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Abstract 

Statisti(:a,1 signiticance tes t ing of (litl'erelmeS in 
v;~hl(`-s of  metri(:s like recall, i)rccision and bat- 

au(:(~(l F-s(:()rc is a ne(:(`-ssary t)art of eml)irical 
ual;ural language 1)ro(:essing. Unfortunately,  we 

lind in a set of (;Xl)erinlc]d;s (;hal; many  (:ore- 
inertly used tesl;s ofte, n underes t ima te  t.he s ign i f  
icancc an(l so are less likely to detec t  differences 

tha t  exist  1)el;ween ditl'ercnt techniques.  This  
undel 'esi;imation comes from an in(let)endcn('(~ 

a,-;SUlnl)tion tha t  is often violated.  \~fe l)oint ou t  
some useful  l;e,%s (;hal; (lo nol; make this assuml)- 
lion, including computat ional ly-- intcnsive ran- 

d()mizat,ion 1;cs|;s. 

1 I n t r o d u ( - t i o n  

In Clnl)irical na tura l  ]al~gUag(~ l)rocessing, on(', 
is ot'tcal |:('~st;ing whe ther  some new technique 

1)ro(lu('es im])rove(l l'esull;s (as mcasur(xl ])y one 
()1' 111017(̀ - IIICI;I']CS) Oit s o n I c  i;esl; (lai;~L set; \V]l(`-ll 

(;Olll])aI'e(l l i ( ) so l l l e  ( ; l l r re l l t  ( l ) asc l i lm)  l ;c( :] lnique.  

\5/]lell l,]le lCsllll;s are be t t e r  with the  new tcch- 

ni(lUe , a ques t ion  arises as t() wh(',l;h(;r these l:(`-- 
sult; (litl'eren(:es are due  t() the  new technique 

a(:t;ually 1)eing l)cl;t('x or just; due  1;o (:han(:e. Un- 
t 'ortmmtely, one usual ly  Callll()t) di rect ly  answer  

the  qnesl;ion "what  is the 1)robatfility tha t  1;11(; 
now l;(x:hni(luC, is t)el;lx~r givell l;he results  on the 

t(',sl, dal;a sol;": 

I ) (new technique  is be t t e r  [ t e s t  set results) 

]~ul; wi th  stat ist ics,  one cml answer the  follow- 

ing proxy  quest ion:  if the  new technique was a(> 
tual ly  no ditt'erent than  the old t(',('hnique ((;he 

* This paper  reports on work l)erfonncd at the MITR1,; 
Corporat ion under  the SUl)porl: of the MITIlJ,; ,qponsored 
Research l)rogrmn. Warren Grcit[, l ,ynet te  I l irschlnm b 
Christilm l)orall,  John llen(lerson, Kelmeth Church, Ted 
l )unning ,  Wessel Kraaij,  Milch Marcus and an anony- 
mous reviewer l)rovided hell)rid suggestions. Copyright 
@2000 The  M I T R E  Corl)oration. All rights r(~s(n'vcd. 

null hyl)othesis),  wh~tt is 1:11(; 1)robat)ility tha t  
the results  on the  tes t  set  would l)e at least this 

skewed in the  new technique 's  favor (Box e t a ] . ,  
1978, So(:. 2.3)? Thai; is, wha t  is 

P ( t e s t  se, t results  at  least this skew('A 

in the  new techni(lue 's  favor 

I new technique is no (liffercnt than the old) 

If the  i)robtfl)ility is small enough (5% off;on is 
used as the  threshold) ,  then one will rqiect the 
mill hyi)otheMs and say tha t  the differences in 
1;he results  are :'sta.tisl;ically siglfilicant" aI; tha t  

thrt ,shold level. 

This  1)al)(n" examines  some of th(`- 1)ossil)le 
me£hods for t ry ing  to de tec t  s tat is t ical ly signif'- 

leant difl'el'enc(`-s in three  commonly  used met-  

l'i(:s: tel'all, 1)re('ision and balanced F-score.  
Many of these met;Ire(Is arc foun(t to be  i)rol)lem- 
a.ti(" ill a, so, t; of eXl)erinw, nts tha t  are per formed.  
Thes(~ m e t h o d s  have a, t endency  to ullderesti-  

mat(`- th(', signili(:ance, of  the results, which tends  
t() 1hake one, 1)elieve thai; some new techni(tuc is 
no 1)el;l;er l;lmn the (:urrent technique even when 

il; is. 

This  mtde re s t ima te  comes fl'om these lnc |h-  
ells assuming l;hat; the  te(:hlfi(tues being con> 
lmrcd p roduce  indepen(lc, nt results  when in our  

eXl)eriments , the  techniques  1)eing COml)ared 

tend to 1)reduce l)ositively corr(`-lated results.  

To handle  this problem,  we, point  out  some 

st~ttistical tests,  like the  lnatche(t-pair t, sign 

and Wilcoxon tests  (Harne t t ,  1982, See. 8.7 and 
15.5), which do not  make  this assulnption.  One  

Call ITS(', l ; l lcse t e s t s  Oll I;hc recall nlel ; r ic ,  b u t  l;he 

precision an(l 1)alanced F-score metr ic  have too 
COml)lex a tbrm for these  tests.  For such com- 

1)lex lne|;ri(;s~ we  llSe a colnpll l ;e-in | ;Clisiv(~ r a n -  

domizat ion  test  (Cohen,  1995, Sec. 5.3), which 

also ~tvoids this indet)en(lence assmnption. 
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The next section describes many of the stan- 

dard tests used and their problem of assuming 

certain forms of independence. The first subsec- 

rio11 describes tests where this assumption ap- 

pears in estimating the standard deviation of 

the difference between the techniques' results. 

The second subsection describes using contin- 

gency tables and the X 2 test. Following this is a 

section on methods that  do not 1hake this inde- 

pendence assumption. Subsections in turn de- 

scribe some analytical tests, how they can apply 

to recall but not precision or the F-score, and 

how to use randomization tests to test preci- 

sion and F-score. We conclude with a discussion 

of dependencies within a test set's instances, a 

topic that  we have yet to deal with. 

2 T e s t s  t h a t  a s s u m e  i n d e p e n d e n c e  

b e t w e e n  c o m p a r e d  r e s u l t s  

2.1 F i n d i n g  and us ing  the  variance  of  a 
result  di f ference 

For each metric, after determining how well a 

new and current technique t)efforms on solne 

test set according to that  metric, one takes the 

diflbrence between those results and asks "is 
tha t  difference significant?" 

A way to test this is to expect 11o difference in 

the results (the null hypothesis) and to ask, as- 

suming this expectation, how mmsual are these 

results? One way to answer this question is to 

assulne that  the diffb, rence has a normal or t dis- 

tr ibution (Box et al., 1978, Sec. 2.4). Then one 

calculates the following: 

(d - Z [ 4 ) / s  d = d/,~,~ (1) 

where d = x l -  x2 is the difference found be- 
tween xl and x2, the results for the new and 

current techniques, respectively. E[d] is the ex- 

pected difference (which is 0 under the null hy- 

pothesis) and Sd is an estimate of the s tandard 

deviation of d. Standard deviation is the square 

root of the variance, a measure of how much a 
random variable is expected to vary. The results 

of equation 1 are compared to tables (c.f. in Box 

et al. (1978, Appendix)) to find out what  the 
chances are of equaling or exceeding the equa- 

tion 1 results if the null hypothesis were true. 

The larger the equation 1 results, the more un- 

usual it would be under the null hypothesis. 

A complication of using equation 1 is that  

one usually does not have Sd, but only st and 

s2, where Sl is the estimate for Xl'S standard 

deviation and similarly for s2. Ilow does one 

get the former fi'om the latter? It turns out 

that  (Box et al., 1978, Ch. 3) 

o -2 o-12 + a~ d = - -  2p12a10-2  

where cri is the true standard deviation (instead 

of the est imate si) and pl'2 is the correlation 

coefficient between xl and :c2. Analogously, it 

turns out tha t  

2 z S d 82 -t- 82 - -  2 r 1 2 8 1 8 2  (2) 

where r12 is an estimate for P12. So not only 

does cr d (and Sd) depend on the properties of 

xl and x2 in isolation, it also depends on how 

Xl and .~'2 interact, as measured by P12 (and 

'rr)). When Xl and x2 are independent, p12 = 

0, and then (Td = ~ - +  c7~ and analogously, 

Sd = ~ + s~. When P~2 is positive, ;1; 1 and 

x2 are positively correlated: a rise in xl  or x2 

tends to be accompanied by a rise in the other 

result. When P12 is negative, :cl and x2 are 

negatively correlated: a rise in :cl or x9 tends 
to be accompmfied by a decline in the other 

result. - 1  < P12 < 1 (Larsen and Marx, 1986, 
Sec. 10.2). 

The a s s u l n p t i o n  of' independence is often used 

in fornlnlas to determine the statistical signifi- 

cance of the difference d = .~:1 - x2. But how 

accurate is this assumption? One nfight expect 

sonic positive correlation from both results com- 
ing from the same test set;. One may also expect 

some positive correlation when either both tech- 

niques are just  variations of each other 1 or both 

techniques are trained on the same set of train- 

ing da ta  (and so are missing the same examples 

relative to the test set). 

This assumption was tested during some 

experiments for finding granunatical relations 

(subject, object, various types of nxodifiers, 
etc.). The metric used was the fraction of the 

relations of interest in the test set that  were re- 

called (tbund) by some technique. The relations 

of interest were w~rious subsets of the 748 rela- 

tion instances in that  test set. An example sub- 

set is all the modifier relations. Another subset 

is just  that  of all the time modifier relations. 

1 T h e s e  v a r i a t i o n s  a re  o f t en  d e s i g n e d  to  u sua l ly  b e h a v e  

i l l  t h e  s tone  way  a n d  o n l y  differ  in j u s t  a few cases.  
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First ,  two difl'erent te(:hniques, one ltlelllory- 

t)ased and the other  tl 'ansti)rlnation-rule based, 

wei"e t ra ined on the same t ra ining set, and  then  

bo th  teste(1 on tha t  ticst set;. l~.e(:all eonlt)a.risons 

we, re made  tbr ten subsets  of tim relations and  

the r12 was found for each cOral)arisen. From 

Box et al. (1978, Ch. 3) 

" '12  = ~ ( I ,  J lk  --  Y l ) ( ~ 2 k  - -  ~ 2 ) / ( ' g l t ~ 2 (  71 - -  l . ) )  

k 

where Yil~ = ] if the i th  technique recalls the  

tcl;h relat ion and  = 0 if not.  'lz, is the nmnl)cr 

of relat ions in the subset.  !]i and si are mean 

and stmJ(lard de, vial, ion estimate.s (based on the  

Yik 'S) ,  rest)ectively, fl)r the i th technique. 

For the  ten subsets,  only Clio COlnl)arison had  

a 'r12 (::lose to 0 (It was -0.05). The other  nine 

c()ml)arisons had 'r12's 1)etw(x',n 0.29 and 0.53. 

The  ten coral)arisen inedian value was 0.38. 

Next;, the  t ransformat io l>rulc  t)ased t.cch- 

nique was rUll wi th  difl'erent sets of s ta r t ing  con- 

di t ions a n d / o r  different, bu t  overlapl)ing , sub- 

sets of the  t ra in ing  set. Recall comparisons were 

ma(le on the  same test  (lata. set 1)etween l;he d i f  

fcrent variations.  Many  of the comparisons were, 

of how well two wu:iations recalled a par t icular  

subset  of the relations. A tota l  of 40 compar-  

isons were made.. The  'r]2's on all d0 were 1)osi- 

tire. 3 of the 'r,2's w('~re ill the 0.20-0.30 range. 

24 of the rj2 's  wore in the  0.50--0.79 range. 13 

of the 'r]2's were in the 0.80-1.0() range. 

So in our ext)erin~ents, we were usually eom- 

t)aring 1)ositivcly correlated results. How much 

error is introdu(:e(t t)y assuming independence? 

An easy--to-analyze case is when the s tan-  

dard devial,ions for the  results being eoml)ared 

a:t'c the same. ?~ 'J}hen equat ion 2 reduces to 

s , , -  s V / 2 ( l -  r12), where s = sl = ,s'2. If one, 

assumes the  re.sults m'e indcpel :dent  (~/SSllllle 
r,2 = 0), then sd :-~ .sv/22. Call this wflue sd-i,7,g. 

As flu increases in value, Sd decreases: 

[().38 d 0.T87(sd_i,,d) 1.27 

[p.ao I 1.41 
[O.80J 0.447(Sd.__i.,,.d) 2.24 

'l'he rightmost cohunn above indicates the mag- 
nitude by which erroneously assuming indepen- 

>[lifts is actually roughly true in the coml)arisons 
nmde, and is assumed to be true in many of the standard 

Wsts for statistical significance. 

(lence (using 8d_in d ill 1)lace of sd) will increase 
the s t a n d a r d  deviat ion est imate.  In equat ion 1, 

sd forms the denomina to r  of the ratio d/.s d. So 

erroneously assmning independence will mean  

tha t  the  mmmra to r  d, the  difference between the 

two results: will nee(t to increase by tha t  same 

factor in order f()r equa t ion  1 to have the same 

wtlue as wi thout  the indel)endence assmnt)tion. 

Since the value of t h a t  equat ion indicates the 

s ta t is t ical  significance of d, assunfing indepen- 

dence will mean tha t  e1 will have to be larger 

t h a n  wi thout  the. assumpt ion  to achieve the 

same al)parent level of stat ist ical  significance. 

l?roln tile tal)le above, when r12 = 0.50, (1 will 

need to 1)c about  41% larger. Another  way to 

look at this is t ha t  assuming indei)en(lenee will 

make the same. v~due, of d appear  less statist;i- 

cally signifiealtt. 

The  common tests  of stat ist ical  significance 

use this assumt)tion. The, tesl; klloWlt as t he  

1, (Box et; al., 1978, Sec. 4.1) or two-saml)le t 

(Harnet t ,  1982, See. 8.7) test  does. This  test  

uses equat ion 1 and  then  compares the result ing 

va.lue against  the t; d is t r ibut ion  tal)les. This  test  

has a (:Oml)licated form for sd l)eeause: 

1. :c! and :c2 can t)e 1)ased on (tiffering num- 

1)ers of saml)les. Call these retail)ors 'n~ and  

'n2 r(;sl)ectivcly. 

2. 111l this t(;st, the z i ' s  are each an ni sam- 
pie average, of al tother varial)le ((:all it yi). 

'['his is impor t an t  because the si 's in this 

test  are s tandm'd  deviat ion est imates tor 

the  yi ' s ,  not  the  x i ' s .  The relationship be- 

tween them is t ha t  si for Jli is the same as 

( for :,:,:. 

3. The  test  itself assumes tha t  !11 and Y2 have 

the same s t a n d a r d  deviat ion (call this com- 
mon value s). T h e  denomina tor  es t imates  

,s using a weighte(1 average of 81 and s2. 

The  weighting is b~sed on nl  and r7,2. 

From Harnett (1982, Scc. 8.7), the denominator 

S d  ~-  
nl  + n2 - 2 

711 -b r~,2 ) 

'i7,177,2 

W h e n  'nl = 'n2 (call this  common value 'n), '~1 

and s2 will be given equal  weight, and Sd siml)li- 

fie.s to ~ + ,s'~)/n. Making the subs t i tu t ion  

described above of si v/57 tbr si leads to an Sd of 
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s 2 the fbrm had earlier fo r  the -t-, 2, w e  u s i n g  

independence assumption. 

Another test that  both makes this assulnt)- 

tion and uses a tbrm of equation 1 is a test tbr 
binonlial da ta  (Harnett,  1982, Sec. 8.1.1) which 

uses the "t'aet" that  binomial distributions tend 

to approximate normal distributions. In this 

test, the zi 's being compared are the fraction 

of the items of interest that  are recovered by 

the i th technique. In this test, the denomina- 

tor sd of equation 1 also has a complicated fbrm, 

both due to the reasons mentioned for the t, test 

above and to the fact that  with a binomial dis- 

tribution, the s tandard deviation is a flmction 

of the number of samples and the mean wflue. 

2.2 U s i n g  c o n t i n g e n c y  t a b l e s  a n d  X 2 to 
t e s t  prec i s ion  

A test that  does not use equation 1 but still 

makes an assunlption of independence l)etween 

a:l and a:u is that  of using contingency tables 

with the chi-squared 0,52) distribution (Box et 

al., 1978, Sec. 5.7). When tile assmnption is 

valid, this test is good for comparing differences 

ill the pr'ecision metric. Precision is the fraction 

of the items "Ibund" 1)y some technique that  
are actually of interest. Precision = l~,/(I~, + S), 
where R is the number of items that  are of inter- 

est and m'e Recalled (fbund) by tile technique, 

and S is the munber of items that  are found by 

tile technique tha t  turn out to be Spurious (no t  

of interest). One can test whether the precision 

results from two techniques are different by us- 

ing a 2 x 2 contingency table to test whether the 

ratio R / S  is different for the two techniques. 

One makes tile latter test, by seeing if tile as- 

sumption that  the ratios for the two techniques 

are the same (the null hypothesis) leads to a sta- 

tistically significant result when using a X 2 dis- 
tribution with one degree of freedom. A 2 x 2 ta- 

ble has 4 cells. The top 2 cells are filled with the 

R and S of one technique and the bot tom 2 cells 
get the R and S of the other technique. In this 

test, the valuc in each cell is assumed to have a 

Poisson distribution. When the cell values are 

not too small, these Poisson distributions are 

approximately Normal (Gaussiml). As a result, 

when the cell values are independent, smnming 

tlle normalized squares of the difference between 

each cell and its expected value leads to a X 2 

distribution (Box el; al., 1978, Sec. 2.5-2.6). 

How well does this test work in our experi- 

ments? Precision is a non-linear time(ion of two 

random wu'iables R and S, so we did not t ry to 

estimate the correlation coefficient ]'or precision. 

However, we can easily estimate the correlation 

coefficients for the R's. They are the r12's found 

in section 2.1. As that  section mentions, the 

r12's fbund are just  about always positive. So 

at least in our experiments, the R's are not ill- 

dependent,  but are positively correlated, which 

violates the assumptions of the test. 

An example of how this test behaves is the 
following comparison of the precision of two dif- 

ferent methods at finding the modifier relations 

using tile stone training and test set. The corm- 

lation coefficient estilnate tor R is 0.35 mid the 

data  is 

Method 17, 5' t?recision 

1 47 48 4!)% 
2 25 14 64% 

Placing the l~, and S values into a 2 x 2 table 
leads to a X 2 value of 2.38. a At t degree of 

freedom, tile X 2 tables indicate that  if the null 

hypothesis were true, there would 1)e a 10% to 
20% chance of producing a X 2 value at least this 

large. So according to this test, this nnlch of an 

observed difference in precision wouht not be 

unusual if no actual differ(,ncc in the precision 

exists between the two nw, thods. 

This test assumes independence between the 
/~, wdues. When we use a 22(I (=1048576) trial 

approximate rmldomization test (section 3.3), 

which makes no such assumptions, then we find 

that  this latter test indicates that  under the 

null hypothesis, there is less than a 4% chance 

of producing a difference in precision results as 

large as the one observed. So this latter test in- 

dicates tha t  this nmch of an observed difference 
in precision would be mmsual if no actual dif- 

ference ill the precision exists between the two 

methods. 

It should be mentioned that  the manner of 

testing here is slightly different than the man- 

ner in the rest of this paper. The X 2 test looks 

at the square of the difference of two results, 

and rejects the mill hylmthesis (the compared 

techniques are the same) when this square is 

a\Ve do not use Yate's adjustment to compensate lbr 
the numbers in the table being integers. 1)oing so would 
lmve made the results even worse. 
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large, whel;he, r l;lm largeness is (:aused l)y t;he 

new t;eehni(lue t)l"o(lucing' a, much l)(fl;l;er result; 

t i tan l;he current, l;e(:hlfique or vice-versa. So 

1,o l)e fair, we eolnl)ared l;he X 2 resull;s wi th  a 

l;wo-sided version of l;hc rmldon~iz~fl;ion t;esl,: es- 

l;inm|;e, l;he likelihood glu~l; l;he obsea'ved magni-  

l;u(le of t, he resull; (lifl'eren(:e would 1)c ma tched  

or exceeded (regardless of' which l;echnique pro- 

duced l;he betl;er resull;) raider the mill hyl)oth- 

esis. A one-sided version of the test;, which is 

colnt)aral)le t;o wha t  we use in l;he rest of the t)a - 

per, esl;inml;es l;he likelihood of a (tifferenl; oul;- 

come under  t;he null hyt)oChesis: tha t  of m~l:cll- 

ing or exceeding t;he (lit['erence of how lllllch 

l)¢,l;ter i;he new (possibly 1)ett, er) l;e(:lmi(lue's oh- 

s('a'ved result  is t h a n  l;he currenl; l;e('hnique's o|)- 

serve,(1 l'esull;, h t  t;he ahoy(; scenario, a one-sided 

t(;sl; t)rodu(:es ~ 3(~, tigure insl;ead of s~ d:% figure. 

3 T e s t s  w i t h o u t  t h a t  i n d e p e n d e n c e  

a s s u m p t i o n  

a.1 T e s t s  fo r  m a t c h e d  p a i r s  

At; l;his point,  one may  wonder  it' all st;al;isl;ical 

t;CSt;S lllil](e SllC]l s/,]l in t lepea ldenc t~  asSllltl])l;ioll.  

Th(', miswer is no, lml; t;]l()se lesl:s l;hal; (to nol; 

lltC}~Slll;e, h o w  l l l l lch {;we l;e(;]lni(llles illl;(',ra(:l; (to 

n e e d  i;o lmtke, s o m e  a s s m n p l ; i o H  al)oul;  t;]m|; ill- 

I;(;r~t('l;ion mid l;yl)it:a.ll E l;]ml; assuml)l;ioll is in(te- 

t)(~]ldell(;e. 'Fhose I;esl;s I;ll~H; Hol;i(;c in S()lll(~ \\r;~Br 

how much l;wo tc(:hniqucs hm;ra(:l; (;~1,11 lib(; ~h()se  

ol)servations insl;ead of relying on assumt)l:ions. 

One w',~y t;o measure  how 1;we l;e(:lmi(lucs in- 

i;erac(; is 1;o comtm.re ]tow similarly (;he, t;wo t;ecl> 

ni(tues tea.el; 1;o various l)arl;s ()f 1;he l;(;s[; seA;. 

'_l."his is done in the mal;t:hed-lm.ir 1, I;esl; (Hm'- 

nctl;, 1982, Se(:. 8.7). This  l;csI; tin(ls the dith'a'- 

once bet;we, en how t;eclmiques 1 and 2 l)eribrm 

on e~t(::h l;esl; set, Saml)le. The / ,  dist;ri|)ul;ion and  

a fOI'ln of eqm~l;ion l m:e used. The  null }lyl)ol;h- 
esis is st;ill l;]l~tl; ~he mtmeral;or d ]ms ~t 0 me,m, 

bu t  el is now l;he stun of these difference values 

(divided 1)y t;he number  of Smnl)les), instead of 

being :r~ - :re. Similm'ly, the (lenomimd;or .sd is 

now esl;inml;ing l;he si;a.ndm'd (leviation of l;hese 

difl'erenee wdues, instead of being a funcl;ion of 

s:l and  su. '.Flfis means  for example,  (;hal; even if 

t;lm values fl'om l,eclmiques l and 2 vary on (lii- 

ti:rent; test; Smnl)les , Sd will now 1)(' 0 if on each 

tesI; smnl)le, l;echnique ] 1)reduces a. value l;lmt is 
t h e  ssulle  C()llS|;allI; tHI1OlllIi; lllOl'e t ;han  l;he va,]ue 

fl'om t, echnique 2. 

Two ol;h(',r tests for eomlmring how (;we tech- 

ni(lueS 1)ert'()rm 1) 3, comtmring how well l;hey 

perform on each I;est Smnl)le arc the sign mid 
Wilcoxon tests (Harnel;t;, 1!)82, See. 15.5). Un- 

like, t;]le nl~tl;ched-tmir t: t;esI;~ neither of t, hese l;wo 

I;CSI;5 slSSllllte t;ln~l; I;hc sum of l;he (litl'crences has 

a normal  (Gaussian) (listribul;ion. The  i;wo tests  

are, so-calh~d nonl)a.rmut%ri(: l;esl;s, which (lo not; 

make assuml)l, ions a.1)out; how l, he rcsull;s axe dis- 

ln'il)ut, ed (thrnel,l,,  1982, Ch. 15). 

il'he sign |;est is I;he simplier of lJm I;wo. It  uses 

a 1)inomial dist,rilm|;ion to examine the munbe r  

of l;esl; smni)les where t;e(:hlfi(lUe ] 1)crforms ])el;- 
l;er t;ha.n l;e(:hnique 2 ve, rsus l;he munl)er where  

1;he Ol)posite occurs. The  null hyl)ol;hesis is l;h~d; 
1;he t;wo t;eclmiques 1)ert'orm equally well. 

Unlike the sign t;esl;, t;he Vfilcoxon |;esl; also 

uses inlbl'nlal;ion on how large a difference exisl;s 

1)el;ween t, hc l;wo l;echniques' r(,,sull;s on each of 
l;hc l;csl; smnpl(;s. 

3.2 U s i n g  t h e  t e s t s  for m a t c h e d - p a i r s  

All three of l;hc ma.l,(:he(1-tmir t, sign and 

Wilcoxon t;csl;s can 1)e a.pl)lied t;o t;hc re, call met-  
ric, whicll is the fl'act;ion of |;he il;ems of inl;crcsl; 

in ~,he l:csl; sol; l;lml; a, I;e, ehniquc recalls (finds). 

Each il;em of inl,eresi; in |;he l;esl; (la~;a serves as 

a. l;cst sainlflU. \¥e use t;he sign l;esl; b(',causc iI; 

11Htkcs fcwel" assumi)i;ions 1;hart i;he nml;chcd-l)air 

1: I;est and is simplier l;han the Wih'oxon I;esi;. 111 

addit;ion, the fro:i; glml; t~he sign l;e, st ignores l;he 

size of 1;he result; difl'erence on eacll l;esl; Smnl)le 

(tocs llOI; nml;ter here. \¥iI:h I;he recall met;rio, 

each sa.mple of int;eresl; is either found or nol; by 

a. t;eehnique. There  are no interlnedbtte values. 

While  1;he 1;hree l;esl;s described in sccl;ion 3.1 
can be used on the re(:~dl mctxic, 1;hey CallllO|; bc 

""  ' ' used on ell;lint t;hc precision or sla mgh|fforwardly 

1)abmced F-score met;rics. This is because bo th  

precision and F-score ~tre more coml)licated non- 

linem' flmci;ions of rml(lom varial)lcs t han  recall. 

In fst(:t bol;h can be l;hought of as non-linem" 

flm(:l;ions involving recall. As described in Sec- 

tion 2.2, precision = 1~./(1~ + S), where I~ is i;he 

nmnl)er of iWms t;lmt; are of inl:eresl; that; are '/'c'- 

called by a W, chnique mid S is l;he mmfl)er of 

it;e, ms (fi)und 1)y s~ technique) that; are nol; of 
interest;. The  1)~dmmed F-score = 2ab/(a + b), 

where a is recall and b is precision. 
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3.3 Us ing  randomiza t ion  fbr precis ion 
a n d  F - s c o r e  

A class of technique that ean handke all ldnds of 

flmetions of random variables without the above 

problenls is the computationally-intellsive ran- 
domization tests (Noreen, 1989, Ch. 2) (Cohen, 

1995, Sec. 5.3). These tests have previously 
used on such flmctions during the "message un- 

derstanding" (MUC) evaluations (Chinchor et 

al., 1993). The randomization test we use is like 
a randomization version of the paired sample 

(matched-1)air) t test (Cohen, 1995, Sec. 5.3.2). 
This is a type  of stratified shuffling (Noreen, 

198!), Sec. 2.7). When eomt)aring two tech- 
niques, we gather-u I) all the responses (whether 

actually of interest or not) produced by one 
of the two techniques when examining the test 

data, but  not both  techniques. Under the 111111 

hyl)othesis , the two techniques are not really 

different, so any resl)onse produced by one of 
the teehniques eonld have just  as likely come 

fl'om the other. So we shuffle these responses, 
reassign each response to one of the two tech- 
niques (equally likely to either technique) and 

see how likely such a shuffle 1)roduces a differ- 
ence (new technique lninus old technique) in the 
metric(s) of interest @1 our ease, precision and 

l?-score) that  is at least; as large as the difference 
observed when using the two techniques on the 
test data. 

'n responses to shuttle and assign 4 leads to 

2 ~' difl'erent w~\ys to shuffle and assign I;hose re- 
sponses. So when 'n. is small, one can try each 
of the different shuttles once and produce an 
exact randomization. V~;hen n gets large, the 

mmfl)er of different shutttes gets too large to be 
exhaustively evaluated. ~J?hen one performs a.u 

approximate randomization where each shuffle 
is perfornmd with randoln assignments. 

For us, when n < 20 (2'" .<_. 1048576), we use 

an exact randomization. For n > 20, we use an 
approximate randomization with 1048576 s h u f  

ties. Because an approximate randomization 

uses random nmnbers, which both lead to oc~ 
casional unusual results and may involve using 

a not-so-good pseudo-random 1111111])(;I" genera- 
tol "~, we perfbrm the following cheeks: 

4Note that responses produced by both or neither 
techniques do not need to be shulIled and ,~ssigned. 

5One examI)le is the RANDU routine on the IBM360 
(Forsythe et al., 1977, See. 10.1). 

• We run  the 1048576 shuttles a seeond time 

and colnpare the two sets of results. 

• We also use tile same shutttes to calcu- 

late the statistical significance for the recall 
metric, and compare this significance value 

with the significance value found for recall 
analytically by the sign test. 

An example of using randomization is to com- 

pare two different methods on finding modifier 
relations ill the same test set,. The results on 
the test; set, are: 

Method ~ ~  Precision F-score t 

i _l_556t ' I 49.5% 47.5% 
Zl: 64.1% 35.2% 

Two questions being tested are whether the ap- 
parent ilnt)rovement in reca.ll and F-score f!rom 
using method I is significant. Also being tested 

is whether  the apparent imt)rovenmnt; in pl'eci- 
sion fl'om using method Ii is significant. 

In this example, there are 10"1 relations that  
should be found (are of interest). Of these, 19 

are recalled by both  methods, 28 are recalled 
by method I but  not; II, and 6 are recalled by 
II but  not I. The correlation coeificient estilnate 
between the methods '  recalls is 0.35. In addi- 

tion, 5 stmrious (not of interest) relations arc 
found by both  methods,  with method I find- 

ing an additional 43 Sl)uriolls relationships (not 
found by method II) and me£hod II finding an 
additional 9 relationships. 

There are a total of 2 8 + 6 + 4 3 + 9 = 8 6  relations 
that  are found (whether of interest oi' not) by 
one method,  but  not the other. This is too 

many to t)erfornl an exact randolnizgtion, so 
a 1048576 trial apt)roximate randomization is 
perfornmd. 

In 96 of these trials, method I's recall 
is greater than method iI 's recall by at, 

least (45.6%-24.3%).  Similarly, in 14794 
of the trials, the F-score difference is at 
least (47.5%-35.2%).  In 25770 of the trials, 

method II 's precision is greater than method I's 
precision by at  least; (64.1%-49.5%). N:om 
(Noreen, 1989, Sec. aA.a), the significance level 
(probabili ty under the null hypothesis) is at 

most (.,e + 1)/(,~t + 1), where ',,.: is the nul~lt/er 

of trials that  meet the criterion alld 1t, t is the 
number  of trials. So fbr recall, the significance 

level is at most (96+1)/(1048576+1) =0.00009. 
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Similarly, for F-score, the significance level is at 

most 0.()1 d: and for l)re(:ision, the level is at lllOSt 

0.025. A secon(l 1048576 trial t)ro(luces similar 
results, as does a sign test on recall. 'l'hus, we 

see that  all three dit[ere.n(:es are statistically sig- 

lfiIica.nt. 

4 T h e  future.: h a n d l i n g  i n t e r - s m n p l e  
d e p e n d e n c i e s  

An assmnption made by all I;he methods men- 

tioned in this I)~tl)er is ttmt the nlenlbcrs of the 
Lest set are all independent of one anothex. Tlmt 

is, knowing how a method l)('rforms on one test 
sot sanlple should not give any information on 
how that  method ] )e l ' fo r l l l s  o n  other test set 

samples. This assulnl)tJon is not always true. 

Church and Mercer (1993) give some exaln- 
ples of dependence bctwe.en test set insl;ances 

ill n a t u r a l  la.llguage. One ty t )e  o f  dci)endence 

is tha t  of a lexeme's part  of speech on the 
l)m'l;s of speech o f  neighl)oring lexenm,~ (th(,ir 

section 2.1). Sinfilar is the concept of collo- 

ca, t;ion, where the prolml)ility of a lexeme's al> 

l)earance is influenced by the. lexemes ai)pea.rin: ~ 

i1~ nearby positions (their section 3). A type of 
(tet)en(lence that  is less local is that  often, a. con-- 
tent word's al)pe.arance in a piece of text gr(;atly 

increases the cha.n('es of th~tt s;ulle wor(1 ~q)l)ear - 
illg b~ter in that  1)iece of texl; (their se(:l;ion 2.;/). 

Wha t  ~tr('. the effects when SOllle d{:t)endency 

exists? The expected (average) value of' the in- 
stallC(~ results will stay the, same. However, the 

('lmnees of getting a n  llllllSllal res l l l t  (;a,lt c]la.ll~re. 

As an eXmnl)le , take five flips of a Nit coin. 
When no dependen(:ies exist 1)etween the tlil)s , 

the clmnces of the extreme result tha.t all the 
flit)s l:md on :~ particular side is faMy small 
((1/2) 5 -- i[/32). When the ttil)s are positively 

correlated, these chmices increase. When the 

first flip lands on that  side, the chances of the 

other four tlil)s doing the same are now ea.ch 

greater tlmn 1/2. 

Since statistical significance testing involves 

finding the chances of getting an mmsmd 
(skcwe(1) result under some null hyt)othesis, one 
needs to determine those del)endencies in order 

to accurately determine those dmnces, l)eter- 
mining the etk's:t of these dependencies is some- 

thing that  is yet to l)e done,. 

5 C o n c l u s i o n s  

In elnpirical natural  language processing, one 

is often COml)aring differences in values of met- 
rics like recall, precision and balanced F-score. 

Many of the statistics tests commonly used to 

make such comparisons assume the indepen- 
dence between the results being compared. \¥e 
ran ~ set of m~tural language processing exper- 

iments and tbund that  this assuml)tion is often 

violated in .~uch a way as t,o understate the sta- 

l, istical significance of the difli;rences between 
the results. We point out  some analyt;ica.1 statis- 

tics tests like lnatched-l)air t,, sign mid Wilcoxon 

tests, which do not midge this assmnption and 
show that they (;tl,ll ])e l l sed  Oll a l l l e t r ic  l ike 

recall, l?br more complicated 1nettles like pre- 

cision and balanced F-score, wc use a compute-- 

intensive randonfization test, which also avoids 
this assumption. A next topic to address is that  
of possible dependencies l)etween test se t  s a m -  

ples. 
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