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Abstract

Statistical significance testing of diflerences in
values of metrics like recall, precision and bal-
anced IP-score is a necessary part of empirical
natural lnnguage processing. Unfortunately, we
find in a sct of experiments that many com-
mounly uscd tests often underestimate the signif-
icance and so are less likely to detect differences
that exist between different techniques.  This
underestimation comes from an independence
assuinption that is often violated. We point out
some usclul tests that do not make this assump-
tion, including computationally-intensive ran-
domization tests.

1 Introduction

I cnupirical natural language processing, one
is often testing whether some new technique
produces improved results (as measwred by one
or more metrics) on some fest data set when
compared to some current (baseline) technigue.
When the results are bhetter with the new tech-
nique, a question arises as to whether these re-
sult diflerences are due to the new technique
actually being better or just due to chance. Un-
fortunately, one usually cannot directly answer
the question “what is the probability that the
new technique is better given the results on the
test data set”:

P(new technique is better | test set results)

But with statistics, one can answer the follow-
ing proxy question: if the new technique was ac-
tually no different than the old technique (the
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null hypothesis), what is the probability that
the results on the test set would be at least this
skewed in the new technique’s favor (Box et al.,
1978, Sce. 2.3)7 That is, what is

P(test set results ab least this skewed
in the new technique’s favor
| new technique is no different than the old)

If the probability is small enough (5% often is
used as the threshold), then one will reject the
null hypothesis and say that the diflerences in
the results are “statistically significant” at that
threshold level.

This paper examines some of the possible
methods for trying to detect statistically signif-
icant differences in three conunonly used met-
rics:  recall, precision and balanced I'-score.
Many of these methods are found to be problem-
atlc in a setb of experiments that are performed.
These methods have a tendency to underesti-
mate the significance of the results, which tends
to make onc believe that some new technique is
no better than the current technique even when
il is.

This underestimate comes from these meth-
ods asswming that the techuiques being com-
pared produce independent results when in our
cxperiments, the techniques being compared
tend to produce positively correlated results.

"l'o handle this problem, we point out somec
statistical tests, like the matched-pair 4, sign
and Wilcoxon tests (Harnett, 1982, Sec. 8.7 and
15.5), which do not make this assumption. One
can usc these tests on the recall metrie, but the
precision and balanced F-score metric have too
complex a form for these tests. For such com-
plex metrics, we use a compute-intensive ran-
domization test (Cohen, 1995, Sec. 5.3), which
also avoids this independence assumption.



The next section describes many of the stan-
dard tests used and their problem of assuming
certain forms of independence. The first subsec-
tion describes tests where this assumption ap-
pears in estimating the standard deviation of
the difference between the techniques’ results.
The second subsection describes using contin-
gency tables and the x? test. Following this is a
section on methods that do not make this inde-
pendence assumption. Subsections in turn de-
scribe some analytical tests, how they can apply
to recall but not precision or the I-score, and
how to use randomization tests to test preci-
sion and F-score. We conclude with a discussion
of dependencies within a test set’s instances, a
topic that we have yet to deal with.

2  Tests that assume independence
between compared results

2.1 Finding and using the variance of a
result difference

For each metric, after determining how well a
new and current technique performs on some
test set according to that metric, one takes the
difference between those results and asks “is
that difference significant?”

A way to test this is to expect no difference in
the results (the null hypothesis) and to ask, as-
suming this expectation, how unusual are these
results? One way to answer this question is to
assume that the difference has a normal or ¢ dis-
tribution (Box et al., 1978, Sec. 2.4). Then one
calculates the following:

(d—Eld])/sq = dfsq 1)

where d = x1 — zo is the difference found be-
tween x; and x9, the results for the new and
current techniques, respectively. E[d] is the ex-
pected difference (which is 0 under the null hy-
pothesis) and sg4 is an estimate of the standard
deviation of d. Standard deviation is the square
root of the variance, a measure of how much a
random variable is expected to vary. The results
of equation 1 are compared to tables (c.f. in Box
et al. (1978, Appendix)) to find out what the
chances are of equaling or exceeding the equa-
tion 1 results if the null hypothesis were true.
The larger the equation 1 results, the more un-
usual it would be under the null hypothesis.

A complication of using cquation 1 is that
one usually does not have sg, but only s; and
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89, where sy is the estimate for zp’s standard
deviation and similarly for s5. How does one
get the former from the latter? It turns out
that (Box et al., 1978, Ch. 3)

2 2 2
oy =07 + 05 — 2p1a0109
where o; is the true standard deviation (instead
of the estimate s;) and pro is the corrclation
cocflicient between z1 and 9. Analogously, it
turns out that

2 2, .2 .

s = 87 + 85 — 2r1951 59 (2)
where riy is an estimate for pya. So not only
does o4 (and s4) depend on the propertics of
1 and z9 in isolation, it also depends on how
xy; and 9 interact, as measured by pig (and
ri2). When 21 and 29 are independent, pry =

0, and then o4 = /02 + ¢2 and analogousl
3 d 1 2 =) Y

s2 +s2. When pig is positive, 21 and
Zo avc positively correlated: a rise in z7 or 9
tends to be accompanied by a rise in the other
result. When pjs is negative, x; and a9 are
negatively correlated: a rise in 27 or a9 tends
to be accompanied by a decline in the other
result. —1 < p1g <1 (Larsen and Marx, 1986,
Sec. 10.2).

The assumption of independence is often used
in formulas to determine the statistical signifi-
cance of the difference d = x; — x9. But how
accurate is this assumption? One might expoect
some positive correlation from both results com-
ing from the same test set. One may also expect
some positive correlation when either both tech-
niques are just variations of each other! or both
techniques are trained on the same set of train-
ing data (and so are missing the same examples
relative to the test set).

This assumption was tested during some
experiments for finding grammatical relations
(subject, object, various types of modifiers,
etc.). The metric used was the fraction of the
relations of interest in the test set that were re-
called (found) by some technique. The relations
of interest were various subsets of the 748 rela-
tion instances in that test set. An example sub-
set is all the modifier relations. Another subset
is just that of all the time modifier relations.

Sd =

!These variations are often designed to usually behave
in the same way and only difler in just a few cases.



IFirst, two different techniques, one memory-
based and the other transformation-rule based,
wore trained on the same training set, and then
both tested on that test sel. Recall comparisons
were made for ten subsets of the relations and
the 712 was found for cach comparison. From
Box et al. (1978, Ch. 3)

T2 = Z(?/]k — 1) (War — Ta2)/(s152(n — 1))

k
where g, = 1 if the ith technique vecalls the
kth relation and = 0 if not. n is the munber

of relations in the subsct. %; aud s; are mean
and standard deviation estimates (based on the
yite's), respectively, for the ith technique.

For the ten subsets, only one comparison had
a 11y close to 0 (It was -0.05). The other nine
comparisons had r9’s between 0.29 and 0.53.
The ten comparison median value was 0.38.

Next, the transformation-rule based tech-
nique was run with different scts of starting con-
ditions and/or different, but overlapping, sub-
scbs of the training set. Recall comparisons were
made on the same test data set between the dif-
ferent variations. Many of the comparisons were
ol ow well two variations recalled o particular
subset of the relations. A total of 40 compar-
isons were made. "T'he ry9°s on all 40 were posi-
tive. 3 of the »’s were in the 0.20-0.30 range.
24 of the 1r1y’s were in the 0.50-0.79 range. 13
of the r12’s were in the 0.80-1.00 range.

So in our experiments, we were usually comn-
paring positively correlated results. How much
error is infroduced by assuming independence?
An casy-to-analyze case is when the stan-
dard deviations for the results being comparced
arc the same.?  Then equation 2 reduces to
sq=52(1 —113), whare s = 51 = sp. If one
assumnes the results are independent (assume
r1p = 0), then sy = $v/2. Call this value Sg_ind-
As 119 Increases in value, sg decrcases:

T2 Sd (S(I—in(l) /Sd
0.38 0.787(8,1__1'.,,,(1) 1.27
0.50 0.707(5(1_1'”,1) 1.41
[0.80 | 0.497(54_ina) 5.9

The rightmost column above indicates the mag-
nitude by which erroncously assuming indepen-

?This is actually roughly truc in the comparisons
made, and is assumed to be true in many of the standard
b 0
tests for statistical significance.
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dence (using sq_sq in place of g4) will increase
the standard deviation estimate. In equation 1,
sq forms the denominator of the ratio d/sq. So
arroncously assuming independence will mean
that the numerator d, the difference between the
two results, will need to increase by that same
factor in order for equation 1 to have the samne
value as without the independence assumption.
Since the value of that cquation indicates the
statistical significance of d, assuming indepen-
dence will mean that d will have to be larger
than without the assumption to achiceve the
same apparent level of statistical significance.
I'rom the table above, when rg = 0.50, d will
need to be about 41% larger. Another way to
look at this is that assuming independence will
make the same value of d appear less statisti-
cally significant.

The common tests of statistical significance
use this assumption. The test known as the
t (Box ct al., 1978, Scc. 4.1) or two-sample ¢
(Harnett, 1982, Scc. 8.7) test does. This test
uses equation 1 and then compares the resulting
value against the ¢ distribution tables. This test
has a complicated form for s4 hecause:

1. @; and @y can be based on differing num-
bers of samples. Call these numbers 1 and
1y respectively.

2. In this test, the w;’s are cach an n; sam-
ple average of another variable (call it ;).
T'his is important because the s;’s in this
test are standard deviation cstimates for
the ¥;’s, not the x;’s. The relationship be-
tween themn is that s; for y; is the sane ag
(/1) s for a;.

3. The test itscelf assumes that 4, and y» have
the same standard deviation (call this com-
mon value s). The denominator estimates
s using a weighted average of s1 and ss.
The weighting is based on n; and ns.

From Harnett (1982, Scc. 8.7), the denominator

Sd =

(ng — 1)s? + (ng — 1)s% (nl + ng>
] +ng —2 1 1N9

When ny = ng (call this common value n), $;
and sg will be given equal weight, and sy simpli-

(82 + s2)/n. Making the substitution
described above of s;/n; for s; leads to an sq of

fies 1o



\/ 8% -+ s3, the form we had earlier for using the
independence assumption.

Another test that both makes this assump-
tion and usecs a form of equation 1 is a test for
binomial data (Harnett, 1982, Sec. 8.11) which
uses the “fact” that binomial distributions tend
to approximate normal distributions. In this
test, the x;’s being compared are the fraction
of the items of interest that are recovered by
the ith technique. In this test, the denomina-
tor s of equation 1 also has a complicated form,
both due to the reasons mentioned for the £ test
above and to the fact that with a binomial dis-
tribution, the standard deviation is a function
of the number of samples and the mean value.

2.2 Using contingency tables and y? to
test precision

A test that does mot use equation 1 but still
makes an assumption of independence between
1 and 29 is that of using contingency tables
with the chi-squared (x?) distribution (Box ct
al., 1978, Sec. 5.7). When the assumption is
valid, this test is good for comparing differences
in the precision metric. Precision is the fraction
of the items “found” by some technique that
arc actually of interest. Precision = R/(1R +9),
where 2 is the number of items that arce of inter-
est and are Recalled (found) by the technique,
and S is the number of iteins that are found by
the technique that turn out to be Spurious (not
of interest). One can test whether the precision
results from two techniques are different by us-
ing a 2 x 2 contingency table to test whether the
ratio /S is different for the two techniques.
Oune makes the latter test by secing if the as-
sumption that the ratios for the two techniques
arc the same (the null hypothesis) leads to a sta-
tistically significant result when using a x> dis-
tribution with onc degree of freedom. A 2x2 ta-
ble has 4 cells. The top 2 cells arce filled with the
I and S of once technique and the bottom 2 cells
get the It and S of the other technique. In this
test, the value in cach cell is agsumed to have a
Poisson distribution. When the cell values are
not too small, these Poisson distributions arc
approximately Normal (Gaussian). As a result,
when the cell values are independent, sumining
the normalized squares of the difference between
cach cell and its expected value leads to a y?
distribution (Box ct al., 1978, Sec. 2.5-2.0).
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How well does this test work in our cxperi-
ments? Precision is a non-linear function of two
random variables It and S, so we did not try to
estimate the correlation coeflicient for precision.
However, we can casily estimate the correlation
coefficients for the R’s. They are the r19°s found
in section 2.1. As that section mentions, the
ri1's found arc just about always positive. So
at least in our experiments, the R’s arc not in-
dependent, but are positively correlated, which
violates the assumptions of the test.

An cxample of how this test behaves is the
following comparison of the precision of two dif-
ferent methods at finding the modifier relations
using the same training and test sct. T'he corre-
lation cocfficient estimate for R is 0.35 and the
data is

Mecthod | 12| S | Precision
1 47 | 48 49%
2 25| 14 64%

Placing the 12 and S values into a 2 X 2 table
leads to a x? value of 2.38.3 At 1 degree of
freedom, the y? tables indicate that if the null
hypothesis were true, there would be a 10% to
20% chance of producing a x? value at least this
large. So according to this test, this much of an
observed difference in precision would not be
unusual if no actual difference in the precision
exists between the two methods.

This test assumes independence between the
R values. When we use a 229 (=1048576) trial
approximate randomization test (scetion 3.3),
which makes no such assumptions, then we find
that this latter test indicates that under the
null hypothesis, there is less than a 4% chance
of producing a difference in precision results as
large as the one observed. So this latter test in-
dicates that this much of an observed differcnce
in precision would be unusual if no actual dif-
ference in the precision exists between the two
methods.

It should be mentioned that the manner of
testing here is slightly different than the man-
ner in the rest of this paper. The y? test looks
at the square of the diflerence of two results,
and rcjects the null hypothesis (the compared
techniques are the same) when this square is

3 . "
We do not use Yate’s adjustment to compensate for
the nunbers in the table being integers. Doing so would
have made the results even worse.



large, whether the largeness is caused by the
new technique producing a much hetter result
than the current technique or vice-versa.  So
to be fair, we compared the y? results with a
two-sided version of the randomization test: cs-
timate the likelihood that the observed magni-
tude of the result difference would be matched
or exceeded (regardless of which technique pro-
duced the better result) under the null hypoth-
wis. A one-sided version of the test, which is
comparable to what we use in the rest of the pa-
per, estimates the likelihood of a different out-
come under the null hypothesis: that of match-
ing or cxceeding the difference of how much
better the new (possibly hetter) techmique’s oh-
served result is than the current technigue’s ob-
served result. In the above scenario, a one-sided
test produces a 3% figure instead of a 4% figure.

3  Tests without that independence
assumption
3.1 Tests for matched pairs
At this point, one may wonder if all statistical
tests make such an independence assumption.
The answer is no, but those tests that do not
measure how much two techniques interact do
need to make some assumption about that in-
teraction and typically, that assumption is inde-
pendence. Those tests that notice in some way
how much two techuiques interact can use those
obscrvations instead of relying on asswmptions.
Oue way to measure how two techniques in-
teract is to compare how similarly the two tech-
niques react to various parts of the test sct.
‘T'his is donce in the matched-pair ¢ test (Tlar-
nett, 1982, Scc. 8.7). This test finds the differ-
ence between how techniques 1 and 2 perform
on cach test set sample. The ¢ distribution and
a form of equation 1 are used. The null hypoth-
sis is still that the numerator d has a 0 mean,
but d is now the sum of these difference values
(divided by the number of samples), instead of
being @y — x9. Similarly, the denominator sy is
now cstimating the standard deviation of these
difference values, instead of being a function of
81 and s9. This means for example, that cven if
the values from techniques 1 and 2 vary on dif-
ferent test saunples, s will now he 0 if on cach
test sample, technigue 1 produces a value that is
the same constant amount more than the value
from technique 2.

951

I'wo other tests for comparing how two tech-
niques perform by comparing how well they
performn on each test sample are the sign and
Wilcoxon tests (ITarnett, 1982, Sec. 15.5). Un-
like the matched-pair ¢ test, neither of these two
tests assume that the sum of the differences has
anormal (Gaussian) distribution. The two tests
are so-called nonparametric tests, which do not
make assumptions about how the results are dis-
tributed (Harnett, 1982, Ch. 15).

T'he sign test is the simplier of the two. It uses
a binomial distribution to examine the number
of test samples where technique 1 performs het-
ter than technique 2 versus the nunber where
the opposite occurs. The null hypothesis is that
the two techniques perform equally well.

Unlike the sign test, the Wilcoxon test also
uses information on how large a difference exists
between the two techniques” results on cach of
the test samples.

3.2  Using the tests for matched-pairs

All three of the matched-pair £, sign and
Wilcoxon tests can be applied to the recall met-
ric, which is the fraction of the items of interest
in the test set that a technique recalls (finds).
Iach item of interest in the test data serves as
a test sample. We use the sign test because it
makes fewer assumptions than the matched-pair
t test and is simplier than the Wilcoxon test. In
addition, the fact that the sign test ignores the
size of the result difference on cach test sample
does not matter here. With the recall metric,
cach sample of interest is cither found or not by
a techinique. There are no intermediate values.

While the three tests described in section 3.1
can beused on the recall metric, they cannot be
straightforwardly used on cither the precision or
balanced I'-score metrics. This is because both
precision and If-score are more complicated non-
linear functions of random variables than recall.
In fact both can be thought of as non-lincar
functions involving recall. As described in Sce-
tion 2.2, precision = R/(R + 5), where IR is the
munber of items that are of interest that ave re-
called by a technique and S is the number of
items (found by a technique) that are not of
interest.  The balanced -score = 2ab/(a + D),
where a is recall and b is precision.



3.3 Using randomization for precision
and F-score

A class of technique that can handle all kinds of
functions of random variables without the above
problems is the computationally-intensive ran-
domization tests (Noreen, 1989, Ch. 2) (Cohen,
1995, Sec. 5.3). These tests have previously
used on such functions during the “message un-
derstanding” (MUC) evaluations (Chinchor ct
al., 1993). The randomization test we use is like
a randomization version of the paired sample
(matched-pair) ¢ test (Cohen, 1995, Sec. 5.3.2).
This is a type of stratified shuflling (Noreen,
1989, Sec. 2.7). When comparing two tech-
niques, we gather-up all the responses (whether
actually of interest or not) produced by onc
of the two techniques when examining the test
data, but not both techniques. Under the null
hypothesis, the two techniques are not really
different, so any response produced by one of
the techniques could have just as likely come
from the other. So we shuffle these responses,
reassign each response to one of the two tech-
niques (equally likely to ecither technique) and
sec hiow likely such a shuffle produces a differ-
ence (new technique minus old technique) in the
metrice(s) of interest (in our case, precision and
I"-score) that is at least as large as the difference
observed when using the two techniques on the
test data.

n respouses to shuflle and assign? leads to
2" different ways to shuflle and assign those re-
spouses. So when n is small, one can try cach
of the different shuffles once and produce an
exact randomization. When n gets large, the
number of different shuffles gets too large to be
exhaustively evaluated. Then one performs an
approximate randomization where cach shuffle
is performed with random assignments.

For us, when n < 20 (2" < 1048576), we usc
an cxact randomization. For n > 20, we use an
approximate randomization with 1048576 shuf-
fles. Because an approximate randomization
uses random numbers, which both lead to oc-
casional unusual results and may involve using
a not-so-good pseudo-random number genera-
tor®, we perform the following checks:

“Note that responses produced by both or neither
techniques do not need to be shuffled and assigned.

50ne example is the RANDU routine on the IBM360
(Forsythe et al., 1977, Scc. 10.1).
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e We run the 1048576 shuffies a second time
and compare the two scts of results.

e We also use the same shuffles to calcu-
late the statistical significance for the recall
metric, and compare this significance value
with the significance value found for recall
analytically by the sign test.

An example of using randomization is to com-
pare two different methods on finding modifier
relations in the same test set. The results on
the test set are:

Method | Recall | Precision | I-score
1 45.6% 49.5% 47.5% |
11 24.3% 64.1% 35.2%

T'wo questions being tested are whether the ap-
parcnt improvement in recall and F-score from
using method 1 is significant. Also being tested
is whether the apparent improvement in preci-
sion from using method 11 is significant.

In this example, there are 103 rclations that
should be found (arc of interest). Of these, 19
arc recalled by both methods, 28 are recalled
by method I but not II, and 6 arc recalled by
1I but not 1. The correlation coefficient estimate
between the methods’ recalls is 0.35. In addi-
tion, 5 spurious (not of interest) relations are
found by both methods, with method I find-
ing an additional 43 spurious relationships (not
found by method II) and method IT {inding an
additional 9 relationships.

'There are a total of 28+46+434-9=86 rclations
that are found (whether of interest or not) by
one method, but not the other. This is too
many to perform an exact randomization, so
a 1048576 trial approximate randomization is
performed.

In 96 of thesc {trials, method I’s recall
is greater than method I’s recall by at
least (45.6%—24.3%).  Similarly, in 14794
of the ftrials, the F-score difference is at
least (47.5%—35.2%). In 25770 of the trials,
method IT’s precision is greater than method I's
precision by at least (64.1%—49.5%). Trom
(Noreen, 1989, Scc. 3A.3), the significance level
(probability under the null hypothesis) is at
most (nc-+ 1)/(nt + 1), where ne is the number
of trials that meet the criterion and nt is the
number of trials. So for recall, the significance
level is at most (96+41)/(10485764-1) =0.00009.



Similarly, for 1%-score, the significance level is at
most 0.014 and for precision, the fevel is at most
0.025. A sccond 1048576 trial produces similar
results, as does a sign test on recall. Thus, we
sce that all three differences ave statistically sig-
nificant.

4 The future: handling inter-sample
dependencies

An assumption made by all the methods men-
tioncd in this paper is that the members of the
test set are all independent of one another. "Ihat
is, knowing how a mcthod performs on onc test
set sample should not give any information on
how that method performs on other test st
saaples. This assumption is not always true.

Church and Mercer (1993) give some exam-
ples of dependence between test set instances
in natural language. Ouc type of dependence
is that of a lexeme’s part of speech on the
parts of speech of neighboring lexemes (their
section 2.1).  Similar is the concept of collo-
cation, where the probability of a lexeme’s ap-
pearance is influenced by the lexemes appearing
in nearby positions (their section 3). A type of
dependence that is less local is that often, a con-
tent word’s appearance in a piece of text greatly
increases the chances of that sine word appear-
ing later in that picce of text (their section 2.3).

What are the eflects when some dependency
exists? T'he expected (average) value of the in-
stance results will stay the same. However, the
chances of getting an unusual result can change.
As an cxample, take five flips of a fair coin.
When no dependencies exist between the flips,
the chances of the extreme result that all the
flips land on a particular side is fairly small
((1/2)% = 1/32). When the lips are positively
corrclated, these chances increase.  When the
first flip lands on that side, the chances of the
other four {lips doing the same arc now cach
greater than 1/2.

Since statistical significance testing involves
finding the chances of getting an unusual
(skewed) result under some null hypothesis, one
needs to determine those dependencies in order
to accurately determnine those chances. Deter-
mining the effect of these dependencies is some-
thing that is yet to be done.

5 Conclusions

In empirical natural language processing, one
is often comparing differences in values of met-
rics like recall, precision and balanced F-score.
Many of the statistics tests commonly used to
make such comparisons assume the indepen-
dence between the results heing compared. We
ran a sct of natural language processing cxper-
iments and found that this assumption is often
violated in such a way as to understate the sta-
tistical significance of the differences between
the results. We point out some analytical statis-
tics tests like matched-pair 1, sign and Wilcoxon
tests, which do not make this assumption and
show that they can Dhe used on a metric like
recall. For more complicated metrics like pre-
cision and balanced I'-score, we use a compute-
intensive randomization test, which also avoids
this assumption. A next topic to address is that
of possible dependencies between test set, sam-
ples.
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