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Abstract
This paper exploits dynamic features of insurance contracts in the empirical analysis of moral
hazard. We first show that experience rating implies negative occurrence dependence under
moral hazard: individual claim intensities decrease with the number of past claims. We then
show that dynamic insurance data allow to distinguish this moral-hazard effect from dynamic
selection on unobservables. We develop nonparametric tests and estimate a flexible paramet-
ric model. We find no evidence of moral hazard in French car insurance. Our analysis
contributes to a recent literature based on static data that has problems distinguishing between
moral hazard and selection and dealing with dynamic features of actual insurance contracts.
Methodologically, this paper builds on and extends the literature on state dependence and
heterogeneity in event-history data. (JEL: D82, G22, C41, C14)

1. Introduction
Empirical tests of contract theory using insurance data have recently attracted
much attention. Several papers test for the existence and estimate the magnitude
of asymmetric-information effects in competitive insurance markets. Puelz and
Snow (1994), Dionne and Vanasse (1992), Chiappori and Salanié (1997, 2000),
Dionne, Gouriéroux, and Vanasse (1999, 2001), and Richaudeau (1999), to
name only a few, analyze car-insurance contracts, whereas Holly, Gardiol,
Domenighetti, and Bisig (1998), Chiappori, Durand, and Geoffard (1998),
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Chiappori, Geoffard, and Kyriadizou (1998), Cardon and Hendel (1998), and
Hendel and Lizzeri (1999) use health or life insurance data, and Finkelstein and
Poterba (2002) concentrate on annuities.

1.1 The “Conditional-Correlation” Approach

One popular empirical strategy focuses on the correlation between the contract
choice and the occurrence of an accident, conditional on observables. This
correlation is informative on asymmetric-information effects. Under adverse
selection, for instance, agents know whether their accident probability exceeds
the average in their risk class (as defined by the insurer in terms of the available
information). If it does, they are both more likely to choose a contract with more
complete coverage and more likely to have an accident, everything else equal.
It follows that, conditional on observables, the choice of full insurance should
coincide with a higher accident rate. This is a property that can be tested using
parametric or nonparametric techniques.

The conditional-correlation approach has several advantages. It is simple
and very robust, as argued by Chiappori and Salanié (1997) and Chiappori,
Jullien, Salanié, and Salanié (2001). Furthermore, it can be used on static,
cross-sectional data that are relatively easy to obtain. However, these qualities
come at a cost. First, the effect of the past history of the relationship on the
current contract is both difficult to model and difficult to estimate. Nevertheless,
it can be of crucial importance, especially if experience rating plays a role.
Second, the conditional-correlation approach may not allow to identify the type
of information asymmetry involved (if any). Under adverse selection, accident-
prone agents choose to buy more insurance. Moral hazard, on the other hand,
suggests the opposite causality: agents who, for any reason, buy more insurance
become more risky because the extensive coverage has a negative effect on
incentives and discourages cautious behavior. To the extent that static data only
allow to identify correlations, these two mechanisms cannot be distinguished.1

1.2 Adverse Selection, Moral Hazard, and the Dynamics of Asymmetric
Information

The approach used in this paper relies on the idea that adverse selection and
moral hazard can be distinguished by analyzing the dynamic aspects of the
relationship (Chiappori 2000). This can be done in two different ways. One
possible strategy compares the features of existing contracts to theoretical

1. Several articles try to empirically disentangle adverse selection and moral hazard. For instance,
Holly et al. (1998) and Cardon and Hendel (1998) estimate structural models of health insurance,
while Chiappori, Durand, and Geoffard (1998) and Dionne, Maurice, Pinquet, and Vanasse (2001)
exploit “natural experiments” in which a new regulation exogenously changes incentives.
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predictions about the form of optimal contracts under adverse selection and
moral hazard. This approach exploits the fact that, in a dynamic setting,
optimality has different implications in each case. Hence, a careful empirical
investigation of the dynamic features of observed contracts may provide useful
insights in the type of problem they are designed to address.2 An alternative
strategy, which we adopt throughout the present paper, does not assume opti-
mality of existing contracts. Instead, it takes existing (and possibly suboptimal)
contracts as given and contrasts the behavior implied by theory under adverse
selection and moral hazard to observed behavior. The idea is that particular
features of existing contracts, whether optimal or not, have different theoretical
implications for observed behavior under adverse selection and moral hazard.
Thus, the two can be distinguished by a careful analysis of observed behavior.

The two strategies just described have their own advantages and disadvan-
tages. The first approach should in principle be very robust, to the extent that it
relies on simple, qualitative characteristics of optimal contracts. Another virtue
is that its implementation requires only data on contracts, which are in general
much easier to obtain than data on induced behavior.3 However, these qualities
come at a cost. First, the qualitative characteristics of optimal dynamic contracts
under asymmetric information may be very difficult to derive, except for very
specific cases. They may moreover involve complex schemes, such as random-
ized contracts or sophisticated revelation mechanisms, which are hardly ever
observed in real life.4 A second concern is that optimal contracts are typically
derived within a simplified framework (assuming for instance linear technolo-
gies, no loading, no transaction costs, etc.). The robustness of the corresponding
conclusions in a more realistic and therefore more complex setting is not
guaranteed. A particularly important issue is the presence of unobserved heter-
ogeneity in individual characteristics, notably risk aversion. Arguably, any
“realistic” model of optimal insurance contracts should not only consider the
particular feature under study (moral hazard or adverse selection on risk), but
should also take the paramount presence of adverse selection on preferences into
account. This in general requires a characterization of optimal contracts under
either adverse selection and moral hazard or multidimensional adverse selection.
These are very difficult problems, especially in a dynamic context, and little is
known about their solutions.5 Finally, even casual empiricism indicates that
actual insurance contracts are not always optimal (to say the least). For instance,

2. See Dionne and Doherty (1994) for an early example.
3. For instance, Hendel and Lizzeri (2001) find evidence of symmetric learning by comparing the
actuarial value of life insurance contracts in which future premia may or may not vary with the
agent’s future health status. Interestingly, their analysis does not require data on actual mortality.
4. For example, Chiappori, Macho, Rey, and Salanié (1994) show that, under moral hazard,
renegotiation-proof implementation of any effort level above the minimum is impossible without
randomized contracts if savings are not observable. This is true except for the special case of
monetary cost of effort and CARA preferences.
5. The reader is referred to Rochet and Stole (2000) for a survey of multidimensional adverse
selection, and to Chassagnon and Chiappori (2000), Jullien, Salanié, and Salanié (1999), and
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theory suggests that the characteristics of an optimal experience-rating scheme
should be specific to each class of risk; that individuals, at least in the presence
of adverse selection, should be offered a menu of various experience-rating
schemes; and that not only the premium, but also the deductible (and more
generally the whole nonlinear reimbursement profile) should depend on past
experience. These features, however, are rarely observed in real life.6

For these reasons, we choose to adopt the second approach: we study the
behavior induced by existing contracts without necessarily assuming that those
contracts are optimal in any sense. Specifically, we exploit the fact that most
real-life insurance contracts exhibit some form of experience rating (although
not necessarily the optimal form predicted by theory). Under moral hazard,
experience rating has very interesting implications. The occurrence of an acci-
dent affects the whole schedule of future premia. This changes not only the
expected wealth of the agent and the expected average cost of insurance, but
also, more importantly, the (expected) discounted marginal cost of future
accidents. The cost of the next accident (in terms of, say, expected future premia
or the corresponding certainty-equivalent) thus depends on the current premium
and hence on the past accident history. It follows that the occurrence of an
accident changes the incentives faced by a driver and therefore, under moral
hazard, the future accident probability. This suggests that we can test for moral
hazard by testing for such dynamics in the agent’s accident process. A contri-
bution of this paper is to point out the close link between this idea and a problem
that has been studied at length in econometrics, the distinction between pure
heterogeneity and state dependence.

1.3 Heterogeneity Versus State Dependence

The problem of distinguishing heterogeneity and state dependence originally
appeared in economics in relation to unemployment and labor-supply issues (see
Heckman and Borjas 1980, and Heckman 1981).7 For example, it is well-known
that individuals who are unemployed now are more likely to be unemployed in
the future. There are two explanations for this empirical finding. One is that past
unemployment has a direct, negative impact on the worker’s future employment
prospects (because of e.g. stigma effects, decreased investments in human
capital, etc.). This is the state-dependence explanation, whereby unemployment

Araujo and Moreira (2002) for examples of models involving moral hazard and adverse selection.
These papers, however, only consider a static setting.
6. From a more technical point of view, the optimality assumption also leads to difficult
endogeneity issues. For instance, it is not possible, in general, to compare the performances of the
different schemes that coexist on the market without taking into account the inherent selection bias:
since each schedule is assumed optimal, the coexistence of different schemes must reflect
differences in the corresponding populations. Such bias can be very difficult to correct for.
7. The statistical problem of distinguishing between spurious and true state dependence has a
long history, with seminal contributions by Feller (1943) and Bates and Neyman (1952).
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spells have a genuine effect on the agent’s behavior in the sense that “an
otherwise identical individual who did not experience unemployment would
behave differently in the future than an individual who experienced unemploy-
ment” (Heckman and Borjas 1980, p. 247). Alternatively, the observed pattern
may simply reflect the dynamic selection effects of unobserved heterogeneity.
Assume that workers differ by some unobserved characteristics that affect their
employment probability. Suppose that these characteristics are positively related
over time and not affected by labor-market outcomes. Then, “less employable”
workers are more likely to be unemployed both now and in the future. This
results in a positive association between past and future unemployment, which
is spurious in the sense that past unemployment matters only as a proxy for their
unobservable employability (which, by assumption, is not affected by labor-
market outcomes). The literature has clarified this distinction between state
dependence and pure heterogeneity and has produced various methods for their
empirical analysis. In particular, panel-data methods have been developed that
exploit the fact that the two explanations have different implications for the
dynamics of employment.

In this paper, we will more formally develop the idea that moral hazard
leads to a particular form of state dependence in the accident process under
experience rating.8 We will then argue that testing for moral hazard boils down
to testing for this true state dependence in the presence of unobserved hetero-
geneity. We will follow the labor literature and exploit that true state depen-
dence, and therewith moral hazard, can be detected by analyzing the dynamics
of, in our case, accidents.9

1.4 The French “Bonus-Malus” Scheme and State Dependence

We consider a scheme used by French insurance companies, the so-called
“bonus-malus” mechanism. This mechanism is both simple and explicit, which
considerably simplifies the empirical investigation. Contracts are renewed and
premiums are revised annually. The premium is the product of two factors, the
“base premium” and the “bonus-malus coefficient” at the time of contract
renewal. The base premium is computed at the beginning of the relationship. It
can be defined freely, but can only depend on observables and must be uniform
over agents with identical characteristics. It cannot be modified during the
relationship unless some observable characteristic changes, and only in a pre-
defined way. Experience rating operates through the second component, the

8. Note that in the contract theory framework, the theoretical structure may moreover provide
specific predictions on the direction of state dependence effects. In our context, for instance, the
characteristics of the experience-rating scheme at stake imply that the occurrence an accident can
only increase prevention efforts.
9. For a similar approach on labor data in a learning framework see Chiappori, Salanié, and
Valentin (1999).
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bonus-malus coefficient, on which we shall particularly concentrate in the
paper.10 An important feature of the French system is that the bonus-malus
coefficient “sticks” to the agent, in the sense that an agent switching insurers
will bring her old coefficient into the new contract. In particular, attrition cannot
be explained by an attempt to “escape” the current coefficient. This will be
important for the empirical analysis.

The evolution of the bonus-malus coefficient only depends on accidents for
which the insuree is fully or partly responsible (accidents entirely caused by a
third party are fully covered, in general by the third party’s insurance and at no
cost for the victim). Each year without such an accident (or, more appropriately,
claim) decreases the coefficient by some fixed factor ! ! 1 (currently 0.95).
Each accident caused by the insuree—there can be more than one in a contract
year—increases the coefficient by a factor " " 1 (currently 1.25).11 It follows
that any accident shifts the whole distribution of future (contingent) premia
upwards, by a factor ". Roughly, the “cost” of the (n # 1)-th accident is " times
larger than that of the n-th.

These properties will, in turn, affect the optimal effort profile. A natural
conjecture is that the increased marginal cost results in more cautious behavior
and smaller accident probabilities. This intuition, however, deserves more
careful scrutiny, because of the complex nature of the problem. Several effects
should be considered. For instance, the upward shift in the premium schedule
decreases the agent’s expected wealth and the resulting wealth effect can modify
risk aversion in a way that may confound our results. Also, the “future cost”
alluded to above is in fact a random variable. Its distribution depends not only
on the risk characteristics of the agent, but also on the future effort profile.
Conversely, the latter will depend on (the consequences of) current behavior. In
other words, the determination of the optimal effort level in each period requires
the solution of an optimal control problem. In Section 2, we carefully investigate
this problem by developing a theoretical model of dynamic moral hazard under
experience rating. We show that, under standard convexity assumptions on
preferences and the prevention technology, the intuition above is correct if the
cost of insurance (premium and deductible) is a small fraction of income.
Everything else equal (i.e., controlling for heterogeneity), the optimal effort
level should increase with the premium. This implies that, conditionally on the
driver’s characteristics, the dynamics of accidents should exhibit negative
“occurrence dependence”: the occurrence of an accident decreases the individ-

10. In the period covered by our data, the base premium could actually depend on the claim
history as well. If anything, however, the base premium varied like the bonus-malus coefficient and
amplified the experience-rating scheme.
11. In addition, there exists a cap and a floor of the bonus-malus coefficient (currently, 3.5 and
0.5). Also, insurees who have had the maximum bonus without a claim for at least three years
receive a “malus-deductible”: their next claim at fault does not trigger a malus but only loss of the
malus-deductible. It is easy to see that this does not qualitatively affect our conclusions on moral
hazard and occurrence dependence.
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ual’s probability of future accidents.12 This is the true state-dependence mech-
anism in our insurance context. Note that this prediction relies on the presence
of moral hazard.

As in the labor example above, this conclusion only holds conditionally.
Unobserved heterogeneity introduces an opposite association in the raw data:
good drivers, who pay lower premia, tend to have both a smaller number of past
accidents and a smaller probability of future accidents. Therefore, as in the labor
literature alluded to above, our main empirical task is to disentangle the effects
of pure heterogeneity from those of the particular type of state dependence that
is induced by the presence of moral hazard. Section 3 exploits these ideas in the
empirical analysis of moral hazard using longitudinal insurance data. We
specify a nonparametric econometric model of claim times that allows for both
occurrence dependence and dynamic selection on unobservables. The model is
specified in terms of the individual’s accident (or, better, claim) rate, which is
assumed to be proportional in occurrence-dependence and heterogeneity effects
on the one hand and the effects of time on the other hand. Our analysis extends
existing results of the state-dependence literature in various directions. We
develop a model that allows for general nonstationarity (through proportional
pure time effects) in the claim intensity. We propose new tests that correct for
such nonstationarity, and discuss their relation to the existing literature. Finally,
we analyze the identifiability of a special case of the model and present some
estimation results. Section 4 concludes. Details are relegated to the Appendix.

2. Dynamic Moral Hazard under Experience Rating: Theory

2.1 The Model

We consider a dynamic version of an insurance model along the lines of Mossin
(1968). Time is continuous on [0, T̃ ], for some finite T̃ " 0. The wealth of agent
i at time t is denoted by Wi(t) and accumulates as follows. At time 0, agent i is
endowed with some initial wealth Wi(0). Then, between t and t # dt agent i
receives some income flow wi(t)dt and chooses a consumption flow Ci(t)dt
(where 0 # t ! T̃).13 In addition, the agent causes an accident with some
probability pi(t)dt.14 If so, she incurs some monetary loss, which is covered by
an insurance contract involving a fixed deductible Di and a premium qi(t)dt that
is paid continuously.

The premium depends on past experience. In particular, it satisfies the

12. This type of state dependence is labelled “structural occurrence dependence” by Heckman
and Borjas (1980).
13. We assume that the income path is integrable on [0, T̃ ].
14. Accidents that are not caused by the agent are fully covered and have no impact on future
premiums. Such accidents can be and are disregarded in our analysis.

773Abbring et al. Moral Hazard and Dynamic Insurance Data



following “bonus-malus” system. If agent i does not cause an accident between
t and t # dt, the premium is decreased by an amount dqi $ !qi(t)dt (the
“bonus”). If she causes an accident, on the other hand, the premium jumps
discontinuously to "qi(t). Here, " % 1 " 0 is the proportional “malus.”

Accidents caused by the agent are subject to moral hazard. That is, at each
time t, the agent chooses the intensity pi(t) of having an accident from some
bounded interval [0, p! i], at a utility cost &i(pi(t)). We assume that &i is twice
differentiable on (0, p! i), with &'i ! 0 and &(i " 0. In words, reducing accident
rates is costly and returns to prevention are decreasing. For definiteness, we also
assume that limp1p! i&'i(p) $ 0.

The agent’s instantaneous utility from consuming Ci(t) and driving with
accident intensity pi(t) at time t is ui(Ci(t)) % &i(pi(t)). We assume that ui is
increasing and strictly concave, so that the agent is risk-averse. The agent
chooses consumption and accident-intensity plans that maximize total expected
utility

!!"
0

T̃

)ui)Ci)t** $ &i) pi)t***dt#
subject to some final wealth constraint, given the wealth and premium dynamics
described above. For simplicity, we assume that the agent perfectly foresees her
income path {wi(t); 0 # t # T̃}. Thus, she only has to form expectations on
future accidents and their implications.

2.2 Results

For notational convenience, we now drop the index i. It should be clear,
however, that all results are valid at the individual level, irrespective of the
distribution of preferences and technologies across agents. In particular, the
results hold for any type of unobserved heterogeneity in these primitives of the
model.

A first result is

LEMMA 1. At each time t, the optimal consumption and accident intensities only
depend on the past history through the agent’s wealth W(t) and the premium
q(t).

Lemma 1 states that the only channel through which past accidents influence
current behavior is their impact on the incentives faced by the agent, for which
the current premium is a sufficient statistic, and on wealth. We have disregarded
alternative channels, such as learning, fear, or cautionary reaction to an accident
by assuming that the prevention technology, as represented by the cost function
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&, does not depend on the past experience of accidents directly. The empirical
relevance of this assumption will be discussed in Section 3.

The agent faces an optimal control problem. The value function V for this
problem satisfies the Bellman equation

V)t, W, q* % max
C, p

+u)C*dt $ &)p*dt & pdtV)t & dt, W & w)t*dt $ D $ Cdt

$ qdt, "q* & )1$ pdt*V)t & dt, W & w)t*dt $ Cdt $ qdt, q $ !qdt*,.

In words, between t and t # dt the agent derives utility from her consumption
and disutility from her prevention effort. If no accident occurs (with probability
1% pdt), her wealth is increased by the income flow minus consumption and the
premium, and the premium is continuously reduced. If the agent causes an
accident (with probability pdt) then she must in addition pay the deductible, and
the premium jumps to "q. The Bellman equation can be rewritten as

0 % max
C,p

+u)C* $ &)p* $ p-V)t, W, q* $ V)t, W $ D, "q*.

& Vt)t, W, q* & VW)t, W, q*-w)t* $ C $ q. $ Vq)t, W, q*!q,, (B)

with Vt, VW, and Vq the partial derivatives of V with respect to t, W, and q,
respectively.

We are interested in the qualitative properties of the value function V and
the optimal accident intensity. First note that agents dislike high premiums.
Take some premiums q and q' ! q. At any moment t, an agent who faces q'
could derive higher utility than under the higher premium q by simply using the
strategy that would be optimal under q. Using the optimal strategy at q' instead
can only further improve the gain. Hence,

LEMMA 2. The value function V is decreasing in the premium q.

We now concentrate on the impact of the current premium on the optimal
accident intensity. First note that the agent’s behavior for “large” premium
levels may be atypical. Given the dynamics described previously, the premium
could exceed the agent’s current income, current wealth, or even lifetime wealth
if the number of accidents is large enough. This situation, however, will not
arise because the agent can always choose a zero accident probability (although
presumably at a high cost), say by giving up driving. Note that in that case, the
accident probability becomes totally inelastic to the premium.

In most cases, however, both the premium and the deductible are “small”
relative to income.15 We now show that for such “small” values of the premium
and the deductible, the prevention effort is increasing (the accident intensity is

15. Both premiums and deductibles are a few hundred dollars in our sample, which is one or two
percent of the median household income in the population under consideration.
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decreasing) in the premium, as intuition suggests. To this end, consider the first
order conditions of the program (B),

u')C*)t, W, q** % VW)t, W, q*

%&')p*)t, W, q** % V)t, W, q* $ V)t, W $ D, "q*,

where p*(t, W, q) and C*(t, W, q) are, respectively, the optimal accident and
consumption intensities at time t, wealth W, and premium q. The first equation
is the standard Euler condition for intertemporal optimality. The second condi-
tion implies that

&() p*)t, W, q**p*q)t, W, q* % "Vq)t, W $ D, "q* $ Vq)t, W, q*,

where p*q is the partial derivative of p* with respect to q. For “small” values of
q and D, this condition becomes

p*q)t, W, q* $
" $ 1

&() p*)t, W, q**
Vq)t, W, 0* ' 0

and the accident intensity decreases with the premium.
As a consequence, the intensity of the accident process will drop discon-

tinuously at the time of an accident, in response to a discontinuous jump in the
premium. We formally state this conclusion as

PROPOSITION 1. For small enough values of the premium and the deductible, the
optimal accident intensity drops discontinuously at the time of an accident.

Proposition 1 provides a simple testable implication of moral hazard under
experience rating: under moral hazard, the occurrence of an accident results in
a discontinuous drop in the accident intensity. In other words, the accident
process should exhibit negative occurrence dependence. The rest of the paper is
devoted to empirical tests of this prediction.

It is important to stress again that the theoretical analysis in this section
operates at the individual level. For any given agent i the dynamics of accidents
should exhibit the type of state dependence just described, irrespective of the
distribution of preferences and technologies across agents. However, empirical
tests of occurrence dependence have to rely on interindividual comparisons, if
only to control for time-effects that are common across individuals. Unobserved
heterogeneity thus becomes a critical issue in the empirical analysis.

The theoretical model provides a simplified representation of actual expe-
rience-rating schemes and the agent’s behavior under these schemes. We al-
ready mentioned the fact that we ignore the nonmonetary consequences of an
accident. A more technical issue is that the theory assumes that the premium is
adjusted continuously, whereas premiums are typically only adjusted at discrete
dates (e.g., annually) in actual experience-rating systems. Finally, real-life
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schemes often entail ceilings and floors on the premium.16 Our view is that the
previous model nevertheless provides a useful approximation of actual behavior.

3. Econometric Specification and Empirical Analysis

3.1 Introduction

We now turn to the main problem of this paper, the empirical distinction of
moral hazard on the one hand and adverse selection or, more generally, selection
induced by unobserved heterogeneity on the other hand. As argued in the
introduction, we propose to exploit dynamic data on claims under experience-
rated contracts. Proposition 1 suggests a simple, direct test on negative occur-
rence dependence in observed claim rates. However, we can only directly
control for observed individual characteristics and the occurrence-dependence
effects due to moral hazard are likely to be confounded with the effects of
dynamic selection on unobservable characteristics. In particular, insurees with a
history of many accidents are likely to be more accident-prone for unobserved
reasons. This leads to a positive effect of past claims on current claim proba-
bilities that counters the negative effect of any moral hazard. In other words, the
problem of distinguishing between moral hazard and selection is similar to a
standard problem of distinguishing state (occurrence) dependence and unob-
served heterogeneity.

The solution to this problem depends primarily on the type of data available.
In many empirical studies in insurance (including ours), data are derived from
the insurance companies’ administrative files. Many relevant characteristics of
the driver (age, gender, place of residence, type of job, etcetera) and the car
(brand, model, vintage, power, etcetera) are used by companies for pricing
purposes. These data are typically available to the econometrician as well. The
same is true for the characteristics of the contract (type of coverage, premium,
deductible, etc.). Finally, each accident—or more precisely each claim—is
recorded with all the relevant background information.

Data sets mainly differ in the way the past claim history of insurees is
recorded and made available to researchers. Many experience-rating schemes
(including the French) can be implemented with data on the number of claims
in each contract year only. Often this results in only (panel) counts of claims
being provided to econometricians, without any information on the exact dates

16. In France, for instance, the bonus-malus coefficient cannot fall below 0.5 or increase above
3.5. Given the actual values of " (1.25) and ! (0.95 annually), however, the 0.5 level cannot be
reached within thirteen years. The 3.5 coefficient can be reached more quickly, but requires at least
six accidents (and more if the agent receives bonuses for claim-free years before having six
accidents). Therefore, given that drivers have on average one accident every seven years, reaching
the ceiling quickly is a very rare event. Indeed, we do not find any driver in our data who is at the
ceiling.
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of the accidents. Some schemes can even be implemented if only the total
number of claims in a given period is known. This gives rise to (cross-sectional)
claim-count data. The empirical distinction of state-dependence and heteroge-
neity with such (panel or cross-sectional) count data is a difficult problem, but
one that has been studied in the literature. However, we leave application and
extension of this literature to our insurance problem for future work.

In this paper, we study the more favorable situation in which the exact date
of each claim is provided. This suggests specifying a continuous-time event-
history model of claims that allows for occurrence dependence and unobserved
heterogeneity. The theory of Section 2 shows that moral hazard leads to negative
dependence of individual claim intensities on the occurrence of previous claims.
Unobserved heterogeneity in claim intensities captures any dynamic selection
effects. In general, the occurrence-dependence effects of moral hazard will be
heterogeneous in the population. To accommodate this, we allow for general
interactions between occurrence dependence and individual-specific effects in
most of our analyses. We will derive some extra, stronger results for an
econometric model in which occurrence dependence acts proportionally on the
claim intensity and is homogeneous across agents.

Three caveats should be mentioned. First, premiums are only updated
annually and not continuously as in the theoretical model. Under discounting,
this may introduce nonstationarity in the agent’s decision problem beyond that
implied by the finite horizon in the theoretical model: when contract renewal is
near, the “cost” of an accident is higher than when premiums have just been
updated. This effect seems to be of only minor importance. It does however
suggest that we should allow for nonstationarity in “contract time” (i.e., time
since the last premium update).17 This is particularly true because contract-time
effects may bias our assessment of occurrence dependence in arbitrary ways.

Second, we observe only claims, not accidents, and the decision to file a
claim is endogenous. It is well known that this introduces a second type of moral
hazard, which is often referred to as “ex post” in the insurance literature. For
instance, experience rating results in more cautious driving ex ante and in-
creased reluctance to file a claim for a minor accident ex post.18 Neither the

17. In the French system, claims enter the bonus-malus coefficient with a delay of two months.
More precisely, the history considered in determining the new bonus-malus coefficient at any
particular contract renewal date consists of all claims corresponding to losses incurred during the
year that has ended two months before the renewal date. For example, a new premium that is issued
on January 1, 1989 is based on the history used in writing the old (January 1, 1988) contract and
all claims in the period November 1, 1987–October 31, 1988. One could say that contract time is
lagging claim-history time by two months. Clearly, theory predicts nonstationarity in claim-history
time rather than in contract time. However, because the difference between the two is common
across all agents, we can simply control for claim-history time by flexibly controlling for contract
time.
18. A possible solution, used by Chiappori and Salanié (2000) in their cross-sectional analysis,
is to consider exclusively accidents in which a second party was involved (in which case a claim
is almost automatically filed). However, this solution has two drawbacks in the present context: it
would decrease the number of accidents (and especially the number of cases in which two accidents
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theory nor the empirical analysis distinguishes between these two types of moral
hazard (in a sense, the prevention technology in the theoretical model can be
seen as a reduced form for both). It is not clear, actually, that ex-ante and ex-post
moral hazard should be distinguished at all (typically they should not be from
the insurer’s perspective). Anyhow, since both effects go in the same direction,
the presence of ex-post moral hazard (if any) can only bias our estimate of
ex-ante moral hazard upwards. Since we fail to find any significant effect at all,
we suspect that both effects are negligible.

Third, there may be learning effects. In the theory section, we assume that
past accidents only affect current behavior through a monetary channel (i.e.,
increased monetary incentives to exercise caution). In reality, there may be other
channels as well. In particular, a young driver is presumably not perfectly
informed about her driving ability and may learn about this ability from
accidents. In the presence of moral hazard, such learning may in turn affect the
probability of future accidents. For example, an upward reassessment of the
accident probability in the absence of effort may enhance the perceived benefits
of cautious driving. We address this problem in two different ways. First, even
though accidents in which the driver is at fault typically have both incentive and
learning effects, accidents that are entirely caused by a third party can only have
learning effects and have no monetary-incentive effects. We exploit this fact by
repeating our tests on a sample including all accidents, rather than just accidents
at fault. Second, learning should be more important for young drivers than for
experienced drivers. Thus, we can test for the relevance of learning by repeating
our analysis on subsamples of inexperienced and experienced drivers and
contrasting the results. These additional analyses, which are discussed in detail
in Subsection 3.6, suggest that our conclusions are robust to learning effects.

The remainder of the paper will be concerned with the specification,
identification and empirical analysis of an appropriate continuous-time model of
insurance claims. We have seen that, within such a framework, a test on moral
hazard boils down to a test with a null of no (genuine) occurrence dependence
against the alternative of (genuine, negative) occurrence dependence. Our
analysis will build on and extend the existing literature on state dependence and
heterogeneity in continuous-time event-history models.

It should be stressed from the outset that the null of no moral hazard is
consistent with the presence of unobserved heterogeneity, whatever its type.
Such heterogeneity may reflect the impact of any information that is not
available to the insurance company, but may or may not be known by the
insuree himself. In other words, we do not, under the null, distinguish between
adverse selection and symmetrically imperfect information.19 It is important to

are observed) and it would lead to ignoring events (i.e., one-person accidents) that nevertheless
influence incentives through their impact on the premium.
19. Moreover, in most of our analysis we do not control for observed heterogeneity (see the next
subsection). This observed heterogeneity will be absorbed by the individual-specific effect.
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note, however, that testing for adverse selection is certainly possible in this
context, and can provide interesting insights in the nature of learning processes.
The idea would be to analyze the changes in insurance contracts initiated by the
drivers, and the subsequent impact on the accident hazards.20 This is left for
future work.

3.2 The Econometric Model

Our analysis focuses on the occurrence of car insurance claims in a single
insurance contract year, i.e., the period bounded by two consecutive contract
renewal dates. We first present a model for the population of claim histories in
the contract year.

Let time have its origin at the start of the contract year. Then, if the contract
year is of length T, it can be represented by the interval [0, T ]. Let Tk be the time
of the k-th claim in the contract year. Denote the corresponding counting process
by N[0, T ] :$ {N(t); 0# t # T}, where N(t) :$ #{k : Tk # t} counts the number
of claims in the contract year up to time t. N[0, T] is the focus of our model and
empirical analysis.

The intensity ( of claims at time t, conditional on the claim history N[0, t)
:$ {N(u); 0 # u ! t} up to time t and a nonnegative individual-specific effect
) is

( )t%), N-0, t** % )*))*N)t%*+)t*, (M)

with * : [0, /)3 (0, /) a bounded measurable function and + : [0, T ]3 (0, /)
a continuous function that captures contract-time effects.21 We frequently use
the notation 0(t) :$ 10

t +(u)du. We normalize 0(T) $ 1, so that ) captures the
scale of (. We assume that ) has marginal distribution G. Together with
equation (M), this fully specifies the distribution of N[0, T].

Equation (M) gives the individual claim intensity at time t of an insuree
with characteristics ) and claim history N[0, t). Any nontrivial dependence of

Therefore, any “unobserved” heterogeneity found may also reflect symmetrically observed infor-
mation.
20. Chiappori and Salanié (2000) find no evidence of adverse selection on a sample of “young”
(i.e., recent) drivers. They note, however, that adverse selection may also arise during the
relationship, due to asymmetries in learning between the firm and the client (e.g., such an
informative event as a near-miss is typically observed by the driver only). For a theoretical
investigation, see de Garidel (1997).
21. The model only recognizes contract time and does not explicitly consider the effects of
calendar time (or duration since last event for that matter). In a typical sample, different contracts
have different renewal dates, so that contract time and calendar time do not coincide (see the next
section). Nonstationarity in contract time arises in theory because of discounting and the discrete-
time nature of contract renewal, and possibly because of learning. Also, of all time effects,
contract-time effects are most likely to confound our analysis of occurrence dependence, which
concerns previous occurrence of claims in the contract year. We therefore want to deal with
contract-time effects in a flexible manner.
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this claim intensity on the insuree’s claim history N[0, t) can be interpreted as
true state dependence. In our model (M), this state dependence takes the form
of occurrence dependence: individual claim intensities at time t only depend on
the claim history N[0, t) through the number of past claims N(t%).22 The
function * captures these occurrence-dependence effects. For an individual with
characteristics ), the claim intensity is multiplied by a factor *()) each time a
claim occurs. We allow this effect to be different across insurees with different
characteristics by allowing * to be a nontrivial function of ).

The claim intensity in (M) is multiplicative in individual heterogeneity and
occurrence-dependence effects on the one hand and time-effects on the other
hand. In this sense it is a proportional-hazards model. It should however be
stressed that our model does not involve observed individual characteristics and
that our main analyses do not use covariate information. Any covariate effects
are subsumed in the (unobserved) individual effect ). This individual effect can
then also capture the cumulated effects of claims that have occurred before the
sampled contract year started. In Subsection 3.6, we repeat our analyses on
samples that are stratified on covariates. Through stratification we allow for
general interactions of the covariates on the one hand and ) and the other model
components on the other hand. Either way, we avoid initial-conditions prob-
lems.23

As explained in the Section 2, in the French car-insurance system moral
hazard leads to a decline in the claim intensity with the number of previous
claims: *()) ! 1. Without moral hazard, we expect that *()) $ 1 for all ). Our
empirical analysis focuses on distinguishing these two cases, in two stages.

First, in Subsection 3.4 we focus on testing the prediction expressed by
Proposition 1 without further assumptions on preferences and technologies. In
terms of the econometric model above, this amounts to testing the null hypoth-
esis that *()) $ 1 for all ) against the general moral-hazard alternative that
*()) ! 1 for all ). We first state a basic result that is useful in the development
of such tests: 0 and G are identified under the null of no moral hazard. We then
provide two nonparametric tests. The first of these tests, developed in Subsec-
tion 3.4.2, is rooted in the work of Bates and Neyman (1952) and Heckman and
Borjas (1980, Section II.a) for exponential models with general unobserved
heterogeneity. It exploits that, under the null, the total number of claims in a
given (data) period is a sufficient statistic for the unobserved heterogeneity in
the claim intensities. Our contribution is to provide a closely related test that
allows for general nonstationarity in the claim intensities (by not imposing any
restrictions on 0). In Subsection 3.4.3 we develop an alternative test that is
inspired by the regression approach to event-history analysis (see, e.g., Heck-

22. Heckman and Borjas (1980) call this “structural occurrence dependence.”
23. Rather than stratifying on covariates, we could extend (M) to include proportional covariate
effects. In a random-effects setting, we would typically assume that ) is independent of these
covariates. However, such independence will not hold if ) captures the cumulated effects of claims
that have occurred before the sampled contract year.
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man and Borjas 1980, Section II.b) and the methods for paired duration data
developed by Holt and Prentice (1974) and Chamberlain (1985). This test uses
within-individual variation in durations between claims to control for unob-
served heterogeneity. The main distinguishing feature of our test is again that it
allows for general nonstationarity.

Second, in Subsection 3.5 we concentrate on a particular version of the
model in which the occurrence-dependence effects *()) are the same across
insurees. More formally, * is a trivial function of the individual-specific effect
). We provide some new identification results for this model, and point out a
relation to the literature on the identifiability of the two-sample mixed propor-
tional hazard (MPH) model (Elbers and Ridder 1982, and Kortram et al. 1995).
Finally, we provide some parametric estimates of *, 0, and G.

3.3 Sampling and Data

We observe the claim histories for all insurance contracts at a French insurance
company in a given and common calendar time period of two years, October 1,
1987–September 30, 1989. Different contracts have different renewal dates, so
that contract time and calendar time do not coincide.

The length of the contract year is, appropriately, one year (i.e., T $ 1, with
time measured in years).24 Ideally, contracts cannot be terminated within a
contract year, except in special circumstances. An example is death of the agent.
Contracts can however be changed during the year. For example, the deductible
can be altered or the contract can be transferred to a new car, which may be in
a different risk class. In our data set, each change of contract triggers creation
of a new record. Records have to be consolidated back into single contracts.
Fortunately, high quality information is available to facilitate such linking.
However, some linking problems may remain and generate some spurious
attrition. Overall, 9.4 percent of the contracts written or renewed in the first
sample year fail to survive a full contract year after that.25 In this paper, we
ignore both true and spurious attrition.

With that qualification, we observe at least one full contract year for each
contract that is not terminated during the first sample year or written anew
during the second. For contracts with renewal dates coinciding with the start
date of the sample, we observe two full contract years if the contract is renewed
after one year. Our observations are the flow of contracts that are written or
renewed in the first sample year, and each observation provides information on

24. More precisely, given the presence of a leap year in the sample period, we take it to be 365
days.
25. More precisely, we compute the rate of attrition as a fraction of all the contracts that are active
at their renewal date in the first sample year, and survive for at least thirty-one days after that. The
latter condition excludes contracts that are terminated at their renewal date in the first sample year,
with a thirty-one-day grace period.
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N[0, T] for the contract year following the renewal or writing of the contract.26
Consistently with the prior discussion, contracts suffering from attrition during
the contract year are discarded. For contracts with two contract years in the
sampling period, the second year is discarded.

Let the resulting random sample contain n contracts, labelled 1, . . . , n. The
i-th observation in the sample is denoted by Ni[0, T ], i $ 1, . . . , n. Each claim
history Ni[0, T ] in the sample can alternatively be characterized as the number
of claims Ni(T) with, if Ni(T) " 0, a vector (T1,i, . . . , TNi(T ),i) of claim times.
Each observation Ni(0, T) is complemented with an unobserved effect )i that
has distribution G. The claim intensity for observation i is assumed to be given
by (M) evaluated at sample variables.

The bottom panel of Table 1 provides some information on the sample.
Accidents are fairly rare, but the number of contracts n for which we have at
least one full contract year is large, 79,684. Of these contracts, 4,831 have one
claim in the contract year, 270 have two claims, 15 have three claims, and 2
have four claims. No contracts have more than four claims.

One additional subtlety should be discussed here. The data distinguish
between various types of claims. Two types of claims are labeled to be at fault,
either full (inducing a 25 percent premium increase) or partial (12.5 percent),

26. Recall from Footnote 17 that claims in the last two months of the contract year [0, T] do not
affect the new premium that will be issued at T, but only the premium that may be issued one year
later, at 2T. We sample contract years to avoid attrition problems.

TABLE 1. MAXIMUM-LIKELIHOOD ESTIMATES (DISCRETE HETEROGENEITY;
TWELVE TIME INTERVALS +)

Occurrence dependence

* 0.974 (0.677)

Unobserved heterogeneity

)a 0.052 (0.006)
)b 0.310 (0.427)
Pr () $ )a) 0.939 (0.104)
Pr () $ )b) 0.061 (0.104)

Contract time (piecewise-constant +)

Wald statistic + 2 1 15.617
Degrees of freedom 11
p-value 0.156

Number of observations by number of claims

M0,n (no claims) 74,566
M1,n (1 claim) 4,831
M2,n (2 claims) 270
M3,n (3 claims) 15
M4,n (4 claims) 2
Log-likelihood %3,536.16
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and are directly relevant to our analysis of moral hazard. We will not distinguish
between these two types of claims and treat each claim, either partially or fully
at fault, to be an event counted by N(t). The sensitivity of the results with respect
to these and other choices is investigated by repeating the analyses on other
samples in Subsection 3.6.

More generally, note that we only model part of the relevant events at this
point. We do not deal with changes of contract as described above, and we
ignore claims that are not at fault (and, sometimes, claims at partial fault). To
some extent, we could deal with these events by including them as time-varying
covariates. However, because of the endogenous nature of, for example,
changes in contract, we plan to pursue a more structural approach, leading to a
richer event-history specification. This is left for future research.

3.4 Testing for Moral Hazard

3.4.1 Identification and Estimation of0 under the Null of No Moral Hazard.We
will first show that the contract-time function 0 can be identified and estimated
under the null hypothesis that *())$ 1 for all ) (which, in the sequel, we simply
denote by * $ 1). This result will be useful later. As a by-product, we will be
able to discuss and apply a well-known test for occurrence dependence due to
Bates and Neyman (1952) and Heckman and Borjas (1980). Our first moral-
hazard test, which will be discussed in next subsection, is based on this test.
Appendix A.1 provides details that are omitted from this subsection.

Let H1 be the distribution of the first claim time T1 in the subpopulation with
exactly one claim in the contract year (N(T) $ 1):

H1)t* % Pr)T1 # t%N)T* % 1*.

Clearly, H1 is identified from the distribution of the claim history N[0, T] and
can be estimated consistently by the empirical analog of H1,

Ĥ1,n)t* %
1
M1,n

&
i$1

n

I)T1,i # t, Ni)T* % 1*.

Here, Mk,n :$ ¥i$1
n I(Ni(T) $ k) more in general denotes the number of

contracts in the sample with exactly k claims. It is easy to show that

H1)t* %
0)t*
0)T*

% 0)t* (H1)

under the null hypothesis that * $ 1. Note in particular that (H1) does not
involve the distribution G of the individual-specific effect ). This reflects the
fact noted earlier that N(T) is sufficient for ) under the null. It follows that 0
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is identified directly from H1 and can be consistently estimated by Ĥ1,n under the
null.

Note that identification of G under the null easily follows. The probability
q0(t) :$ Pr(N(t) $ 0) of observing no claims up to time t is given by

q0)t* % !)0)t**,
where !(s) :$ 1 exp(%)s)dG()) is the Laplace transform of G. We have just
seen that0 is identified from H1 under the null. This implies that ! is identified
on [0, 1] from q0 and H1 under the null. As a consequence, ! and G are
identified under the null.27

So far, we have focused on the identification of 0 from H1 under the null
hypothesis that * $ 1. If we would know0, we could turn the argument around
and test the null hypothesis that * $ 1 by testing the equality H1 $ 0. It is easy
to show that

H1)t%)* :$ Pr)T1 # t%), N)T* % 1* % '"0)t* if *))* ' 1 and
!0)t* if *))* , 1 (H1†)

for all ) " 0 and t ! (0, T). Thus, a test based on the difference between Ĥ1,n
and 0 could be designed to have power against the alternatives of moral hazard
(*()) ! 1 for all ), or simply * ! 1) and, more generally, occurrence
dependence (*()) 3 1 for some ), or just * 3 1).

Obviously, such a test would not be feasible because we do not know 0. In
the literature, feasible tests have been developed under the additional assump-
tion of stationarity (Bates and Neyman 1952). We say that the model in (M) is
“stationary” if +(t) is constant over time t (+ $ T%1). The assumption of
stationarity simply pins down 0(t) to be t/T, so that we can test the null
hypothesis of no moral hazard by testing for uniformity of H1. In this paper, we
do not want to impose stationarity to facilitate a test on moral hazard. We will
however present a uniformity test of H1 and follow Heckman and Borjas (1980)
by interpreting this as a test of the joint null hypothesis of stationarity and no
moral hazard.

Standard distributional test statistics can be computed from Ĥ1,n. We first
investigate Ĥ1,n graphically. The top panel of Figure 1 plots Ĥ1,n and the
uniform distribution function, together with some other functions that are only
of later concern. The bottom panel graphs a kernel estimate of the density of H1,
using an Epanechnikov kernel with bandwidth 0.05. All analyses are based on
the data described in the bottom panel of Table 1 and include both claims at full

27. This follows successively from the real analyticity and the uniqueness of the Laplace
transform (see, e.g., Widder 1946). Nonparametric estimation of G under the null is relatively hard
and will not be pursued here. The Laplace transform! on [0, 1] can be directly estimated from Ĥ1,n
and the empirical analog of q0 on [0, T ]. However, nonparametric estimation of ! on (1, /) and
of G would somehow involve analytic extension and deconvolution, respectively, both of which are
relatively hard to implement empirically. A computationally feasible estimator can possibly be
developed along the lines of the method-of-moments estimator discussed in Heckman, Robb, and
Walker (1990) and in papers referenced therein.
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FIGURE 1. Empirical Distribution Function Ĥ1,n of T1%(N(1) $ 1), Ĥ1,n2 , and Empirical
Distribution Function Ĥ2,n of T2%(N(1) $ 2) (Top), and Kernel Estimate of the Density

of T1%N(1) $ 1 (h1) and Maximum-Likelihood Estimate of + (Bottom)
Note: Based on sample and estimates from Table 1. For the bottom graph, an Epanechnikov kernel with bandwidth 0.05
is used (see Appendix A.1).
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fault and claims at partial fault. At first glance, we find that Ĥ1,n(t) " t/T. If we
would maintain the stationarity assumption, we could take this as evidence of
moral hazard (* ! 1). However, we will later conclude that the deviation of Ĥ1,n
from a uniform distribution should be explained by nonstationarity rather than
moral hazard.

We have computed Pearson’s -2-tests and a two-sided Kolmogorov-Smir-
nov (KS) test. A natural grouping for the -2-statistics is in 365 daily intervals.
With 365 intervals, we have roughly thirteen observations per interval. The
-2-statistic for uniformity is 408.4 and has 364 degrees of freedom. The
asymptotic p-value is 0.054. The p-value increases to 0.484 if time is grouped
in seventy-three intervals of five days. The (two-sided) KS-test is in line with the
first, finer -2-test, with supt![0,T]%Ĥ1,n(t) % t/T% $ 0.019 and a corresponding
p-value equal to 0.058. The p-value is based on the finite-sample distribution
conditional on M1,n.

We conclude that a stationary model without occurrence dependence is only
(marginally) accepted at a size of 5 percent.

3.4.2 Comparison of the Distributions of the First and Second Claim Times. In
this subsection and Subsection 3.4.3, we concentrate on testing the null hypoth-
esis that * $ 1 against moral hazard (* ! 1) or occurrence dependence (* 3
1) without further assumptions on 0 and G.

Analogously to H1, define H2 to be the distribution of the second claim time
T2 in the subpopulation with exactly two claims in the contract year (N(T) $ 2):

H2)t* % Pr)T2 # t%N)T* % 2*.
Recall that H1 $ 0 under the null that * $ 1. Now, it is easy to derive that
H2(t) $ 0(t)2 and therefore that

H1)t*2 % H2)t*
for all t ! [0, T ] under the null. The latter equality holds for all 0 and G. So,
a feasible test that allows for general nonstationarity (0) and heterogeneity (G)
can be based on the difference between the empirical counterparts Ĥ1,n2 and Ĥ2,n
of H12 and H2, where

Ĥ2,n)t* :$
1
M2,n

&
i$1

n

I)T2,i # t, Ni)T* % 2*

is defined analogously to Ĥ1,n. To our knowledge, such tests have not been used
before.

For these tests to have power, the equality H12 $ H2 has to break down under
the alternatives of moral hazard (* ! 1) and occurrence dependence (* 3 1).
A formal power analysis is beyond the scope of this paper. Instead, we will
show that H12 % H2 is different from 0 under local alternatives to the null * $
1. Recall that * is a function, giving the occurrence-dependence effect *()) for
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each individual-specific effect ). Thus, one-sided local alternatives to the null
* $ 1 can be expressed as * $ 1 # qu for some bounded measurable positive
function u and some small q ! ".28 Now consider H1(t)2 % H2(t) as a function
of * for given t. Add the argument * and write H1(t; *)2 % H2(t; *) to make this
explicit. We can get some idea of how H1(t; *)2 % H2(t; *) would change if we
would move from the null * $ 1 to some local alternative * $ 1 # qu by
computing the “directional (Gateaux) derivative” of H1(t; *)2 % H2(t; *) at * $
1 in the direction u. In this case, this directional derivative is simply the ordinary
derivative of H1(t; 1# qu)2 % H2(t; 1# qu) with respect to q at q $ 0. It equals
(see Appendix A.2.1)

d
dq -H1)t; 1 & qu*2 $ H2)t; 1 & qu*.q$0

% 0)t*2)1 $ 0)t**!%!4u)1*
!()1* $

!(u)1*
%!')1*#, (G1)

where !u(s) :$ 1 u())exp(%)s)dG()).
First, consider the special case that u()) $ 1 for all ). Then, the derivative

in (G1) represents the change in H1(t; *)2 % H2(t; *) in response to a small
homogeneous (across )) change in * at * $ 1. In this case, !u $ ! and the
factor in brackets on the right-hand side of (G1) reduces to29

%!4)1*
!()1* $

!()1*
%!')1* . 0.

Thus, the right-hand side of (G1) is nonnegative in this case. This suggests that
moral-hazard alternatives (* ! 1) near * $ 1 with homogeneous * correspond
to H12 ! H2. Under homogeneous * " 1, on the other hand, we should expect
that H12 " H2.

For general directions u this result may not hold. However, if u is positive
and increasing, the derivative in (G1) is generally positive. Thus, the results for
the homogeneous-* case still hold if occurrence dependence is stronger
(%*()) % 1% is larger) for high-) agents. In particular, in the case that * ! 1 and
decreasing we should expect that H12 ! H2. In words, if there is moral hazard for
all agents and if high-) (high-risk) agents are more responsive to incentives,
then the results for the homogeneous moral-hazard case still apply.

The top panel of Figure 1 plots Ĥ1,n2 and Ĥ2,n. Apart from some minor
reversals at the tails, we find that Ĥ1,n2 " Ĥ2,n. The analysis above suggests that
this is evidence of * " 1. A typical one-sided test against the moral-hazard

28. This corresponds to local alternatives such that either *())! 1 (if q ! 0) or *())" 1 (if q "
0) for all ) and includes homogeneous-* alternatives.
29. The inequality follows from the facts that %!' is completely monotonic and that completely
monotonic functions are log-convex (Widder 1946). It holds strictly unless ) is degenerate or has
two points of support of which one is 0, in which case it is binding. See Lemma 4 in Appendix
A.2.1.
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alternative * ! 1 would accept the null that * $ 1 at all sizes. In retrospect, the
fact that Ĥ1,n(t) " t/T in Subsection 3.4.1 should be read as evidence of
nonstationarity rather than moral hazard. Once we correct for both heterogeneity
and nonstationarity, we do not find evidence of moral hazard.

One final concern is that we may even have evidence in favor of * " 1, for
which we have not put forward any economic theory. To assess the statistical
significance of the discrepancy between Ĥ1,n2 and Ĥ2,n, we compute a two-sided
KS-statistic,

Kn % sup
t!-0,T.

%Ĥ1,n)t*2 $ Ĥ2,n)t*%.

This test is distribution-free and finite-sample p-values (conditional of (M1,n,
M2,n)) are easily simulated (see Appendix A.2.2). We find Kn $ 0.067 (p-value
of 0.423, conditional on (M1,n, M2,n) $ (4828, 272)). So, we do not reject the
null that there is no occurrence dependence at any reasonable test size.

3.4.3 Direct Comparison of the First and Second Claim Durations. The test in
the previous subsection is based on a comparison of first and second claim times
across contracts. Here, we develop a test based on a more direct comparison of
the first and second claim times of each contract with two claims (or more).

Main Intuition: The Stationary Case Without Censoring. To develop the main
intuition, first consider the stationary model, i.e., let + $ T%1. Then, for given
), T1/T and (T2 % T1)/T are independent exponential durations with parameters
) and *())), respectively. So, we can write

ln)T1* % ln)T* & ln)E1* $ ln))*

and

ln)T2 $ T1* % ln)T* $ ln)*))** & ln)E2* $ ln))*

for some unit exponential random variables E1 and E2 that are mutually
independent and independent of ). It follows that

ln)T1* $ ln)T2 $ T1* % ln)*))** & ln)E1* $ ln)E2*,

with ln(E1) % ln(E2) independent of ) and symmetrically distributed around 0.
This suggests that we use within-individual variation in claim durations to learn
about ln(*())).

Suppose we have an uncensored sample ((T1,1, T2,1), . . . , (T1,n, T2,n)) from
the joint distribution of (T1, T2). Then, we can estimate ![ln(*()))] by

ln *̂*n %
1
n &
i$1

n

-ln)T1,i* $ ln)T2,i $ T1,i*.,
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in analogy to within-estimation with standard linear panel data, and simply base
a test on ln *̂*n. Such a test would be a special case of the regression test for
“mean” occurrence dependence proposed by Heckman and Borjas (1980, end of
Section II.b).

Alternatively, note that

Pr)T1 . T2 $ T1%)* %
*))*

1& *))*
.

If *()) $ 1, either duration is equally likely to be the largest. If *()) ! 1, then
Pr(T1 . T2 % T1%)) ! 1/2, as expected. This suggests that we can base a robust
test of the null * $ 1 against the alternative of moral hazard on the share of
contracts for which the time up to the first claim is at least as large as the
duration between the first and the second claims,

/̂*n %
1
n &

i$1

n

I)T1,i . T2,i $ T1,i*.

This approach is somewhat reminiscent of the methods for paired duration data
that have been developed by Holt and Prentice (1974), Chamberlain (1985), and
Ridder and Tunalı (1999).30 In our case, it is hard to apply these methods
directly, for two reasons. First, we face a censoring problem: we only observe
(at least) two spells for contracts with T2 # T. Second, we allow for nonsta-
tionarity. The standard methods can deal with duration dependence, i.e., a
common dependence of the hazards of T1 and T2 % T1 on the duration since the
contract renewal date and the first claim, respectively. This generality carries
over to our robust statistic above. However, as the durations T1 and T2 % T1 are
consecutive, nonstationarity can bias our comparison in arbitrary ways. We will
now investigate how we can deal with these two problems.

The Censoring Problem under Stationarity. First, focus on the censoring prob-
lem and maintain the stationarity assumption + $ T%1 (Appendix A.3.1 pro-
vides details). Here, we explicitly analyze the case in which we select only
contracts with exactly two claims. This has some analytical advantages, notably
that the distribution of (T1, T2)%(), N(T) $ 2) does not depend on ) under the
null * $ 1 (again, because of the sufficiency of N(T) for ) under the null). This
is particularly convenient when we can adapt ln *̂*n into

ln *̂n %
1
M2,n

&
i$1

n

ln( T1,i
T2,i $ T1,i)I)Ni)T* % 2*.

30. See also Van den Berg (2001) for an overview.
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It is easy to show that ln *̂n is asymptotically normal under the null * $ 1, with
expectation 0 and variance /2/(3np2). Here, pk is more generally the probability
that a contract has k claims in the contract year. Note that, given p2, the
asymptotic standard error does not involve (properties of) the distribution G of
) and can be consistently estimated by //53M2,n.

Next, note that under the null

Pr)T1 . T2 $ T1%), N)T* % 2* %
1
2

is known and independent of ) as before. Thus, it makes sense to adapt the
second test /̂*n into

/̂n %
1
M2,n

&
i$1

n

I)T1,i . T2,i $ T1,i, Ni)T* % 2*.

Under the null * $ 1, /̂n is asymptotically normal with mean 1/2 and variance
1/(4np2). The variance can be estimated consistently by 1/(4M2,n). Note that

Pr)T1 . T2 $ T1%), N)T* % 2* % *!
1
2
if *))* ' 1 and

"
1
2
if *))* , 1

for all ) " 0, so that we can construct the test to have power against moral
hazard (* ! 1) in particular.

Appendix A.3.2 discusses the alternative case in which we select all
contracts with at least two claims. The analysis of the second, robust statistic /̂n

directly extends to this case. Extending ln *̂n to all contracts with at least two
claims is somewhat more cumbersome because, even given p2, p3, . . . , the
asymptotic distribution of this statistic depends on (properties of) the distribu-
tion G of ) under the null. We will not pursue this here.

In our data set, we observe 270 contracts with exactly two claims. We find
that ln *̂n % %0.043. This seems consistent with moral hazard (* ! 1), but the
estimated asymptotic standard error of ln *̂n under the null is relatively large,
0.110. Thus, the null that * $ 1 is accepted at conventional test sizes. We also
find that the duration up to the first claim is larger than the duration between the
first and the second claims for /̂n $ 50.4 percent of the 270 contracts. If we test
against the alternative of moral hazard, we do not reject * $ 1 at any size. The
estimated standard error of /̂n is 3.0 percent, so that we do not reject against the
two-sided alternative of occurrence dependence at conventional test sizes either.
We can also compute the equivalent of the second statistic for all 287 contracts
with at least two claims. We find that the duration up to the first claim is larger
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than the duration between the first and the second claims for 50.2 percent of
these contracts, with an estimated asymptotic standard error of 3.0 percent. This
confirms our conclusion based on ln *̂n and /̂n.

A General Test under Nonstationarity. These results depend on the stationarity
assumption + $ T%1. Because we have found some circumstantial evidence of
nonstationarity in Subsections 3.4.1 and 3.4.2, we would like to explore the
consequences of nonstationarity a bit further. First, suppose we know 0. Then,
we can deal with possible nonstationarity by working in integrated-hazard time
instead of contract time. Note that 0 is increasing on the supports of T1 and T2.
So, we can work with the transformed durations

T*1 % 0)T1* and T*2 % 0)T2*

instead of T1 and T2 without loss of information. This is convenient, as, for
given ), T*1 and T*2 % T*1 are again independent exponential random variables
with parameters ) and *())), respectively. We can directly apply the analysis
for the exponential case above, provided that we know 0. Then, we can
construct T*1,i $ 0(T1,i) and T*2,i $ 0(T2,i) and therefore

/̂n)0* :$
1
M2,n

&
i$1

n

I)T*1,i . T*2,i $ T*1,i, Ni)T* % 2*.

This is a generalization of /̂n to arbitrary, but still known, nonstationarity.
In our application, we do not know 0 and /̂n(0) is not feasible. However,

recall from Subsection 3.4.1 that we can estimate 0 consistently by Ĥ1,n under
the null that * $ 1. This suggests substituting Ĥ1,n for 0 and using /̂n(Ĥ1,n) as
our test statistic. Under the null * $ 1, /̂n(Ĥ1,n) is asymptotically normal with
expectation 1/2 and variance 1/(4np2)# 1/(6np1). The variance can be estimated
consistently as 1/(4M2,n) # 1/(6M1,n). Appendix A.3.3 provides details.

Substitution of Ĥ1,n for 0 comes at the price of lower power. This is due to
the fact that Ĥ1,n is only a consistent estimator of0 under the null and generally
captures some of the occurrence-dependence effect if * 3 1. We can again
provide some insight by analyzing the local behavior of the test at * $ 1. Let

/ : h ! " # Pr)2h)T1* . h)T2*%N)T* % 2*,

with " the set of all distribution functions on [0, T ] concentrated on (0, T ].
Then, the population-equivalent of /̂n(Ĥ1,n) can be written as /(H1).

First, consider the population-equivalent /(0) of the infeasible statistic
/̂n(0). As before, we can investigate the behavior of /(0), as a mapping * #
/(0; *) for given 0, locally at * $ 1. The directional derivative of /(0; *) at
* $ 1 in the direction u " 0 is given by
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d
dq -/)0; 1 & qu*.q$0 %

1
12

%!4u)1*
!()1* , 0. (G2)

This reestablishes, now locally at * $ 1, that /n(0) can distinguish between
* ! 1 and * " 1 if we know 0.

For /(H1), as a mapping * # /(H1(*); *), we have instead that

d
dq -/)H1)1 & qu*; 1 & qu*.q$0 %

1
12 !%!4u)1*

!()1* $
!(u)1*

%!')1*#. (G3)

The first term is again the effect in (G2) that works through the distribution of
(T1, T2)%(N(T) $ 2). The second term is the counteracting effect on the
time-transformation H1. Note that the derivative in (G3) has the same sign as the
derivative of H12 % H2 in Subsection 3.4.2. It follows that generally /(H1)! 1/2
for homogeneous moral hazard alternatives close to the null. Furthermore, this
result carries over to the moral-hazard alternative in which high-risk (high-))
agents are more responsive to incentives (that is, have higher %*()) % 1%).
Appendix A.3.4 provides details.

We find that /̂n(Ĥ1,n) $ 50.7 percent in our data, confirming our earlier
conclusion that we do not reject the null * $ 1 against the alternative of moral
hazard at any test size. The estimated asymptotic standard error is 3.1 percent,
so that we do not reject the null against a two-sided alternative at reasonable
sizes either.

3.5 Identification and Estimation

3.5.1 Identification. We now specialize the model in (M) by imposing homo-
geneity of the occurrence-dependence effects across contracts. Formally, we
impose that * is a trivial function of ) and simply write

( )t%), N-0, t** % )*N)t%*+)t*, (M†)

with * now a positive scalar parameter. This additional structure will facilitate
the identification and estimation of the model.

In this subsection we investigate identification. Appendix B.1 provides
proofs and other details. Note that the model is fully characterized by the triple
(*,0, !): each choice of the triple (*,0, !) maps into exactly one distribution
of N[0, T].31 We say that (*,0, !) is “identified” if this mapping is one-to-one.
Identification of certain features of (*, 0, !) can be defined analogously. For
example, the sign of * % 1 is identified if it is uniquely determined by the
distribution of N[0, T ].

31. Recall that there is a one-to-one relation between G and its Laplace transform !.
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The following result implies that the null of no moral hazard is empirically
distinguishable from the alternatives of occurrence dependence and moral
hazard without further assumptions.

PROPOSITION 2. The sign of * % 1 is identified.

PROOF. See Appendix B.1. ■

In addition, we conjecture that the parameter * is point-identified without
further assumptions. Define qk(t) :$ Pr(N(t) $ k) for t ! [0, T]. Suppose that
* ! 1, which we can tell from the data by Proposition 2 (the case * " 1 is
similar). Key to the identification of * is the fact that it satisfies

q1+q0%1-)1 $ **q1)t* & q0)t*., % *q1)t* & )1 $ *2*q2)t* (I)
for all t ! [0, T]. Because the functions q0, q1, and q2 are data, this provides a
continuum of nonlinear restrictions on the scalar parameter *. Further analysis
of this problem is beyond the scope of this paper.

Finally, we have a result on the identifiability of 0 and ! in the case that
* is known. First note that we then also know

q̃)t* :$ )1$ **q1)t* & q0)t* % !)*0)t**.
We have already seen in Subsection 3.4.1 that 0 and ! are identified if * $ 1.
In the case that * 3 1, note that q0 and q̃ jointly constitute the data of the
restriction of a two-sample MPH model to [0, T ], with “treatment effect” *,
“integrated baseline hazard” 0 and Laplace transform ! of the “mixing distri-
bution.” 32 Thus, we can identify ! and 0 along the lines of standard two-
sample identification proofs for the MPH model (Elbers and Ridder 1982, and
Kortram et al. 1995). These proofs rely on the additional assumption that
![)] ! /. Thus, we have

PROPOSITION 3. Suppose that * is known. Then, ! and 0 are identified in the
class of models (*, 0, !) such that %!'(0#) $ ![)] ! /.

PROOF. See Appendix B.1. ■

The assumption that ![)] ! / is not innocuous. Ridder (1990) provides
extensive discussion in the context of single-spell MPH models.

3.5.2 Maximum-Likelihood Estimation. Finally, we have estimated parametric
versions of the model (M†) by maximum likelihood. We have chosen a piece-

32. To be precise, suppose we observe two samples of durations. Then, q0 and q̃ are the survival
functions in the first and second sample in the case that the units in the first sample have hazards
+(t)) conditional on ), the units in the second sample hazards *+(t)) conditional on ), and ) has
the same distribution with Laplace transform ! in both samples.
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wise-constant specification of +. In particular, we partition the contract year
[0, 1] in 12 months and set + to be constant within each month:

+)t* % &
j$1

12

+jI( j $ 1
12 # t '

j
12) ,

with +1, . . . , +12 . 0 parameters to be estimated, up to the normalization
0(1) $ (1/12) ¥j$1

12 +j $ 1. For the distribution G of ), we have experi-
mented with various discrete distributions. We have found no evidence that
G has more than 2 mass points. Therefore we present results for a model
without unobserved heterogeneity, in which case we only estimate a con-
stant, and results for a model with two points of support for ). In the latter
case, we have to estimate the support points )a, )b . 0, and one probability
Pr() $ )a) $ 1 % Pr() $ )b). Appendix B.2 provides details on the
construction of the likelihood.

Table 1 presents results for a specification in which the unobserved heter-
ogeneity has 2 points of support and + consists of 12 monthly pieces. We find
an estimate of * just below 1, with a large standard error. The point estimates
are consistent with nondegenerate heterogeneity, but again the precision is low.
If we estimate a model without unobserved heterogeneity, the estimate of *
increases to 1.729 with a relatively small standard error of 0.091. This clearly
illustrates the fact that unobserved heterogeneity causes spurious positive oc-
currence dependence.

In the bottom panel of Figure 1 we have plotted the estimated time effects
(+) of Table 1. The estimates closely track the kernel estimates of the density of
H1 discussed earlier. Figure 2 plots the corresponding estimate of 0 and its
pointwise 95 percent confidence bounds. The uniform cumulative distribution
function lies well within the latter. Indeed, we do not reject stationarity accord-
ing to a Wald test. If we estimate a specification with heterogeneity that imposes
stationarity, the estimate of * drops to 0.817 with an estimated standard error of
0.237. At conventional sizes, however, the estimate does not deviate signifi-
cantly from 1.

All in all, the results are consistent with the nonparametric tests of the
previous subsection. If we only control for heterogeneity and impose station-
arity, we find a point estimate of * below 1. This mirrors the finding that
generally Ĥ1,n(t) " t/T, which under the assumption of stationarity can be
interpreted as evidence in favor of moral hazard (see Subsection 3.4.1). How-
ever, we do not find evidence of moral hazard once we control for both
heterogeneity and nonstationarity. This confirms the test results in Subsections
3.4.2 and 3.4.3. It should be noted that the precision of, in particular, the
maximum likelihood estimates is low if both flexible time effects and hetero-
geneity are included. We return to this in Section 4.
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3.6 Sensitivity Analysis

3.6.1 The Fault-Status of Claims. So far, we have pooled claims at full fault and
claims at partial fault, even though the financial consequences for the insuree
differ quantitatively. To check whether this matters for our results, we have
recomputed the tests and estimates of the previous subsections on data of claims
at full fault only. There are 4,340 contracts with one claim at full fault, 230
contracts with two such claims, eleven contracts with three such claims and one
contract with four such claims.

FIGURE 2. Maximum-Likelihood Estimate 0
Note: Based on sample and estimates from Table 1.
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The test results are close to those based on all claims at fault. The
stationarity tests are slightly less marginal in not rejecting stationarity, with all
p-values now above 10 percent. All occurrence-dependence and moral-hazard
tests accept the null that * $ 1, with only slightly lower precisions. The three
/-statistics are still just over 50 percent; ln *̂n has switched sign to 0.026, but
remains very close to 0. The estimation results confirm these results and are in
line with the estimates on the pooled-claims data.

We have also rerun the tests and estimations on a data set that includes all
claims, rather than just claims at (full or partial) fault. Even though the
moral-hazard argument applies specifically to claims at fault, other theories may
imply state dependence involving occurrence of not-at-fault claims as well. For
example, agents may learn from accidents, even if they were not at fault, and
this may lead to negative occurrence-dependence in itself (see Subsection 3.1).
Obviously, given that we have not found any evidence of occurrence depen-
dence so far, we do not expect to find any if we include all claims either.
However, we should be careful as the precision of our tests and estimates will
typically increase. After all, the number of claims increases considerably: there
are 12,861 contracts with one, 1,996 contracts with two, 307 contracts with
three, 43 contracts with four, seven contracts with five, one contract with six and
one contract with seven claims.

We do not find much evidence of nonstationarity in the raw data. The
p-values of the -2-tests are now 0.503 and 0.063 and the p-value of the KS-test
is 0.077. The KS-test of occurrence dependence is highly insignificant. Surpris-
ingly, ln *̂n % 0.147 with an estimated standard error under the null of 0.041.
The more robust /-statistics are however consistent with the KS-test. Using
contracts with exactly 2 claims only, we find /̂n $ 52.0 percent (standard error
1.1 percent). If we use all contracts with at least 2 claims, we find 51.8 percent
(1.0 percent). The corresponding p-values for a two-sided test are 0.081 and
0.080, respectively. This may seem slightly supportive of the result for ln *̂n, but
recall that neither of these tests corrects for nonstationarity. The most general
/-test does, and delivers /̂n(Ĥ1,n) $ 51.2 percent (standard error 1.2 percent).
The two-sided p-value is 0.327.

The parametric estimation results confirm this picture. The most appropriate
specification seems to be one with two-point heterogeneity and 24 (half-
monthly) time-intervals. Without regressors, the estimate of * is 1.117 with a
standard error of 0.131. A Wald test with 23 degrees of freedom rejects
stationarity at all reasonable sizes (p-value 0.005). As expected, overall the
precision is much higher, even though we now have 24 instead of 12 time
intervals.

In conclusion, we do not find evidence of occurrence dependence in data
including all claims, even though the results are relatively precise. One of the
reasons we have put forward for (negative) occurrence-dependence effects of
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claims in general is learning. Thus, this suggests that there are no such learning
effects. Note though that learning is particularly relevant for young and inex-
perienced drivers. If so, learning implies different occurrence-dependence pa-
rameters for young and old drivers. In the next subsection, we provide some
results for samples stratified in this and other ways, both for data with at-fault
claims only and for data with all claims.

3.6.2 Stratification with Respect to Some Regressors. First, consider again the
data with claims at (full or partial) fault. We have stratified the data on
respectively sex, age and experience (driver’s license age) and have rerun the
tests on each of the sub-samples.

We have 61,564 contracts with male insurees and 26,372 contracts with
female insurees. The male test results closely resemble the results for males and
females pooled, with the KS-test now accepting stationarity at all reasonable
sizes. The results for females based on the -2-tests, ln *̂n and the /-tests are also
in line with the overall results. The precision is, understandably, low. Unlike the
overall and male KS-statistics, the female KS-statistics are significant at low
sizes. The KS-statistic for stationarity has a p-value of 0.004; the KS-statistic for
occurrence dependence a p-value of 0.013. We find that Ĥ1,n2 " Ĥ2,n. Thus, for
females we have an inconsistency between the -2-tests, ln *̂n and the /-tests on
the one hand and the KS-tests on the other hand. One explanation is that the low
female sample size leaves room for outliers to affect the results.

Of all contracts for which the insuree’s year of birth is observed, 26,372 are
born in 1951 or later (“young”) and 61,564 are born in 1950 or before (“old”).
Recall that our data concerns contract years starting anytime during the year
following October 1, 1987. We have deliberately constructed the young drivers
to be truly young (and therefore a relatively small group), because we expect
that any learning effects of accidents would quickly disappear with age. The test
results are very similar between both age groups and are in line with the overall
results. Again, the -2-tests are even less significant. One difference is that the
KS-test on stationarity for young insurees is now highly significant, with a
p-value of 0.004. This is somewhat comparable to the results for the similarly
small sample of females.

These results suggest that learning effects, leading to relatively strong
negative occurrence dependence for young drivers, are not important. It seems,
though, that driving experience rather than age per se would interact with
learning. Obviously, we do not observe actual driving experience, but we do
know the years in which the insurees’ driver’s licenses were issued. We have
divided the sample in 12,712 insurees with licenses issued in 1980 or later
(“inexperienced”) and 75,909 insurees with licenses issued in 1979 or before
(“experienced”). We do not find evidence of nonstationarity, although the
KS-statistic for (again, the small group of) inexperienced insurees has a p-value
as low as 0.082. The KS-tests on occurrence dependence are highly insignificant
for either experience level, but the other occurrence-dependence tests produce
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some interesting results. For inexperienced drivers, we find that ln *̂n % %0.296
with a standard error of 0.222. The three /-statistics are in the range 40.3–41.2
percent, with standard errors 6.1–6.3 percent. For experienced drivers, on the
other hand, we have that ln *̂n % 0.041 (0.127) and /-statistics in the range
53.0–53.7 percent (3.4–3.6 percent). The results for experienced drivers are
consistent with the results for the pooled sample. Also, even if we use one-sided
tests on moral hazard, we do not reject the null that * $ 1 at a 5 percent size
for inexperienced drivers. However, the differences between both experience
levels are remarkable and suggest that, if anything, there is negative occurrence
dependence for inexperienced drivers only. This points at learning rather than
moral hazard effects of accidents.

Clearly, this conclusion cannot be drawn with any reasonable statistical
significance because of the imprecision of our results. However, we have earlier
argued that it may make sense to include claims that are not at fault in an
analysis of learning. If this is correct, the resulting larger sample may be more
informative on any differences in occurrence-dependence effects between ex-
perience levels.

The results for experienced drivers are consistent with the results for the
pooled data. The occurrence-dependence tests that do not correct for nonsta-
tionarity are strongly in favor of * " 1. However, the KS-statistic on occurrence
dependence is very insignificant and /̂n(Ĥ1,n) $ 51.8 percent with a standard
error of 1.3 percent and a two-sided p-value of 0.165. The results for inexpe-
rienced drivers are all insignificant, but indeed mostly pointing at * ! 1.
However, ln *̂n is slightly positive and /̂n(Ĥ1,n) $ 49.6 percent (standard error
2.8 percent). We conclude that the data including all claims are not supporting
differences in occurrence-dependence effects between experience levels. For
now, we can shelve the learning explanation of occurrence dependence.

4. Conclusions

In this paper, we show that the experience-rating structure commonly found in
insurance contracts can be exploited in the empirical analysis of moral hazard. In
particular, experience rating implies negative occurrence dependence of individual
claim intensities under moral hazard. In other words, under moral hazard and
experience rating individual claim intensities decrease with the number of past
claims. In observed claim intensities, this negative occurrence dependence effect is
confounded with a positive selection effect: an insuree with a large number of past
claims is likely to be a bad driver and therefore to have a high future claim intensity.
Thus, from an empirical perspective the distinction between moral hazard and
(adverse) selection boils down to disentangling “true” state dependence and unob-
served heterogeneity. This is a problem that has been studied at length in labor
economics in the late 1970s and early 1980s. Following up on this literature, we
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develop general tests of the null of no moral hazard. Our tests are nonparametric
(except for a separability assumption), and generalize existing work by allowing for
general nonstationarity of the claim intensity.

We have applied our tests to French car-insurance data and have found no
evidence of moral hazard (or more general occurrence dependence). More
precisely, we have not rejected the null of no moral hazard against the alterna-
tives of moral hazard or general occurrence dependence at conventional levels.
This result is confirmed by parametric estimates of a flexible model that allows
for both occurrence dependence and selection on unobservables.

One remaining, practical concern is that observations of multiple claims by
a single insuree are central to identifying moral hazard effects. Because claims
are relatively rare and we focus on claims at fault within a single contract year,
we observe multiple claims for relatively few of the many contracts in our data
set. This translates into a fairly low precision of our empirical results. One
solution would be to resort to low-dimensional parametric models, but this
would artificially generate precision at the expense of robustness. We prefer to
simply qualify our identification results by noting that even a large data set
carries limited information on moral hazard effects. Note that this problem does
not seem to be fundamental (i.e., it would be resolved if we would have a very
large data set): a complementary analysis of a larger data set of all (at-fault and
not-at-fault) claims yields results of satisfactory precision.

An obvious way to expand the data is to include claim histories beyond a
single contract year. Our French data provide information for up to two years
and, at least in principle, it should be possible to collect alternative data on many
more years. Obviously, multiple claims will be more prevalent in longer claim
histories. On the downside, however, using claim histories that extend beyond
a single contract year introduces the problem of dynamic contract selection. This
may imply nonignorable attrition.

This takes us to our final remark. The main contribution of this paper is to
provide, in a dynamic context, tests of moral hazard that are valid in the presence
of general unobserved heterogeneity. Our analysis is consistent with heterogeneity
in accident rates that is symmetrically observed between the insurer and the agents.
It also allows for adverse selection in the technical sense, which arises if agents are
better informed about their risk than insurers. However, because we focus on claims
and ignore other insurance events, we are not able to distinguish between both types
of heterogeneity. In particular, we have not modelled changes in contracts (risk
class, coverage, etc.). Such changes are observed across contract years, but also
within contract years. Some contract changes may be forced by events that can
safely be considered to be external to the claims process, but occasionally a case can
be made for the endogeneity of contract changes to the agent’s claim history. A
common assumption in insurance theory is that both the agent and the insurer learn
about the agent’s ability, but that the learning process is asymmetric because the
information available to the agent is much richer. If so, one would expect the agent’s
decisions about contract changes to be informative about her risk, even after
controlling for the information available to the insurer (i.e., the agent’s observable
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characteristics and past history). Again, this (complex) problem is left for future
research.

Appendices

A. Testing for Moral Hazard

This appendix provides results for Subsection 3.4. Note that the analysis in this
subsection is based on the general econometric model (M).

A.1 Results for Subsection 3.4.1 (H1)

A.1.1 Asymptotic Properties of Ĥ1,n. We use “f” to denote convergence in
distribution (weak convergence) and “¡a.s.” to denote almost-sure convergence.
Throughout, #U is a uniform (on [0, 1]) Brownian bridge and, for any distri-
bution H, #H $ #U $ H a H-Brownian-bridge. The following properties of the
estimator Ĥ1,n are standard.

LEMMA 3.

sup%Ĥ1,n $ H1%O¡
a.s.

0 and +n )Ĥ1,n $ H1*f
1

+p1 #H1

as n 3 /.

PROOF. The result follows from the Glivenko-Cantelli and Donsker theorems
(e.g., Van der Vaart 1998, Theorems 19.1 and 19.3), the law of large numbers
and Slutsky’s lemma. ■

Note that H1 $ 0 under the null that * $ 1.

A.1.2 The Behavior of H1 under the Alternative that * 3 1. Under the null that
* $ 1, H1(t%)) $ 0(t) for t ! [0, T ], so that H1(0%1(z)%)) $ z for z ! [0, 1].
If *()) 3 1, on the other hand,

Pr)N)t* % 1, N)T* $ 1%)* $ "
0

t

)+)u*e%)-1%*))*.0)u*%)*))*du

%
e%)*))*

1$ *))*
-1$ e%)-1%*))*.0)t*.,
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so that

H1)t%)* %
Pr)N)t* % 1, N)T* % 1%)*

Pr)N)T* % 1%)*
%
1$ e%)-1%*))*.0)t*

1$ e%)-1%*))*. .

Substituting z $ 0(t) gives

H1)0
%1) z*%)* %

1 $ e%)-1%*))*. z

1$ e%)-1%*))*. .

H1(0%1(z)%)) increases from 0 to 1 on [0, 1] and is strictly concave if *()) !
1 and strictly convex if *()) " 1. This implies that

H1)0
%1) z*%)* % ' , z if *))* ' 1 and

' z if *))* , 1

for all ) " 0 and z ! (0, 1). The inequalities in (H1†) in Subsection 3.4.1 follow.

A.1.3 Kernel Estimation of the Density of H1. Here, we provide the details of the
estimation procedure used to estimate the Lebesgue density h1 corresponding to
H1. A standard kernel density estimator of h1 is

h̃1)t* :$
1
b " k(t $ x

b )dĤ1,n)x* %
1

bM1,n
&
i$1

n

I)Ni)T* % 1*k(t $ T1,i
b ),

with 0 ! b ! 1⁄2 the bandwidth and k the Epanechnikov kernel function

k) x* % '3⁄4 )1 $ x2* if %x% # 1, and
0 if %x% , 1.

Now, as H1 has support [0, T ], h̃1(t) may have support on [%b, T # b]. The
restriction of h̃1(t) to [0, T ] generally under-estimates h1 on [0, b] and [T % b,
T ]. The ad hoc solution we have used here is to “reflect” the mass of h̃1 outside
[0, T ] into [0, T ], and estimate h1 by

ĥ1)t* % *
h̃1)t* & h̃1)%t* if 0' t ' b,
h̃1)t* if b ' t ' T $ b,
h̃1)t* & h̃1)2T $ t* if T $ b ' t ' T,
0 if t # 0 or t . T.

A.1.4 Computing the Distributions of the Uniformity Tests under the Null. Time
is grouped in 365 days in our sample. If we maintain that Ĥ1,n is defined on the
underlying continuous-time sample, this translates into observing Ĥ1,n on a grid
{T/365, 2T/365, . . . , T} only. Chi-square statistics can be straightforwardly
computed using the natural grouping of the data in 365 days (or any coarser
grouping). The computation of KS-statistics requires slightly more care.
Grouped data only allow us to compute bounds on the continuous-time KS-
statistic

802 Journal of the European Economic Association June 2003 1(4):767–820



sup
t!-0,T.

%Ĥ1,n)t* $ t/T%. (1)

A sharp lower bound is given by the discrete-time KS-statistic

max
t!+T/365,2T/365, . . . , T,

%Ĥ1,n)t* $ t/T%. (2)

An upper bound is also easy to derive and the bounds can be expected to be
narrow due to the small size of the intervals relative to the density of the
claims (see the similar analysis in Appendix A.2.2). We could use standard
distribution theory for the continuous-time statistic in (1) to derive corre-
sponding bounds on the p-value for this statistic. In this case, however, it is
easier to simply use the discrete-time statistic in (2) itself. Its distribution
under the null is known and exact critical and p-values are easy to simulate
by Monte Carlo methods.

The finite-sample p-values reported are conditional on the subsample size
M1,n, which is random even if n is not. It is easy to see that Ĥ1,n 6 Ĥ*1,m given
M1,n $ m ! %, with Ĥ*1,m the empirical distribution of a random sample of fixed
size m from H1.33 Here and below, “6” denotes equality in distribution.

A.2 Results for Subsection 3.4.2 (H12 " H2)

A.2.1 The Behavior of H12 % H2 under Local Alternatives to * $ 1. This
appendix provides details on the directional derivative of H1(t; *)2 % H2(t; *)
at * $ 1 in the direction u. From Appendix A.1.2 we know that

H1)t; 1 & qu* %

" e%)-1#qu))*.

qu))*
-e)qu))*0)t* $ 1.dG))*

" e%)-1#qu))*.

qu))*
-e)qu))* $ 1.dG))*

.

33. For l ! % and (t1, . . . , tl) ! "l, we can write

Pr)Ĥ1,n)t1* # x1, . . . , Ĥ1,n)tl* # xl%M1,n % m*

% !-Pr)Ĥ1,n)t1* # x1, . . . , Ĥ1,n)tl* # xl%N1)T *, . . . , Nn)T *, M1,n % m*%M1,n % m..
Note that this holds in particular for l $ 365 and tj $ Tj/365. Because

Pr)Ĥ1,n)t1* # x1, . . . , Ĥ1,n)tl* # xl%N1)T * % n1, . . . , Nn)T * % nn*

% Pr(¥i$1
m I)T1,i # t1*

m # x1, . . . ,
¥i$1
m I)T1,i # tl*

m # xl,N1)T * % · · ·% Nm)T * % 1)
for each (n1, . . . , nn) ! {0, 1}n such that ¥i$1

n ni $ m, it follows that

Pr)Ĥ1,n)t1* # x1, . . . , Ĥ1,n)tl* # xl%M1,n % m*

% Pr(¥i$1
m I)T1,i # t1*

m # x1, . . . ,
¥i$1
m I)T1,i # tl*

m # xl,N1)T * % · · ·% Nm)T * % 1).
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It is easy to derive that

d
dq !" e%)-1#qu))*.

qu))*
)e)qu))*0)t* $ 1*dG))*#

q$0

% %
1
2 0)t*-2$ 0)t*.!(u)1*,

so that

d
dq -H1)t; 1 & qu*2.q$0 % %0)t*2-1$ 0)t*.

!(u)1*
%!')1* .

Next, for ) such that *()) 3 1, we have that

Pr)N)t* % 2, N)T* % 2%)*

% "
0

t "
t1

t

)2*))*+)t1*+)t2*e%)-1%*))*.0)t1*%)*))*-1%*))*.0)t2*%)*))*2dt2dt1

%
e%)*))*2)1$ -1& *))*.e%)*))*-1%*))*.0)t* & *))*e%)-1%*))*2.0)t**

-1$ *))*.2-1& *))*.
.

Thus, for q 3 0

H2)t; 1 & qu* %

" e%)-1#qu))*.2

q2u))*2-2& qu))*.
)1$ -2& qu))*.e)qu))*-1#qu))*.0)t*

& -1& qu))*.e)qu))*-2#qu))*.0)t*)dG))*

" e%)-1#qu))*.2

q2u))*2-2& qu))*.
)1$ -2& qu))*.e)qu))*-1#qu))*.

& -1& qu))*.e)qu))*-2#qu))*.)dG))*

.

Now, using that

d
dq !" e%)-1#qu))*.2

q2u))*2-2& qu))*.
)1$ -2& qu))*.e)qu))*-1#qu))*.0)t*

& -1& qu))*.e)qu))*-2#qu))*.0)t**dG))*#
q$0

%
1
2 0)t*2+-2$ 0)t*.!4u)1* & !(u)1*,
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we find that

d
dq -H2)t; 1 & qu*.q$0 % %0)t*2-1$ 0)t*.

%!4u)1*
!()1* .

Conclude that

d
dq -H1)t; 1 & qu*2 $ H2)t; 1 & qu*.q$0

% 0)t*2)1 $ 0)t**!%!4u)1*
!()1* $

!(u)1*
%!')1*#. (G1)

The following two results provide sufficient conditions for (G1) to be
positive on (0, T). First, if u is constant (trivial) then !u

(k)(1) $ u!(k)(1) (here,
the superscript (k) denotes the k-th derivative). Then, Lemma 4 implies that (G1)
is positive if u is positive and G has at least two positive points of support.

LEMMA 4. If ! is the Laplace transform of a distribution G with nonnegative
support such that G(0) ! 1, then

%
d
ds ln! !()s*

%!')s*# %
%!4)s*
!()s* $

!()s*
%!')s* . 0, (3)

with equality holding if and only if G is either degenerate or has two points of
support of which one is 0.

PROOF. For given s ! (0, /), x ! [0, /) # !(s # x)/!(s) is the Laplace
transform of a distribution G̃ that has the same support as G. The k-th moment
of G̃ exists and is given by 0̃k :$ (%1)k!(k)(s)/!(s). Thus, (3) has the sign of
0̃30̃1 % (0̃2)2 and the claimed result follows from standard results for the
Stieltjes moment problem (e.g., Shohat and Tamarkin 1943, Theorem 1.3). ■

Second, for positive and increasing u we can apply

LEMMA 5. If u is positive and increasing, then

%!4u)1*
!()1* $

!(u)1*
%!')1* , 0.

PROOF. Define

u! :$
!(u)1*
!()1* and ũ))* :$ u))* $ u! .
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Then !(ũ(1) $ 0, so that

!4u)1*!')1* $ ! (u)1*!()1* %
! (u)1*

!()1*
-!4)1*!')1* $ !()1*!()1*.

& !4ũ)1*!')1*. (4)
We have to show that (4) is positive. The first term on the right-hand-side of (4)
is nonnegative by Lemma 4. Next, note that [) % u%1(u!)]ũ()) " 0 for all ) 3
u%1(u!). This implies that

%!4ũ)1* % " )3ũ))*e%)dG))* % " )2-) $ u%1)u!*.ũ))*e%)dG))* , 0.

Thus, the second term on the right-hand side of (4) is positive. ■

A.2.2 Computing the Distribution of Kn under the Null. The finite-sample
distribution of Kn conditional on the relevant subsample sizes (M1,n, M2,n)
follows from a simple quantile transformation.

PROPOSITION 4. Under the null * $ 1 and conditional on (M1,n,M2,n)$ (m1, m2),

Kn - sup
u!-0,1.

%Û1,m1)u*2 $ Û2,m2)u2*%.

Here, Û1,m1 and Û2,m2 are independent uniform empirical distribution functions
with m1 and m2 points of support, respectively, for given m1, m2 ! %.

PROOF. Along the lines of Footnote 33 it is easy to show that (Ĥ1,n, Ĥ2,n) 6
(Ĥ*1,m1, Ĥ*2,m2) conditional on (M1,n, M2,n) $ (m1, m2), with Ĥ*1,m1 and Ĥ*2,m2
independent empirical distributions of random samples of sizes m1 and m2 from
H1 and H2, respectively. Therefore, conditional on (M1,n, M2,n) $ (m1, m2)

Kn - sup
t

%Ĥ*1,m1)t*2 $ Ĥ*2,m2)t*% - sup
t

%)Û1,m1 $ H1)t**2 $ Û2,m2 $ H2)t*%

% sup
t

%)Û1,m1 $ H1)t**2 $ Û2,m2 $ H1)t*2%

% sup
u!-0,1.

%Û1,m1)u*2 $ Û2,m2)u2*%. ■

Next, recall from Appendix A.1.4 that durations are rounded to integer days
in our sample. Formally, we can only compute KS-statistics for the discretized
distributions on {T/365, 2T/365, . . . , T}. Again, the resulting statistic is not
distribution-free. In the present case, in which the null hypothesis does not
specify the distribution H1 (or H2), this complicates the computation of exact
p-values. However, as argued before, the effect of the discretization is likely to
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be small. To check this, we have computed (sharp) bounds on the (continuous-
time) KS-statistic and its p-value imposed by observations of Ĥ1 and Ĥ2 on
{T/365, 2T/365, . . . , T}. The discrete (and reported) KS-statistic provides a
sharp lower bound. In the main text, we report a statistic of 0.067 with a p-value
of 0.423. Note that this p-value provides an upper bound on the p-value under
continuous observation. An upper bound on the KS-statistic is easily found by
including distances of Ĥ1(t)2 and Ĥ2(t') for t and t' one day apart in the
comparison. The upper bound on the statistic is 0.070. The corresponding
p-value, 0.358, provides a lower bound on the p-value under continuous obser-
vation. As expected, the bounds are narrow and justify the conclusion that the
results are not affected by the discretization.

A.3 Results for Subsection 3.4.3 )ln *̂n, /)0*, and #(H1))

A.3.1 Properties of ln *̂n and /̂n. Let ln *̂n)0* be defined as ln *̂n for the
transformed durations T*1,i and T*2,i % T*1,i. Note that (T*1,i, T*2,i % T*1,i) is
uniformly distributed on {(t1, t2) : 0 # t1 ! 1, t1 ! t2 # 1} conditional on
Ni(T) $ 2 under the null. Using this, the asymptotic distribution of ln *̂n)0*

under the null (and therefore ln *̂n under the assumption of stationarity) is easy
to derive. Let $(0, 12) denote a normal random variable with mean 0 and
variance 12. Then, we have

PROPOSITION 5. Under the null * $ 1,

+n ln *̂n)0*f $(0, /2

3p2)
as n 3 /.

PROOF. Let * $ 1. Then ![(ln(T*1,i) % ln(T*2,i % T*1,i))I(Ni(T) $ 2)] $ 0 and

!-)ln)T*1,i* $ ln)T*2,i $ T*1,i**2I)Ni)T* % 2*.

% 2p2 "
0

1 "
t1

1

)ln)t1* $ ln)t2 $ t1**2dt2dt1 % p2
/2

3 .

Also, n%1M2,n ¡a.s. p2 as n 3 / by the law of large numbers. The result follows
by the central limit theorem and Slutsky’s lemma. ■

The distributional properties of /̂n(0) under the null (and therefore of /̂n
under the assumption of stationarity) are standard.
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PROPOSITION 6. Under the null * $ 1,

Pr!/̂n)0* %
i
m,M2,n % m# % (mi )2%m

for i $ 0, . . . , m, and

+n( /̂n)0* $
1
2) f $(0, 14p2)

as n 3 /.

PROOF. This follows from the well-known application of the central limit
theorem to the binomial distribution, n%1M2,n ¡a.s. p2 as n 3 / and Slutsky’s
lemma. ■

Finally, we can sign /(0) % 1⁄2 under the alternative using that

Pr)T*1 . T*2 $ T*1 %), N)T* $ 2*

% ( *))*

2*))* & 1) -2*))* & 1.e%) $ 2-*))* & 1.e%)1/ 2* -*))*#1.) & e%*))*2)

*))*e%) $ -*))* & 1.e%*))*) & e%*))*2)

for *()) 3 1.

A.3.2 Adapting /̂n to Selection on Ni(T) . 2. Consider the alternative case in
which we select on Ni(T) . 2. It is easy to check that the distribution of (T*1,
T*2 % T*1) conditional on N(T) . 2, unlike that conditional on N(T) $ 2,
depends on the distribution G of ) under the null. However,

Pr)T*1 . T*2 $ T*1 %), Ni)T* . 2*

% *(
*))*

*))* & 1) -*))* & 1.e%) $ 2e%)1/ 2* -*))*#1.) & 1$ *))*

*))*e%) $ e%*))*) & 1$ *))*
if * 2 1, and

1
2

if * % 1.

Under the null * $ 1, we again have that Pr(T*1 . T*2 % T*1%), N(T) . 2) $ 1⁄2
is known and independent of ). The distributional properties of the equivalent
of /̂n(0) that conditions on Ni(T). 2 are analogous to Proposition 6, with ¥k$2

/

Mk,n replacing M2,n and ¥k$2
/ pk replacing p2. Finally,

Pr)T*1 . T*2 $ T*1 %), N)T* . 2* % ' ' 1⁄2 if *))* ' 1, and
, 1⁄2 if *))* , 1

for all ) " 0.
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One attractive difference with selection on N(T)$ 2 is that the baseline case
without selection arises if we take the limit T 3 /:

lim
T3/

Pr)T*1 . T*2 $ T*1 %), N)T* . 2* %
*))*

*))* & 1 .

A.3.3 Asymptotic Properties of /̂n(Ĥ1,n) under the Null * $ 1. The main result
is

PROPOSITION 7. Under the null * $ 1,

+n( /̂n)Ĥ1,n* $
1
2) f $(0, 14p2 &

1
6p1)

as n 3 /.

PROOF. Let

/ : h ! " # Pr)2h)T1,i* . h)T2,i*%Ni)T* % 2*, (5)
with" the set of all distribution functions on [0, T ] concentrated on (0, T ]. Note
that / does not depend on i and that /(0) $ 1⁄2 if * $ 1 (as is maintained
throughout). It is convenient to write

+n)/̂n)Ĥ1,n* $ 1⁄2* % +n)/̂n)Ĥ1,n* $ /)Ĥ1,n** & +n)/)Ĥ1,n* $ 1⁄2*
and analyze the two terms in the right-hand side. Lemmas 6 and 7 below imply
that

+n)/̂n)Ĥ1,n* $ /)Ĥ1,n** f $1(0, 14p2)
and

+n(/)Ĥ1,n* $
1
2) f $2(0, 16p1)

as n 3 /, with $1)0, 1/)4p2** and $2)0, 1/)6p1** independent normal random
variables. The claimed result follows. ■

It remains to state and prove Lemmas 6 and 7.

LEMMA 6. Under the null * $ 1,

+n)/̂n)Ĥ1,n* $ /)Ĥ1,n** f $(0, 14p2)
conditional on {Ĥ1,i} almost surely as n 3 /.

PROOF. Denote Yn,i :$ I(2Ĥ1,n(T1,i) . Ĥ1,n(T2,i), Ni(T) $ 2). Note that
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!-Yn,i%+Nj)T*, Ĥ1, j,. % I)Ni)T* % 2*/)Ĥ1,n* and

var)Yn,i%+Nj)T*, Ĥ1, j,* % I)Ni)T* % 2*/)Ĥ1,n*)1$ /)Ĥ1,n**

almost surely, that / is continuous at 0, that sup%Ĥ1,n $ 0% ¡a.s. 0 as n 3 /
(Lemma 3) and that n%1M2,n ¡a.s. p2 as n 3 /. It follows that for all 3 " 0

0 # &
i$1

n

!!( +n Yn,i
M2,n

) 2I( +n Yn,i
M2,n

, 3), +Nj)T*, Ĥ1, j,#
# ( n

M2,n
) 2n%1 &

i$1

n

Pr(Yn,i , +n 3
M2,n

n ,+Nj)T*, Ĥ1, j,) 3 0

and

&
i$1

n

var(+n Yn,i
M2,n

,+Nj)T*, Ĥ1, j,) %
n
M2,n

/)Ĥ1,n*)1$ /)Ĥ1,n** 3
/)0*)1$ /)0**

p2

%
1
4p2

almost surely as n3 /. As a consequence, by the Lindeberg-Feller central limit
theorem (Van der Vaart 1998, Proposition 2.27)

+n &
i$1

n ( Yn,iM2,n
$ /)Ĥ1,n*) f $(0, 14p2)

conditional on {Nj(T), Ĥ1, j} almost surely as n3 /. Note that the limit does not
depend on {Nj(T), Ĥ1, j} and that

/̂n)Ĥ1,n* % &
i$1

n Yn,i
M2,n

.

The claimed result follows. ■

LEMMA 7. Under the null * $ 1,

+n(/)Ĥ1,n* $
1
2) f $(0, 16p1)

as n 3 /.

PROOF. We need some notation and conventions. Let%(Z) be the set of bounded
"-valued functions on Z $ ". We abbreviate %[0, T ] :$ %([0, T ]), etc. We
equip%(Z) with the uniform norm and the product space%(Z)7 %(Z) with the

810 Journal of the European Economic Association June 2003 1(4):767–820



norm (g1, g2) ! (%(Z) 7 %(Z)) # max{sup%g1%, sup%g2%}. All subsets of %(Z)
and %(Z) 7 %(Z) inherit the corresponding metrics. Multiplication of elements
of %(Z) is defined as point-wise multiplication. &(Z) is the set of uniformly
continuous functions in %(Z). Throughout, we take * $ 1.

Below, we show that the Hadamard derivative of / at0 tangentially to &[0,
T] is

/'0 : u ! &-0, T. # 2 "
0

1/ 2

-2u)0%1) z** $ u)0%1)2z**.dz.

With the facts that 5n(Ĥ1,n % 0) f (1/5p1)#0 (Lemma 3) and that #0

assumes values in &[0, T], the functional Delta method (Van der Vaart 1998,
Theorem 20.8) implies that

+n)/)Ĥ1,m* $ /)0** f
1

+p1 /'0)#0* %
2

+p1 "0
1/ 2

-2#0)0%1)z**

$ #0)0%1)2z**.dz

%
2

+p1 "0
1/ 2

-2#U)z* $ #U)2z*.dz

% $(0, 16p1)
as n 3 /.

It remains to show that / is Hadamard differentiable at 0 tangentially to
&[0, T ] with the derivative /'0 given above. Note that the Lebesgue density of
(T1, T2)%(N(T) $ 2) at (t1, t2) equals 2+(t1)+(t2) if 0 # t1 ! t2 # T and 0
otherwise. Using this, we can rewrite (5) as

/)h* % 2 "
0

T !"
h%1)h)t* / 2*

t

+)4*d4#+)t*dt % 1 $ 2 " (0 $ h%1 $ (h2))d0.

where h%1(p) $ inf{t : h(t) . p} is the generalized inverse of h. The functional
/ : " 3 " can be decomposed as

h ! "
5

# (h2 , h%1) ! "1 6 '

1
# h%1 $ (h2) ! "T

4
3 0 $ (h%1 $ (h2)) ! %-0, T.

7
# 1 $ 2 " (0 $ h%1 $ (h2))d0 ! ".
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Recall that " $ %[0, T ] is the set of distribution functions on [0, T ] concen-
trated on (0, T ]. Also, "1 $ %[0, T ] and "T $ %[0, T ] are the sets of,
respectively, [0, 1)-valued and [0, T ]-valued functions on [0, T ] and ' $ %[0,
1) is the set of [0, T ]-valued functions on [0, 1).

We first show that each of the maps 5, 1, 4 and 7 is (tangentially) Hadamard
differentiable and then derive /'0 by the chain rule.

(i). Hadamard derivative of 5 : " 3 "1 7 ' at 0 tangentially to &[0, T ]
By Van der Vaart (1998), Lemma 21.4, the inverse map h ! " $ %[0, T ]
# h%1 ! ' is Hadamard differentiable at 0 tangentially to &[0, T ] with
derivative u ! &[0, T ] # %(u/+) $ 0%1. Thus, the Hadamard derivative
of 5 at 0 tangentially to &[0, T ] is

5'0 : u ! &-0, T. # (u2 , %(u+) $ 0%1) ! %-0, T. 6 &-0, 1*.

(ii). Hadamard derivative of 1 : "1 7 ' 3 "T at 5(0) $ (0/2, 0%1)
tangentially to %[0, T ] 7 &[0, 1)
By the assumption that 0 is continuously differentiable with positive
derivative 8 on [0, T ], 0%1 is uniformly differentiable on [0, 1) with
uniformly bounded derivative (1/+) $ 0%1. Thus, by Van der Vaart and
Wellner (1996), Lemma 3.9.27, the Hadamard derivative of 1 at (0/2,
0%1) tangentially to %[0, T ] 7 &[0, 1) is34

34. It may be helpful here to construct the proof of this lemma for our special case. Let
(uq, vq) 3 (u, v) ! %[0, T ] 7 &[0, 1) uniformly as q 2 0 and 5(0) # q(uq, vq) ! "1 7 ' for
all q. We have that

0 # . )0%1 & qvq* $ (0

2 & quq) $ 0%1 $ (0

2 )
q $ v $ (0

2 ) $
u

+ $ 0%1 $ (0

2 ).
# .0%1 $ (0

2 & quq) $ 0%1 $ (0

2 )
q $

uq

+ $ 0%1 $ (0

2 ).
& .

uq $ u

+ $ 0%1 $ (0

2 ). & ,v $ (0

2 & quq) $ v $ (0

2 ), & , )vq $ v* $ (0

2 & quq), .
The first term in the right-hand side converges (uniformly) to 0 because of the uniform differen-
tiability of 0%1. The second term converges to 0 because sup%uq % u% 3 0 and the denominator
is bounded away from 0. The third term converges to 0 because v is uniformly continuous. The
fourth term converges to 0 because sup%vq % v% 3 0.
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1'5)0* : )u, v* ! %-0, T. 6 &-0, 1* # v $ (0

2 )
&

u

+ $ 0%1 $ (0

2 )
! %-0, T..

(iii). Hadamard derivative of 4 : "T 3 %[0, T ] at 1(5(0)) $ 0%1 $ (0/2)
Let uq3 u ! %[0, T ] uniformly as q2 0 and 1(5(0)) # quq ! "T for
all q. Abbreviate s :$ 1(5(0)) and consider

0 # ,4)s & quq* $ 4)s*
q $ )+ $ s*u,

% ,0 $ )s & quq* $ 0 $ s
q $ )+ $ s*uq & )+ $ s*)uq $ u*,

# ,0 $ )s & quq* $ 0 $ s
q $ )+ $ s*uq, & )+ $ s*%uq $ u% .

The first term in the last line converges uniformly to 0 as q 2 0 by the
uniform differentiability of 0. The second term converges uniformly to 0
because + is uniformly bounded. Thus, the right-hand side of the first line
converges uniformly to 0 as q 2 0 and the Hadamard derivative of 4 :
"T 3 %[0, T ] at 1(5(0)) $ 0%1 $ (0/2) is

4'1)5)0** : u ! %-0, T. # (+ $ 0%1 $ (0

2 ))u ! %-0, T..

(iv). Hadamard derivative of 7 : %[0, T ] 3 " at 4(1(5(0))) $ 0/2
Let uq3 u ! %[0, T ] uniformly as q2 0 and 4(1(5(0))) # quq ! %[0,
T ] for all q. Then,

7)0/2 & quq* $ 7)0/2*

q % %2 " uqd0 3 %2 " ud0

as q 2 0 because the sequence uq is uniformly bounded. So, the Had-
amard derivative of 7 : %[0, T ] 3 " at 4(1(5(0))) $ 0/2 is

7'4)1)5)0*** : u ! %-0, T. # %2 " ud0.

By the chain rule (Van der Vaart 1998, Proposition 20.9), the Hadamard
derivative of / $ 7 $ 4 $ 1 $ 5 at 0 tangentially to &[0, T ] is 7'4(1(5(0))) $ 4'1(5(0))
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$ 1'5(0) $ 5'0 (note that the tangent spaces are properly lined up). Substitution of
the derivative maps derived in (i)–(iv) gives the desired result. ■

A.3.4 The Behavior of /(H1) under Local Alternatives to * $ 1. This appendix
provides details on the directional derivatives of /(0; *) and /(H1(*); *) at
* $ 1 in the direction u.

First consider /(0; *). We have earlier seen that the Lebesgue density of
(T1, T2)%(N(T) $ 2) at (t1, t2) equals 2+(t1)+(t2) if 0 # t1 ! t2 # T and 0
otherwise if * $ 1. For *()) 3 1, the density of (T1, T2)%(), N(T) $ 2) at (t1,
t2) equals

)2*))*+)t1*+)t2*e%)-1%*))*.0)t1*%)*))*-1%*))*.0)t2*%)*))*2

"
0

T "
0

42

)2*))*+)41*+)42*e%)-1%*))*.0)41*%)*))*-1%*))*.0)42*%)*))*2d41d42

for 0 # t1 ! t2 # T and 0 elsewhere. Thus, for * $ 1 # qu and q 3 0 we have
that

/)0; **

%

" "
0

1 "
42/ 2

42

)2-1 & qu))*.e)qu))*41#)-1#qu))*.qu))*42%)-1#qu))*.2d41d42dG))*

" "
0

1 "
0

42

)2-1& qu))*.e)qu))*41#)-1#qu))*.qu))*42%)-1#qu))*.2d41d42dG))*

Using that

d
dq !" "

0

1 "
42/ 2

42

)2-1 & qu))*.e)qu))*41#)-1#qu))*.qu))*42%)-1#qu))*.2d41d42dG))*#
q$0

%
5
24 !4u)1* &

1
4 !(u)1*

and that

d
dq !" "

0

1 "
0

42

)2-1 & qu))*.e)qu))*41#)-1#qu))*.qu))*42%)-1#qu))*.2d41d42dG))*#
q$0

%
1
2 !4u)1* &

1
2 !(u)1*

we find that
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d
dq -/)0; 1 & qu*.q$0 %

1
12

%!4u)1*
!()1* . (G2)

Next, consider /(H1(*); *). The analysis in A.2.1 implies that

d
dq -H1)1 & qu*.q$0 % %

1
2

!(u)1*
%!')1* 0)1$ 0*

so that

d
dq -/)H1)1 & qu*; 1*.q$0 % /'0(%

1
2

!(u)1*
%!')1* 0)1$ 0*) % %

1
12

!(u)1*
%!')1* .

Thus, it follows that

d
dq -/)H1)1 & qu*; 1 & qu*.q$0 %

d
dq -/)0; 1 & qu*.q$0

&
d
dq -/)H1)1 & qu*; 1*.q$0 %

1
12 !%!4u)1*

!()1* $
!(u)1*

%!')1*#. (G3)

B. Identification and Estimation

This appendix provides results for Subsection 3.5. Note that the identification and
estimation analyses in this subsection assume that * is homogeneous, as in (M†).

B.1 Results for Subsection 3.5.1 (Identification)

PROOF OF PROPOSITION 2. Denote the subdensity of (T1, . . . , Tk) on N(T) $ k by
fk (i.e., f1(t) $ d Pr(T1 # t, N(T) $ 1)/dt, etc.). We first show that the cases * $
1 and * 3 1 can be distinguished from data on f1 and f2. With the normalization
0(T) $ 1, we have that

f2)t1, t2*
f1)t1* f1)t2*

% *
!())1 $ **)0)t1* & *0)t2** & *2*

!'))1 $ **0)t1* & **!'))1 $ **0)t2* & **
.

Straightforward calculations show that

/9 ln( f2)t1, t2*
f1)t1* f1)t2*)

9t1
$

9 ln( f2)t1, t2*
f1)t1* f1)t2*)

9t2
0
t1$t2$t

% )1$ **2+)t*
!4))1$ *2*0)t* & *2*

!())1$ *2*0)t* & *2*
,

which equals 0 (for all t) if and only if * $ 1. This establishes whether * $ 1.
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In the case that * 3 1, it remains to distinguish between * ! 1 and * " 1.
To this end, note that the claim intensity at t conditional on (T1 $ t1, T2 . t),
t " t1, is given by

( )t%T1 % t1, T2 . t* % *+)t*
!())1 $ **0)t1* & *0)t**
%!'))1$ **0)t1* & *0)t** .

Lemma 4 in Appendix A.2 implies that the function !(/(%!') is trivial if )
either is degenerate or has two points of support of which one is 0. Otherwise,
!(/(%!') is (strictly) decreasing. Clearly, if ( (t%T1 $ t1, T2 . t) is decreasing
in t1, we know that * ! 1. Similarly, if ( (t%T1 $ t1, T2 . t) is increasing in t1
then we can conclude that * " 1. If ( (t%T1 $ t1, T2 . t) is constant in t1, we
know (because * 3 1) that ) either is degenerate or has two points of support
of which one is 0. In that case,

!)s* % Pr)) % 0* & )1$ Pr)) % 0**exp)%!-)%) , 0.s*

and ( (t%T1 $ t1, T2 . t) $ ![)%) " 0]*+(t). With the normalization 0(T) $ 1,
this identifies ![)%) " 0]* and 0. Then,

Pr)T1 , t* % !)0)t** % Pr)) % 0* & )1$ Pr)) % 0**exp)%!-)%) , 0.0)t**

identifies Pr() $ 0) and ![)%) " 0] and therewith *. ■
Note that the proof only uses data on first and second claim times (that is, the
sub-distributions of T1 on N(T)$ 1 and T2 on N(T)$ 2 and the claim intensities
at 0 and 1 claim). A central role is played by the way ( (t%T1 $ t1, T2 . t)
depends on t1. Conditional on ) however, the claim intensity only depends on
the occurrence, and not the timing, of past claims. Thus, the dependence of
( (t%T1 $ t1, T2 . t) on t1 works by way of the heterogeneity. This explains that
a special role is played by the cases that ) is degenerate and that ) has two points
of support of which one is 0. In either case, ) is degenerate at the non-zero point
of support ![)%) " 0] conditional on past occurrence of a claim and there is no
heterogeneity conditional on (T1 $ t1, T2 . t). We have seen these cases
appearing in the analyses of the behavior of the two general tests in Subsections
3.4.2 and 3.4.3 under homogeneous-* local alternatives. Note that these alter-
natives fit the special model (M†) that we are studying here.

Next, consider the key identifying equation (I). Recall that q0(t) $ !(0(t))
and note that

q1)t* %
!)*0)t** $ !)0)t**

1 $ *
and

q2)t* %
*!)0)t** $ )1 & **!)*0)t** & !)*20)t**

)1 $ *2*)1 $ **
.

if * 3 1. Also, define q̃(t) :$ (1%*)q1(t) # q0(t) $ !(*0(t)). If * 3 1 then
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q1+q0%1-q̃)t*., %
!)*20)t** $ !)*0)t**

1 $ *
,

which indeed equals *q1(t) # (1 % *2)q2(t).

PROOF OF PROPOSITION 3. The case * $ 1 has been covered in Subsection 3.4.1.
So, consider the case that * 3 1. If we know * we can compute the function q̃
defined above. The remainder of the proof closely follows Kortram et al. (1995),
in particular a version thereof by Abbring (2002) that can directly be applied to
our finite-support setup here. Suppose that * " 1 (the case * ! 1 is similar). We
have that, for any t ! [0, T ], y :$ q̃(t)$ !(*0(t))N0(t)$ *%1!%1(y). Also,
t $ q̃%1(y), so that

q0)q̃%1) y** % q0)t* % !)0)t** % !)*%1!%1) y** .

By induction, it follows that, for y ! [q̃(T), 1],

)q0 $ q̃%1*)n*) y* % !)*%n!%1) y**, (6)

where q0 $ q̃%1 is the composition of q0 with q̃%1, and superscript (n) denotes the
n-fold composition. Now, l’Hôspital’s rule gives

!-).!%1) y* % lim
n3/

1$ !)*%n!%1)y**
*%n % lim

n3/

)1$ )q0 $ q̃%1*)n*)y**
*%n (7)

on [q̃(T), 1]. Evaluating (7) at q0(T) ! [q̃(T), 1] gives ![)], because
!%1(q0(T))$ 0(T)$ 1. So, !%1 is uniquely determined on [q̃(T), 1]. We then
have that 0(t) $ !%1(q0(t)) $ *%1!%1(q̃(t)) on [0, T ]. From !%1 on [q̃(T), 1]
we can identify! on [0,!%1(q̃(T)]$ [0, *0(T)]. Finally,! can be analytically
extended to [0, /). ■

B.2 Results for Subsection 3.5.2 (Estimation)

In this appendix we construct the likelihood on which the estimates in Subsec-
tion 3.5.2 are based. Choose some marginal density g( ! ; :) of )i and some
contract-time function +( ! ; ;). As before, we define 0(t; ;) :$ 10

t +(u; ;)du
and make sure that the normalization 0(T; ;) $ 1 is satisfied. Both : and ; are
finite-dimensional parameter vectors.

Consider the likelihood contribution Li of contract i. For contract i, we
observe a claim history Ni[0, T ] (we ignore the discretization of time in days
here). First consider the likelihood contribution for the case that we observe )i.
Now, recall that Tk,i is the time of the k-th claim and let T0,i :$ 0. For contract
i, we observe the number of claims Ni(T) in the contract year, and, if Ni(T) .
1, the times T1,i, . . . , TNi(T ),i of these claims. Straightforward calculations show
that this “full information” likelihood contribution of contract i is
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Li)*, ;, : ; Ni-0, T., )i* % ! 1
k$1

Ni)T*

)i*
k%1+)Tk,i; ;*e%)i*k%1-0)Tk,i;;*%0)Tk%1,i;;*.#

6 e%)i*Ni)T*-1%0)TNi)T*,i;;*.g))i; :*

if Ni(T) . 1, and

Li)*, ;, : ; Ni-0, T., )i* % e%)ig))i; :*

if Ni(T) $ 0. Thus, the marginal likelihood contribution for the case we do not
observe )i is

Li)*, ;, : ; Ni-0, T.* % ! 1
k$1

Ni)T*

*k%1+)Tk,i; ;*# )%1*Ni)T *!)Ni)T **-*Ni)T *-1

$ 0)TNi)T *,i; ;*. & &
k$1

Ni)T *

*k%1-0)Tk,i; ;* $ 0)Tk%1,i; ;*.; :.

if Ni(T) . 1, and

Li)*, ;, : ; Ni-0, T.* % !)1; :*

if Ni(T) $ 0. Here, !(k)( ! ; :) is the k-th derivative of the Laplace transform of
g( ! ; :).
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