multiple nutrient limitation in term PP of

Eqs. (7) and (8). These changes will be explained in detail in

the following section.

2.2 MOPS: oxidant-dependent remineralization and

the nitrogen cycle

At this stage, we implement N in the simplest possible way,

by considering only nitrate, but neither nitrite nor ammo-

nium, as additional nutrient. Further, we assume that all bi-

ological components (i.e., phytoplankton, zooplankton, de-

tritus and DOM) have a constant stoichiometry, given by

d = N : P = 16. Thus, for MOPS we only add one additional

state variable to the phosphorus-based core model, namely

nitrate. Adding nitrogen in this way requires the parameter-

ization of three different processes: multiple nutrient limi-

tation of phytoplankton growth, nitrogen fixation, and het-

erotrophic nitrate reduction under suboxic conditions (here-

after loosely termed “denitrification”):

2.2.1 Multiple nutrient limitation

We assume a minimum function for the co-limitation of phy-

toplankton growth by phosphate and nitrate. First, we define

the limiting nutrient L via

L = min(PO4,NO3/d). (13)

If L > 10−6, we then evaluate the combined light and nu-

trient limitation function in analogy to Kriest et al. (2012);

i.e., we define total phytoplankton production as

PP = µPHY PHY min

(

f (I),
L

KPHY + L

)

, (14)

where µPHY(T ) and f (I) are the maximum growth

rate and light limitation as defined above, and KPHY =

0.03125 mmol P m−3 is the half-saturation constant for nu-

trient uptake. This changes term PP in Eqs. (7) and (8).

2.2.2 Oxidant-dependent remineralization

Remineralization of organic matter by (implicit) bacteria de-

pends on organic substrate concentration and the availabil-

ity of oxidants. In MOPS, dependency of both aerobic and

anaerobic remineralization on organic substrates (detritus,

dissolved organic matter) is parameterized as a first-order

process. We further assume that these processes depend on

oxidant availability following a saturation curve:

lO2
=

O2
∗ × O2

∗

O2
∗ × O2

∗ + KO2
× KO2

, (15)

where we only consider oxygen above a certain threshold

(O2
∗ = max(O2 − minO2

,0)); minO2
= 4 mmol O2 m−3 and

KO2
= 8 mmol O2 m−3 are the minimum concentration and

half-saturation constant for the heterotroph’s uptake of oxy-

gen in setup BASE, respectively (see below and Table 1, for

sensitivity experiments related to oxidant affinity). To restrict

oxygen consumption per time step, we first calculate the the-

oretical oxygen demand for respiration uT
O2

:

uT
O2

= lO2

(

λ′
DET DET∗

+ λ′
DOP DOP∗

)

R−O2:P 1t, (16)

www.geosci-model-dev.net/8/2929/2015/ Geosci. Model Dev., 8, 2929–2957, 2015
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where λ′
DET = 0.05 [d−1] and λ′

DOP = 0.17/360 [d−1] are

the remineralization rates of detritus and dissolved organic

phosphorus, respectively, as defined above (Sect. 2.1). 1t =

1/16 d is the time step length of the biogeochemical model.

R−O2:P = 170 again denotes mole oxygen required per mole

phosphorus remineralized (see Table 1). As above, we re-

strict the minimum detritus and DOP concentration for the

onset of remineralization: DET∗ = max(0,DET − Pmin) and

DOP∗ = max(0,DOP−Pmin). The aerobic decay rate limita-

tion is then

sO2
= lO2

min(O2
∗,uT

O2
)

uT
O2

. (17)

Instead of applying Eqs. (3) and (4), the decay of DOP and

detritus under oxic conditions is now defined by

SR
DOP =λ′

DOP max(0,DOP − Pmin) sO2
, (18)

SR
DET =λ′

DET max(0,DET − Pmin) sO2
. (19)

As above, decay of organic matter results in a gain of

phosphate, as defined by Eq. (5), and a loss of oxygen as

in Eq. (6).

In addition to aerobic decay, we now assume that under

suboxic conditions (here defined as regions where O2
∗ <

36 mmol O2 m−3) denitrification replaces aerobic remineral-

ization with R−NO3:P = 0.8×R−O2:P−d being the nitrate de-

mand of denitrification (Paulmier et al., 2009, their Table 1).

Stoichiometric budget considerations suggest that on long

timescales, and over large spatial areas both anaerobic am-

monium oxidation and canonical denitrification (here: het-

erotrophic reduction of nitrate to dinitrogen) result in the

same nitrogen loss, and are undistinguishable in the model

context (see Appendix A). We therefore refrain from resolv-

ing these processes explicitly, but refer to denitrification as

oxidation of organic matter via reduction of nitrate to dini-

trogen.

The rate of fixed nitrogen removal ultimately depends on

the availability of organic matter, nitrate, and the absence of

oxygen. Motivated by recent observations of anammox and

nitrate reduction under rather high (up to 25 mmol O2 m−3)

ambient oxygen concentrations, and by the potential co-

occurrence of both aerobic (ammonium oxidation) and

anaerobic processes (Kalvelage et al., 2011), we parameter-

ize a gradual increase of denitrification with decreasing oxy-

gen concentrations. By using Eq. (15), we ensure a smooth

transition between regimes of low and high oxidant concen-

trations; again we define a quadratic rate limitation of this

process, but reduce it by the inverse oxygen consumption

rate:

lNO3
=

NO3
∗ × NO3

∗

NO3
∗ × NO3

∗ + KNO3
× KNO3

×
(

1 − lO2

)

, (20)

where NO3
∗ = max(NO3 − minNO3

,0); minNO3
=

4 mmol N m−3 and KNO3
= 32 mmol N m−3 are the

minimum concentration and half-saturation constant for the

denitrifiers’ uptake of nitrate in setup BASE, respectively.

We note that the choice of the half-saturation constants of

aerobic and anaerobic processes is rather arbitrary; however,

as shown above the only gradual decrease of nitrate reduc-

tion (likewise for anammox) under increasing oxygen con-

centrations is supported by observations. To account for the

uncertainty in oxidant sensitivity of oxic and suboxic rem-

ineralization, we have carried out experiments with differ-

ent half-saturation constants, which are explained below (see

also Table 1).

As for oxygen, we restrict the use of nitrate to the amount

available:

uT
NO3

= lNO3

(

λDET DET∗
+ λDOP DOP∗

)

R−NO3:P 1t. (21)

The rate limitation of anaerobic decay is then

sNO3
= lNO3

min(NO3
∗,uT

NO3
)

uT
NO3

. (22)

Organic matter decay under suboxic conditions (denitrifi-

cation) can thus be described by

SD
DOP =λ′

DOP max(0,DOP − Pmin) sNO3
, (23)

SD
DET =λ′

DET max(0,DET − Pmin) sNO3
. (24)

The associated phosphate changes are described in anal-

ogy to Eq. (5):

SD
PO4

= SD
DOP + SD

DET. (25)

Aerobic decay of organic matter increases nitrate accord-

ing to stoichiometric ratio d, denoted as SR
NO3

. Under suboxic

conditions, there is further a decrease of nitrate due to deni-

trification, SD
NO3

:

SR
NO3

=d SR
PO4

, (26)

SD
NO3

=R−NO3:P SD
PO4

, (27)

with stoichiometric ratio R−NO3:P as defined above.

2.2.3 Nitrogen fixation

The simulated removal of fixed nitrogen via denitrification

is counteracted by supply of fixed nitrogen through pelagic

cyanobacteria in the euphotic zone. Unfortunately, sampling

species such as Trichodesmium presents methodological dif-

ficulties (Breitbarth and LaRoche, 2005). For example, as-

suming one nifH gene copy per cell results in calculated

abundances up to 105 cells L−1 for station ALOHA near

Hawaii (Goebel et al., 2007), corresponding to concentra-

tions up to about 0.35 mmol C m−3. However, this is an or-

der of magnitude higher than previous estimates from mi-

croscopic counts of Trichodesmium in this region (Letelier

and Karl, 1996). Despite considerable recent efforts, global
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data sets for biomass remain relatively sparse, with only 2280

biomass estimates when gridded onto a 1◦ × 1◦ grid with 33

vertical layers (Luo et al., 2012).

Given these uncertainties, and the sparse observations of

cyanobacteria biomass, we refrained from explicit simula-

tion of cyanobacteria, and instead assumed zero net growth,

with immediate release of fixed nitrogen as nitrate (which

also assumes immediate nitrification in our model that does

not resolve different inorganic nitrogen species). By implic-

itly assuming constant cyanobacteria biomass, and a relax-

ation of the nitrate : phosphate ratio via immediate release of

fixed nitrogen, our approach is similar to the one described

by Maier-Reimer et al. (2005) and Ilyina et al. (2013).

Temperature dependence is parameterized based on ob-

servations of the diazotrophic filamentous cyanobacterium

Trichodesmium, which is responsible for a large fraction

of global nitrogen fixation (Breitbarth et al., 2007). In-

stead of taking the fourth-order polynomial fit of maximum

growth rate to temperature presented in the study by Bre-

itbarth et al. (2007), we have approximated their function

for maximum growth by a second-order polynomial, fit-

ted over 20–34 ◦C. The resulting function has a maximum

rate of 0.2395 d−1 at T = 26.82 ◦C. We then normalized the

temperature-dependent growth rate by the maximum rate. By

doing so, we obtain a T -limitation curve that varies between

0 and 1 for a temperature range of 20–34 ◦C, and is zero else-

where:

f1(T ) = max

(

0,
−0.0042T 2 + 0.2253T − 2.7819

0.2395

)

. (28)

To examine the effect of temperature limitation, we car-

ried out an experiment where we skipped the temperature

dependency for nitrogen fixation (denoted as NFixNoTemp;

see also Table 1 and below for more details).

Using a rather geochemical approach to restore fixed nitro-

gen towards the Redfield stoichiometry, we further assume

that – in the presence of phosphate – nitrogen fixation is reg-

ulated by the nitrate : phosphate ratio:

f2(N
∗) = max

(

0,1 −
NO3

d∗ PO4

)

PO4 > 10−6, (29)

where d∗ is the ratio that sets the stoichiometry of this pro-

cess (see below). Having defined the temperature and nu-

trient regulation of nitrogen fixation, both of which are al-

lowed to vary between 0 and 1, we finally assign a rate of

maximum nitrogen uptake by cyanobacteria: under optimum

conditions of T = 26.82 ◦C and nitrate ≪ phosphate, we set

µ∗
NFix = 2 nmol N L−1 d−1. This value is within the range of

many observed rates: oceanic rates usually range between

0 and ≈ 0.2 nmol N L−1 h−1, with some higher values up to

3.1 nmol N L−1 h−1 (Mulholland, 2007, we exclude one ex-

tremely high value from the Arafura Sea). The compilation

by Staal et al. (2007, their Table 5) gives values between 0.07

to 17.3 nmol N L−1 d−1, with most values in the lower range.

A value of 2 nmol N L−1 d−1 is also encompassed by the re-

cent, comprehensive data compilation by Luo et al. (2012).

However, in blooms or in certain incubations, rather high

values were found (up to 30 nmol N L−1 d−1; Goebel et al.,

2007; Staal et al., 2007; Kitajima et al., 2009). We thus con-

sider our maximum value of 2 nmol N L−1 d−1 a more con-

servative estimate.

Note that combining our maximum uptake of

2 nmol N L−1 d−1 with the maximum normalized growth rate

of 0.2395 d−1 implies a constant cyanobacteria concentration

of 8.4 nmol N L−1, equivalent to about 0.05 mmol C m−3,

when using a C : N ratio of 6.3. This concentration is

lower than an estimate of 0.35 mmol C m−3 from nifH gene

copies (Goebel et al., 2007), but close to the microscopic

estimates of Trichodesmium cells (Letelier and Karl, 1996).

The recent compilation by Luo et al. (2012) suggests very

high biomass (up to ≈ 10 mmol C m−3) in the Caribbean

Sea, and at the surface of the tropical Atlantic and the

Arabian Sea. However, many open-ocean values especially

in the Pacific Ocean and/or deeper layers are rather low

(< 0.1 mmol C m−3). Thus, our implicit biomass estimates

are in line with the observed estimates.

Choosing constant cyanobacteria concentrations, and the

abovementioned dependence on nitrate : phosphate ratios, we

therefore follow a rather pragmatic approach that parameter-

izes nitrogen fixation with immediate release of fixed nitro-

gen as nitrate as antagonist to the fixed N loss during denitri-

fication (in mmol N m−3 d−1):

SNFix
NO3

= µ∗
NFix f1(T )f2(N

∗). (30)

Note that nitrogen fixation with immediate remineraliza-

tion of the fixed N to nitrate theoretically requires 1.25 moles

oxygen = 2.5 oxygen atoms per mole nitrate produced. So

far, this is not included explicitly in the model; instead, we

assume that this loss will be compensated for immediately

through air–sea flux of oxygen.

2.2.4 Nitrate as a new state variable

Combining the abovementioned processes and interactions,

with changes of nitrate due to basic biological processes in

the euphotic zone (phytoplankton growth; zooplankton graz-

ing), the time rate of change for nitrate is

S(NO3) =d (−PP + λZOO ZOO)He(k) + SNFix
NO3

+ SR
NO3

− SD
NO3

. (31)

2.3 Sensitivity experiments

Many of these newly added processes occur only in cer-

tain areas, sporadically, and at low rates. Their parameter-

izations are therefore subject to uncertainties. Here we try

to address some of the uncertainties by carrying out a set

of sensitivity experiments, in which we simulate the differ-

ent model versions with changed parameters, over the same
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spatial and temporal domain, and use the same physical forc-

ing and setup. These sensitivity experiments address two al-

ternative parameterizations of nitrogen fixation, and two ex-

periments with changed oxidant affinities. As earlier studies

have shown an impact of particle sinking speed on large-scale

tracer distributions, we carry out these experiments before

the background of different particle flux profiles.

2.3.1 Nitrogen fixation

In the standard setup BASE, nitrogen fixation relaxes the nu-

trient ratio to the stoichiometric relation used for the other

biogeochemical processes, namely d∗ = d = 16 (see Ta-

ble 1). We further carried out a sensitivity experiment NFixS-

toich, where this process depends on a ratio d∗ = 14.28,

which is the observed globally averaged nitrate : phosphate

ratio. Another sensitivity experiment (NFixNoTemp) em-

ploys temperature-independent nitrogen fixation.

2.3.2 Oxidant affinity of remineralization

In the standard model setup BASE, aerobic remineraliza-

tion depends on the half-saturation constant (affinity) for

oxygen uptake of KO2
= 8 mmol O2 m−3, while denitrifi-

cation is inhibited by oxygen, and is further determined

by a half-saturation constant for nitrate uptake, KNO3
=

32 mmol N m−3 (see Table 1). The latter value is at the up-

per end of experimentally derived estimates (Jensen et al.,

2009). A sensitivity experiment DenHigh investigates the

model’s response to a higher nitrate affinity of denitrify-

ing bacteria, as represented by a lower half-saturation con-

stant for nitrate (KNO3
= 8 mmol N m−3), while another ex-

periment RemHigh examines the model’s sensitivity to con-

comitant increase in nitrate and oxygen affinity of aerobic

and anaerobic remineralization (KNO3
= 8 mmol N m−3 and

KO2
= 2 mmol O2 m−3, together with a lower oxygen level

for the onset of denitrification; see Table 1).

2.3.3 Particle sinking speed

As noted above, in our model we assume that particle sink-

ing speed w increases linearly with depth z: w = w(z) = a z,

which, under equilibrium conditions and absence of other

processes beside sinking and remineralization, would re-

sult in a particle flux profile defined by F(z) ∝ z−b, where

b = λ′
DET/a (see also Kriest and Oschlies, 2008). For all five

model setups (BASE, DenHigh, RemHigh, NFixNoTemp

and NFixStoich), we carried out experiments with varying

sinking speed parameter a. To facilitate direct comparison to

the particle flux profiles determined by Martin et al. (1987) or

Van Mooy et al. (2002), we keep λ′
DET constant and express

changes in parameter a in terms of b. The changes we applied

would correspond to a variation of b between 0.6435 (fast

sinking) over 0.858 (medium) to 1.0725 (slow sinking) for

all model experiments, and additionally to b = 0.429 (very

fast sinking) and b = 1.287 (very slow sinking) for the refer-

ence setup BASE. We note that in MOPS, due to reduction

of accomplished remineralization by lack of oxidants (fac-

tors sO2
and sNO3

in Eqs. 19 and 24, respectively), the local,

effective Martin exponent b may be smaller than its nominal

value.

2.4 Circulation model, spin-up, and initialization

Global model simulations were carried out using the TMM

method described in detail by Khatiwala (2007).

In the TMM method the three-dimensional (3-D),

advective–diffusive transport (including all sub-grid scale pa-

rameterizations) of an ocean circulation model is represented

in the form of sparse transport matrices (TM; see also Khati-

wala, 2007, for more details on TMs extraction), which are

then used to move any passive tracer. This method allows

for the efficient and convenient testing of many different bio-

geochemical models in an offline mode. We used 12 monthly

mean TMs derived from the Estimating the Circulation and

Climate of the Ocean (ECCO) project, which provides cir-

culation fields that yield a best fit to hydrographic and re-

mote sensing observations over a 10-year period, on a spatial

grid of 1◦ × 1◦ horizontal resolution with 23 vertical levels

(Stammer et al., 2004). We note that this model may exhibit

too efficient ventilation (Graven et al., 2012), a feature that

may be common for many coarse-scale circulation models.

TMs derived from ECCO were also applied by Kriest and

Oschlies (2013), albeit with a different temporal resolution.

We note that tests with the reference biogeochemical model

and a shorter time step showed only small differences, partic-

ularly when compared to the impact of biogeochemical pa-

rameters.

The nitrogen cycle model MOPS presented here operates

on many timescales, determined by the relatively fast bio-

logical surface processes, slower deep remineralization, and

the global ocean circulation. In addition, if areas of fixed

nitrogen gain and loss are spatially segregated, timescales

of physical transport between these regions are of impor-

tance. To ensure full equilibration of all processes involved,

we spun-up the coupled system over 9000 years, using two

time steps per day for tracer transport, and 16 time steps

per day for the calculation of biogeochemical source-minus-

sink terms (Kriest and Oschlies, 2013, used 1/8 d for tracer

transport, and 1/64 d for biogeochemical processes, simu-

lated over 3000 years). A spin-up time of 9000 years should

be sufficient to ensure almost complete pelagic tracer equi-

libration, which may be as long as ≈ 10 000 years (see also

Wunsch and Heimbach, 2008), but can depend on the surface

boundary condition (Wunsch and Heimbach, 2008; Primeau

and Deleersnijder, 2009; Siberlin and Wunsch, 2011). In our

case, near-equilibrium conditions are also reflected by a very

small disequilibrium of total fixed nitrogen inventory, which,

in our model experiments, changes less than 0.003 % be-

tween year 8900 and 9000.
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We initialized all experiments from observed distribu-

tions of phosphate, oxygen, and nitrate (monthly mean val-

ues for January above 500 m, and annual-mean values be-

low), as provided by Garcia et al. (2006a, b). Initialization of

other tracers has been carried out as in Kriest and Oschlies

(2013). By adding a nitrogen cycle to the prior phosphorus-

based model, nonlinear switches in oxidants are introduced.

Though it has, to our knowledge, never been shown that

marine biogeochemical models can exhibit multiple steady

states, other components of the Earth system, such as ocean

circulation, atmospheric circulation, land ice and terrestrial

vegetation all have been found capable of displaying situa-

tions with multiple steady states. To test whether indeed the

final model state is independent of its initial conditions, we

carried out a number of test simulations with very different

initial biogeochemical tracer distributions with model setup

BASE, with a spatial resolution and circulation as in Kriest

et al. (2012). These did always reach the same steady state,

even if the model was started from near-zero oxygen and ni-

trate, indicating the robustness of the model results shown

below. The final tracer distribution of the model being inde-

pendent of its initialization, the data sets of observations (that

went into initialization) may be used for model evaluation.

Model simulations were mostly carried out on an SGI Al-

tix ICE 8200 Linux cluster at the North-German Supercom-

puting Alliance (HLRN, www.hlrn.de), using different ver-

sions 3.x of PETSc (Portable, Extensible Toolkit for Scien-

tific Computation; www.mcs.anl.gov/petsc/). Using a total of

256 cores, 3000 years of simulation took between 10 and

12 h; i.e., a full spin-up could be performed in less than 36 h.

We note that experiments on other hardware/platforms (e.g.,

Intel Sandybridge; CrayXC30) and with different versions of

PETSc (up to version 3.5) resulted in very small – if any –

differences in model results.

3 Results

3.1 Transient concentrations, inventories, and fluxes

Figure 2 indicates that, depending on particle sinking speed,

model spin-up times of at least a few millennia are neces-

sary in order to fully equilibrate the different processes in the

model. Within the first few decades, all model setups started

from observed tracer concentrations initially lose some oxy-

gen. The loss continues for experiments with moderate or

fast-sinking speed, until oxygen approaches a global average

equilibrium value that is about 16 to 18 mmol O2 m−3 lower

than that observed for the fast-sinking scenario, and between

8 and 12 mmol O2 m−3 lower for moderate sinking speed.

Model experiments with slower sinking speed show a dif-

ferent transient response: after the initial decline of oxygen,

global average oxygen content increases again, until it almost

approaches its initial value (setup BASE), or even exceeds it

(setups DenHigh and RemHigh). Results of setup NFixSto-

ich are very similar to those of BASE, and not shown here.

A change in sign is also exhibited by the transient be-

havior of the globally averaged nitrate concentration in all

slow scenarios of setups BASE, NFixStoich, DenHigh, and

RemHigh (Fig. 2, lower panels). All model setups investi-

gated exhibit an initial, very rapid loss of nitrate within the

first few years (see also Fig. 3, left panels). This initial loss

of nitrate can be attributed to surface processes, converting

the inorganic dissolved tracers into organic forms (dissolved

and particulate organic matter) as can be deduced from the

almost constant total N found in almost all model config-

urations (Fig. 2, lower panels). In addition to this process,

the loss of nitrate by denitrification, and its supply via ni-

trogen fixation affects the inventory of this tracer on longer

timescales. MOPS’ nitrate inventory starts to increase within

the first few centuries, until it finally approaches an equilib-

rium value which is slightly (slow) or up to 2.5 mmol N m−3

(fast) higher than at the beginning. An exception to this is

experiment DenHigh, where, due to the higher nitrate affin-

ity of denitrification, equilibrium nitrate in the slow sinking

scenarios is slightly less than initially prescribed. Because in

DenHigh more nitrate is used for oxidation, oxygen is higher

than in setup BASE.

Total fixed nitrogen is not affected by the abovementioned

conversion of inorganic to organic nitrogen; therefore it lacks

the initial rapid decline exhibited by the nitrate inventory

(Fig. 2, lower panels). Total nitrogen first declines slightly in

all slow model scenarios, except setup NFixNoTemp, which,

due to the widespread occurrence of nitrogen fixation, may

quickly compensate the loss through denitrification. After

this initial decline, fixed nitrogen, like nitrate, equilibrates

to values higher than initially prescribed – again with the ex-

ception of the slow scenario of model setup DenHigh.

Most important for the transient behavior of fixed nitrogen

are fluxes in the eastern tropical and subtropical Pacific, as il-

lustrated in Fig. 3. Phosphate averaged over two regions EEP

(here east of 140◦ W, ±10◦) and LLP (low latitudes of the

tropical and subtropical Pacific; ±40◦ latitude) shows only

small initial variations (less then 0.1 mmol P m−3 variation

all experiments; no figure). In contrast, nitrate in the EEP

decreases strongly within the first few hundred years, most

strongly for the slow sinking scenario, down to a deficit of

3.7 mmol N m−3 (Fig. 3, upper left panel). Nitrate then ap-

proaches a minimum, first in scenario fast (around year 200).

The slow sinking scenario takes much longer to reach that

minimum (about 400 years). The initial decline of nitrate is

subsequently followed by a slight increase during the next

centuries in all scenarios. In the LLP, nitrate exhibits a far

less pronounced transient (Fig. 3, mid left panel), compa-

rable to that of phosphate. The different transients of both

dissolved tracers phosphate and nitrate are mirrored in the

nitrate : phosphate ratio, which shows a strong decline (by

about 0.5–1 units) in the EEP within the first centuries, but
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Figure 2. Transient behavior of global average oxygen (top), nitrate (bottom, dashed lines), and fixed nitrogen (bottom, straight lines) in

different setups of model MOPS, plotted as deviation from initial average (x̄(t) − x̄(0), where x̄ is either global average oxygen or nitrate).

Average tracers are calculated from snapshots of day 360 every 10th year within the first 200 years, and every 100th year thereafter. Line

colors denote different sinking speeds: red – fast, black – medium, blue – slow. Model identifier is shown on top of each column. For better

visibility on all timescales, we present the time axis on a logarithmic scale. Note that as models were started from observed global average

tracers, any deviation from the dashed (zero) line also denotes the model bias.

only small variations in the LLP (Fig. 3, second from left

panels).

The strong variation of nitrate in the EEP is caused by vig-

orous denitrification, from initially ≈ 40 Tg N yr−1 to ≈ 10–

50 Tg N yr−1 by year 900, while nitrogen fixation proceeds at

a constant, low level of < 10 Tg N yr−1 (Fig. 3, third left from

panels). The difference between the two fluxes in this region

results in a net loss of nitrogen through local biogeochem-

ical processes (Fig. 3, right panels). Despite this loss, fixed

nitrogen in the EEP remains relatively constant after some

centuries. The almost balanced fixed nitrogen budget, in the

presence of high (biogeochemical) nitrogen loss, can be at-

tributed to supply from the adjacent area LLP, which shows

high nitrogen fixation, but relatively low denitrification. The

resulting positive (between ≈ 10–40 Tg N yr−1) net N flux

into the LLP region matches the loss in the EEP. Thus, af-

ter the first millennium, the more or less stable fixed nitrogen

inventories in both EEP and LLP regions can be explained

by transport between the two regions, which each display lo-

cal disequilibria between dominant N loss (EEP) and N gain

(LLP). The interactions between these two regions are also

reflected in the initial transient pattern of global fluxes, which

more or less mirror the combined fluxes of both regions (bot-

tom panels of Fig. 3).

3.2 Steady-state concentrations, inventories, and fluxes

After the 9000 year spin-up, the final (near steady state)

model solution is independent of its initialization, and solely

reflects the combined effects of biogeochemistry and circula-

tion. We can therefore use a comparison to observed tracers

and fluxes in order to assess model skill and performance.

In the next sections, we first examine model fit against ob-

servations of dissolved inorganic tracers. Examination of ni-

trogen fluxes against the quite sparse observational data sets

can provide a first insight into the adequacy of some model

parameterizations. Comparison to more robust, bulk diag-

nostics helps to examine the general model behavior. We fi-

nally combine some of the model–data comparisons to a to-

tal, global misfit function that should help to decide between

the different model setups and scenarios.

3.2.1 Patterns of dissolved inorganic tracers

In steady state all models exhibit similar volume distributions

of phosphate (see left panels of Fig. 4 for model setups BUR

and BASE; the other model setups show similar results, see

auxiliary Fig. 1), which can be attributed to the fact that they

are based on the same phosphorus core. Variations in sinking

speed play only a small role for the volume distribution of

phosphate. Surprisingly, the models also show very little dif-
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Figure 3. From left to right: transient behavior of average nitrate, average nitrate : average phosphate ratio, fixed nitrogen fluxes, and net

fixed nitrogen flux in the eastern equatorial Pacific (EEP; east of 140◦ W, ±10◦ latitude; top), surrounding low-latitude Pacific region (LLP;

±40◦ latitude; middle), and for the global ocean (bottom) in reference setup BASE. Diagnostics are plotted as deviation from initial average

(x̄(t) − x̄(0), where x̄ is global average diagnostic). Average tracers (fluxes) are calculated from snapshots of day 360 (concentrations) or

annual integrals (fluxes) every 10th year within the first 200 years, and every 100th year thereafter. Line colors denote different sinking

speeds: red – fast, black – medium, blue – slow. Dashed lines in plots for fixed N loss and gain denote the losses (denitrification), straight

lines the gains (nitrogen fixation).

ference in the volume distribution of oxygen, which matches

observations quite well particularly for the slow sinking sce-

narios. Even the introduction of the nitrogen cycle, together

with oxidant-dependent remineralization, does not strongly

affect the distribution of this tracer. Nitrate is simulated quite

well by the slow sinking scenarios of model setups that ex-

plicitly include this tracer (MOPS). The explicit simulation

of nitrate in MOPS results in an even better representation

than nitrate diagnosed a posteriori from phosphate simulated

by BUR, times a constant stoichiometric ratio of 16 (see

straight lines in upper right panel of Fig. 4). Replacing this

ratio for conversion by the observed global mean ratio of

14.28 (dashed lines in right panels of Fig. 4) results in a bet-

ter fit for all model experiments, yet this latter, empirically

derived nitrate diagnostic provides only a weak constraint on

model performance, because of its dependency on observa-

tions.

A common way to look at model performance with re-

spect to observed tracers, is to combine information about

simulated and observed standard deviations, correlation co-

efficient (R), and centered (unbiased) root mean square er-

ror (hereafter referred to as RMSE′) in a so-called Taylor

plot (Taylor, 2001). Figure 5 shows these diagnostics for

phosphate, oxygen, and nitrate of model setups CTL, BUR,

and BASE. Obviously, all models deteriorate with respect to

phosphate with increasing sinking speed, as indicated by too

high a standard deviation, decreasing correlation coefficient,

and RMSE′. However, differences for slow settling speeds

are rather small. Likewise, except for extreme sinking ve-

locities, model results are quite similar when examining the

fit to observed oxygen. However, results are more variable

(between model types, and with respect to different metrics)

when nitrate is considered, either diagnosed from phosphate

times 16 for models CTL and BUR, or simulated explicitly

for model BASE. First, for all model setups we find a quite

strong overestimate of variance, and decrease in fit (RMSE

and RMSE′) especially for fast-sinking velocities. Further,

model BASE at first sight seems to exhibit a far worse fit

to observations (with respect to correlation coefficient R and

RMSE′) than BUR. This is in striking contrast to the right
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Figure 4. Volume distributions of global phosphate (a, d), oxygen (b, e), and nitrate (c, f) for model BUR of Kriest and Oschlies (2013,

upper panels a–c), and experiment BASE of MOPS (lower panels d–f). Grey bars denote the corresponding observations (Garcia et al.,

2006a, b). Colors denotes different sinking speeds. Blue: slow sinking; black: medium sinking; red: fast sinking. Nitrate for model BUR

(without nitrogen cycle) has been calculated from phosphate ×16. In addition, we present nitrate calculated from phosphate ×14.28 for the

slow sinking scenario as dashed blue lines.

Figure 5. Taylor diagrams showing comparison of simulated phosphate (left), oxygen (middle), and nitrate (right) to observations (Garcia

et al., 2006a, b). Symbols indicate model setups: squares: CTL; inverted triangles: BUR; stars: BASE. Symbol size indicates model sinking

speed, with size increasing from b = 0.429 (fast) to b = 1.287 (slow); x and y axis denotes standard deviation normalized by observed

global standard deviation of each tracer. Radial dashed lines denote the correlation coefficient. Dotted lines centric lines denote the centric

(unbiased) RMSE (E′ in Taylor, 2001). Colors denote total RMSE (E in Taylor, 2001), normalized by observed standard deviation.

panels of Fig. 4, which indicate a better fit of nitrate sim-

ulated by BASE than nitrate diagnosed from BUR’s phos-

phate. However, it is important to note that RMSE′ does not

account for the bias in total nitrate concentration (see also

Taylor, 2001; Jolliff et al., 2009). Therefore, although BUR

matches the general pattern of nitrate distribution (via phos-

phate; panel A of Fig. 4), its average concentration does not

match the observed average of ≈ 31 mmol NO3 m−3, as indi-

cated by its overestimate of ocean volume containing nitrate

concentrations > 40 mmol NO3 m−3 (see panel c of Fig. 4).

As a result, model BASE for each sinking speed shows a bet-

ter fit to observations with respect to the total RMSE (color

scale of Fig. 5). In contrast to the normally used Taylor plot

RMSE′, which would favor model BUR over BASE, the

RMSE includes both the match to the pattern and to total

tracer inventory, which are, in our case, best reproduced by

model BASE.
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Figure 6. Phosphate (left), nitrate (middle), and oxygen (right) averaged over ±5◦ and 0–6500 m, and plotted from 180–80◦ W, for different

models, plotted as difference to average observed concentrations. Black: model BUR (without nitrogen); nitrate is calculated from 16 ×

phosphate (i.e., from the stoichiometry prescribed by the model, straight lines) as well as from 14.28 × phosphate (i.e., from the global

observed ratio, dashed lines). Red: MOPS, setup BASE; Pink: MOPS, setup DenHigh; Blue: MOPS, setup RemHigh. Thin lines denote

model experiments with fast-sinking speed, thick lines model experiments with slow sinking speed. Note that model axes for phosphate,

nitrate and oxygen scale in a ratio of 1 : 16 : 170 (i.e., according to aerobic stoichiometry). See the discussion paper for a plot of absolute

concentrations.

Despite the overall good match of the global distribution

of dissolved tracers to observations, models may differ in re-

gions which are particularly sensitive to the combined ef-

fects of oxygen supply, sinking, and remineralization. For

example, as shown above (Fig. 3), the eastern tropical Pa-

cific seems to play a large role for of global fluxes, and thus

global tracer inventories. To investigate this region further, in

Fig. 6 we have a closer look at nutrients and oxygen averaged

over ±5◦ in the eastern Pacific. The analysis is similar to the

one presented in Dietze and Loeptien (2013), but integrates

over the upper 6500 m, and thus disregards mismatches in the

vertical distribution of tracers.

Simulated regional phosphate varies only slightly

(< 0.2 mmol P m−3) between the different model exper-

iments (Fig. 6, left panel). On the other hand, simulated

nitrate shows large variations of up to almost 20 mmol N m−3

towards the American coast, much larger than would be

expected from the variations in phosphate and some typical

stoichiometry (middle panel of Fig. 6). In this area, partic-

ularly the slow sinking scenarios of all model setups that

include nitrogen strongly underestimate observed nitrate.

At the same time these model experiments are in quite

good agreement with observed oxygen, especially when

simulated with a high affinity of denitrification for nitrate

(Fig. 6, right panel). The fast-sinking model experiments

that yield a somewhat better fit to observed equatorial

nitrate content, however, systematically underestimate the

equatorial oxygen inventory. Thus, all configurations of

MOPS show mismatches for either oxygen or nitrate in this

region, and no experiment is able to sufficiently represent

both oxidants at the same time.

Diagnosing nitrate from phosphate in the phosphorus-only

model BUR yields a quite good agreement to observations

between 150 and 110◦ W when applying the global observed

nitrate : phosphate ratio of 14.28. East of 110◦ W the model

with slow sinking speed overestimates nitrate. Using a sto-

ichiometric ratio of 16 as typical for marine phytoplankton

composition (Anderson, 1995), and also typically used in nu-

merical models, results in a strong overestimate of observed

nitrate by model BUR over the entire transect. Hence, only

with the help of observed nutrient ratios will this model agree

with observed nitrate, impeding the use of this tracer for

model evaluation.

3.2.2 Patterns of fixed nitrogen sources and sinks

Simulated vertically integrated nitrogen fixation in steady

state (year 9001) is ≤ 100 µmol N m−2 d−1 for large

parts of the subtropical ocean. Higher values of up to

200 µmol N m−2 d−1 occur mostly in the Pacific, the western

Atlantic Ocean, occasionally in the Caribbean Sea, and in the

Arabian Sea and Bay of Bengal (upper panels of Figs. 7 and

8). Depending on the parameterization of sinking speed and

biogeochemistry, the central Pacific Ocean is characterized

by large areas with fluxes > 160 µmol N m−2 d−1. Slow sink-

ing speed, especially when combined with high nitrate affin-

ity of denitrification (setup DenHigh) increases steady-state

nitrogen fixation, which can be attributed to the compensa-

tion of an enhanced fixed nitrogen loss (Fig. 7; see also be-

low). Simulated nitrogen fixation rates mostly lie well within

the range of earlier estimates for the open ocean (e.g., Mahaf-

fey et al., 2005; Staal et al., 2007; Kitajima et al., 2009). Note

that the model setups due to the here-employed maximum

fixation rate of 2 nmol N m−3 d−1 cannot not reach some high

values observed by Kitajima et al. (2009) and Staal et al.

(2007). The comprehensive data set by Luo et al. (2012,

their Fig. 6a) shows enhanced integrated nitrogen fixation of
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Figure 7. Vertically integrated nitrogen fixation (mmol m−2 d−1, panels a–c), and vertically integrated denitrification (mmol m−2 d−1,

panels d–f), for reference setup BASE with three different particle sinking speeds slow (panels a, d), medium (panels b, e), and fast (panels

c, f). Note nonlinear color scales. Numbers on top of each panel give global integrated flux of year 9001.

≈ 200–1000 µmol N m−2 d−1 in and near the Caribbean Sea,

where our model experiments underestimate nitrogen fixa-

tion. Data coverage in the Pacific Ocean is less dense and

shows values between ≈ 20 and 200 µmol N m−2 d−1. This

range is also covered by model simulations.

Because denitrification is restricted to regions with low

oxygen, it is not as widely distributed as nitrogen fixation.

Areas of simulated denitrification are the Arabian Sea and

Bay of Bengal, the eastern tropical and subtropical Pacific

extending north- and southwards to latitudes of about 30◦,

and the upwelling off Namibia and Angola (lower panels of

Figs. 7 and 8). The model experiments simulate the highest

vertically integrated rates in the latter two regions, where loss

of fixed nitrogen can be as high as ≈ 10 mmol N m−2 d−1

(slow sinking scenario of model setup RemHigh). Because

of the longer residence time of particles in midwater depths,

simulated nitrogen loss increases with decreasing sinking

speed. It further increases with nitrate affinity in setups Den-

High and RemHigh.

Maximum volumetric denitrification mirrors that of its

vertical integral, and can be as high as 118 nmol L−1 d−1

(setup RemHigh with slow sinking). Highest modeled values

occur in the eastern tropical and subtropical Pacific, followed

by the upwelling off Namibia and Angola, and the Arabian

Sea and Bay of Bengal, especially for slow sinking speed

and/or high nitrate affinity. Simulated maximum values up

to 43 nmol L−1 d−1 in the Arabian Sea/Bay of Bengal are

higher than maximum observed rates of ≈ 25 nmol L−1 d−1

(Ward et al., 2009; Bulow et al., 2010), but most simu-

lated values are in the range 2–20 nmol L−1 d−1, and thus

quite in agreement with the observations. High rates of

nitrogen loss (up to ≈ 150 nmol L−1 d−1) have been ob-

served in the Benguela upwelling by Kuypers et al. (2005),

and Kalvelage et al. (2011) even reported values of almost

500 nmol L−1 d−1. The model only simulates annual-mean

rates up to 40 nmol L−1 d−1 in that region.

Off Chile and Peru maximum simulated rates of nitro-

gen loss range between ≈ 30 and 120 nmol L−1 d−1 which is

within observed rates of fixed nitrogen loss (Hamersley et al.,

2007; Galan et al., 2009; Kalvelage et al., 2011). However,

most observations in this region are related to the anammox

process, with little or no indication for denitrification off Peru

or northern Chile. Some recent work suggests sporadic, yet

very high rates of denitrification in this region (Dalsgaard

et al., 2012), perhaps due to the local, sudden input of or-

ganic matter. Comparison of our model results to these ob-
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Figure 8. As figure 7, but for medium configuration of NFixNoTemp (no temperature dependence of nitrogen fixation, panels a, d), model

setup DenHigh (high nitrate affinity of denitrification, panels b, e), and model setup RemHigh (high oxidant affinity of denitrification and

aerobic remineralization, panels c, f).

servations does not seem straightforward, as our model does

not explicitly distinguish between different oxidation states

of nitrogen, or between the mechanisms of fixed nitrogen

loss, neither does it resolve the fine temporal–spatial scales

that characterize the nitrogen cycle along the coasts of Chile

and Peru. In the discussion section we will examine this al-

leged model deficiency, in light of the various observations

made in this region.

3.2.3 Global fluxes and inventories

When ordered according to the global nitrogen throughput,

global primary production is the largest of all global fluxes,

followed by export production and particle flux at increas-

ing depths (Fig. 9). Generally, models agree quite well with

the observed range; there is some tendency by some mod-

els to overestimate particle flux in 1000 and 2000 m, when

compared to observations. N2-fixation and pelagic denitri-

fication are more than an order of magnitude smaller than

fluxes into and out of the euphotic zone. As will be shown be-

low, N2-fixation and pelagic denitrification depend strongly

on the complex interplay between particle sinking, reminer-

alization, and the formation and extent of OMZs.

Particle sinking speed has a strong impact on the volume

of OMZs. In models with slow sinking speed, organic mat-

ter prevails in midwater depths for a long time, causing a

strong depletion in oxygen due to remineralization, and thus

a large suboxic volume (Fig. 10, left panel). If particles sink

faster, they may be buried in the sediment before being rem-

ineralized – therefore, these model experiments exhibit the

smallest suboxic volume. Increasing nitrate affinity (setup

DenHigh) causes less depletion in oxygen, because more

nitrate is used for oxidation of organic matter. Increasing

both nitrate and oxygen affinity (setup RemHigh) increases

the OMZ volume. The criterion for the definition of suboxia

(here: < 8 mmol O2 m−3 or < 4 mmol O2 m−3) has a strong

impact on the evaluation of model misfit: for the lower crite-

rion, the fast-sinking model experiments show the best fit to

observations, whereas for the higher criterion the best sink-

ing speed depends on the parameterization of oxidant affinity

(e.g., slow sinking for model setup DenHigh vs. fast sinking

for model setup RemHigh). Thus, a model evaluation based

on the suboxic volume can yield very different results for

different oxygen thresholds used to define suboxia (see also

Gnanadesikan et al., 2013).
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Table 2. Global fixed nitrogen fluxes [Tg yr−1] from model experiments, and results from other model studies and biogeochemical observa-

tions; gain refers to pelagic nitrogen fixation, while loss refers to nitrogen loss through pelagic denitrification. For each model type model

we give the results of the reference run, and in brackets the range encompassed by experiments s2–s3 with different particle sinking speeds.

Source Pelagic loss Gain Comments

Gruber and Sarmiento (1997) 80 110 observations of N∗

Galloway et al. (2004) 81 85 direct measurements, geochemical estimates

Deutsch et al. (2004) 70 260 N∗, isotopes, box model

Moore and Doney (2007) 65 (0–189) 58 (0–133) global BGC OGCM

Deutsch et al. (2007) 137 (130–158) global BGC OGCM, observed nutrients

Oschlies et al. (2008) 140 global BGC OGCM

Bianchi et al. (2012) 70 ± 50 observed oxygen, production, export model

Eugster and Gruber (2012) 52 (39–66) 131 (94–175) box model, observed N∗ and 15N

DeVries et al. (2012) 66 ± 6 inv. global model, obs. excess N2, observed production or nutrients

DeVries et al. (2013) 60 (50–77) inv. global model, obs. N∗ and 15N

Somes et al. (2013) 76 (65–80) 225 (195–350) global model inc. nitrogen isotopes

this study: BASE 59 (27–87) reference run

this study: NFixStoich 59 (27–87) N : P = 14.28 for nitrogen fixation

this study: NFixNoTemp 65 (29–97) T -independent nitrogen fixation

this study: DenHigh 84 (41–117) high nitrate affinity

this study: RemHigh 71 (29–105) high nitrate and oxygen affinity

Figure 9. Global annual fluxes in model experiments and obser-

vations. Average (over all MOPS experiments) simulated fluxes

are shown as grey bars. Vertical blue lines show average flux ±1

standard deviation over all experiments. Horizontal blue lines indi-

cate maximum and minimum flux. Colored symbols denote obser-

vations, from Carr et al. (2006, primary production), Honjo et al.

(2008, primary and export production, particle flux), Lutz et al.

(2007, export production and particle flux), and Dunne et al. (2007,

their Table 3, incl. citations therein; export production and particle

flux). Fluxes have been converted using a C : P ratio of 117, and a

N : P ratio of 16. Global fixed nitrogen fluxes (N2-Fixation, pelagic

denitrification) as in Table 2.

The effect of particle sinking on OMZ volume propagates

into simulated global nitrogen fluxes. The larger suboxic vol-

ume of model scenarios with slow sinking speed triggers

high rates of denitrification (Fig. 10, middle panel). In con-

trast, in the scenario with very fast sinking of model setup

BASE no denitrification occurs, because of the lack of sub-

oxic zones (see above). Moving to high nitrate affinity in

setup DenHigh exhibits the highest global integrated nitro-

gen loss and balancing nitrogen fixation for any given sink-

ing speed (see also Table 2). The effect of higher nitrate

affinity is less pronounced in setup RemHigh. Depending on

sinking speed, global nitrogen loss and balancing nitrogen

fixation increase by some 20 % with respect to experiment

BASE in sensitivity experiment RemHigh with higher oxi-

dant affinity, and by 42 % when only nitrate affinity, but not

oxygen affinity, is increased (setup DenHigh; see Table 2).

Turning off the temperature dependence of the model’s di-

azotrophs that constrains nitrogen fixation to warm surface

waters (setup NFixNoTemp) results in simulated fixed nitro-

gen gain in high latitudes, far away from suboxic regions of

nitrogen loss (see also panel a of Fig. 8), and therefore in-

creases globally integrated nitrogen fluxes.

Because MOPS simulates pelagic denitrification as only

nitrogen loss process, this loss has, in steady state, to be

matched by nitrogen gain via nitrogen fixation. In the fol-

lowing paragraphs we will therefore focus mostly on pelagic

denitrification and its comparison to other observed or sim-

ulated estimates. We refrain from a detailed comparison to

global nitrogen fixation (which, in reality, and under the as-

sumption of homeostasis, would have to balance benthic den-

itrification as well).

The overall magnitude of steady-state global integrals of

pelagic nitrogen loss of 59–84 Tg N yr−1 diagnosed from our

model simulations (Table 2 and Fig. 10, mid panel) agrees
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Figure 10. Global diagnostics for different experiments with model MOPS, plotted vs. particle flux exponent (sinking speed increasing

from left to right). Models are shown as colored lines: thick red – setup BASE; red with pluses – setup NFixStoich; red with stars – setup

NFixNoTemp; thick magenta with circles – setup DenHigh; thick blue with circles – setup RemHigh. Horizontal thin black lines depict

observations. Left: Suboxic volume (as permille of total ocean volume) for different model experiments and according to different criteria

(straight lines: volume with oxygen < 8 mmol O2 m−3, dashed lines: volume with oxygen < 4 mmol O2 m−3). Middle: global nitrogen loss

and nitrogen fixation. Global estimates for pelagic denitrification (black straight lines) and nitrogen fixation (black dashed lines) from sources

listed in Table 2. Note that in the models, due to their intrinsic assumptions pelagic nitrogen loss equates with nitrogen gain through nitrogen

fixation. Right: global nitrate : phosphate ratio of different models. Left and right: observations according to Garcia et al. (2006a, b).

roughly with the model estimates of Moore and Doney

(2007), but is considerably lower than the 140 Tg N yr−1

simulated by Oschlies et al. (2008). The range of esti-

mates of nitrogen loss based on observations is even larger:

Codispoti (2007) suggested that water-column denitrifica-

tion should be even higher than 150 Tg per year, whereas

substantially lower estimates of 52 to 81 Tg per year were

obtained by Gruber and Sarmiento (1997), Galloway et al.

(2004), Deutsch et al. (2004) and, more recently, Bianchi

et al. (2012), Eugster and Gruber (2012), and DeVries et al.

(2012, 2013).

With global oceanic phosphorus being conserved

in all model configurations, the simulated global ni-

trate : phosphate ratio depends on the variable global

nitrogen inventory and hence on the simulated fixed nitrogen

losses and gains, which in turn are sensitive to particle

sinking velocities. The establishment of suboxic zones, and

thus areas of enhanced denitrification, results in regions with

a lowered nitrate : phosphate ratio (see also Fig. 3), finally

with an effect on the steady-state global nitrate : phosphate

ratio (right panel of Fig. 10 right panel). An extreme case

is experiment BASE with very fast sinking, in which no

suboxia develops and consequently no denitrification occurs.

In this case the assumptions implicit in the model descrip-

tion of nitrogen fixation, increase the global-ocean molar

nitrate-to-phosphate ratio from its observed initial value of

14.28 to 16, the stoichiometric ratio for aerobic processes

(Fig. 10, right panel).

The relation of higher nitrogen losses and gains corre-

sponding to a lower global nitrogen inventory generally

holds also between different model configurations, the ex-

ception being the sensitivity experiment NFixNoTemp with

temperature-independent nitrogen fixation, which shows

both higher denitrification and fixation and higher stoichio-

metric ratios when compared to the reference model setup

BASE. Generally, simulated global nitrate-to-phosphate ra-

tios of the slow to very slow sinking scenarios are closest

to the observed ratio. Thus, a high pelagic turnover of nitro-

gen in suboxic areas, as mediated via slow sinking or high

affinity of denitrification towards nitrate, pushes the simu-

lated nitrate-to-phosphate ratio towards the observed ratio of

global average nutrients.

3.3 Added value of the nitrogen cycle for model

assessment

So far, we have analyzed the models’ fit to different ob-

served quantities separately. While most of the models dis-

cussed in this study fit spatial patterns of dissolved tracers

about equally well, some differences arise for different par-

ticle sinking speeds. Also, as shown above (Fig. 5) and dis-

cussed by Jolliff et al. (2009), accounting for the model bias

of non-conservative tracers such as nitrogen may serve as an

important additional information on model skill, and help to

discriminate between the different model types. Investigat-

ing the fit to observed global inventories of non-conservative

tracers, to OMZ volume, and to global pelagic nitrogen loss

as a function of different model parameters further indicates

some mutually independent controls exerted by the different

global diagnostics (see Fig. 10).

In this subsection we examine to what extent the additional

consideration of the nitrogen cycle can constrain individual

process descriptions better than the standard metric of global

distributions of phosphate and oxygen, pelagic and benthic
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fluxes of organic matter (in terms of phosphorus) and global

oxygen inventory, applied previously to model BUR by Kri-

est and Oschlies (2013). Specifically, we add the spatial dis-

tribution of nitrate, the global nitrate inventory, and global

pelagic nitrogen loss as three additional diagnostics. Individ-

ual observations of nitrogen fixation or nitrogen loss are not

considered because of the sparsity of data sets, their bias to-

wards certain regions, and differences between the model’s

intrinsic assumptions and observations (see above) that may

complicate a direct comparison. Also not considered in our

metric is the volume of suboxic regions, because of its pro-

nounced sensitivity to the oxygen threshold used in the defi-

nition of suboxia (see above).

Most phosphorus-based metric components of our new

model of the pelagic nitrogen cycle MOPS are similar to

those for the phosphorus-only model BUR presented by Kri-

est and Oschlies (2013); i.e., for dissolved tracer distribu-

tion, oxygen inventory, and particle flux (panels b, d, h–j of

Fig. 11), we find the best fit for a model with a sinking speed

reduced relative to the classical Martin parameters. Similarly,

in MOPS the global nitrate inventory is matched best for very

slow sinking speeds (Fig. 11g). Simulated global pelagic

fixed nitrogen loss, on the other hand, shows a best fit to ob-

servations for model simulations with medium sinking speed

(panel a of Fig. 11), as do benthic burial and remineralization

(Fig. 11, panels e, f, k, l). Therefore, with the given weights

of global integrated or average properties (see also Kriest and

Oschlies, 2013) the overall misfit function (Fig. 11b) now

favors model experiments with a power law flux exponent

of 0.858, as initially suggested by Martin et al. (1987). Un-

fortunately, it is not possible to distinguish between the dif-

ferent model setups BASE, NFixNoTemp, NFixStoich and

RemHigh, as all of them perform more or less equally well

with respect to the combined metric. Thus, with a misfit func-

tion that gives equal weights to all types of observations, and

for the parameter ranges investigated, the parameterization

of oxidant affinity or nitrogen fixation may be less important

for model performance than the parameterization of particle

flux. It remains to be investigated whether this still holds if

additional data, for example, for nitrogen fixation in the (cur-

rently unexplored) eastern tropical Pacific, become available.

Considering MOPS’ skill it is encouraging, however, that this

model, which confines remineralization to the oxic or nitrate-

bearing regions, performs as well as model BUR with its as-

sumed infinite supply of oxidants.

4 Discussion

Our model simulations indicate adjustment times of the or-

der of millennia. Substantial imbalances of fixed nitrogen

sources and sinks exist over the first few hundred years after

initialization with observed tracer concentrations, reaching

some 10 to 20 Tg N yr−1 after 200 years (lower right panel of

Fig. 3). This can be explained by the slow coupling between

circulation, deep remineralization, and spatial separation of

regions of fixed nitrogen loss and gain, particularly in the

EEP. After 3000 years, we still find a gain of fixed nitrogen

of 0.6–7.2 Tg N yr−1 (depending on particle sinking speed)

for model setup BASE, which then slowly declines to < 0.1–

0.4 Tg N yr−1 in year 9001. Earlier model studies (Moore and

Doney, 2007; Schmittner et al., 2008; Ilyina et al., 2013)

with generally shorter spin-up periods reported imbalances

between nitrogen fixation and denitrification of up to several

Tg N yr−1. According to our model results, this may be in-

dicative of those models not having spun-up for long enough

to be in equilibrium. The above results indicate the need to

spin-up models over a long enough time in order to evalu-

ate the full response of the coupled physico-biogeochemical

system. Analysis of model results from shorter spin-ups may

result in nitrogen fluxes that reflect the transient (but not

steady-state) characteristics of the system.

After several thousand years the model solution is inde-

pendent of its initialization, and solely reflects the combined

effects of biogeochemistry and circulation, allowing the use

of observed dissolved tracer distributions (that also went into

initialization) for model assessment. Model results in steady

state agree reasonably well with respect to observed tracer

concentrations and fluxes, both with respect to local as well

as to global quantities, giving some confidence in the model’s

representation of the large-scale dynamics of marine nitro-

gen. The good match of the model MOPS that explicitly cal-

culates nitrogen is promising, as this model agrees with ob-

servations even in the presence of more constraints (oxidant

affinity of remineralization; no implicit oxidants) than in pre-

vious, phosphorus-only model versions.

However, in steady state all model experiments exhibit

some deficiency in nitrate or oxygen in the EEP, which may

be either due to an ill-defined biogeochemical model, defi-

cient representation of the physics, or both. Beside the lack

of so far undefined processes (iron cycle; benthic denitri-

fication; variable stoichiometry), possible reasons for this

mismatch are (1) lack of distinction between different ox-

idation states of nitrogen, (2) inappropriate, rather weakly

constrained parameters for oxidant affinity, and (3) equa-

torial dynamics that is notoriously difficult to represent by

medium- to coarse-resolution ocean circulation models (Di-

etze and Loeptien, 2013). In the following subsections we

will have a closer look at these model features, which should

also provide some insight into the dynamics of models out-

side this study. Given the different tracers and diagnostics

simulated by the model, we will finally discuss briefly if, and

how, these can be useful for constraining the global marine

nitrogen (and oxygen) budget.

4.1 The importance of resolving different nitrogen

species

As noted above, in some areas the model shows a quite good

agreement to observed rates of denitrification. However, a di-
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Figure 11. Normalized (scaled) misfit for different models plotted vs. particle flux exponent (sinking speed increasing from left to right).

Normalization has been carried out using globally integrated fluxes and inventories, or average concentrations. See auxiliary table fullmet-

rics.txt for norms and numerical values of tracer misfits. Panel (a): normalized deviation between simulated and observed global nitrogen

loss via pelagic denitrification. Panel (c): sum of normalized misfit (root mean square error, RMS error) for phosphate, oxygen and nitrate;

Panels (d)–(f): normalized RMS for particle flux in 2000 m (d), benthic remineralization (e), benthic burial (f). Panels (g)–(l): normalized

deviation between simulated and observed global inventory of nitrate (g), oxygen (h), between global river runoff of phosphate (i), organic

particles flux (j), benthic remineralization (k), and benthic burial (l). Panel (b) finally shows the sum of all panels (a) and (c) to (l). Line

colors and symbols indicate model setup. Black and blue: models CTL and BUR of Kriest and Oschlies (2013), without and with burial at

the sea floor, respectively. Red: model MOPS with nitrogen cycle. Straight red: BASE; stars: NFixNoTemp; large plus: NFixStoich; small

circles: DenHigh; large circles: RemHigh.

Parameter OMZ N flux N inventory

high NO3 affinity - + -
high NO3 and O2 affinity + +

T-dependence of N2-Fix - - -
fast sinking speed - - +

Figure 12. Diagram illustrating the effects of parameter variations

on size of the OMZ, fixed nitrogen flux and inventory. A red minus

sign denotes a negative model response (reduction), whereas a black

plus sign a positive (increase). See text for further explanation.

rect comparison between simulated and observed rates of ni-

trogen loss is not always straightforward, as many observa-

tions refer to anammox, which is not explicitly resolved by

the model. Further, some of the experiments measuring ni-

trogen loss have been carried out under high levels of nu-

trient additions, and may therefore be regarded as poten-

tial rates. For example, Kalvelage et al. (2011) found max-

imum anammox rates up to 108 nmol L−1 d−1 off Peru, but

many rates were much lower. Potential anammox rates below

30 nmol L−1 d−1 have been observed by Galan et al. (2009),

Hamersley et al. (2007), and Thamdrup et al. (2006). Most

of these works found little or no indication for denitrifica-

tion in the Pacific off Peru or northern Chile, but recent work

by Dalsgaard et al. (2012) suggested sporadic, yet very high

rates (up to 190 nmol L−1 d−1) of denitrification in this re-

gion, at that time much higher than the maximum observed

anammox rate of 21 nmol L−1 d−1. Depending on the method

of calculation, they arrived at a mean contribution of denitri-

fication of 65–77 % to total mean removal of fixed nitrogen

(2.1 mmol N m−2 d−1), which is in striking contrast to previ-

ous studies indicating a pronounced dominance of the anam-

mox process (Hamersley et al., 2007; Thamdrup et al., 2006;

Galan et al., 2009; Kalvelage et al., 2011). As suggested by

Dalsgaard et al. (2012) a possible explanation for the very

different contributions of denitrification and anammox found

in the different studies could be the spatial patchiness of the

relevant processes in this region.

In model MOPS presented here, we do not distinguish be-

tween denitrification and anammox, but assume only one

process for the reduction of nitrate, denitrification, where

both steps of nitrogen reduction take place at the same rate, in

conjunction with immediate, complete oxidation of ammo-

nium released during both steps (as in Eqs. 13–18 of Paul-

mier et al., 2009). Given the controversy related to the im-

portance of anammox and canonical denitrification on global

and regional scales and the rather simplistic way in which

we implemented fixed nitrogen loss in the model, it seems
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worthwhile to have a closer look at the model’s intrinsic

assumptions and their validity with respect to net nitrogen

fluxes.

To examine the stoichiometric consequences of different

pathways of fixed nitrogen loss, we first assume the com-

plete denitrification pathway, i.e., complete oxidation of am-

monium by nitrate, as suggested by Richards (1965), and ap-

plied by Paulmier et al. (2009, their Eq. 17). As an alternative

pathway, we assume that ammonium released during the first

step of denitrification is oxidized by anammox. As demon-

strated in detail in Appendix A, with the assumed model sto-

ichiometry both nitrogen loss pathways require 120 moles

nitrate per 16 moles of ammonium (or 1 mole of organic

phosphorus) oxidized. Thus, our current model stoichiom-

etry can be regarded to represent either denitrification plus

ammonium oxidation by nitrate, with both steps of denitrifi-

cation proceeding at the same rate, or a combination of den-

itrification and anammox.

Note that in the absence of any nitrite accumulation, the

combination of denitrification and anammox implies that the

second step of denitrification happens 1.3 times faster than

the first step (see Appendix A). In this case, the contribu-

tion of anammox to total dinitrogen production would only

amount to ≈ 24 % (see also Fig. 13). If both steps of den-

itrification proceed at the same rate, we would again arrive

at a low contribution of anammox of ≈ 26 %. A contribu-

tion of 24–26 % for anammox is close to the values found by

Dalsgaard et al. (2012), and discussed by Koeve and Kähler

(2010) and Ward (2013), but is far lower than suggested by

some observations made in the Peruvian upwelling region. A

recent analysis confirms a rather low contribution of anam-

mox, possibly depending on the carbon : nitrogen stoichiom-

etry of organic matter, its oxidation state, and the magnitude

of organic matter supply (Babbin et al., 2014).

Our simple theoretical framework suggests that anammox

may, on average, only play a secondary role in determining

the nitrogen loss in suboxic open-ocean areas. A more de-

tailed model of different oxidation states of nitrogen, and

other potential sources for ammonium, such as dissimila-

tory nitrate/nitrite reduction to ammonium (DNRA) (see also

the extensive analysis and discussion by Koeve and Kähler,

2010) or zooplankton excretion, would be required in order

to investigate these processes in conjunction with diffusive

transport processes across the oxycline more closely. How-

ever, as shown above for biogeochemical tracer distributions

simulated by a relatively coarse-resolution global model, it

will not matter much whether the loss of fixed nitrogen is

caused by denitrification or anammox, as both processes are

ultimately fueled by organic matter and its remineralization

products, with very small differences (or none at all) in the

net stoichiometry and end products.

4.2 Constraints for oxidant affinity of suboxic

processes

Motivated by the study by Kalvelage et al. (2011), we as-

sumed for our model setups BASE and DenHigh a wide toler-

ance of denitrification/anammox towards high levels of oxy-

gen. However, recent studies by Dalsgaard et al. (2012) and

De Brabandere et al. (2013) indicate that much lower oxy-

gen concentrations are required for these processes to oper-

ate. The different observational estimates of oxygen thresh-

olds of anammox were explained with regional differences

between the study areas (De Brabandere et al., 2013). In an

attempt to account for these uncertainties, we increased the

oxygen affinity of aerobic remineralization and reduced the

tolerance of denitrification to low oxygen in sensitivity ex-

periment RemHigh.

Considering the slow growth of anammox bacteria (e.g.,

Dalsgaard et al., 2012; Ward, 2013) and the consecutive steps

of nitrogen reduction in denitrification, which in our model

are all parameterized implicitly, together with their slightly

reduced energy yield, we simulated inorganic nitrogen up-

take via an increased half-saturation constant. For the same

oxidant concentration, this parameterization will result in re-

duced rates of anaerobic remineralization compared to aero-

bic remineralization. Unfortunately, the affinities of denitri-

fiers to low nitrate concentrations are not well constrained.

Low half-saturation constants for the nitrate uptake during

denitrification of 2.9 and 2.5 mmol N m−3 were measured

in the Mariager Fjord in northern Denmark (Jensen et al.,

2009) and in the Gotland Basin (Dalsgaard et al., 2013),

respectively. However, direct comparison of these observed

values to our model setup and results is complicated for

two reasons: First, environmental conditions in both stud-

ies were characterized by very low nitrite and low (usually

< 5 mmol N m−3) nitrate concentrations. Further, the elec-

tron donor for denitrification was usually sulfide instead of

organic matter. These conditions differ from many open-

ocean or even coastal-ocean environments considered here.

Second, with the addition of labeled nitrate, the observed

half-saturation constants were as high as 31 mmol N m−3 for

nitrate reduction, and at least 15 mmol N m−3 for denitrifica-

tion measured via addition of labeled nitrite (Jensen et al.,

2009), which has been explained with different substrate

concentrations within and around the bacterial cells (Jensen

et al., 2009). Given these methodological complications, and

the regional differences between observations and our model

setup, we are thus left with an uncertainty of an order of mag-

nitude for the half-saturation constant for nitrate uptake dur-

ing denitrification, ranging from 2.5 to 31 mmol N m−3. This

range of variation is to some extent addressed via our model

experiments BASE, DenHigh, and RemHigh. It remains to be

investigated, which half-saturation constant would be most

appropriate for global simulations, and how far these would

have to be changed when addressing more regional questions

with more finely resolved models.
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Figure 13. Nitrite surplus per mole of organic phosphorus remineralized (left), and contribution of anammox to fixed nitrogen loss (right)

plotted against x, the ratio of nitrite reduction rate to nitrate reduction rate for denitrification combined with oxidation of ammonium by

anammox. See text for further details.

Although the effects of these parameters seem to be negli-

gible for the overall, global volume distribution of dissolved

tracers (Fig. 4), or for global metrics (Fig. 11), they influ-

ence the simulation of OMZ volume, global nitrogen flux,

and inventory (Fig. 10). Depending on questions posed to

the model, it may therefore be important to constrain these

parameters, either inversely, or via direct measurements par-

ticularly in open-ocean areas of denitrification.

4.3 The representation of nitrate and oxygen in the

eastern equatorial Pacific

Although some uncertainties in the parameterization of ni-

trogen losses and gains remain, on long timescales model

MOPS generally match the global distribution of observed

dissolved tracers and associated fluxes quite well. However,

despite the quite different parameterizations of oxic and sub-

oxic remineralization tested in this study, model experiments

fail to represent all dissolved tracers simultaneously in the

EEP (Fig. 6). The similar response of all model setups to

changes in sinking speed suggests that processes other than

biogeochemistry – most likely, the physical exchange be-

tween the different regions, as suggested by Dietze and Loep-

tien (2013) – play a role in determining the nitrogen bud-

get in this region. Despite using circulation fields derived

from a data-assimilative optimization of an ocean circulation

model (Stammer et al., 2004), it is likely that our model cir-

culation suffers from an imperfect representation of physical

processes in this region, as has been hypothesized for many

models by Dietze and Loeptien (2013).

So far, neither parameterization of oxidant-sensitivity, ni-

trogen fixation, or sinking speed has helped to relieve the

models from these errors in the EEP (likewise, in the Ara-

bian Sea or Bay of Bengal). Local increases of the zonal

isopycnal diffusivity can help to emulate the yet unresolved

equatorial intermediate current system, and thereby improve

the models (Getzlaff and Dietze, 2013). Given these possibly

systematic model deficiencies, the spatial representation of

suboxic zones and associated processes presented here must

be viewed with caution. Based on the encouraging results

of our model assessment against observed biogeochemical

tracer distributions, we cautiously assume that the connec-

tion between areas of nitrogen fixation and nitrogen loss pro-

cesses, and the associated transport timescales linking these

regions in our model is representative of the real ocean.

4.4 Can we simulate and constrain the nitrogen cycle

in a global biogeochemical model?

The above examples show that nitrate may, in models that

explicitly account for denitrification, act as a kind of scape-

goat, that incurs the results of deficiencies built into the phys-

ical or biogeochemical model formerly represented by oxy-

gen, or by unspecified oxidants. Nitrate diagnosed from sim-

ulated phosphate in model BUR is slightly less sensitive to

variations in sinking speed (Figs. 4, 6); however, its good

fit to observed nitrate is only achieved with help of a strong

dependency on observations. Additionally, given the infinite

supply of (undefined) oxidants embedded implicitly in model

BUR, this phosphorus-only model may not be well-suited

to discriminate between the effects of biogeochemistry and

physics on oxygen and other biogeochemical tracer distribu-

tions in this area. Therefore, the explicit simulation of the

nitrogen cycle in global models may help to better constrain

the dynamics of remineralization and its role in establishing

and maintaining oxygen minimum zones.

Variation of parameters that govern remineralization, ni-

trogen fixation and denitrification can have quite different

effects on properties such as the extension of oxygen min-

imum zones, model nitrogen inventory, or global pelagic ni-

trogen fluxes. The different responses of these diagnostics

to changes in either of these parameters are summarized in

Fig. 12.
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The temperature constraint of nitrogen fixation has only a

small effect on OMZ volume, and therefore, denitrification. It

decreases nitrate inventory slightly, because of a smaller area

in which fixed nitrogen loss can be compensated. A high par-

ticle sinking speed reduces the residence time of organic mat-

ter in the water column, thereby reducing aerobic remineral-

ization, and the extent of OMZs. This then reduces global

pelagic denitrification (because of a lower suboxic volume).

Because of a lower importance of denitrification at higher

sinking speeds, and because of the prescribed stoichiome-

try of N : P = 16 under oxic conditions, the global nitrogen

inventory increases. A high nitrate affinity of denitrification

reduces the size of the OMZ (because more nitrate, and less

oxygen, is used for oxidation of organic material). However,

the preference for nitrate also has the effect of increasing

denitrification, thereby reducing the nitrate inventory. If ad-

ditionally the affinity for oxygen is increased, both pathways

(the aerobic and anaerobic remineralization) would be en-

hanced, which to some extent cancels out any effect of global

nitrogen fluxes and inventory, despite a larger OMZ volume.

To summarize, the extent of OMZ, nitrogen fluxes, and

the nitrate inventory can be altered quite independently in

the model (as is illustrated in Fig. 11), and therefore nitro-

gen and oxygen-based diagnostics provide useful additional

constraints for the model. Together with the examination of

the a priori assumptions of the model (see above subsec-

tions) we hope that in the future we will be able to make

further progress towards a better constrained model of com-

bined phosphorus, oxygen, and nitrogen cycles.

4.5 Further constraints and improvements of the

simulated nitrogen cycle

Our model results are within the range of local, in situ ob-

servations of nitrogen fixation and denitrification. So far, we

have refrained from using local observations of nitrogen fix-

ation for model calibration, the reason being a quite sparse

database, which exhibits a strong bias to certain oceanic re-

gions (Luo et al., 2012). A closer examination of the effects

of this bias on global and regional estimates, and the con-

sequences for model calibration is beyond the scope of this

study, and will be carried out elsewhere. As new data become

available particularly in the so far undersampled, yet sensi-

tive eastern tropical Pacific, these may provide very valuable

benchmarks for model performance and skill.

So far, we have not explicitly accounted for the iron cy-

cle and its potential influence on cyanobacteria abundance

and production. Beside observations of different iron species,

its boundary exchanges through atmospheric dust deposi-

tion and benthic exchange (e.g., Nickelsen et al., 2015), im-

proved data sets may also help to better constrain a more

detailed model of interactions between these organisms, and

different macro- and micronutrients. Likewise, we have, so

far, refrained from simulating spatiotemporal variation in the

N : P ratio of other, non-diazotrophic organisms. As shown

by Martiny et al. (2013), the elemental stoichiometry of par-

ticulate organic matter can vary significantly between the dif-

ferent regions; it remains to be investigated how this will

affect nutrient signals in the deep ocean, and the global ni-

trogen inventory on long temporal and large spatial scales,

compared to the impact of nitrogen fixation and denitrifica-

tion presented in this study. Data sets as presented in Martiny

et al. (2014) will provide very useful constraints on future

global model developments that include more flexible stoi-

chiometries.

Based on his high estimated nitrogen loss rates, Codis-

poti (2007) suggested that the, until then, generally lower

estimates of oceanic nitrogen fixation might have been too

low. More recent estimates of nitrogen fixation are often

higher (Deutsch et al., 2007; Eugster and Gruber, 2012, 130–

175 Tg N yr−1), while the maximum fixation rate simulated

with MOPS is only 117 Tg N yr−1 (see Table 2). Because our

model MOPS does not include benthic denitrification, and

because nitrogen fixation is parameterized to balance nitro-

gen loss, its global integral is necessarily at the lower end

of global estimates. For example, model results by Somes

et al. (2013) point towards high rates of nitrogen fixation be-

tween 195 and 350 Tg N yr−1, sufficient to balance combined

pelagic and sedimentary nitrogen loss, the latter being about

twice as high as the pelagic loss. Including benthic denitrifi-

cation in MOPS would most likely increase the global nitro-

gen fluxes, but also result in a different dependency of these

on particle sinking speed.

The sensitivity experiments with different remineraliza-

tion kinetics have not revealed any dramatic changes in the

simulated biogeochemical tracer distributions. On the other

hand, experiments with different particle sinking speed indi-

cate that not only the transient behavior of the models de-

pends on this parameter, but also the evolution of suboxic

zones, and thus steady-state fluxes of fixed nitrogen (nitro-

gen fixation, pelagic denitrification) as well as the simulated

global nitrogen inventory and the nitrate-to-phosphate ratio.

However, this is probably partly due to the fact that in some

model regions fast-sinking organic matter quickly reaches

the sediment, where it is ultimately buried. Considering ben-

thic denitrification might shift this pattern, because in that

case the oxidant deficiency at any given location cannot be

neglected anymore. As noted above, this will, under the as-

sumption of homeostasis, also affect the model’s estimate of

global nitrogen fixation. Including more flexible, benthic–

pelagic exchange processes, together with a dynamic iron

cycle will therefore be useful and illustrative to the current

model.

5 Conclusions

We have carried out model simulations using global cou-

pled biogeochemical ocean models that simulate phospho-

rus, oxygen, and nitrogen fluxes. Starting from global ob-
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served distributions of these tracers, our long-term simula-

tions indicate that model inventories and fluxes exhibit con-

siderable changes within the first few decades to centuries,

particularly in the eastern tropical Pacific, but also globally.

Global integrated fixed nitrogen sources and sinks converge

to a steady state only slowly, on millennial timescales, and

suggest that model results and trends achieved after spin-up

periods shorter than a few thousand years should be viewed

with caution.

Compared to a model without nitrogen cycle, but with

some form of implicit oxidants, dissolved nutrients and oxy-

gen simulated by our new Model of Oceanic Pelagic Stoi-

chiometry (MOPS) do not look very different, despite the fact

that the latter imposes many more functional controls on bio-

geochemical fluxes. Although in all models we can produce

an equally good fit to observed nitrate by multiplication of

simulated phosphate with the observed global stoichiometric

ratio, only the model with explicit nitrogen MOPS can pre-

dict this tracer prognostically, i.e., in the presence of more

mechanistic, a priori assumptions, quite well. For this model

observations of nitrate, its inventory and global flux can serve

as a useful additional constraint.

In MOPS nitrate replaces oxygen as oxidant in certain re-

gions. Especially in the EEP nitrate exhibits the mismatch

that phosphorus-only models show with respect to observed

oxygen distributions. In our model simulations the EEP plays

a large role not only for the initial transient of the model, but

also for steady-state nitrogen fluxes. However, it is not clear

how much of this response can be attributed to a deficient

representation of the equatorial current system in this region.

Stoichiometric considerations indicate that for global

models on relatively coarse spatial grids and simulated over

long timescales, it might not be necessary to differentiate be-

tween the various processes of fixed nitrogen loss, in par-

ticular denitrification and anammox. Correctly representing

these processes is difficult without the explicit consideration

of the various inorganic nitrogen species involved, and also

depends on the availability of experimental data that deter-

mine and constrain the kinetics, substrates, and oxidants of

the different processes. A review of the few observations of

oxidant affinities reveals a wide range of these parameters,

indicating the need for further research, especially given the

difficulty of the current model metric to constrain these from

other observations.

With the given model setup, the effects of parameter vari-

ations on the extent of suboxic zones, nitrogen fluxes, and

inventories differ between the different parameters, and sug-

gest that these model diagnostics should be used for model

skill assessment. Including these new constraints in the over-

all misfit, our results point towards a Martin exponent of

0.86, and relatively low pelagic loss of fixed nitrogen be-

tween 59 and 84 Tg N yr−1, the latter supporting more recent,

observation-based estimates.
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Appendix A: Stoichiometry of denitrification and

anammox

Consider 1 mole organic matter in phosphorus units (Porg),

with the stoichiometric composition CaHbOcNdP. In our

global model simulations we assume a composition of or-

ganic matter that requires 170 mole oxygen to oxidize 1

mole of organic phosphorus to carbon dioxide, water, phos-

phate, and nitrate. This value has been derived from geo-

chemical observations (Anderson and Sarmiento, 1994), and

has been applied in global biogeochemical models (e.g., Na-

jjar et al., 2007; Moore and Doney, 2007). With d = 16,

we define the oxygen demand for oxidation of organic mat-

ter to carbon dioxide, water, phosphate, and ammonium via

R0 = 170 − 2d = 138 (see also Paulmier et al., 2009).

Under suboxic conditions, we first assume complete ox-

idation of ammonium by nitrate, as suggested by Richards

(1965). Table 1 of Paulmier et al. (2009) indicates that for

R0 = 138 oxidation of 1 mole organic phosphorus requires

4/5R0 + 3/5d = 120 moles nitrate, which is reduced com-

pletely to dinitrogen, without any surplus of nitrite.

In an alternative approach we now consider anammox for

oxidation of the ammonium released during suboxic degra-

dation of organic matter, and assume that nitrite reduction

during denitrification takes place at a rate x of nitrate reduc-

tion. We then arrive at the following, bulk stoichiometry for

complete remineralization of 1 mole organic phosphorus:

1Porg +
2R0

1 + x
HNO3 →

(

2 −
4
3

x

1 + x
R0 − d

)

HNO2+

(

2
3

x

1 + x
R0 + d

)

N2 + {. . . }.

(A1)

Case x = 0, i.e., no nitrite reduction via denitrification, re-

sults in a considerable surplus of nitrite (2R0−d = 260 mole

nitrite for each mole of organic phosphorus remineralized;

see Fig. 13, left panel), even though anammox consumes

some of it. Even for x = 1 with the given stoichiometry

30 moles, nitrite would be generated per mole of remineral-

ized organic phosphorus. The surplus of nitrite appears be-

cause during nitrate reduction the ratio of ammonium re-

leased from organic matter to nitrite produced from reduc-

tion of nitrate is not 1 : 1, as required for anammox. Only for

x = (2R0 − d)/(4/3R0 + d) = 260/200 = 1.3 no left-over

nitrite would accumulate on the right hand side of equa-

tion A1. In this case, oxidation of 1 mole of organic phos-

phorus requires 4/5R0 + 3/5d = 120 mole nitrate.

To summarize, with the assumed model stoichiometry, and

in the absence of any nitrite or ammonium accumulation,

both cases require 120 mole nitrate per 16 moles of ammo-

nium oxidized; i.e., our current model stoichiometry can be

regarded to represent either denitrification plus ammonium

oxidation by nitrate (with both steps of denitrification pro-

ceeding at the same rate) or a combination of denitrification

and anammox. The latter case implies that the second step of

denitrification happens 1.3 times faster than the first step, to

avoid any nitrite accumulation.

Unfortunately, very little is known regarding the contri-

bution of the different processes to nitrogen cycling in sub-

oxic waters. Investigations in a Danish fjord rather suggest a

dominance of nitrate reduction over nitrite reduction (Jensen

et al., 2009) which, in our theoretical framework, would cor-

respond to x < 1. However, given the quite unique hydro-

graphical and biogeochemical conditions of that study (low

nitrate and nitrite, sulfide as electron donor) it is not clear

whether these findings can be transferred to our study, which

focuses on the open ocean. Assuming no nitrite reduction by

denitrifiers at all (x = 0) would result in a contribution of

anammox of 100%, but would also result in a large surplus

of nitrite, which does not seem to agree with observations.

In the case x = 1.3 (no leftover nitrite), the contribution of

anammox to total dinitrogen production would only amount

to ≈ 24 % (see also Fig. 13). If both steps of denitrification

proceed at the same rate (x = 1), we would again arrive at a

low contribution of anammox of ≈ 26 %.

Appendix B: MOPS-1.0 biogeochemical subroutines

The biogeochemical source code of MOPS-1.0 con-

sists of outer routines (kiel_biogeochem_ini.F,

kiel_biogeochem_model.F) that connect to the TMM

and translate to the 3-D circulation, and inner routines

that contain the actual biogeochemical sources and sinks,

and define the biogeochemical parameters (BGC_MODEL.F,

BGC_INI.F). They communicate via common blocks in

header files BGC_PARAMS.h and BGC_CONTROL.h. Here

we present the code that was used to generate plots provided

in this paper; a updated version of this code with slightly

changed structure, including the coupling to the transport

matrix method (TMM) (Khatiwala et al., 2005) is available

under https://github.com/samarkhatiwala/tmm. Its changes

are presented briefly in Appendix C below, and in more detail

in the supplementary material.

external_forcing_kiel_biogeochem.c con-

nects the outer biogeochemical subroutines to the TMM. It

also reads the I/O files and runtime parameters. It calls the

following subroutines:

– kiel_biogeochem_ini.F carries out some basic

initialization, such as setting the time step length, ini-

tializing the tracer fields and vertical model structure,

as well as some parts of the carbonate system (option

-DCARBON, see below). It calls the following:

– BGC_INI.F, which sets the biogeochemical pa-

rameters (e.g., max. growth rate of phytoplankton)

and may call CAR_INI.F to define the parameters

for the carbon module (option -DCARBON, see be-

low).
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– kiel_biogeochem_model.F maps the 1-D tracer

fields used by the TMM onto 1-D arrays used by the

biogeochemical core routine BGC_MODEL.F, and back

again afterwards. It calls the following:

– BGC_MODEL.F carries out the actual computa-

tion of biogeochemical sources and sinks presented

here, including organic matter sinking and rem-

ineralization, air–sea gas exchange, and compu-

tation of carbon chemistry (option -DCARBON,

see below). Thus, it is the heart of biogeochem-

istry. This routine requires daily average photo-

synthetically active solar radiation below sea sur-

face, and day length. For this, we use a rou-

tine insolation.F provided by the MIT (http:

//mitgcm.org/public/source_code.html), with some

minor modifications by us. Any other forcing field

for light can be provided.

– kiel_biogeochem_diagnostics.F maps the

diagnostic output (production, sedimentation, . . . ) com-

puted in BGC_MODEL onto arrays to be passed to

external_forcing_kiel_biogeochem

– kiel_biogeochem_set_params.F is a dummy

that may serve as a future module for changing param-

eters during optimization.

Communication between the different modules is carried

out mainly via header files:

– BGC_PARAMS.h is a header file that passes biogeo-

chemical parameters between the different model pieces

(from BGC_INI to BGC_MODEL). It also contains the

biogeochemical tracer fields (bgc_tracer).

– BGC_DIAGNOSTICS.h contains arrays for diagnostic

output.

– BGC_CONTROL.h is a header file that passes more

technical runtime parameters to biogeochemistry, e.g.,

time step length, and vertical geometry.

– kiel_biogeochem.h make subroutines known to

external_forcing_kiel_biogeochem.c

A rather simple carbon module may be coupled to the P-

core via compile option -DCARBON. Note that these mod-

ules (CAR_CHEM.F, CAR_INI.F, CAR_PARAMS.h) are

still somewhat preliminary, and will be presented in a later

publication. They are largely based upon the routines de-

veloped and provided by MIT (http://mitgcm.org/public/

source_code.html)

Appendix C: MOPS-1.2 biogeochemical subroutines

update

MOPS-1.0 has been updated with respect to code naming,

structure, and user friendliness, resulting in a new version

MOPS-1.2. We note that this does not change the model re-

sults; however, we have experienced small (≈ O(10−10) −

O(10−9) maximum difference for phosphate and oxygen, re-

spectively, over the entire, spatiotemporal domain) changes

because of transition to new hardware and a different PETSc-

Version. Below is a brief documentation of the main changes

made to the source code. The source code, together with

the TMM driver code, forcing and scripts can be down-

loaded from the main TMM-website: https://github.com/

samarkhatiwala/tmm. We would like to refer the reader to

that website, where the most recent version of the code, up-

dates, as well as further documentation are available, and will

be stored in the future.

Main changes to the biogeochemical source code are as

follows:

– For consistency, we have changed module names: all

former name components kiel were replaced by

mops.

– external_forcing_mops_biogeochem.c

now has a much more generic, user-friendly interface

to add tracers during runtime. This also affects the

modules called by this routine.

– Default budget closure of phosphate and other tracers is

now via supply at the sea surface; a switch for riverine

supply (as used in this paper) is available via compile

option -DRUNOFF.

– BGC_INI.F now contains an additional compile op-

tion -DIMPRO for adding the parameterization of im-

plicit profiles used by Kriest and Oschlies (2011).

In the Supplement we provide a detailed list of changes,

as well as some documentation about tracer changes due to

different hardware, PETSc versions, and changes due to this

new code version.

www.geosci-model-dev.net/8/2929/2015/ Geosci. Model Dev., 8, 2929–2957, 2015

http://mitgcm.org/public/source_code.html
http://mitgcm.org/public/source_code.html
http://mitgcm.org/public/source_code.html
http://mitgcm.org/public/source_code.html
https://github.com/samarkhatiwala/tmm
https://github.com/samarkhatiwala/tmm


2954 I. Kriest and A. Oschlies: MOPS-1.0

The Supplement related to this article is available online

at doi:10.5194/gmd-8-2929-2015-supplement.
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