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1 Introduction

The Mordell-Weil group of rational sections of an elliptic fibration has attracted a great deal

of interest in the recent F-theory literature. The free part of the Mordell-Weil group encodes

information about the abelian sector of an F-theory model [1–3]. Explicit realizations of

U(1) gauge groups via such rational sections in F-theory have been studied in detail [4–22].1

In this paper we investigate the role of the torsion part of the Mordell-Weil group and its

relation to global properties of the non-abelian gauge sector of the F-theory vacuum.

Non-abelian gauge symmetries in F-theory have their origin in the codimension-one

singularity structure. The by now algorithmic procedure to engineer gauge theories takes

the Kodaira classification of singular fibers as the starting point. However, the resolution

of codimension-one singularities provides only information on the gauge algebra, and not

on the gauge group. The Lie group whose Lie algebra is given by the geometric data

might be simply connected, making the lift of the Lie algebra and its representations

trivial. If it is non-simply connected only a subset of the matter representations will

be present in the gauge theory. The difference between such theories is in particular

measured by non-local operators, see e.g. [29]. For the example of the Standard Model, the

gauge group is presumably not the simply connected SU(3)c × SU(2)W ×U(1)Y but really

(SU(3)c×SU(2)W×U(1)Y )/Z6, where Z6 is a subgroup of the center Z3⊕Z2⊕U(1), and only

matter multiplets invariant under the action of Z6 are present [30]. Indeed, embedding the

Standard Model into SU(5) amounts to choosing a block diagonal decomposition S(U(2)×
U(3)) ⊂ SU(5) such that its determinant is unity, and S(U(2) × U(3)) is isomorphic to

(SU(3)c × SU(2)W ×U(1)Y )/Z6, see e.g. [31].

The global properties of a gauge group are related to torsion elements of the Mordell-

Weil group. The study of torsional sections in F-theory fibrations (i.e. sections of the

fibration which induce torsion elements in the Mordell-Weil group) was initiated in [32]. By

utilizing the duality between F-theory and heterotic theory in eight dimensions it was shown

that the fundamental group of the gauge group is isomorphic to the torsion subgroup of the

Mordell-Weil group, and it was conjectured that the same result holds for six-dimensional

compactifications. The general framework relating the Mordell-Weil group of the fibration

to the gauge group of F-theory was laid out in [33]. The Mordell-Weil group has also

been studied via string junctions and configurations of (p, q)-branes [34]. This approach

was eight-dimensional and reproduces the classification of Mordell-Weil lattices for elliptic

surfaces [35, 36]. Subsequent work addressed the same problem for elliptic threefolds [37].

In this article, we show how the global structure of the gauge theory manifests itself for

F-theory in any dimension. Rather than relying on heterotic duality or the physics of string

junctions, we directly study the effect of a torsional Mordell-Weil subgroup on the physics of

the F-theory compactification with geometric means. Our starting point is a generalization

of the Shioda map [38–40] to torsional sections. Unlike for non-torsional sections, this map

defines a trivial divisor class on the elliptic variety. We use this class to construct an element

in the coweight lattice which takes integer values on any charged matter representation

1This has to a large extent been motivated from model building and the need for abelian selection rules

in GUT models, see e.g. [23–28] for a rather incomplete list of references.
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that can occur in the compactification. The coweight in question is associated with a

fractional linear combination of the resolution divisors which correspond to the Cartan

generators of the gauge algebra. The requirement that this fractional linear combination

must have integer pairing with the matter representations strongly constrains the set of

admissible representations. As a result, the center of the gauge group is smaller compared

to naive expectations and the gauge group acquires a non-trivial first fundamental group.

The divisor associated with the coweight is a torsional element of H1,1(Ŷ ,Z) modulo the

resolution divisors associated with the gauge algebra realized on the elliptic fibration Ŷ .

This clarifies the relation between torsion in the Mordell-Weil group and torsion in the

cohomology group of the elliptic fibration.

To exemplify this general structure we explicitly analyze F-theory compactifications

on elliptic fibrations whose fiber can be realized as a hypersurface in a toric ambient space.

Out of the 16 possible toric realizations of such elliptic fibrations, three are known to

have torsional Mordell-Weil group Z2, Z3 and Z ⊕ Z2 [15]. We will show that the first

two correspond, in fact, to the most general elliptic fibrations with Mordell-Weil group

Z2 and Z3 in the list presented in [32], while the Z ⊕ Z2 model is a restriction of the

Z2 fibration. Certain blow-downs of these fibrations have also been considered previously

in [41] as examples of elliptic fibrations with restricted SL(2,Z)-monodromy. The fibrations

we consider allow for a representation as a global Tate model and can be obtained as a

special case of the U(1) restricted Tate model [4]. The restriction of the complex structure

of the fibration necessary to implement torsion in the Mordell-Weil group automatically

induces non-abelian singularities in codimension one, which we resolve and study in detail.

The associated gauge group factor can be viewed as the non-abelian enhancement of the

U(1) gauge group in the underlying U(1) restricted Tate model, to which the geometries

are consequently related by a chain of (un)Higgsings. Furthermore, we exemplify the

construction of extra non-abelian gauge group factors via toric tops [42, 43]. The possible

extra gauge group factors follow a specific pattern dictated by the torsional sections. As

predicted by our general analysis of Mordell-Weil torsion, only a subset of typically realized

matter representations is present in the geometry.

In section 2 we begin with a brief review of the Mordell-Weil group with special em-

phasis on its torsion subgroup. In section 3 we outline the general picture of our geometric

construction of the coweight lattice and elucidate the relation between the Mordell-Weil

group and global properties of the gauge group in F-theory. Our exemplification of these

general results for elliptic fibrations with Mordell-Weil torsion Z2, Z⊕Z2 and Z3 follows in

sections 4, 5 and 6, respectively. Some computational details are relegated to the appendix.

2 The arithmetic of elliptic fibrations

In this section, we give a brief review of the Mordell-Weil group of a family of elliptic

curves. We describe how meromorphic sections naturally come with a group structure and

comment in particular on the finite part of this group, the part associated to “torsional

sections.” This is a classic topic in mathematics and for more extensive treatments see

e.g. [44, 45].

– 3 –
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2.1 The Mordell-Weil group

An elliptic curve E is a smooth complex curve of genus one with a marked point. Such a

curve may be given in Weierstrass form

y2 = x3 + fxz4 + gz6 (2.1)

with coordinates [x : y : z] ∈ P2
2,3,1 and f , g valued in some field K. For fixed values of f

and g this genus one curve is the flat torus given by the quotient

E =
C
Λ

(2.2)

of the complex plane C by Λ = 〈1, τ〉, i.e. the lattice generated by 1 and τ . These two

descriptions are equivalent and for z ∈ C the isomorphism is given by2

z 7→ [℘(z) : ℘′(z) : 1] , (2.3)

where ℘ is the doubly periodic Weierstrass function. The complex structure parameter τ

is related to the Weierstrass equation via the modular j-function

j(τ) ∼ f3

4f3 + 27g2
. (2.4)

Because of the isomorphism (2.3) the addition of complex numbers in C/Λ induces an

addition of points on the curve (2.1). The set of rational points on E, i.e. points given by

rational expressions in the field K, is closed under this addition and thus forms an abelian

group. This group is often denoted by E(K) and the abelian structure makes elliptic curves

examples of abelian varieties. The original Mordell-Weil theorem states that this group

is finitely generated when K is a “number field”, i.e. a finite extension of the rational

numbers. In this case,

E(K) = Zr ⊕ Zk1 ⊕ · · · ⊕ Zkn . (2.5)

The rank r of this group is the number of generators of the free subgroup and the finite part

is called the torsion subgroup E(K)tors. A theorem by Mazur states that for a curve over

the rationals, the torsion subgroup E(Q)tors is either Zk for k = 1, . . . , 10, 12 or Z2 ⊕ Zk
for k = 2, 4, 6, 8. The converse statement also holds, i.e. all possibilities are realised.

2.2 Elliptic fibrations with torsion Mordell-Weil group

The notion of the Mordell-Weil group also applies to families of elliptic curves, i.e. fibrations

π : Y → B (2.6)

with a distinguished zero-section σ0 such that the fiber π−1(b) for a generic point b ∈ B is

an elliptic curve. We can regard the coefficients of the Weierstrass equation (2.1) as taking

values in the field K of meromorphic functions on the base B. Each meromorphic section of

2Actually, this parametrisation corresponds to the Weierstrass equation y2 = 4x3 + fx + g, but this

difference will not be of interest for our purposes.
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the fibration determines an element of E(K), because it detemines x = x(b) and y = y(b),

the “coordinates” of the point, as elements of the field K of meromorphic functions. The

zero-section σ0 maps to the identity element in the group E(K), and the group structure

is given by fiberwise addition of points.

The “Mordell-Weil theorem for function fields” (proved by Lang and Néron [46]) says

that in this situation, E(K) is also finitely generated unless the fibration is “split”, i.e.

unless Y is birational to a product E×B. Note that the zero-section does not serve as one

of the generators of the group. In particular, the Mordell-Weil group is trivial when the

zero section is the only section of the fibration, and extra rational sections are needed to

have a non-trivial group. For certain elliptic surfaces the possible groups E(K) have been

classified analogously to the Mazur theorem for elliptic curves. For instance, for a rational

elliptic surface the non-trivial possibilities for the Mordell-Weil group are

Zr (1 ≤ r ≤ 8), Zr ⊕ Z2 (1 ≤ r ≤ 4), Zr ⊕ Z3 (1 ≤ r ≤ 2),

Zr ⊕ Z2 ⊕ Z2 (1 ≤ r ≤ 2), Z⊕ Z4, Z2 ⊕ Z4,

Z2 ⊕ Z2, Z3 ⊕ Z3, Zk (2 ≤ k ≤ 6)

(2.7)

and in particular the Mordell-Weil group for any rational elliptic surface is torsion-free if

its rank is greater than 4 [35]. For elliptic K3 surfaces the list is more complicated, but

completely known [36]; in particular, the possibilites for non-trivial torsion in the Mordell-

Weil group are

Zk (2 ≤ k ≤ 8), Z2 ⊕ Z2k (1 ≤ k ≤ 3), Z3 ⊕ Z3, Z4 ⊕ Z4. (2.8)

The general situation for higher-dimensional fibrations, e.g. three- and fourfolds, is not as

well understood and classifications only exist in special cases such as [47].

A useful tool to study in particular higher-dimensional examples of elliptic fibrations

is toric geometry. In toric geometry an elliptic curve may be realized as a hypersurface or

a complete intersection in a toric ambient space. The possible realizations as hypersurfaces

are classified by the 16 reflexive polygons in two dimensions. The associated toric ambient

spaces are P2
1,1,2, P1 × P1, P2 or blow-ups thereof. Three of these polygons admit torsional

sections given as the intersection of an ambient toric divisor with the elliptic curve. Ac-

cording to the enumeration of polygons in [43], the elliptic curves in the ambient spaces

defined by polygon 13, 15 and 16 have toric Mordell-Weil groups Z2, Z ⊕ Z2 and Z3, re-

spectively [15] (see also [48]). These cases will be studied in detail in this paper including

the toric implementation of further non-abelian gauge groups via tops.

An important ingredient in our analysis is the correspondence between rational sections

and certain divisor classes on the fibration, more precisely elements of the Néron-Severi

group of divisors modulo algebraic equivalence. Note that the Néron-Severi group coincides

with the Picard group of divisors modulo linear equivalence for spaces with vanishing first

cohomology group, which is the situation of relevance throughout this paper.3 Let E be a

general fiber of π. Each divisor D on Y can be restricted to a divisor D|E on E which has

3For this reason, we will systematically restrict our notation to refer to the Néron-Severi group rather

than the Picard group.
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a specific degree D · E. For example, sections restrict to divisors of degree 1. Now for an

arbitrary divisor D, the linear combination D− (D ·E)σ0 restricts to a divisor of degree 0

on E. But the set of divisors of degree 0 on E is just E itself.

In this way, we get a surjective homomorphism of groups

ψ : NS(Y )→ E(K) (2.9)

which sends [D] to the K-valued point of E determined by restricting the divisor D− (D ·
E)σ0 to E. (It is surjective because every element of E(K) arises from a rational section

σ.) The kernel of this homomorphism is generated by the zero section and by divisors

whose restriction to the general fiber E is trivial.

Recall that the elliptic fiber degenerates when the discriminant ∆ = 4f3 + 27g2 van-

ishes. The singularities, if any, in the total space of Y can always be resolved, and B can

be further blown up if, necessary, to ensure a birational model π̂ : Ŷ → B̂ of our fibration

with a nonsingular total space Ŷ and a flat fibration, i.e. a fibration in which all of the

fibers are one-dimensional. In the sequel we assume that our original base B allows for a

resolution Ŷ which is nonsingular and has a flat family. The resolution process introduces

a set Fi of resolution divisors which are P1-fibrations over the codimension-one locus in the

base B over which the singularity was located. Let T denote the subgroup of NS(Ŷ ) gen-

erated by the zero-section [σ0], the resolution divisors Fi, and divisors of the form π−1(δ)

for δ ∈ NS(B). The Shioda-Tate-Wazir theorem [39, 49] asserts that the kernel of the map

ψ in (2.9) is T . In particular,

rank NS(Ŷ ) = 1 + rank NS(B) + rank E(K) +
∑
w∈∆

(nw − 1), (2.10)

where nw is the number of irreducible components of the resolved fiber over the

codimension-one loci w ∈ ∆ ⊂ B over which the fiber degenerates.

The divisors on Ŷ are thus generated by the class of the zero section Z = [σ0], the

pullback of divisors in B, the divisor classes Si − Z = [σi] − [σ0] from the free generators

of E(K) and the irreducible fiber resolution divisors Fi. On the other hand the divisor

class R− Z = [σr]− [σ0] ∈ NS(Ŷ ) associated with a torsional section σr has the property

that k(R − Z) can be expressed in terms of the generators of T , where k is the order of

the torsional element of the Mordell-Weil group. It follows that R − Z can be expressed

in terms of these generators using Q-coefficients. As described in the next section, this

expression for R − Z is closely related to the so-called Shioda map [38–40]. This is in

line with the result for elliptic surfaces in [50], where a trivial class on the hypersurface is

obtained by adding a certain rational linear combination of resolution divisors to R− Z.

3 F-theory fibrations with non-trivial Mordell-Weil group

After a brief review of the physics of the free Mordell-Weil group and abelian gauge sym-

metries, a subject treated in great detail in the recent F-theory literature, we outline the

general picture of torsional sections and the global structure of the gauge theory.

– 6 –
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In the sequel we denote by G the non-abelian part of the gauge group of an F-theory

compactification on an elliptically fibered Calabi-Yau 4-fold Y4 over the base manifold B
and denote its Cartan subgroup by H. Let us assume that the singularities of Y4 responsible

for the appearance of a non-abelian gauge group G in codimension-one admit a crepant

resolution Ŷ4. Expanding the M-theory 3-form C3 as C3 =
∑

iAi∧Fi with Fi the resolution

divisors gives rise to the Cartan U(1) gauge fields Ai. Therefore the resolution divisors Fi
span the coroot lattice Q∨ of the Cartan subalgebra h.

3.1 The free Mordell-Weil group and the Shioda map

Since the group homomorphism (2.9) is surjective, there is an injective homomorphism

in the other direction after tensoring with Q. In the case of elliptic surfaces, Shioda [38]

introduced such a homomorphism with a specific additional property, which was extended

in [39, 40] to a Shioda map for elliptic fibrations of arbitrary dimension. For an elliptic

fourfold Ŷ4, the Shioda map

ϕ : E(K)→ NS(Ŷ4)⊗Q (3.1)

satisfies the property that 〈ϕ(σ), T 〉 = 0 for any divisor T ∈ T , where the pairing 〈 , 〉 is

the height pairing

〈D1, D2〉 := π(D1 ∩D2), (3.2)

which projects the intersection of two divisors to the base. It is well defined modulo linear

equivalence, and so defines a pairing on the Néron-Severi group. For example, given any

section S defining an element S − Z of the Mordell-Weil group, we have

ϕ(S − Z) = S − Z − π−1(δ) +
∑

liFi (3.3)

for some divisor δ on B and some rational numbers li ∈ Q, which is constructed so that for

every T ∈ T we have

π
(
T ∩ (S − Z − π−1(δ) +

∑
liFi)

)
(3.4)

is linearly equivalent to zero on the base B.

Let us denote by S the harmonic 2-form representative of the cohomology class as-

sociated with ϕ(S − Z). Expanding the M-theory 3-form as C3 = AS ∧ S gives AS as a

massless U(1) one-form gauge field in three dimensions.4 The details of the map assert that

this generator does not lie in the Cartan of any non-abelian gauge symmetry, and that it

has ‘one leg in the fiber’, ensuring that the gauge field AS lifts to a one-form field in four

dimensions under M-/F-theory duality [1, 2]. The geometric realisation and the physics of

extra sections has been studied extensively in the recent literature [4–22].

3.2 Torsional sections and divisor classes

Let us now consider the divisor class R of a torsional meromorphic section of order k such

that R−Z is a generator of the torsional part of the Mordell-Weil group of Ŷ4. Combining

4By contrast, massive U(1)s in F-theory can be understood along the lines of [4, 51–53]; see also [54, 55]

for a similar mechanism at work in a different context.

– 7 –
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the theory outlined in section 2.2 with the properties of the Shioda map one can conclude

that there exists now a fractional linear combination of resolution divisors Fi such that

Σ := R− Z − π−1(δ) +
1

k

∑
aiFi with ai ∈ Z (3.5)

is trivial in NS(Ŷ4) ⊗ Q and thus in particular in H2(Ŷ4,R). Indeed, as described in

section 2.2, it is guaranteed that R − Z can be expressed as a linear combination with Q
coefficients of the generators of T , the subgroup of NS(Ŷ4) generated by [σ0], the resolution

divisors Fi and π−1(δ) for some divisor class δ on B. Thus, R − Z minus this linear

combination is trivial in NS(Ŷ4)⊗Q. On the other hand, the Shioda map gives a specific

such linear combination of the form (3.3) as

ϕ(R− Z) = R− Z − π−1(δ) +
∑
i

liFi. (3.6)

The rational numbers li are in fact of the form ai
k with ai ∈ Z. Since ϕ is a homomorphism,

ϕ(k(R − Z)) = k(R − Z − π−1(δ) +
∑

i liFi) and this must be trivial in NS(Ŷ4) ⊗ Q
because R − Z is k-torsion. Furthermore, since NS(Ŷ4) ⊗ Q is torsion-free, this implies

that R− Z − π−1(δ) +
∑

i liFi is trivial in NS(Ŷ4)⊗Q, as claimed above.

We will exemplify this general fact for situations in which Ŷ4 is a hypersurface in a toric

ambient space. In our examples, −kΣ turns out to be a toric divisor on the toric ambient

space which does not intersect the Calabi-Yau hypersurface Ŷ4. Furthermore, in the toric

examples we will consider the base divisor δ will be given by K̄B, the anti-canonical divisor

of B.5

Since [Σ] is trivial as an element of H2(Ŷ4,R), it does not give rise to an extra U(1)

factor as would be the case if R were a non-torsional rational section. We may use the

triviality of Σ in NS(Ŷ4)⊗Q to write

Ξk ≡ R− Z − π−1(δ) = −1

k

∑
i

aiFi, ai ∈ Z, (3.7)

which by construction defines an element in H2(Ŷ4,Z). One may be forgiven for thinking

that the existence of a k-torsional point on the elliptic fiber induces a k-torsional element

in H2(Ŷ4,Z). This is almost true but misses possible complications in the degenerate

fibers at codimension-one singular loci whose resolution introduces the extra divisor classes

Fi. Indeed, from (3.7) we see that while the class [Ξk] is not torsion in the cohomology

H1,1
Z (Ŷ4) = H2(Ŷ4,Z) ∩ H1,1(Ŷ4), it does represent a k-torsional element in the quotient

cohomology H1,1
Z (Ŷ4)/〈[Fi]〉Z of classes modulo integer linear combinations of resolution

classes. Namely,

k · [Ξk] = −
∑
i

ai[Fi] = 0 mod f ∈ 〈[Fi]〉Z, (3.8)

which establishes [Ξk] as k-torsion up to resolution divisors. We will give an intuitive

explanation for the appearance of such a torsional element from the geometry of the elliptic

fibration in the examples below - see section 4.1.2.

5This is due to the fact that we are only considering fibrations which are blow-ups of the Weierstrass

type or have at least one holomorphic section.
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3.3 The global structure of the gauge group in presence of Mordell-Weil tor-

sion

While, as described, the existence of a torsional section does not give rise to any new U(1)

groups, it does have profound consequences on the physical properties of the F-theory

compactification by restricting the matter spectrum and, equivalently, the global structure

of the gauge group.

In F-theory, the non-abelian gauge algebra g is dictated entirely by the singularity

structure of the elliptic fibration Ŷ4 in codimension one. The resolution divisors Fi cor-

respond to the generators of the Cartan subalgebra h of g. The Cartan generators, or

equivalently the resolution divisors, span the coroot lattice Q∨ = 〈Fi〉Z. On the other

hand, the information about the global structure of the non-abelian gauge group G with

Lie algebra g is reflected in the representation content. In F-theory localised charged

massless matter states in representation ρ of the full gauge group G arise from M2-branes

wrapping suitable fiber components P1
ρ over codimension-two loci on B corresponding to

the intersection of several components of the discriminant locus, or to self-intersections of

its components. The fiber components in question can be identified with the weights of

the representation ρ. The weights of all representations which are realized in the geometry

span the weight lattice Λ. The coweight lattice Λ∨ is the dual lattice, defined by the integer

pairing with the weight lattice Λ,

Λ∨ × Λ→ Z. (3.9)

Geometrically, the coroot lattice Q∨ ⊆ Λ∨ is spanned by the resolution divisors Fi, and

the pairing is the intersection with the fiber components P1
ρ associated with the matter

representations.

The relation between the representation data and the global structure of the gauge

group be understood as follows: For definiteness consider a semi-simple Lie group G. For

such G recall, e.g. from [56, 57], that

π1(G) ≈ Λ∨

Q∨
. (3.10)

It will be useful to compare G to its universal cover G0, which has the same Lie algebra

g and whose coweight lattice is by definition Λ∨0 = 〈Fi〉Z. The dual weight lattice Λ0 then

contains all information about the representations that occur in a gauge theory with gauge

group G0. Since by assumption Λ∨0 = Q∨, the group G0 is simply-connected.

Now, for definiteness suppose that the F-theory compactification gives rise to gauge algebra

g ⊕ g′, where g and g′ are both semi-simple and whose Cartan subgroups are spanned by

two sets of resolution divisors Fi and F ′i . The gauge algebra g′ and its gauge group G′

will be mere spectators in what follows, but we include them to be more general. We are

interested in the structure of the global gauge group G × G′. Suppose furthermore that

the Mordell-Weil group has k-torsion and that the class Ξk defined in (3.7) involves only

the Cartan generators Fi of g, but not the generators F ′i of g′. The class Ξk is integer

and therefore its intersection with the split fiber components P1
ρ is integer as well. Group

theoretically this implies that we can identify Ξk with a coweight of G. Having fractional
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Lie algebra Center of universal covering group

An≥ 1 Zn+1

Bn≥ 2 Z2

Cn≥ 3 Z2

D2n+1≥ 4 Z4

D2n≥ 4 Z2 ⊕ Z2

E6 Z3

E7 Z2

E8 –

F4 –

G2 –

Table 1. Simple Lie algebras and the center of their universal covering groups.

coefficients in 1
kZ with respect to the Fi, the class Ξk corresponds to a coweight in a

coweight lattice Λ∨ which is finer (by order k) compared to the sublattice Λ∨0 = 〈Fi〉Z
spanned by the Fi alone. Therefore π1(G) ≈ Λ∨

Q∨ acquires a Zk component compared to the

first fundamental group of G0. This leads to non-simply connected gauge groups. Since

the universal covering group G0 is simply connected, the gauge group G × G′ in such an

F-theory compactification with Mordell-Weil torsion Zk has in fact first fundamental group

π1(G)× π1(G′) = Zk × π1(G′), (3.11)

where the spectator group G′ is unaffected by the Mordell-Weil torsion.

At the same time, the integer pairing (3.9) of coweights and weights forces the weight

lattice Λ to be coarser compared to the weight lattice Λ0 dual to Λ∨0 , and the weights

realized in the geometry become a subset of all weights that would be possible on the

basis of the Lie algebra alone. Not only can one verify, as is clear by construction, that the

geometrically realised representations all have integer pairing with the coweight − 1
k

∑
i aiFi

(appearing on the right of (3.7)), but also other representations which would be present

in more generic fibrations without torsional sections have only fractional such pairing and

are therefore ‘forbidden’.

Equivalently, we can think of Mordell-Weil torsion as affecting the center ZG of the

gauge group G. The center ZG of a semi-simple Lie group G is given by [56, 57]

ZG ≈
Λ

Q
, (3.12)

where Q ⊂ Λ the root lattice (see figure 1 for a list of the center of the universal covering

groups of the simple Lie algebras). Geometrically Q is spanned by the fiber components

associated with the adjoint representation of G localised in codimension one. As a reference

consider again the universal cover group G0 introduced above with center ZG0 . Since
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Mordell-Weil torsion Zk renders Λ coarser by a factor of Zk compared to Λ0, the center of

G is smaller by the same amount,

ZG = ZG0/Zk. (3.13)

Note that this requires that Zk be a subgroup of the center of G0, which constrains the

possible gauge algebra g that can possibly appear. By contrast, any extra spectator Lie

algebra g′ whose generators do not enter Ξk is unconstrained. For example, if the Mordell-

Weil torsion is Z2, then a gauge algebra g = su(k) is possible only for k = 2n - see the

discussion in section 4.5 for an explicit construction. Furthermore, the total gauge group

is given by

G0/Zk ×G′. (3.14)

This can be directly understood in terms of the construction of our coweight element Ξk
in (3.7). Exponentiation of Ξk generates a Zk subgroup of ZG0 . Since Ξk has integer

pairing with every representation that is present (i.e. with every lattice point in the weight

lattice Λ, but not not Λ0), the corresponding center element (viewed as an element of G0)

acts trivially on every such representation; the actual gauge group is therefore not G0×G′,
but G0/Zk ×G′.

Indeed, to construct an element in the center of G0 one exponentiates a linear combi-

nation Ξ =
∑
miFi of Cartan generators Fi for suitable coefficients mi. We denote by ρd

a d-dimensional representation of g. A state |λn, ρd〉 in the representation ρd is labeled by

the weight λn in the weight system of ρd. Letting Ξ act on such a state gives

Ξ · |λn, ρd〉 =
∑
i

miλ
n
i |λn, ρd〉, n = 1, . . . , d, i = 1, . . . , r, (3.15)

where λni is the eigenvalue of Fi on this state vector. An element c in the center ZG0 ∈ G0

commutes with any element in G0 and is represented as a multiple of the d×d unit matrix

when acting on the state |λn, ρd〉, i.e

c|ρd · |λ
n, ρd〉 = an 1 · |λn, ρd〉 (3.16)

for an ∈ C. To identify c as the exponentiation of Ξ we identify

an = exp

(
2πi

∑
miλ

n
i

)
. (3.17)

For c to lie in a Zk subgroup of the center of G0, ck acts as 1 on any representation ρd,

or equivalently (an)k = 1 for all n. Therefore, if we identify Ξ with the k-fractional linear

combination Ξk = − 1
k

∑
i aiFi, we see that this does indeed generate a Zk subgroup of

ZG0 . Moreover, since Ξk has integer pairing with all weights in the weight lattice Λ of the

actual gauge group G, the element c acts trivially on every such representation. We can

therefore view G as the result of ‘gauging’ Zk, i.e. G = G0/Zk, as claimed. Finally, note

that all results of this section generalize to more complicated Mordell-Weil torsion groups

of the form Zk1 ⊕ . . .⊕ Zkn .
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4 Mordell-Weil group Z2

In the subsequent sections we exemplify the structure of F-theory compactifications on

elliptic fibrations with torsional Mordell-Weil group as outlined above. Ref. [32] has derived

the defining equations describing elliptic fibrations with Mordell-Weil group Zk for k =

2, 3, 4, 5, 6, Z2 ⊕ Zn with n = 2, 4 and Z3 ⊕ Z3 as hypersurfaces in P2,3,1[6] fibrations. As

it turns out, the restriction of the complex structure moduli of the fibration necessary for

the Mordell-Weil group to have torsion induces singularities in the fiber over divisors on

the base B. To explicitly analyse these singular loci and their resolution we focus in this

work on the subset of geometries in the list of [32] which can be treated torically as certain

hypersurfaces. As noted already, there exist 16 reflexive polygons in two dimensions which

describe an elliptic curve as a hypersurface in a toric ambient space. Of these only three

admit torsional sections in the Mordell-Weil group as the intersection of a toric divisor

with the generic hypersurface defined by the dual polygon. The Mordell-Weil group of

these fibrations has already been provided in [15]. As we will show, they correspond to the

geometries with Mordell-Weil group Z2 and Z3 as well as a further specialisation of the

Z2-model in the list of [32]. For each of these three fibration types we construct a compact

model fibered over a generic base B and analyse in detail the interplay between the torsional

sections and the global structure of the gauge group. In addition we implement further

non-abelian gauge symmetries by the construction of toric tops [43].

4.1 An SU(2)/Z2-fibration

We begin with the simplest example of an elliptic fibration with torsional Mordell-Weil

group, which turns out to be Z2. As derived in [32], an elliptic fibration with a Z2-torsional

section admits a representation as the hypersurface P = 0 with

P = −y2 − a1x y z + x3 + a2 x
2 z2 + a4 x z

4 (4.1)

and [x : y : z] fiber coordinates in a P2,3,1-fibration over some base B. To ensure that

the variety P = 0 satisfies the Calabi-Yau condition the coefficients ai must be sections of

K̄iB with K̄B the anti-canonical bundle of the base B. Note that (4.1) corresponds to an

otherwise generic Tate model with a6 ≡ 0 and a3 ≡ 0. It can therefore be viewed as a

further specialisation of the U(1) restricted Tate model, defined in [4] by setting a6 ≡ 0.

The latter has Mordell-Weil group Z and in turn represents a special case of the elliptic

fibrations with Mordell-Weil group Z as described in [9].

4.1.1 Singularity structure and resolution

The elliptic fibration (4.1) is easily brought into Weierstrass form (2.1) with

f = a4 −
1

3

(
a2 +

a2
1

4

)2

, g =
1

27

(
a2 +

a2
1

4

)(
2

(
a2 +

a2
1

4

)2

− 9a4

)
.

From f and g and the discriminant

∆ =
1

16
a2

4

(
4 a4 −

(
a2 + 1

4a
2
1

)2)
(4.2)
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one infers an su(2)-singularity at a4 = 0. Indeed, the gradient of (4.1) in the patch z 6= 0,

dP = (−a1 y + 3x2 + 2 a2 x+ a4) dx− (2 y + a1 x) dy − xy dB a1 + x2 dB a2 + x dB a4 ,

(4.3)

with dB the total derivative with respect to the base coordinates, vanishes together with

the hypersurface equation (4.1) for x = y = a4 = 0. The situation is similar to the U(1)-

restricted model with a6 ≡ 0 but a3 6= 0 [4], in which, however, the singularity appeared

over the curve {a3 = 0} ∩ {a4 = 0} on B. Since in (4.1) a3 is set to zero from the very

beginning, the su(2) locus is promoted to the divisor {a4 = 0}. We will come back to

this enhancement of the u(1) gauge algebra of the U(1) restricted Tate model to su(2) by

setting a3 ≡ 0 in section 5.2.

To resolve the singularity we perform a blow-up in the fiber ambient space

x→ s x , y → s y . (4.4)

Since a6 ≡ 0, this does not spoil the Calabi-Yau condition of the hypersurface as one can

see from the proper transform of (4.1) given by

P̂ = −y2 s− a1x y z s+ x3 s2 + a2 x
2 z2 s+ a4 x z

4 , (4.5)

which is checked to be smooth (see [4, 6] for the analogous blow-up if a3 6= 0). In order to

facilitate the description of the Z2-torsional section it turns out useful to perform a further

ambient space blow-up

s→ t s , x→ t x , (4.6)

under which the proper transform of (4.5) becomes

P̂ = −y2 s− a1x y z s t+ x3 s2 t4 + a2 x
2 z2 s t2 + a4 x z

4. (4.7)

The Stanley-Reisner ideal relations after the two blow-ups are

SR-i : {y t, y x, s x, s z, t z} , (4.8)

and we observe that the divisor X : {x = 0} does not intersect the hypersurface. Hence x

can be set to one in (4.7) and from now on we will analyse the fibration P̂ = 0 with

P̂ = −y2 s− a1y z s t+ s2 t4 + a2 z
2 s t2 + a4 z

4 (4.9)

over a suitable base B. If B is 3-dimensional, this defines an elliptically fibered Calabi-Yau

4-fold Ŷ4. The weight matrix of the homogeneous coordinates can be taken to be

y z s t
∑

2 1 0 1 4

1 1 2 0 4

(4.10)

and the Stanley-Reisner ideal simplifies to

{y t, s z} . (4.11)
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y

s

tz x

y2 s

t4 s2z4

Figure 1. Polygon 13 of [43] together with its dual polygon. The coordinate x is blown-down, and

not part of the fan.

Note that the weight matrix (4.10) coincides with the weight matrix as read off from the

toric fan depicted in figure 1, which corresponds to polygon 13 in the list [43] of 16 torically

embedded hypersurface elliptic curves. The fibration (4.9) with s ≡ 1, corresponding to

the blow-down of the resolution divisor associated with the su(2) singularity over a4 = 0,

has been analysed previously in [41] and shown to correspond to an elliptic fibration with

restricted SL(2,Z) monodromy. We will analyze this relation in more detail in section 4.5.

The advantage of passing to the hypersurface representation (4.9) is that the Z2-

torsional point on the elliptic fiber is now explictly given by the intersection of the fiber

with the toric divisor

T : t = 0. (4.12)

This can be checked via the group law on the elliptic curve. We will henceforth denote T

as the Z2 section of the fibration. The holomorphic zero-section is given by Z : z = 0.

To study the geometry further we note that the fibration restricted to the su(2)-

sublocus {a4 = 0} in the discriminant (4.2) factorises as

P̂ |a4=0 = s
(
−y2 − a1 y z t+

(
s t4 + a2 z

2 t2
))
. (4.13)

The resolution divisor S : s = 0 is a P1-fibration over the locus {a4 = 0} on B as the

coordinate s is just a toric ambient space coordinate. The other irreducible component

of (4.13) is quadratic in y and must therefore be studied in more detail. Note first that

this component does not intersect the Z2 section T , but only the holomorphic zero-section

Z. Since z and t cannot both vanish along it, we can go to the patch where y and s can

vanish simultaneously. Here the second factor of (4.13) becomes

y2 + a1 y − (s+ a2) = 0 . (4.14)

The discriminant of this quadratic equation is a linear function in s so that we find one

branching point in the s-plane. Since the point at ‘s = ∞’ (z = 0) is also single valued,

we can take the branch-cut from s = −(1
4a

2
1 + a2) to infinity. Gluing the two P1s viewed

as compactified complex planes along the branch-cut, we obtain again a P1. The two

irreducible parts of (4.13) intersect each other in two points, as can be seen from (4.14).

The factorised fiber over the base divisor {a4 = 0} is depicted on the left in figure 2. Over

– 14 –



J
H
E
P
1
0
(
2
0
1
4
)
0
1
6

Figure 2. To the left we depict the factorised fiber over the base locus a4 = 0; the purple P1

indicates the s = 0 part while the grey P1 is the second irreducible part of the elliptic curve. To

the right the fiber over the base locus a4 = 1
4 (a2 + 1

4a
2
1)2 is shown. The multiplicity is one, and the

fiber is singular. The blue and green crosses indicate the specified points z = 0 and the Z2-point

t = 0 of the elliptic curve, respectively.

the zero set of the second factor of the discriminant (4.2),

4 a4 − (a2 + 1
4a

2
1)2 = 0 , (4.15)

we analyse the fiber structure by substituting (4.15) into (4.9). This gives the hypersur-

face equation

P̂ |(...=0) = −y2 s− a1 y z s t+ s2 t4 + a2 z
2 s t2 +

1

4

(
a2 +

1

4
a2

1

)2

z4 .

To determine the fiber type, we can go to the patch where y and z are allowed to vanish

simultaneously. We set s = 1 since the divisor {s = 0} does not intersect the elliptic curve

away from {a4 = 0} and complete the square as

y2 + a1 y z = 1 + a2 z
2 +

1

4

(
a2 +

1

4
a2

1

)2

z4

⇒
(
y +

1

2
a1 z

)2

= 1 +

(
a2 +

1

4
a2

1

)
z2 +

1

4
(a2 + a2

1)2 z4

⇒
(
y +

1

2
a1 z

)2

=

(
1 +

1

2

(
a2 +

1

4
a2

1

)
z2

)2

⇒
(
y +

1

2
a1 z − 1− 1

2

(
a2 +

1

4
a2

1

)
z2

)(
y +

1

2
a1 z + 1 +

1

2

(
a2 +

1

4
a2

1

)
z2

)
= 0 .

Therefore, it appears as if the elliptic curve factorises into two rational curves. However,

these two P1s are equivalent as follows from the second row of the weight matrix (4.10)

because the equivalence relation (y, z) ∼ (−y,−z) is left over after setting s to one.6 Thus

the fiber is just a single rational curve; moreover, it has a singular point, cf. figure 2, at

y = −1
2a1z, s = −1

8(a2
1 + 4a2)z2 (and t = 1 due to the Stanley-Reisner ideal), where the

6This can also be seen from the N -lattice polygon of figure 1 because y and z do not span the lattice.

The patch where y and z are allowed to vanish simultaneously is, therefore, C2/Z2 and not C2 as one would

näıvely think.
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gradient along the fiber coordinates vanishes even though the fibration as such is non-

singular. Thus the fiber is of Kodaira-type I1, and the locus (4.15) does not give rise to

any further gauge symmetry.

Interestingly, apart from the codimension-one splitting of the fiber over {a4 = 0} no

further degeneration of the fiber occurs in higher codimension. In particular, the fiber over

the intersection curve {a4 = 0}∩{a2 + 1
4a

2
1 = 0} of the two components of the discriminant

does not factorise further. This can be understood by considering the vanishing of f and

g along that locus: f vanishes to order 1, g vanishes to order 2 and the discriminant ∆

consequently to order 3, giving a Kodaira fiber of type III. This type of fiber has two

components just like the familiar A1-fiber, but they are tangent to each other rather than

meeting at two distinct points, and there is no enhancement or matter (consistent with [58,

59]). This is remarkable because naively one might have expected an enhancement from A1

to A2 at the intersection of the A1-locus with the I1-component of the discriminant and thus

localised massless matter in the fundamental of su(2). The absence of this enhancement

and the associated fundamental representation is a typical property of fibrations with

torsional Mordell-Weil group. To summarize, the fibration (4.1) gives rise to an F-theory

compactification with gauge algebra su(2) and no localised charged matter.

4.1.2 Torsional divisors and free quotient

The absence of charged localized matter in the fundamental representation is a consequence

of the Z2 Mordell-Weil group and the resulting global structure of the gauge group. To see

this let us first exemplify how the torsional Mordell-Weil group of the elliptic fiber induces

a torsional element in H1,1(Ŷ4,Z) modulo the integer lattice spanned by the resolution

divisors. In the present model with gauge algebra g = su(2) the lattice of resolution

divisors is simply 〈S〉Z. To find the element Σ2 of the form (3.5) we make an Ansatz and

demand that (3.4) be satisfied. In the present situation this amounts to demanding that

Σ2 have ‘one leg in the fiber’ and that it be orthogonal to the exceptional divisor S, in the

sense that for all ω4 ∈ H4(B) and ω2 ∈ H2(B)∫
Ŷ4

Σ2 ∧ Z ∧ π∗ω4 =

∫
Ŷ4

Σ2 ∧ π∗ω2 ∧ π∗ω4 =

∫
Ŷ4

Σ2 ∧ S ∧ π∗ω4 = 0. (4.16)

This uniquely determines

Σ2 = T − Z − K̄ +
1

2
S (4.17)

with K̄ = π−1K̄B . This element is in fact trivial in H2(Ŷ4,R). Indeed, recall that the

fibration Ŷ4 is described as the hypersurface (4.7) in an ambient toric space. Consider the

toric divisor X : {x = 0} in this ambient space. Its class is

X = 2Z − S − 2T + 2K̄ = −2Σ2. (4.18)

However, as discussed, X does not intersect the hypersurface Ŷ4 and therefore its class is

trivial on the hypersurface. Thus also Σ2 is trivial in H1,1(Ŷ4,R). This implies that

Ξ2 := T − Z − K̄ = −1

2
S, (4.19)

thereby identifying Ξ2 as 2-torsion in H1,1(Ŷ4,Z)/〈S〉Z.
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According to the discussion in section 3.2, associated with Ξ2 is an extra coweight

defined over 1
2Z. Thus, to preserve the pairing with the weights, the weight lattice is forced

to be coarser. In particular the representation 2 of su(2) cannot be present in this model

as its weight would have half-integer pairing with the fractional coweight Ξ2 = −1
2S, in

contradiction with the fact that T −Z −K̄ is manifestly integer. This is the deeper reason

behind the absence of a fundamental representation at the intersection of the su(2)-divisor

{a4 = 0} with the second discriminant component. The gauge group of the model is thus

G = SU(2)/Z2 (4.20)

with π1(G) = Z2.

One can give an intuitive geometric explanation for the appearance of the 2-torsion

element Ξ2 in H1,1(Ŷ4,Z)/〈S〉Z as follows: Restrict the elliptically fibered Calabi-Yau Ŷ4

over B given by the hypersurface equation (4.7) to B\{a4 = 0}. As will be discussed

momentarily, the resulting space Ŷ ′4 is a free Z2 quotient,

Ŷ ′4 =
˜̂
Y ′4/Z2, (4.21)

with
˜̂
Y ′4 an elliptic fibration over B\{a4 = 0}. Correspondingly

π1(Ŷ ′4) ⊃ Z2, (4.22)

where additional discrete torsion pieces may arise if π1(B\{a4 = 0}) is non-trivial. Since

the resolution divisor S is fibered over {a4 = 0} this is in agreement with the appearance

of a torsional element in H1,1(Ŷ4,Z)/〈S〉Z.

The relation (4.21) can be seen as follows: consider the fibration over a generic locus

on the base B where a4 6= 0. Since the resolution divisor s = 0 intersects the fiber only

over {a4 = 0} we can set s to one away from that locus. Then (4.9) becomes

y2 + a1y z t = t4 + a2z
2 t2 + a4 z

4 . (4.23)

This is a special P1,1,2[4] fibration with homogeneous coordinates [t : z : y], which in

addition to the equivalence relation (t, z, y) ∼ (λt, λz, λ2y) enjoys a further Z2 identification

t ∼ −t, y ∼ −y. (4.24)

In fact, the most generic P1,1,2[4] representation of an elliptic curve contains the nine terms

y2, t4, z4, z2t2, yzt; yt2, yz2, zt3, tz3. (4.25)

Precisely the first five terms present in (4.23) are compatible with the Z2 identifica-

tion (4.24). Note that by a coordinate redefinition we can set a1 ≡ 0, thereby arriving

at the special P1,1,2[4]-fibration that goes by the name of the Légendre family. In any

case, we can view (4.23) as the result of starting with a P1,1,2[4] fibration described by the

hypersurface equation

y2 + a1y z t = t4 + a2z
2 t2 + a4 z

4 + c1 y t
2 + c2 y z

2 + c3 z t
3 + c4 t z

3, (4.26)
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Figure 3. On the lefthand side the only possible su(2)-top over polygon 13 of [43] is depicted. The

green color indicates the layer at height one, containing the nodes e0 and e1. On the righthand side

we give the dual top, bounded from below by the values zmin, shown next to the nodes.

enforcing the Z2 symmetry by setting ci ≡ 0 (we call the resulting space
˜̂
Y ′4) and then

quotienting by this Z2 symmetry. The fact that Ŷ ′4 is really the quotient of
˜̂
Y ′4 by (4.24) is

automatically implemented by the toric description because the dual polyhedron exclusively

contains monomials invariant under (4.24). Importantly, the Z2 acts freely as the fixed

point sets {t = y = 0} and {z = y = 0} do not lie on Ŷ ′4 due to the Stanely-Reisner ideal.

Note that the role of this Z2 quotient symmetry was stressed already in [41] albeit in a

slightly different context.

This description makes the existence of discrete one-cycles on Ŷ ′4 manifest: consider

the locus z = 0 on (4.23). On
˜̂
Y ′4 it is given by y = ±1, where we have used the scaling

of P1,1,2 to set t = 1 since t and z cannot simultaneously vanish as a consequence of the

Stanely-Reisner ideal. A path from y = −1 to y = +1 on the double cover
˜̂
Y ′4 corresponds

to a non-contractible closed loop on Ŷ ′4 . This loop is torsional as going along it twice is

contractible again.

The existence of a torsion one-cycle implies also a torsion six-cycle because in general

Torp(Y ) ' TorD−p−1(Y ) (4.27)

with D the real dimension of Y . This picture has relied on setting s = 1 and is thus really

valid away from the locus a4 = 0. Therefore all we can conclude is the existence of a

2-torsion element in H1,1(Ŷ4,Z)/〈S〉Z.

4.2 An (SU(2) × SU(2))/Z2-fibration

The analysis so far has treated all coefficients ai appearing in (4.1) as maximally generic.

We now further restrict the coefficients ai defining the Z2-torsional fibration in its singular

form (4.1) or its resolution (4.9) such as to create additional non-abelian singularities in

the fiber. A special class of such restrictions corresponds to specializations ai → ai,jw
j

with W : {w = 0} a base divisor and ai,j generic. Since the fibration (4.1) is in global Tate

form, the possible enhancements one can obtain via such specialisations can be conveniently

determined via Tate’s algorithm [58–60] as summarized e.g. in table 2 of [60]. Another

advantage of this class of enhancements is that the corresponding fibrations can be treated

torically. Indeed, the possible enhancements of type ai → ai,jw
j with generic ai,j which
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admit a crepant resolution are classified by the tops construction [42, 61], which provides

both the possible vanishing patterns ai,j (coinciding with Tate’s algorithm) and the toric

resolution. For a detailed account of how to read off the vanishing orders from the toric

data of a top in the present context we also refer to [17].

From the classification of tops by Bouchard and Skarke [43] for the 16 hypersurface

elliptic fibrations, we note that the only tops possible for the fiber (4.7) correspond to

singularity type A2n+1 for n ≥ 0, Cn and D2n+4 for n ≥ 1, B3 and E7. This is indeed in

agreement with an analysis via Tate’s algorithm as a consequence of a3 ≡ 0 and a6 ≡ 0.

The associated gauge algebras have the property that their universal cover groups have a

center with a Z2-subgroup. Indeed, as we will exemplify below, in all models of this type

the Mordell-Weil torsion Z2 will be identified with this Z2-subgroup of the center.

To verify this pattern explicitly we begin with an A1 top, corresponding to an affine su(2)-

type fiber over a divisor W : w = 0 on B. There is, in fact, only one possible A1 top over

this polygon, see figure 3. The singular version of the associated fibration is obtained by

replacing in (4.1) a4 by a4,1w. The discriminant of this fibration,

∆ ∼ w2a2
4,1

(
(a2

1 − 4a2)2 − 64wa4,1

)
, (4.28)

reflects the gauge algebra su(2)⊕ su(2).

The toric resolution of this fibration is described by the hypersurface equation

P̂ = sy2 + a1styz − e1s
2t4 − a2st

2z2 − a4,1e0z
4 , (4.29)

corresponding to the reflexive pair in figure 3 (again after scaling x to one, since X does

not intersect the hypersurface). For definiteness we choose a triangulation with Stanley-

Reisner ideal

{sz, tz, ty, e0s, e1z}. (4.30)

The extra su(2)-fiber is found over W : {w = 0} with π∗w = e0e1. Indeed, over W

the two fiber components P1
0 and P1

1 are given by the intersection of the ambient divisors

E0 : {e0 = 0} and E1 : {e1 = 0} with the hypersurface equation and two generic divisors

in the base,

P1
i = Ei ∩ P̂ |ei=0 ∩Da ∩Db, i = 0, 1. (4.31)

They intersect as the affine su(2) Dynkin diagram.

The discriminant also suggests three codimension-two enhancement loci, at W∩{a4,1 =

0}, W ∩{a2
1 = 4a2} and {a4,1 = 0}∩{a2

1 = 4a2}. Splitting of fiber components only occurs

over the first one,7 where P1
1 factors into the two components

P1
1s = E1 ∩ {s = 0} ∩ {a4,1 = 0} ∩Da ∩Db, (4.32)

P1
1A = E1 ∩

{(
y +

1

2
a1t± t

√
a2

1

4
− a2

)(
y +

1

2
a1t∓ t

√
a2

1

4
− a2

)
= 0

}
∩{a4,1 = 0} ∩Da ∩Db.

7The other two loci are completely analogous to the curve {a4 = 0} ∩ {a2
1 = 4a2} analysed in the

previous section, where no splitting of the fiber was found despite an enhancement of the vanishing order

of the discriminant.
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Figure 4. The lefthand side shows an su(4)-top over polygon 13 of [43]. The green layer contains

the points at height one. On the righthand side we depict the dual top, bounded from below by

the values zmin, shown next to the nodes.

Note that the two factors in brackets appearing in P1
1A get exchanged when the sign of

the square root changes across a branch cut on B so that P1
1A really describes a single P1.

The weight

P1
1A · (E1, S) = (−1, 1) (4.33)

is in the weight system of the (2,2) of su(2)⊕ su(2). This implies massless matter in the

(2,2) representation over W ∩ {a4,1 = 0}. Again, no fundamental matter (1,2) or (2,1)

is found.

Our derivation of the extra coweight induced by the torsional section T : {t = 0} is

only mildly modified by the extra su(2) singularity compared to the previous section. The

Shioda map Σ2 of T takes the form

Σ2 = T − Z − K̄ +
1

2
(S + E1), (4.34)

which is trivial on the hypersurface since the divisor class

X = 2Z − S − 2T + 2K̄ − E1 (4.35)

does not intersect (4.29) due to the Stanley-Reisner ideal. The extra coweight is associated

with the class

Ξ2 ≡ T − Z − K̄ = −1

2
(S + E1), (4.36)

which is torsion in H1,1(Ŷ4,Z)/〈S,E1〉Z and manifestly integral on the split curves over

W ∩ {a4,1 = 0}. This explains why the bifundamental representation is indeed present,

whereas fundamental representations of the form (1,2) or (2,1), which for group theoretic

reasons would have fractional pairing with the coweight Ξ2, are not possible.

This refinement of the coweight lattice makes the gauge group non-simply connected

and the gauge group is

G =
SU(2)× SU(2)

Z2
. (4.37)

An example of this type was also given in [20].
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4.3 An (SU(4) × SU(2))/Z2-fibration

In this section we consider the next example in the A-series [43], corresponding to an affine

su(4)-type fiber. This construction yields the unique top of figure 4 associated with the

hypersurface equation

P̂ = −y2 s e1 − a1 y z s t+ s2 t4 e2
2 e3 + a2,1 z

2 s t2 e0 e2 e3 + a4,2 z
4 e2

0 e3 . (4.38)

The pullback of the projection of the fibration obeys e0e1e2e3 = π∗w, defining an affine

su(4) fiber over W : {w = 0} in the base. From one of the 16 triangulations of this top we

obtain the Stanley-Reisner ideal

SR-i : {y t, y e0, y e2, y e3, s z, s e0, s e2, s e3, z e2, z e3, e0 e2, t z e1, t e0 e1, t e1 e3} .
(4.39)

The three exceptional divisors e1, e2, e3 and the part of the original fiber e0 are all fibered

over {w = 0} with fiber components

P1
i = {Ei} ∩ {P̂ |ei=0 = 0} ∩Da ∩Db i = 0, . . . , 3. (4.40)

The explicit equations are provided in appendix A.1. The irreducible fiber components

intersect like the nodes of the affine Dynkin diagram of su(4) type. This is also seen in

figure 4, where the upper layer reproduces this structure by construction. To analyze the

localised charged matter we infer from the discriminant of (4.38),

∆ = 16w4 a2
4,2

((
4w a2,1 + a2

1

)
2 − 64w2 a4,2

)
, (4.41)

the codimension-two enhancement loci8

{w = a4,2 = 0} and {w = a1 = 0} . (4.42)

The factorization properties of the fiber components (see appendix A.1) identify the split

curves in the fiber. At {w = a4,2 = 0} the component P1
1 splits into three components,

whose intersection numbers with the exceptional divisors from the su(4) and su(2) singu-

larities are
P1
e1=s=0 · (E1, E2, E3) = (0, 0, 0) , P1

e1=s=0 · (S) = (−2) ,

P1
e1=t=0 · (E1, E2, E3) = (−1, 1, 0) , P1

e1=t=0 · (S) = (1) ,

P1
e1=R1=0 · (E1, E2, E3) = (−1, 0, 0) , P1

e1=R1=0 · (S) = (1) ,

(4.43)

respectively. The (−1, 1, 0) and (−1, 0, 0) are weights in the fundamental of su(4) and from

the right column we find the weights of the fundamental representation of su(2) (which is

the same as the anti-fundamental). Indeed the full weight system is reproduced by taking

linear combinations of fibral curves. Hence the charged matter at this locus transforms in

representation (4,2) of su(4)⊕ su(2).

8All other enhancement loci as read off from the discriminant do not correspond to an extra fiber

splitting.
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Over {w = a1 = 0} the relevant intersections are

P1
e1=e3=0 · (E1, E2, E3) = (0, 1,−2) , P1

e1=e3=0 · (S) = (0) ,

P1
e1=R21=0 · (E1, E2, E3) = (−1, 0, 1) , P1

e1=R21=0 · (S) = (0) ,

P1
e1=R22=0 · (E1, E2, E3) = (−1, 0, 1) , P1

e1=R22=0 · (S) = (0) ,

(4.44)

where (−1, 0, 1) is one of the weights in the 6-representation of su(4). States originating

from these curves are uncharged under su(2). This is as expected since this locus is away

from the su(2) divisor {a4,2 = 0}. The following table summarizes the matter spectrum:

Top over polygon 13:

su(4)× su(2)

Locus Charged matter

w ∩ a4,2 (4,2)

w ∩ a1 (6,1)

. (4.45)

Again we stress the absence of fundamental representations. The Shioda-type Ansatz for

the toric divisor class T yields

Σ2 = T − Z − K̄ +
1

2
(S + E1 + 2E2 + E3) , (4.46)

which for the same reasons as before turns out to be trivial in H1,1(Y4,R). The

coweight element

Ξ2 = T − Z − K̄ = −1

2
(S + E1 + 2E2 + E3), (4.47)

which is 2-torsion in H1,1(Ŷ4,Z)/〈S,E1, E2, E3〉Z, forces the weight lattice to be coarser in

order to preserve the integer pairing of coweights and weights. Indeed, the intersection of

Ξ2 with all split curves corresponding to weights of the matter representations is integer,

and representations such as (4, 1) or (1,2) which would violate this integral pairing are

absent. This identifies the global gauge group as

G =
SU(4)× SU(2)

Z2
. (4.48)

4.4 A (Spin(7) × SU(2))/Z2-fibration

Keeping the same ambient fiber space as in previous section, we now consider a top cor-

responding to the non-simply laced Lie algebra B3. The top is constructed uniquely from

the classification [43] and the corresponding hypersurface equation is

P̂ = e2
1s

2t4 + e3sy
2 + a1e0e1e2e3styz + a2e0e1st

2z2 + a4e
2
0z

4 . (4.49)

Having a node at z = 2 in the top defines the divisor W = {w = 0} in the base with

π∗w = e0e1e
2
2e3 and gives multiplicity 2 to the corresponding curve P1

2 in the fiber over W .

The occurrence of the multiplicity of the node in the projection to the base is crucial to
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Figure 5. The lefthand side shows the unique B3-top over polygon 13 of [43]. The green layer

contains the points at height one and the node labelled e2 is at height two. On the right side we

depict the dual top, bounded from below by the values zmin, shown next to the nodes.

make W scale under the scaling relations coming from the z ≥ 1 layers of the top. The

affine B3 Dynkin diagram is read off along the edges at z ≥ 1 of the top in figure 5. The

non-simply laced structure of this algebra is reflected in the fact that the intersection of

the ambient divisor E3 with the hypersurface

E3 ∩ P̂ |e3=0 ∩Da ∩Db, Da,b ⊂ B (4.50)

gives rise to two curves. These are described by the factorization

{e3 = 0} ∩ {s2 + a2e0s+ a4e
2
0 = 0} ⇔

{e3 = 0} ∩
{(

s+
1

2
a2e0 ± e0

√
a2

2

4
− a4

)(
s+

1

2
a2e0 ∓ e0

√
a2

2

4
− a4

)
= 0

}
.

(4.51)

The two factors on the righthand side give rise to the curves P1
3± and they get exchanged

when the signs of the square roots shift upon travelling along W in the base. As a check,

the negative of the Cartan matrix Cij of B3 is reproduced as the intersection numbers

Ei · (P1
0,P1

1,P1
2,P1

3±)j = −Cij . (4.52)

By analyzing the codimension-two loci, we find only one curve in B over which the fiber

degenerates further. This happens over W ∩ {a4 = 0} and by calculating the charges of

the split fiber components weights in the weight system of the (8,2) of so(7) ⊕ su(2) are

found, where 8 is the spinor representation.

Using that the toric divisor X does not restrict to the hypersurface the Shioda map of

the torsional section gives a class

Ξ2 ≡ T − Z − K̄ = −1

2
(S + 2E1 + 2E2 + E3) (4.53)

with integer intersection with all fiber components over the matter curve.

Consistently with the appearance of the representation (8,2) of so(7) ⊕ su(2) the gauge

group is

G =
Spin(7)× SU(2)

Z2
, (4.54)
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where the Z2 is the common center of Spin(7) and SU(2) and π1(G) = Z2. Even though

not realized in this geometry, all representations (8,Re) for Re an even-dimensional rep-

resentation of SU(2) would also be allowed, and also the representations (7,Ro) for Ro an

odd-dimensional representation of SU(2).

4.5 Generalisation to Sp(n)/Z2, SU(2n)/Z2, Spin(4n)/Z2, Type IIB limit and

restricted monodromies

The toric enhancements described in the previous sections involved the specialization a4 →
a4,nw

n for W : {w = 0} some divisor different from the A1-locus {a4 = 0}. Clearly one can

also identify w with a4, thereby producing a single gauge group factor. According to the

general discussion, this single group factor will be strongly constrained by the requirement

that the universal cover gauge group G0 contain a Z2-subgroup in its center.

Indeed, if K̄4/n
B exists as a line bundle with non-trivial sections, we can simply factorise

a4 = (ã4)n (4.55)

with ã4 ∈ H0(B, K̄4/n
B ). Since the analysis of the singular geometry and its resolution has

been exemplified in detail in the previous sections, we content ourselves with determining

the resulting gauge groups by application of Tate’s algorithm [58, 60] without explicitly

constructing the resolution. For generic a2, Tate’s algorithm in the form of table 2 of [60]

indicates that the fiber over ã4 = 0 is of Kodaira type Ins2n , with the superscript denoting

the non-split type. The associated gauge algebra is the rank n Lie algebra sp(n) (with the

convention that sp(1) ' su(2)). This identifies the gauge group as

G =
Sp(n)

Z2
. (4.56)

As described in subsection 4.1.1, if n = 1 the global structure of G makes extra massless

representations along the curve {ã4 = 0}∩{1
4a

2
1 +a2 = 0} impossible; this is no longer true

for n ≥ 2. Indeed, in this case Tate’s algorithm predicts, as described in detail in [59], for

the fiber type over this curve Kodaira type I∗s2n−4 (with the superscript standing for split

type), corresponding to gauge algebra so(4n). From the branching rule of the adjoint of

SO(4n) along SO(4n)→ SU(2n)×U(1)→ Sp(n)×U(1) one deduces matter in the 2-index

antisymmetric representation of Sp(n) of dimension 2n2−n−1 along {ã4 = 0}∩{1
4a

2
1+a2 =

0} (see in particular table 9 of [59]). This is compatible with the gauge group G = Sp(n)
Z2

.

Next, one can engineer a gauge algebra su(2n) by factoring a4 = (ã4)n and in addition

restricting a2 = a2,1ã4 for suitable a2,1 ∈ H0(B, K̄2−4/n
B ) (if existent). In this case the gauge

group is

G =
SU(2n)

Z2
, n ≥ 2. (4.57)

Note that the Mordell-Weil torsion group Z2 appears here as a proper subgroup of the center

Z2n of the universal cover G0 = SU(2n). The same argument as above predicts massless

matter in the antisymmetric representation of SU(2n) localised on the curve {ã4 = 0} ∩
{a1 = 0}. The appearance of this matter distinguishesG = SU(2n)/Z2 as realized here from
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SU(2n)/Z2n. The possibility that the Mordell-Weil torsion appears as a proper subgroup

of the center of the universal cover G0 had previously been noted in eight-dimensional

F-theory compactifications on K3 in [32, 62].

The only remaining chain of enhancements of this type which is possible according to

Tate’s algorithm leads to gauge algebra so(4n) with n ≥ 4 and corresponds to a4 = (ã4)n,

a2 = a2,1ã4 and a1 = a1,1ã4. The restriction to n ≥ 4 comes about as a necessary condition

for a section a1 ∈ H0(B, K̄1−4/n
B ) to exist. According to the analysis in [59] we expect

matter in the vector representation along the curve {ã4 = 0} ∩ {a2,1 = 0}. Note that the

universal cover group G0 = Spin(4n) has center Z2 × Z2. The appearance of the vector

representation (but not the spinor) is in perfect agreement with the gauge group being

G =
Spin(4n)

Z2
= SO(4n), n ≥ 4. (4.58)

The observed pattern has a natural interpretation in the weak coupling Type IIB orientifold

limit. This Sen limit [63] is realized as the limit ε→ 0 after rescaling a3 → ε a3, a4 → ε a4,

a6 → ε2 a6 [64]. The discriminant locus can be brought into the form

∆ ' ε2h2(η2 − hχ) +O(ε3), (4.59)

and the Type IIB Calabi-Yau

XIIB : ξ2 = h (4.60)

is a double cover of the F-theory base B branched over the orientifold plane localised at

h = 0. The orientifold action on XIIB acts as ξ → −ξ. The locus η2 − hχ = 0 on B
and its uplift to the Calabi-Yau double cover XIIB represents the D7-brane locus. In the

configuration at hand, due to the restriction a3 ≡ 0 and a6 ≡ 0, one finds

h = − 1

12
(a2

1 + 4a2), χ = 0, η = a4 = (ã4)n. (4.61)

For generic a2 the D7-brane system is given by a stack of D7-branes on the uplift of the

divisor {a4 = 0} to the double cover XIIB; since this locus is invariant under the orientifold

projection, the D7-brane stack supports gauge algebra sp(n). The antisymmetric matter

appears at the intersection with the O7-plane at h = 0. If a2 = a2,1ã4, then the analysis

of [8] shows that the D7-branes wrap a divisor on the Calabi-Yau double cover which is

not mapped to itself under the orientifold action. Its corresponding non-abelian gauge

algebra is therefore indeed su(n) with antisymmetric matter at the intersection of the

D7-brane stack with its image on top of the O7-plane. For completeness, note that the

further specialization a1 = a1,1ã4, corresponding to the Spin(4n)/Z2 series in F-theory,

has an ill-defined weak-coupling limit with two O7-planes intersecting over a curve of

conifold singularities.

Apart from reproducing the F-theory predictions, this weak coupling analysis exempli-

fies how the global structure of the gauge group in the Type IIB limit can be understood

from the specific D7-brane configuration and the absence (or presence) of certain matter

representations. In the situation under consideration, what changes the gauge group from
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Sp(n) or SU(2n) to Sp(n)/Z2 and SU(2n)/Z2 is that in the discriminant (4.59) no extra

single D7-brane arises in addition to the non-abelian brane stack at {ã4 = 0}; if present

the intersection curve of such a brane with the D7-brane stack would lead to matter in the

fundamental representation of Sp(n) or SU(2n) and thus change the global structure of the

gauge group.

Finally, let us point out that the elliptic fibration (4.9) with s ≡ 1, i.e. the singular

model corresponding to the blow-down of the A1-fiber at {a4 = 0}, was considered in [41]

from a related, but slightly different perspective: in this work it was shown that this

class of elliptic fibrations does not exhaust the full SL(2,Z) monodromy group, but only

the subgroup Γ0(2) ⊂ SL(2,Z).9 In fact, restricted Γ0(k)-monodromy is a consequence

of the existence of an order k point on the elliptic fiber [41], which, in the language of

our analysis, is equivalent to Mordell-Weil k-torsion. There are a number of geometric

consequences of this [44]. For example, the modular curve h/Γ0(2) has two “cusp” points

at which j = ∞, corresponding to the two irreducible factors a4 and
(
4a4 − (a2 + 1

4a
2
1)2
)

of the discriminant (4.2). As we have seen in examples, it is the factor a4 which vanishes

when the corresponding gauge group factor is related to Z2 torsion. By contrast, one can

in principle also engineer additional gauge group factors by factorising
(
4a4 − (a2 + 1

4a
2
1)2
)

without factorising a4 as such. Such non-toric enhancements would lead to what we called

the ‘spectator’ gauge group G′ in section 3.3 and which is unconstrained by the Z2 torsion.

Indeed, while all gauge algebras that can be engineered torically are easily checked to lead

to Kodaira monodromies contained in Γ0(2), this set does not exhaust the list of Γ0(2)-

compatible singularities (e.g. it misses A2k - see appendix B of [41]). Such algebras would

have to come from a non-toric enhancement involving the second factor of the discriminant.

We will see an example of an abelian spectator group G′ = U(1) in the next section.

5 Mordell-Weil group Z ⊕ Z2

5.1 An (SU(2) × SU(2))/Z2 × U(1) fibration

The generic elliptic fibration with Z2-torsional Mordell-Weil group admits an interesting

specialization such as to enhance the Mordell-Weil group to Z2⊕Z. As it turns out the gen-

erator of the free part of the Mordell-Weil group can be described again very conveniently

as a toric section.

In fact, the specialization we have in mind gives rise to the second of the three elliptic

fibrations realized as hypersurfaces in a toric ambient space with Mordell-Weil torsion [15].

The fiber is defined by the reflexive pair in figure 6, which corresponds to polygon 15 and

its dual in the classification of [43]. The associated elliptic curve is the vanishing locus

of a biquadric in a blow-up of P1 × P1. The hypersurface equation defined via the dual

polygon is

P̂ = cd2v2w2 + c2du2v2 + γ1cduvwz + γ2dw
2z2 + δ2cu

2z2, (5.1)

9Recall that Γ0(k) is defined as the subgroup of SL(2,Z)-matrices
(
a b
c d

)
with c ≡ 0 mod k.
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z

vw

u

d

c dw2z2

cd2v2w2

c2du2v2

cu2z2

Figure 6. Polygon 15 of [43] together with its dual polygon.

where we have set the coefficients of the first two terms to one since they are sections of

the trivial bundle over the base.10 The coefficients γi and δi are sections of K̄i. A choice

for the scaling relations of the fiber coordinates is

u v w z c d
∑

1 0 1 0 0 0 2

0 1 0 1 0 0 2

0 0 0 1 1 1 3

0 0 1 1 2 0 4

, (5.2)

which is consistent with the degree of homogeneity of (5.1). The Stanley-Reisner ideal of

the toric ambient space of the fiber takes the form {uv, uw, ud, vz, zc, zd, wc, cd, vw}.
The biquadric (5.1) can be brought into Weierstrass form, where it can be compared

with the Weierstrass model associated with the fibration (4.1) analysed in the previous

section. This identifies

a1 = γ1 , a2 = −(γ2 + δ2) , a4 = γ2δ2 , (5.3)

where ai are the coefficients of the generic Z2-torsion fibration (4.1). As we will show, the

result of this specialization of a2 and a4 is the enhancement of the Mordell-Weil group from

Z2 to Z2⊕Z (as computed previously in [15]) and the appearance of an extra su(2) factor.

To analyse the non-abelian sector, we first note that the discriminant of equation (5.1)

takes the form

∆ ∼ γ2
2δ

2
2 [γ4

1 − 8γ2
1(γ2 + δ2) + 16(γ2 − δ2)2]. (5.4)

Together with the Weierstrass functions f and g of the associated Weierstrass model this

suggests an A1 singularity at {γ2 = 0} and {δ2 = 0} respectively. Indeed, the hypersurface

equation factorises over these loci as

{γ2 = 0} : c
(
cdu2v2 + d2v2w2 + γ1duvwz + δ2u

2z2
)
,

{δ2 = 0} : d
(
cdv2w2 + c2u2v2 + γ1cuvwz + γ2w

2z2
)
,

(5.5)

and we identify the irreducible components P1
c and P1

d as the restriction to the fiber of the

resolution divisors C : {c = 0} and D : {d = 0} of these singularities.

10If we had chosen a fibration such that these two coefficients are sections of non-trivial bundles, z = 0

would not be a holomorphic section but a birational one.
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On general grounds [15, 48], the intersection of the toric divisors U : {u = 0}, V :

{v = 0}, W : {w = 0}, Z : {z = 0} with the hypersurface give rise to sections of the

fibration, not all of which are independent. Since Z : {z = 0} is a holomorphic section we

choose it as the zero-section. Then, the Mordell-Weil group is generated by differences of

sections U − Z, V − Z, W − Z, which are not all independent. Let us first consider the

Shioda map for the section U : {u = 0}. Requiring, as usual, one leg in the fiber as well as

orthogonality with the exceptional divisors gives

WU = 2(U − Z − K̄) + C , (5.6)

which is unique up to an overall normalization, here chosen such as to arrive at integer

charges below. We take this non-trivial element WU as the generator of the free part of

the Mordell-Weil group, and physically identify it with the generator of the associated,

suitably normalized U(1) part of the gauge group.

On the other hand, the intersection of the section V : {v = 0} with the elliptic curve

describes a 2-torsion point, as noted already in [15]. The Shioda map for V : {v = 0} yields

the element

Σ2 = V − Z − K̄ +
1

2
(C +D) . (5.7)

However, V is not an independent toric divisor class, but may be expressed as

V = Z + K̄ − 1

2
(C +D), (5.8)

which makes Σ2 a trivial class. Since the model we consider here is a restriction of the

model with just a Z2 section we have the analogous situation that Σ2 is given by a divisor

in the ambient space which restricts to a trivial class on the hypersurface. The integer class

Ξ2 ≡ V − Z − K̄ =
1

2
(C +D) (5.9)

is 2-torsion in H1,1(Ŷ4,Z) modulo resolution classes and to be identified with a coweight

element momentarily.

Having established the gauge algebra su(2)⊕ su(2)⊕u(1) we turn to the matter repre-

sentations in codimension 2. From the discriminant (5.4) the three potential enhancement

loci which could host matter charged under the non-abelian gauge groups are identified as

{γ2 = δ2 = 0}, {γ1 = γ2 = 0}, {γ1 = δ2 = 0} . (5.10)

At the loci {γ1 = γ2 = 0} and {γ1 = δ2 = 0}, which would naively give rise to fundamental

matter, the equation does not factorize further, and hence no extra matter is found there.

But at the locus {γ2 = δ2 = 0} the equation factorizes as

cdv (cu2v + dvw2 + γ1uwz)︸ ︷︷ ︸
R

, (5.11)

where the curves P1
c , P1

d, P1
v and the last component P1

R intersect as the affine A3 Dynkin

diagram. We calculate the charges of the split component P1
v=0 as

P1
v=0 · (C,D) = (1, 1), (5.12)
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giving the highest weights of the bifundamental (2,2). By acting on this with the respective

roots the entire (2,2) is reproduced. With the normalization (5.6) the U(1) charge of this

state is

WU · P1
v=0 = 1. (5.13)

Extra massless matter is localized at the singlet curve {γ2 = δ2} ∩ {γ1 = 0}. This is

an I2 locus over which the hypersurface equation factorizes as

(cu2 + dw2)(cdv2 + δ2z
2), (5.14)

and we denote the fiber components by P1
− and P1

+ respectively. These have zero inter-

section with the Cartan divisors C,D (and are thus invariant also under the center of the

gauge group) and their U(1)-charges are computed as

WU · P1
± = ±2. (5.15)

Hence we find a representation (1,1)±2 with respect to su(2)C ⊕ su(2)D ⊕U(1).

At the intersection points γ1 = γ2 = δ2 = 0 of the two matter curves the fiber

type changes to form a non-affine Dynkin diagram of D4. This is because the component

(cu2v+ dvw2 + γ1uwz)R in the fiber over the curve {γ2 = δ2 = 0} splits off a factor of v as

γ1 = 0, corresponding to a factorisation

c d v2 (cu2 + dw2). (5.16)

At those points a Yukawa coupling (2,2)1 (2,2)1 (1,1)−2 is localised.

As is manifest, the divisor Ξ2 has integer pairing with all split curves associated with

the representations (2,2)1 and (1,1)±2 and is therefore identified with a coweight. With

coefficients in 1
2Z the coweight lattice is made finer by this extra coweight, and only weights

in representations integer paired with Ξ2 are allowed. Again this is the reason for the

absence of for example a fundamental representation at the loci {γ1 = γ2 = 0} and {γ1 =

δ2 = 0}. Note that the expression for Σ2 does not include a term proportional to the

U(1)-generator WU , but only the generators C and D of the su(2)C⊕su(2)D Cartan U(1)s.

In particular, integrality of the pairing of Ξ2 does therefore not constrain the allowed U(1)

charges, but only the non-abelian part of the representation. We conclude that the gauge

group is

G =
SU(2)C × SU(2)D

Z2
×U(1), (5.17)

whose first fundamental group π1(G) = Z ⊕ Z2 coincides with the Mordell-Weil group as

expected.

5.2 A chain of fibrations via Higgsing

The elliptic fibrations described in sections 4.1, 4.2 and 5.1 can be viewed as a successive

specialization of a Tate model

P = y2 − x3 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6, (5.18)
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which for generic ai ∈ H0(B, K̄i) has trivial Mordell-Weil and gauge group. If a6 ≡ 0, the

fibration corresponds to a U(1) restricted Tate model [4] with Mordell-Weil group Z, gauge

group G = U(1) and a massless singlet 1±1 localized at the curve {a3 = 0} ∩ {a4 = 0}.
The extra section degenerates to a P1 over this matter curve [4, 5, 8]. From this, one

reaches the fibration (4.1) with Mordell-Weil group Z2 and G = SU(2)/Z2 by setting in

addition a3 ≡ 0. This promotes the U(1) generator of the U(1) restricted model to the

su(2) Cartan generator, which is P1 fibered over the su(2)-divisor {a4 = 0}. Since the U(1)

restricted model has only one type of charged singlet, which becomes part of the su(2)

adjoint multiplet, the specialization to a3 ≡ 0 does not give rise to any extra matter states.

This way the gauge group G = SU(2)/Z2 could in fact have been anticipated even without

any knowledge of the torsional Mordell-Weil group. The reverse process corresponds to the

Higgsing of G = SU(2)/Z2 to U(1) via a Higgs in the adjoint of SU(2), more precisely the

component with zero Cartan charge.

A further factorisation a4 = a4,1w enhances, as described, the gauge group to G =

(SU(2) × SU(2))/Z2 (cf. 4.29) without changing the Mordell-Weil group. Finally, if w ∈
H0(B, K̄2), specialising in addition to a2 = −(w + a4,1) enhances the Mordell-Weil group

to Z2⊕Z and the gauge group to G = (SU(2)×SU(2))/Z2×U(1) - see (5.3) with γ2 = a4,1

and δ2 = w. The reversed chain of Higgsing thus relates all these fibrations as

SU(2)× SU(2)

Z2
×U(1)→ SU(2)× SU(2)

Z2
→ SU(2)

Z2
→ U(1) → ∅. (5.19)

Note that the fibration (4.29) with G = (SU(2)×SU(2))/Z2 can be shown to coincide with

a model that was recently considered in [20]. In this paper, a different chain of Higgsing

was considered which takes the form

SU(2)× SU(2)

Z2
→ SU(2) → U(1) → Z2. (5.20)

The chain (5.19) is a specialization of the deformations involved in (5.20). In particular,

the fibration with Mordell-Weil group Z and G = U(1) reached in (5.20) is described as a

special P1,1,2[4]-fibration [9] and can in general not be represented as a global Tate model.

However, a specialization of this family of fibrations corresponds to the U(1) restricted

Tate model appearing in (5.19). The endpoint of the Higgsing process (5.20) with gauge

group Z2 is a genus-one fibration [65] which is not an elliptic fibration. The absence of

a Z2 remnant in the last step in our chain (5.19) can be viewed as a consequence of the

division by the Z2 center in the G = SU(2)/Z2 model.

5.3 An (SU(4) × SU(2) × SU(2))/Z2 × U(1) fibration

We now exemplify the implementation of a further non-abelian singularity by constructing a

top. According to the classification in [43] the only A-type singularities admissible over this

polygon are A3+2n, in agreement with Tate’s algorithm. We consider here the A3 = su(4)

case, with a unique top corresponding to the dual on the righthand side in figure 7. The

hypersurface equation is given by

P̂ = e2e3c
2du2v2 + e1e2cd

2v2w2 + γ1cduvwz + γ2e0e1dw
2z2 + δ2e0e3cu

2z2 (5.21)
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Figure 7. To the left a su(4) top over polygon 15 of [43]. The green layer contains the points

at height one. To the right the dual top, bounded from below by the values zmin shown next to

the nodes.

with discriminant

∆ ∼ $4γ2
2δ

2
2

[
γ4

1 − 8$γ2
1(δ2 + γ2) + 16$2(γ2 − δ2)2

]
(5.22)

for π∗$ = e0e1e2e3. We see that imposing the factorization

γ1 → γ1, γ2 → $γ2, δ2 → $δ2 (5.23)

on the coefficients of (5.1) gives the same behaviour as the top construction. This pattern is

just the standard factorisation deduced by the Tate algorithm. For the chosen triangulation

of this top we obtain a Stanley-Reisner ideal generated by

{uv, uw, ud, vz, zc, zd, wc, cd, vw,
ce0, de0, ve0, ce1, ue1, ze1, de2, we2, ze2, ce3, de3, ve3, we3, ze3, e1e3, ue0e2} .

In addition to the A1 singularities, with resolution divisors C and D, we have a fiber

degeneration over {$ = 0} with irreducible components

P1
i = {Ei} ∩ {P̂ |ei=0 = 0} ∩Da ∩Db i = 0, . . . , 3, (5.24)

where Da and Db are some generic divisors in B. These are intersecting as the affine su(4)

Dynkin diagram, as can be read off from the top in figure 7. For the explicit expressions

we refer to appendix A.2. The U(1)-generator from the previous section gets corrected by

the exceptional divisors from the extra su(4) locus and takes the form

WU = 4(U − Z − K̄) + 2C + E1 + 2E2 + 3E3 . (5.25)

The normalization is chosen such as to give integer charges of all matter states. In the

same way we get additional contributions to the Shioda map Σ2 of the torsion section,

which is a trivial class since V can be written as the linear combination

V = Z + K̄ − 1

2
(C +D + E1 + 2E2 + E3) . (5.26)

We identify with the new coweight the integer class

Ξ2 ≡ V − Z − K̄ =
1

2
(C +D + E1 + 2E2 + E3), (5.27)
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which is 2-torsion in H1,1(Ŷ4,Z) modulo resolution classes. Repeating the analysis

of the previous section we find that the extra coweight class Ξ2 is independent of

the U(1)-generator.

In what follows we compute the additional charged matter representations localized

at codimension-two loci in the base, i.e. the matter curves that lie in the su(4) divisor

{$ = 0}. The full equations are omitted here and are found appendix A.2. By inspection

of the discriminant (5.22) the potential enhancement loci are

{$ = γ1 = 0}, {$ = γ2 = 0}, {$ = δ2 = 0} , (5.28)

in addition to the curves considered in the previous section. At {$ = γ1 = 0} the fiber

components P1
0 and P1

2 split and the total fiber has the intersection structure of the affine

D4 Dynkin diagram. The weights of the split curves are

P1
e0=e2=0 · (E1, E2, E3) = (1,−1, 1) , P1

e0=e2=0 · (C,D) = (0, 0) ,

P1
e0=e3u2+e1w2=0 · (E1, E2, E3) = (0, 1, 0) , P1

e0=e3u2+e1w2=0 · (C,D) = (0, 0) ,

P1
e2=γ2e1+δ2e3cu2=0, ·(E1, E2, E3) = (0,−1, 0) , P1

e2=γ2e1+δ2e3cu2=0 · (C,D) = (0, 0) .

(5.29)

The (0, 1, 0) is the highest weight of the 6 of su(4). Including the U(1) charges we therefore

find the representation (6,1,1)2 + c.c..

At {$ = γ2 = 0} the curve P1
2 splits into three components and the full fiber has

the structure of an affine A5 Dynkin diagram. We expect to find matter charged under

the su(4) and the su(2)C factors along this curve in the base. Indeed the split curves

have charges

P1
e2=c=0 · (E1, E2, E3) = (0, 0, 0) , P1

e2=c=0 · (C,D) = (−2, 0) ,

P1
e2=u=0 · (E1, E2, E3) = (0,−1, 1) , P1

e2=u=0 · (C,D) = (1, 0) ,

P1
e2=γ1v+δ2e0e3u=0 · (E1, E2, E3) = (1,−1, 0) , P1

e2=γ1v+δ2e0e3u=0 · (C,D) = (1, 0) ,

(5.30)

where the (0,−1, 1) and the (1,−1, 0) are weights in the fundamentals 4 and 4̄ respectively.

Including the U(1) charges we have the (4,2,1)1 + c.c. along this matter curve.

Along $ = δ2 = 0 the configuration is completely analogous to that along $ = γ2 = 0

and gives rise to massless matter in representation (4,1,2)1 + c.c.. The massless matter

spectrum is summarized in the following table:

Top over polygon 15:
su(4)× su(2)C × su(2)D ×U(1)

Locus Charged matter

γ1 ∩ {γ2 = δ2} (1,1,1)4 , (1,1,1)−4

γ2 ∩ δ2 (1,2,2)2 , (1,2,2)−2

$ ∩ γ1 (6,1,1)2 , (6,1,1)−2

$ ∩ γ2 (4,2,1)1 , (4̄,2,1)−1

$ ∩ δ2 (4,1,2)1 , (4̄,1,2)−1

(5.31)
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It is confirmed that the coweight element Ξ2 is integer-valued on all split curves responsible

for the matter representations. We finally conclude that the gauge group is

SU(4)× SU(2)C × SU(2)D
Z2

×U(1) . (5.32)

6 Mordell-Weil group Z3

As a further illustration we now analyze elliptic fibrations with Z3 torsional Mordell-Weil

group. The general form of such fibrations was derived in [32]. As we will show this fibration

allows for a toric representation, which in fact coincides with the last of the 3 reflexive pairs

of polygons admitting a torsional Mordell-Weil group [15]. The fan is given by the 16th

reflexive polygon in the enumeration by [43]. We first present the toric representation of

this fibration, its singularity structure and impose further non-abelian degenerations of the

fiber to analyse the resulting matter spectrum and global structure of the gauge group.

6.1 An SU(3)/Z3-fibration

The generic form of an elliptic fibration with a Z3-section is given by the vanishing locus

of the hypersurface equation [32]

P = y2 + a1xyz + a3yz
3 − x3 (6.1)

in weighted projective space P[2,3,1]. Such fibrations therefore fit again into the class of

global Tate models, but with a6 ≡ 0 and in addition a2 ≡ 0 and a4 ≡ 0. The equivalent

Weierstrass model is defined by

f =
1

2
a1a3 −

1

48
a4

1 , g =
1

4
a2

3 +
1

864
a6

1 −
1

24
a3

1a3 (6.2)

with discriminant

∆ =
1

16
a3

3(27a3 − a3
1). (6.3)

The vanishing order of ∆ at {a3 = 0}, where neither f nor g vanish, signals an A2-

singularity over this locus. The singularity at x = y = a3 = 0 is resolved by two blow-ups

(x, y)→ (sx, sy), (s, y)→ (qs, qy) (6.4)

with proper transform

P̂ = sq2y2 + a1qsxyz + a3yz
3 − qs2x3 (6.5)

as the resulting equation. The Stanley-Reisner ideal after these two blow-ups is

{qx, qy, qz, xy, sz} (see figure 8). The hypersurface equation (6.1) has an equivalent toric

description as a generic hypersurface which makes the vanishing of the coefficients a2, a4

and a6 manifest. To see this we perform yet another blow-up by

q → pq, y → py , (6.6)
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z

y

p

q

s

x

z3

p3 q2 s

q s2 x3

Figure 8. Polygon 16 of [43] together with its dual polygon. The coordinate y is scaled to one and

does not contribute to the monomials.

under which the proper transform of equation (6.5) is

P̂ = sp3q2y2 + a1pqsxyz + a3yz
3 − qs2x3. (6.7)

The Stanley-Reisner ideal now extends to {sz, qz, pz, xy, sy, qy, ps, px, qx} and implies that

the locus {y = 0} does not intersect the hypersurface any more. Hence we can use one

scaling relation to set y = 1. After this step we arrive at the hypersurface equation

P̂ = p3q2s+ a1pqsxz + a3z
3 − qs2x3 (6.8)

defined in the ambient space with scaling relations

x z s q p
∑

1 1 0 0 1 3

1 2 0 3 0 6

0 1 1 1 0 3

(6.9)

and SR ideal {sz, qz, px, ps, qx}. A blow-down of this fibration was also considered in [41],

where it was shown that the structure group of the elliptic fibration is the subgroup Γ0(3)

of SL(2,Z). As we will see, the structure of admissible gauge groups is in agreement with

the appearance of such restricted monodromy.

Over the locus {a3 = 0} the hypersurface equation (6.8) factors as

P̂ |a3=0 = qs(p3q − sx3 − a1pxz) (6.10)

with three irreducible factors. The intersection pattern of the irreducible parts of the fiber,

denoted by P1
s, P1

q and P1
eq, is shown in figure 9. The two resolution divisors Q : {q = 0}

and S : {s = 0} are P1-fibrations over {a3 = 0} and are associated with the two Cartan

generators of su(3).

The vanishing order of the discriminant increases by 1 on the curve {a3 = 0}∩{a1 = 0},
naively suggesting an enhancement of the singularity type from A2 to A3 and thus localised

matter in the fundamental 3 of su(3). In actuality, however, no higher degeneration of the
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P1
q P1

eq

P1
s

Figure 9. The factorised fiber over the base locus a3 = 0; the blue cross indicates the zero point

z = 0 and the green and red crosses indicates the points p = 0 and x = 0, respectively.

fiber structure occurs over this curve because none of the three components in (6.10)

factorises further. This can be seen directly by considering the Weierstrass coefficients

f and g (6.2): along {a3 = 0} ∩ {a1 = 0}, each coefficient vanishes to order 2, which

implies that the Kodaira type of the degenerate fibers is type IV . This is very similar

to the familiar A2, except that the three components of the fibers meet in a single point

rather than meeting pairwise at three different points. There is no enhancement or matter

(consistent with [58, 59]). The absence of the fundamental representation, which would be

expected to be present in generic fibrations with su(3) gauge algebra, will be understood

momentarily from the global structure of the gauge group.

The toric Mordell-Weil group is generated by the differences P − Z or X − Z with

P,X,Z corresponding to the vertices of polygon 16 [15] with coordinates as in figure 8.

Using the SR-ideal, we conclude that each of these sections intersects only one of the P1’s,

and each P1 intersects only one of the sections.

The divisor class Y : {y = 0} does not intersect the hypersurface and may be ex-

pressed as

Y = 3Z − S − 2Q− 3P + 3K̄. (6.11)

Hence we can define the integer class

Ξ3 ≡ P − Z − K̄ = −1

3
(S + 2Q) (6.12)

associated with a new coweight. Any weight of a charged matter representation has to

have integer pairing with Ξ3, making the weight lattice an order three coarser lattice. In

particular, this forbids the fundamental representation of SU(3), in agreement with our

findings above. Note also that the fundamental representation would be transforming

under the center Z3 of SU(3). Thus the gauge group is SU(3)/Z3.

Note that the specialization a3 = (ã3)n, if admissible, modifies the gauge group to

G = SU(3n)/Z3, (6.13)
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Figure 10. The su(6) top over polygon 16 is shown to the left. The green layer contains the points

at height one. The right side defines the dual top, bounded from below by the values zmin shown

next to the nodes.

corresponding to a fiber structure of split Kodaira type Is3n. For n = 2, the fiber over

the curve {ã3 = 0} ∩ {a1 = 0} degenerates further to Kodaira type IV ∗, as reflected

in the vanishing orders (3, 4, 8) of (f, g,∆) in the Weierstrass model. This signals an

enhancement of the singularity type from A5 ' su(6) to E6. From the branching rules

of the adjoint representation of E6 under the decomposition to su(6) one infers massless

matter in the triple-antisymmetric representation 20 of su(6), in agreement with the gauge

group SU(6)/Z3. However, for n ≥ 3 the Kodaira type fiber over {ã3 = 0} ∩ {a1 = 0}
is beyond E8 according to Kodaira’s list. This means that no crepant resolution of the

fibration exists whenever the locus {ã3 = 0} ∩ {a1 = 0} is non-trivial, and F-theory on

such spaces is ill-defined. This complication does not arise for eight-dimensional F-theory

compactifications on K3, where the codimension-one loci are points on the base B = P1 and

thus no problematic enhancement of this type arises. Indeed, the case n = 6 corresponds

to the SU(18)/Z3 model presented in eq. (5.4) of [62] for F-theory on a K3 surface.

Finally, let us note that the F-theory model does not possess a well-defined weak

coupling Type IIB limit, at least not of the usual type à la Sen: since a2 ≡ 0 (in addition

to a4 ≡ 0 and a6 ≡ 0), the quantity h defining the Type IIB Calabi-Yau XIIB as the

hypersurface ξ2 = h factorises, h = − 1
12a

2
1. Thus the locus ξ = 0 = a1 is singular.

6.2 An (SU(6) × SU(3))/Z3-fibration

To further illustrate this relation between the Z3 Mordell-Weil group and the global struc-

ture of the gauge group we implement an additional non-abelian fiber degeneration in

codimension-one. This results in an F-theory compactification with a richer matter spec-

trum. As we will see, only matter representations occur which are compatible with the

extra coweight induced by the torsion generator of the Mordell-Weil group. To implement

an extra non-Abelian singularity in the hypersurface (6.8) we construct a top. According

to the classification in [43] the only possible tops encoding A-type degenerations are the

affine A2, A5, A8 etc. Here we construct the single top corresponding to the affine A5,

realizing an su(6) theory along a divisor in the base. The hypersurface equation in the
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ambient space defined by the top is now given by

P̂ = e1e
2
2e3p

3q2s+ a1pqsxz + a3e
2
0e1e5z

3 − e3e
2
4e5qs

2x3, (6.14)

where the coefficients of the monomials are chosen to match (6.8). The discriminant takes

the form

∆ ∼ w6a3
3(a3

1 − 27w2a3) , (6.15)

where π∗w = e0e1e2e3e4e5 defines the su(6)-divisor as W : {w = 0} in the base B. For the

chosen triangulation of the top we obtain the Stanley-Reisner ideal

{ps, px, qx, qz, sz, pe3, pe4, pe5, qe0, qe1, qe3, qe4, qe5, ze1, ze2, ze3, ze4, ze5,

se0, se1, se3, se4, se5, xe1, xe0e3, xe3e5, e0e2, e0e4, e1e4, e1e5, e2e4, e2e5}.
(6.16)

In addition to the A2 singularity with resolution divisors S and Q one finds a fiber degen-

eration over W : {w = 0} with irreducible components

P1
i = {Ei} ∩ {PW |ei=0 = 0} ∩Da ∩Db i = 0, . . . , 5, (6.17)

where Da and Db are some generic divisors in B. These are intersecting as the affine

A5 Dynkin diagram as can also be read off from the top in figure 10. For the explicit

expressions we refer to appendix A.3.

We next compute the charged matter representations at enhancement loci in

codimension-two. By inspection of the discriminant (6.15) we see that there are three

potentially interesting loci,

{w = a1 = 0} , {w = a3 = 0} and {a1 = a3 = 0} . (6.18)

The locus {a1 = a3 = 0}, despite the increased vanishing order of ∆, does not give rise any

massless matter, as discussed already in the previous section. Thus, no massless states in

representation (1,3) of su(6)⊕ su(3) exist. The enhancement over the remaining two loci

is determined by calculating the factorization of the fiber components over these loci. The

explicit equations are presented in appendix A.3.

At {w = a1 = 0} the fiber components P1
0 and P1

3 factorize, resulting in six distinct

fiber components. They intersect as the non-affine E6 Dynkin diagram. The weights at

this locus are obtained by computing the intersection numbers of the split fiber components

with the resolution divisors Ei and S,Q of the su(6) and su(3) singularities, respectively.

As an example we consider the split curves arising from P1
0 and compute the weights

P1
e0=e3=0 · (E1, E2, E3, E4, E5) = (1, 0,−1, 0, 1) , P1

e0=e3=0 · (S,Q) = (0, 0) ,

P1
e0=e1p3+e5x3=0 · (E1, E2, E3, E4, E5) = (0, 0, 1, 0, 0) , P1

e0=e1p3+e5x3=0 · (S,Q) = (0, 0) ,

(6.19)

which are in the (20,1) of su(6)⊕ su(3).

Over {w = a3 = 0} the component P1
3 factorizes. This results in 9 distinct curves,

intersecting as the affine su(9) Dynkin diagram. We compute the charges

P1
e2=x=0 · (E1, E2, E3, E4, E5) = (0,−1, 1, 0, 0) , P1

e2=x=0 · (S,Q) = (1, 0) ,

P1
e2=a1p+e3sx2=0 · (E1, E2, E3, E4, E5) = (1,−1, 0, 0, 0) , P1

e2=a1p+e3sx2=0 · (S,Q) = (0, 1) ,

(6.20)
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recognizing the (0,−1, 1, 0, 0) and (1,−1, 0, 0, 0) as a weight of the 6 and 6̄ of su(6), re-

spectively. Taking into account also the 3 and 3̄ weights of su(3) on the right one deduces

along {w = a3 = 0} matter in the bifundamental (6,3) (plus its conjugate).

The matter spectrum is summarized in the following table:

Top over polygon 16:

su(6)× su(3)

Locus Charged matter

w ∩ a3 (6,3) , (6̄, 3̄)

w ∩ a1 (20,1)

(6.21)

Finally we remark that the fibration is non-flat at the codimension-three points w = a1 =

a3 = 0, where one of the defining equations of the fiber components vanishes identically.

This is precisely the intersection locus of the matter curves supporting the (6,3) and (20,1)

representations. The severe degeneration of the fibration at this locus reflects the fact no

triple Yukawa coupling can be constructed out of the 20 (antisymmetric in three indices)

together with the 6 and the 6̄. Thus, in order to make sense out of F-theory compactified

on the associated Calabi-Yau 4-fold the matter curves in question must not meet, which

is a strong constraint on the base space B. This constraint does not arise for F-theory on

lower-dimensional Calabi-Yau n-folds.

We are now in a position to discuss the global structure of the gauge group. The

Shioda-type map for the generator of the Z3-torsional Mordell-Weil group reads

Σ3 = P − Z − K̄ +
1

3
(S + 2Q+ 2E1 + 4E2 + 3E3 + 2E4 + E5) (6.22)

with K̄ = π∗K̄B. Here P = {p = 0}, whose intersection with the fiber is the Z3 torsion

point. From the su(6) top we infer that the toric divisor class {y = 0} in the ambient space

is expressed as

Y = 3Z − S − 2Q− 3P + 3K̄ − 2E1 − 4E2 − 3E3 − 2E4 − E5 . (6.23)

We thus see that

− 3Σ3 = Y (6.24)

and Y does not intersect the hypersurface. Hence Σ3 is trivial in H1,1(Y4,R) and

Ξ3 ≡ P − Z − K̄ = −1

3
(S + 2Q+ 2E1 + 4E2 + 3E3 + 2E4 + E5) . (6.25)

Again, P−Z−K̄ is a 3-torsion element of H1,1(Ŷ4,Z)/〈Fi〉Z for 〈Fi〉Z the lattice spanned by

all the exceptional divisors. Furthermore, it is easy to check that Ξ3 has integer intersection

with all weights computed computed above. Due to the refinement of the coweight lattice

the gauge group for this model is thus

G =
SU(6)× SU(3)

Z3
(6.26)

with π1(G) = Z3. The correspondingly coarser weight lattice implies that the center Λ/Q

of the gauge group is trivial.
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7 Conclusions

In this work we have analyzed F-theory compactifications on elliptic fibrations with tor-

sional Mordell-Weil group. While non-torsional rational sections give rise to massless U(1)

gauge symmetries, the torsional subgroup affects the global structure of the gauge group.

In general, the gauge group is of the form G×G′, where G is affected by the Mordell-Weil

torsion and G′ may or may not be trivial. As we have argued, the presence of Zk-torsional

sections guarantees the existence of a k-fractional linear combination of resolution divisors

associated with the Cartan generators of G which has integer intersection number with

every fiber component. This fractional linear combination can be identified with an ele-

ment of the coweight lattice of G, which is rendered finer by a factor k compared to the

universal cover G0 of G. This enhances the first fundamental group of G by Zk (compared

to G0), yielding non-simply connected gauge groups. Consistently, the spectrum of allowed

matter representations is constrained to the extent that only those elements in the weight

lattice are allowed which have an integer pairing with the coweights associated with the

Mordell-Weil torsion. An equivalent way of putting this is that the torsional subgroup

Zk1 ⊕ . . .⊕ Zkn of the Mordell-Weil group can be identified with a subgroup of the center

of the universal cover group G0, and the gauge group of the F-theory compactification is

G0/(Zk1 ⊕ . . .⊕ Zkn)×G′.
It might be worthwhile pointing out that the torsional Mordell-Weil group has no

particular effect on the structure of the Yukawa couplings between the matter states as such,

which is encoded in the fiber type in codimension-three. Contrary to naive expectations,

it is thus not relevant to produce e.g. discrete selection rules in the effective action of an

F-theory compactification.

We have exemplified this picture for elliptic fibrations with torsional Mordell-Weil

group Z2 and Z3, whose defining equation had already been presented in [32]. These

fibrations can be analysed torically as hypersurfaces in toric ambient spaces, and, as we

have seen, coincide with two out of the 16 possible hypersurface torus fibrations, whose

Mordell-Weil group has been computed also in [15]. The third possible hypersurface elliptic

fibration with Mordell-Weil torsion, with Modell-Weil group Z⊕Z2 [15], turns out to be a

further specialization of the Z2-model. All these fibrations are related to a special class of

elliptic fibrations with Mordell-Weil group Z [4] by a chain of (un)Higgsings.

A possible next step would be to study also fibrations with Mordell-Weil group Z4 and

higher. The defining Tate model for examples of such fibrations has been given in [32]. It

would be interesting to express these fibrations as complete intersections (as opposed to

hypersurfaces) or even determinantal varieties and to study their properties at the same

level of detail as achieved for the hypersurface models in this article.

An exciting aspect of gauge theories with non-simply connected gauge groups is the

physics of non-local operators such as the spectrum of dyonic Wilson line operators. As

studied e.g. in [29], the spectrum of such dyonic operators depends on the weight lattice of

the gauge group G and of its Langlands dual G∗. As we have seen, the weight lattice Λ of

an F-theory compactification on an elliptic fibration is intimately related to the geometry

of torsional sections. It would be interesting to investigate further the relation between this
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geometric picture, the spectrum of dyonic Wilson line operators and the global structure

of the gauge group in F-theory.
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A More on fiber structures

A.1 su(4) top over polygon 13

Here provide the explicit equations for the fiber components of the (SU(4) × SU(2))/Z2-

model discussed in section 4.3.

A.1.1 Codimension one

The equations for the fiber components over {w = 0} ⊂ B are

e0 = 0 : e1 + a1tz − e3t
4 = 0 (y = s = e2 = 1) ,

e1 = 0 : a1styz − e0e2e3st
2z2a2,1 − e2

0e3z
4a4,2 − e2

2e3s
2t4 = 0 ,

e2 = 0 : e1 − e3a4,2 + a1t = 0 (y = s = z = e0 = 1) ,

e3 = 0 : e1 + a1t = 0 (y = s = z = 1) .

(A.1)

Here we impose the SR-ideal (4.39). The four curves P1
i of these divisors intersect like the

nodes of the affine Dynkin diagram of A3.

A.1.2 Codimension two

Over {w = a4,2 = 0} we obtain:

e0 = 0 : a1tz − e3t
4 + e1 = 0 (y = s = e2 = 1) ,

e1 = 0 : s t
(
e0e2e3tz

2a2,1 − a1yz + e2
2e3st

3
)︸ ︷︷ ︸

R1

= 0 ,

e2 = 0 : a1t+ e1 = 0 (y = s = z = e0 = 1) ,

e3 = 0 : a1t+ e1 = 0 (y = s = z = 1) ,

(A.2)

and over {w = a1 = 0}:

e0 = 0 : e1 − e3t
4 = 0 (y = s = e2 = 1) ,

e1 = 0 : e3

(
e0e2st

2z2a2,1 + e2
0z

4a4,2 + e2
2s

2t4
)︸ ︷︷ ︸

R2

= 0 ,

e2 = 0 : e1 − e3a4,2 = 0 (y = s = z = e0 = 1) ,

e3 = 0 : e1 = 0 (y = s = z = 1) .

(A.3)
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Before calculating the weights we analyse the parts R1 and R2 in detail. For R1 one can

check that the divisors {e2 = 0}, {e3 = 0}, {t = 0} and {z = 0} do not intersect the divisor

given by R1 in the toric variety given by the projection along e1. Therefore we can rewrite

it as

e0 a2,1 − y a1 + s = 0 (A.4)

with e0, y and s the homogeneous coordinates of P2. Since (A.4) is a linear equation, we

obtain a P1 for the curve given by e1 = 0 = R1. In the case of R2, we find that {e0 = 0},
{e2 = 0}, {z = 0} and {t = 0} does not intersect the divisor R2 in the toric variety given

by the projection along e1. Hence, we rewrite R2 as

s a2,1 + a4,2 + s2 = 0, (A.5)

where s is now the affine coordinate parametrising C and the remaining homogeneous

coordinates y and e3 parametrise a P1. Therefore, we obtain two P1s from R2 which

are, however, exchanged when going along the matter curve. Around the branch points

{w = a1 = a4,2 − 1
4a

2
2,1 = 0} the solutions of s to (A.5) are exchanged.

A.2 su(4) top over polygon 15

This appendix contains more information on the (SU(4)×SU(2)×SU(2))/Z2×U(1) fibration

presented in section 5.3.

A.2.1 Codimension one

The irreducible fiber components over {$ = 0} are:

e0 = 0 : e2e3u
2 + e1e2w

2 + γ1uwz = 0 (c = d = v = 1) ,

e1 = 0 : e2dv
2 + γ1dvw + δ2e0 = 0 (c = u = z = e3 = 1) ,

e2 = 0 : γ1cuv + γ2e0e1 + δ2e0e3cu
2 = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ1u+ γ2e0 = 0 (c = d = v = w = z = e1 = 1) .

(A.6)

The resolution P1’s is the intersection of above equations with two generic and independent

divisors in the base and they intersect in the pattern of the affine A3 Dynkin diagram.

A.2.2 Codimension two

Over {$ = γ1 = 0} the components of the fiber factorizes as

e0 = 0 : e2(e3u
2 + e1w

2) = 0 (c = d = v = 1) ,

e1 = 0 : e2dv
2 + δ2e0 = 0 (c = u = z = e3 = 1) ,

e2 = 0 : e0(γ2e1 + δ2e3cu
2) = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ2e0 = 0 (c = d = v = w = z = e1 = 1)

(A.7)

and the components intersect as the affine D4 Dynkin diagram.
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Over {$ = γ2 = 0} the components of the fiber factorizes as

e0 = 0 : e2e3u
2 + e1e2w

2 + γ1uwz = 0 (c = d = v = 1) ,

e1 = 0 : e2dv
2 + γ1dvw + δ2e0 = 0 (c = u = z = e3 = 1) ,

e2 = 0 : cu(γ1v + δ2e0e3u) = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ1u = 0 (c = d = v = w = z = e1 = 1)

(A.8)

with the intersection structure given by the affine A5 Dynkin diagram.

Over {$ = δ2 = 0} the components of the fiber factorizes as

e0 = 0 : e2e3u
2 + e1e2w

2 + γ1uwz = 0 (c = d = v = 1) ,

e1 = 0 : dv(e2v + γ1w = 0) (c = u = z = e3 = 1) ,

e2 = 0 : γ1cuv + γ2e0e1 = 0 (d = w = z = 1) ,

e3 = 0 : e2 + γ1u+ γ2e0 = 0 (c = d = v = w = z = e1 = 1)

(A.9)

intersecting as the affine A5 Dynkin diagram.

A.3 su(6) top over polygon 16

The fiber structure of the (SU(6)× SU(3))/Z3-fibration of section 6.2 can be summarized

as follows:

A.3.1 Codimension one

The irreducible fiber components over {w = 0} take the form

e0 = 0 : e1e3p
3 + e3e5x

3 + a1pxz = 0 (s = q = e2 = e4 = 1) ,

e1 = 0 : e3 + a1p = 0 (x = s = q = z = e4 = e5 = 1) ,

e2 = 0 : a3e1 + a1pqsx+ e3qs
2x3 = 0 (z = e0 = e4 = e5 = 1) ,

e3 = 0 : a3e
2
0e1e5 + a1x = 0 (s = q = p = z = 1)

e4 = 0 : e3 + a3e5 + a1x = 0 (s = q = p = z = e0 = e1 = e2 = 1)

e5 = 0 : e3 + a1x = 0 (s = q = p = z = e1 = e2 = 1) .

(A.10)

The resolution P1’s is the intersection of above equations with two generic and independent

divisors in the base and they intersect in the pattern of the affine A5 Dynkin diagram.

A.3.2 Codimension two

Over {w = a1 = 0} the components of the fiber takes the form

e0 = 0 : e3(e1p
3 + e5x

3) = 0 (s = q = e2 = e4 = 1) ,

e1 = 0 : e3 = 0 (x = y = s = q = z = e4 = e5 = 1) ,

e2 = 0 : a3e1 + e3qs
2x3 = 0 (y = z = e0 = e4 = e5 = 1) ,

e3 = 0 : a3e
2
0e1e5 = 0 (y = s = q = p = z = 1)

e4 = 0 : e3 + a3e5 = 0 (y = s = q = p = z = e0 = e1 = e2 = 1)

e5 = 0 : e3 = 0 (y = s = q = p = z = e1 = e2 = 1)

(A.11)

resulting in 6 distinct P1’s, intersecting as the E6 Dynkin diagram (not affine).
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Over {w = a3 = 0} the components of the fiber takes the form

e0 = 0 : e1e3p
3 + e3e5x

3 + a1pxz = 0 (s = q = e2 = e4 = 1) ,

e1 = 0 : e3 + a1p = 0 (x = y = s = q = z = e4 = e5 = 1) ,

e2 = 0 : qsx(a1p+ e3sx
2) = 0 (y = z = e0 = e4 = e5 = 1) ,

e3 = 0 : a1x = 0 (y = s = q = p = z = 1)

e4 = 0 : e3 + a1x = 0 (y = s = q = p = z = e0 = e1 = e2 = 1)

e5 = 0 : e3 + a1x = 0 (y = s = q = p = z = e1 = e2 = 1)

(A.12)

resulting in 9 distinct P1’s, intersecting as the affine A8 Dynkin diagram.
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