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Abstract

We study the contribution to the QCD axion dark matter abundance that is produced by

string defects during the so-called scaling regime. Clear evidence of scaling violations

is found, the most conservative extrapolation of which strongly suggests a large number

of axions from strings. In this regime, nonlinearities at around the QCD scale are shown

to play an important role in determining the final abundance. The overall result is a

lower bound on the QCD axion mass in the post-inflationary scenario that is substantially

stronger than the naive one from misalignment.
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1 Introduction

Besides solving the strong CP problem [1] the QCD axion [2,3] may also explain the observed
cold dark matter of the Universe [4–6]. In fact, if the QCD axion exists, its presence as a cold
relic is almost guaranteed, unless other degrees of freedom beyond the Standard Model, if
present, significantly altered the evolution of the Universe (and the physics of the axion) after
reheating.

The computation of the axion relic abundance mainly depends on the relative size of the
Peccei-Quinn (PQ) breaking scale v compared to the largest out of the Hubble scale during
inflation HI and the maximum temperature during reheating Tmax. In the so-called pre-
inflationary scenario, in which v ¦ max(HI , Tmax), the PQ symmetry is broken before infla-
tion and never restored afterwards. In this case, the relic abundance today will be different
in different patches of the Universe far outside each other’s cosmic horizons, so that the ax-
ion abundance in our observable Universe cannot be predicted in terms of the fundamental
parameters of the theory. In this scenario, most of the experimentally allowed values of the
axion mass are compatible with the observed dark matter abundance. On the other hand, in
the post-inflationary scenario, in which v ® max(HI , Tmax), the cosmological evolution of the
axion field is mostly determined by the value of the axion mass, with only a mild dependence
on the other model-dependent parameters. In particular, it will be the same everywhere in the
Universe. In this case the totality of the dark matter can be explained by an axion only for a
particular value of its mass, which is in principle calculable. In practice, computing this value
is challenging, and despite various attempts over the years its determination is still afflicted
by large uncertainties [7]. The main difficulties are associated to the production of axions
by topological defects (global strings and domain walls) whose dynamics are nonlinear and
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involve vastly different scales. Typically the thickness of domain walls and strings differ by
roughly thirty orders of magnitude. This makes any attempt to directly compute the nonlin-
ear evolution of the string-domain wall system with the physical parameters hopeless, and
likewise the axion abundance that follows from the decay of these defects.

On the other hand, a lower bound on the number of axions produced could, in principle,
be inferred by looking at the stage of the system’s evolution that is best understood and most
under control. Before the axion gets its mass at around the QCD crossover only string defects
are present. Their dynamics are governed by the so-called scaling solution — an attractor
of the evolution on which the properties of the string network are supposed to have simple
scaling laws in terms of the relevant scales of the system. This phenomenon can be understood
as an instance of self-organized criticality [8]: the expansion of the Universe keeps increasing
the number of strings per Hubble patch until the string density crosses the critical point when
the configuration becomes unstable. At this point strings can interact efficiently, recombining
and decaying, effectively decreasing their number. The system is therefore kept at the critical
point, the attractor solution, by these two competing effects. Typically the dynamics of systems
at critical points simplify, becoming (approximately) scale invariant. Indeed simple scaling
models have been observed to capture the main behavior of the string network [9–13], at least
for local U(1) defects. For axionic strings, however, the underlying parameters that determine
the dynamics are time dependent and this could cause the position and the properties of the
critical point to shift. Hence the attractor solution is not expected to have exact scale invariant
properties and, as we will discuss in the main text, scaling violations are indeed manifest.1

During the scaling regime axions are radiated from the strings, and if the properties of
the network throughout this time are understood with sufficient accuracy the axions produced
during this phase could also be reconstructed reliably. We should note that a huge extrap-
olation is still required to connect the ratio of scales that can be computed directly (slightly
more than three orders of magnitude) to the physical ratio previously mentioned. However,
the presence of the attractor, the fact that the scaling violations are only logarithmic and, as
we will show, the fact that the final abundance is mostly determined by the qualitative features
of the network, will allow us to perform such an extrapolation with some confidence.

The main inputs required for this programme are the total energy radiated from strings into
axions during the scaling regime and the shape of the instantaneous axion spectrum emitted.
Using energy conservation and the presence of the scaling law, the first quantity can be linked
to one of the main parameters of the scaling solution: the average number of strings per
Hubble patch ξ, which is, as we will discuss, a slowly varying function of time. Meanwhile,
the spectrum is contained between an infrared (IR) cutoff set by the Hubble scale and an
ultraviolet (UV) one set by the string thickness. The absence of any other scales in the problem
suggests that, between these two cutoffs, the spectrum should be described by a single power
law. The associated spectral index q determines whether the spectrum is IR or UV dominated,
i.e. whether the energy of the radiation is distributed over a large number of soft axions (for
q > 1) or a small number of hard ones (for q < 1).

Although the spectrum is mostly UV dominated in the range of parameters that can be
reached by present simulations [7], we find clear evidence of a non-trivial running of the
spectral index, which is more compatible with an IR dominated spectrum once extrapolated
to the physical parameters.

These results imply that by the time the axion mass turns on the amplitude of background
axion radiation produced by strings at previous times is large. In fact the occupation number of

1Strictly speaking a non-trivial time evolution of the attractor parameters does not necessarily imply a scaling
violation, but could simply indicate the presence of non-trivial critical exponents for the critical point. We however
keep the sloppier terminology of “scaling violation” to emphasize the difference with the naive scaling expectation
often assumed in the literature.
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axions emitted by strings would be so large that nonlinear effects of the axion potential cannot
be neglected, even considering the axion radiation in isolation, without topological defects.

We study the effects of these nonlinear dynamics in some detail. Their main consequence
is a partial reduction of the number density of axions from strings, which however continues
to dominate over the naive estimates based on the misalignment mechanism alone, or equiva-
lently, over the results obtained by simulations of the full network of strings and domain walls
carried out at the (currently available) unphysical values of the string thickness.

The article is structured as follows. We present our discussion of the most important points
of the analysis and the key results in the main text, in Sections 2, 3 and 4. Meanwhile we give
all the details of the various analyses, further studies, spin-off results, checks and general-
ization of the formulas, and interpretations in the Appendices. In particular, in Section 2 we
present the results of simulations of the scaling dynamics and the axions produced by strings.
In Section 3 we provide both analytical and numerical analysis of the effects of nonlinearities
on the axion abundance from strings. In Section 4 we discuss the physical implications of the
results and the assumptions and uncertainties behind them. In Appendix A we give details
about the numerical simulations. In Appendix B we provide additional analysis of the proper-
ties of the string network during the scaling regime, including studies of string velocities, the
decoupling of the heavy modes, the axion and radial mode spectra, as well as the systematics.
In Appendix C we discuss how logarithmic effects are also visible in the dynamics of single
loops in isolation. In Appendix D we identify when and how the scaling regime ends as the
axion potential turns on. In Appendix E we give more details and results of both the analytical
and numerical analysis of the nonlinear regime during the QCD crossover. In Appendix F we
study the effects of the presence of topological defects during the QCD crossover on the evo-
lution of the axion radiation produced during the scaling regime. Finally, in Appendix G we
comment on the compatibility of our results with the existing literature.

2 Axions from Strings: The Scaling Regime

When the PQ symmetry is broken a network of axion strings forms [14–16] and this rapidly
approaches an attractor solution [17–20] during the subsequent evolution of the Universe
(extensive evidence for this was given in ref. [7]). The attractor is independent of the network’s
initial properties, allowing predictions to be made that are independent of the details of the
PQ breaking phase transition and of the very early history of the Universe (i.e. at times much
earlier than that of the QCD crossover).

The dynamics of the string network is highly nonlinear, and while models have been pro-
posed to describe the main features of the attractor [9–13] they typically rely on a series of
(unproven) assumptions. Instead we study the properties of the string network using numer-
ical simulations. In these we integrate the classical equation of motion of the complex scalar
field φ that gives rise to the axion numerically, assuming a radiation dominated Universe.2

For simplicity we choose the Lagrangian

L= |∂µφ|2 −
m2

r

2v2

�

|φ|2 − v2

2

�2

, (1)

which leads to spontaneous PQ symmetry breaking at the scale v. The axion field a(x) is
related to the phase of the complex scalar field as φ(x) = v+r(x)p

2
eia(x)/v , while the radial mode

r(x) is a heavier field of mass mr associated to the restoration of the PQ phase.

2Given the attractor nature of the string evolution and the fact that the main axion contribution is produced
just before the axion potential becomes relevant, we only assume that radiation domination starts at least before
the QCD crossover transition.
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The scale v can be trivially reabsorbed in a rescaling of φ, while the scale mr provides
the normalization of the physical space and time scales over which the dynamics unfolds.
While the clock of the UV physics associated to the radial mode ticks with intervals set by
1/mr , the more phenomenologically relevant clock associated to the IR axion physics ticks
at a much slower pace set by the scale 1/H, which keeps slowing down as the Universe ex-
pands. For this reason it is more useful to study the dynamics in terms of Hubble e-foldings
log(mr/H) = log(t/t0) (“log” for short), where t is the Friedmann-Robertson-Walker time
(with metric ds2 = d t2−R2(t)d x2, R(t)∝ t1/2) and t0 is the reference time at mr = H. With
appropriate random initial conditions, strings automatically form in simulations and their dy-
namics are fully captured. Regions of space containing string cores are identified from the
variation of the axion field around small loops of lattice points. Further details on our imple-
mentation and algorithms are given in Appendix A.

Limits on computational power allow us to evolve grid sizes of at most 45003 lattice points.
Meanwhile, the lattice spacing ∆ should be such that mr∆ ® 1 and the physical length of
the box L such that LH ¦ 1 to avoid introducing significant systematic uncertainties. As a
result, simulations can only access relative small values of log(mr/H) ≈ log(L/∆) ® 8. In
contrast, the vast majority of the axions present when the axion mass becomes cosmologically
relevant come from the emission of the string network in the prior few Hubble times. This
happens shortly before the time of the QCD crossover when log(mr/H) ≃ 60÷ 70. Therefore
properties of the string network measured in simulations must be extrapolated if reliable,
physically relevant, predictions are to be obtained.

A simulation trick, often used in the literature, is to make mr vary with time as
mr(t) = mr(t0)

p

t0/t (the so-called “fat-string” trick). In this way the string thickness 1/mr(t)

stays constant in comoving coordinates. The maximum log(mr(t)/H) = 1/2 log(t/t0) that
can be simulated remains unchanged, but this is reached over a much longer physical time,
which allows far better convergence to the attractor regime. Although the simulations per-
formed with this trick might lead to different quantitative answers, it is expected (and so far
confirmed) that the qualitative behavior is the same. We performed most simulations with
both mr constant (“physical”) and with the “fat” trick. While we only use the data from the
physical simulations to extract the relevant parameters, the results obtained with the fat trick
make some features of the attractor solution more manifest and our interpretation of the string
dynamics more robust.

2.1 String Density

The energy density stored in the string network can be written as

ρs (t) = ξ
µeff

t2
, (2)

where ξ, the number of strings per Hubble patch, counts the total length ℓ of the strings
inside a Hubble volume in units of Hubble length, namely ξ ≡ limL→∞ ℓ(L) t2/L3, while µeff

represents the effective tension of the strings, i.e. their energy per unit length. At late times,
the latter is approximately equal to the tension of a long straight string in one Hubble patch
µ= πv2 log(mr/H), where v is the PQ breaking scale, which we take equal to the QCD axion
decay constant fa from now on (we will discuss how to adapt our results to the more general
case v = N fa in Section 3.3). Such an approximation captures ρs’s leading dependence on H

and the UV parameters of the theory ( fa and mr). Corrections from the boost factors and the
curvature of the strings are discussed in Appendix B.3.

The dynamics of strings are well known to be logarithmically sensitive to the evolving scale
ratio mr/H. As mentioned above, the string tension is itself a linear function of this logarithm,
and consequently the effective coupling of large wavelength axions with long strings scales

5

https://scipost.org
https://scipost.org/SciPostPhys.10.2.050


Select SciPost Phys. 10, 050 (2021)

3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

log(mr/H)

ξ

physical

Figure 1: The evolution of the string network density ξ for different initial conditions, with
statistical error bars. Different initial conditions tend asymptotically to a common attractor
solution. This has an evident logarithmic increase, which would imply ξ ≈ 15 at the phys-
ically relevant log(mr/H) = 60÷ 70. The best fit curves with the ansatz in eq. (3) are also
shown. The initial conditions used for the analysis of the spectrum of axions emitted by the
network are plotted in black.

as 1/ log(mr/H) (see e.g. ref. [21]). It is therefore not surprising that the dynamics of the
string network, and in particular the parameters of the attractor, might depend non trivially
on log(mr/H). This is indeed the case for the parameter ξ, which was observed to “run” in
ref. [7] (see also refs. [22–27] for further supporting evidence), increasing logarithmically
with time.

The growth of ξ is manifest in Fig. 1, which shows ξ as a function of log(mr/H). Each
color refers to a set of simulations with different initial string density (initially overdense sim-
ulations show first a drop and then a universal increase). The error bars refer to the statistical
errors.3 Simulations ending before log = 7 are data taken in ref. [7] with grids up to 12503,
and the remainder are new data collected with bigger grids, up to 45003. When we analyze
other properties of the scaling solution we choose the initial conditions that reach the attractor
behavior the earliest, indicated with black data points in Fig. 1.4

Because of the manifest logarithmic increase, the value of ξ at late times could be much
larger than that measured directly in simulations. In ref. [7] it was shown that the data is
compatible with a linear logarithmic growth. Here we extend that analysis including all the
data sets with different initial conditions and with bigger grids, in total comprising about 1000
simulations of which 100 are with grids larger than 40003. We test the linear logarithmic
increase with the following fit ansatz (see Appendix B.1 for more details):

ξ= c1 log+c0 +
c−1

log
+

c−2

log2 , (3)

where the coefficients c−1,−2 are taken with different values for each data set to account for
differing initial conditions, while the coefficients c1,0, which survive in the large log limit, are
taken universal across all data sets. As explained in [7] the string network starts showing
scaling behaviors after log = 4 (when strings can begin efficiently emitting axions with sub-
horizon wavelengths), which we choose as our starting point for the fit.5

3These take into account both the total number of simulations and the number of independent Hubble patches
in each simulation. For this reason the error bars increase toward the end of simulations where fewer Hubble
patches are available.

4These are roughly those with the least overdense initial conditions.
5In order to avoid artificial bias in favor of data with higher frequency time sampling in the fit, we sampled
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The result of the fit is represented by the colored curves in Fig. 1. The ansatz in eq. (3)
reproduces all the data for a variety of initial conditions very well over almost 4 e-foldings in
time. The O(1/ log) corrections are relevant only at the smallest values of the logs in the fit,
while they become almost irrelevant by the end of the simulations.

The fit value of the slope c1 = 0.24(2) is definitely nonzero, confirming a non-vanishing
universal increase. A straight extrapolation to log = 70 would give ξ = 15(2). The current
precision however does not allow us to exclude an even steeper growth. In fact, a fit with
an extra quadratic term (i.e. c2 log2) gives analogously good results with a positive quadratic
coefficient c2, which would lead to even bigger values of ξ at large logs. Simulations with the
fat trick, which had more time to converge to the attractor, show an even more manifest linear
log growth (see Appendix B.1). In particular the data set with initial conditions that reached
the attractor the earliest in Fig. 6 leaves very little room for any nonlinear function to be a
good fit. This suggests that ξ has a linear behavior in both the physical and fat systems, as
opposed to a steeper growth.

Because of the decoupling of the axion field at large values of the log, continued growth of
ξ beyond the reach of simulations would be compatible with the expectation that the global
string network tends to approximate the Nambu–Goto string one (and the local string one) in
the limit log→∞. Indeed, old Nambu–Goto simulations gave values of ξNG between 10 and
20 [18, 19, 28], while more recent local string ones [23, 29] give ξloc = 4(1). This is a hint
that ξ for the global string network will not saturate at least prior to log ∼ 20 (extrapolating
the linear growth).

An enhanced value of ξ was also observed in global string networks in refs. [23,27] where
a large value of the effective string tension was achieved by means of a clever modification of
the physics at the string core mr .

However, we should point out that the asymptotic evolution of the string network param-
eter ξ for axion strings has not yet been fully established. It is still unknown whether the
decoupling of the axion from the string dynamics really completes within a finite range of
logs or keeps going with an infinite running. As we will see further below, the axion spec-
trum extracted from field theoretic simulations still shows nontrivial changes in the dynamics
that could qualitatively affect the asymptotic behavior of the network. On the other hand,
Nambu–Goto simulations could also miss the asymptotic behavior of the network, as they lack
the back-reaction of the bulk fields and Kalb-Ramond effective descriptions might not capture
the physics of string reconnections and backreaction of UV modes properly. In fact even for
local string networks, which are expected to already be in the Nambu–Goto limit, a nontrivial
logarithmic evolution of ξ might be present [23,30].

To summarize, while we cannot exclude the possibility that the observed growth of ξ sat-
urates at larger values of the log, no indication of this is observed in the simulated range (it is
particularly clear that the data for the fat system is incompatible with any reasonable function
that plateaus soon after log= 8), which suggests that such a saturation could potentially hap-
pen only at much later times, if at all.6 Instead, all approaches seem to agree on a growth of ξ
to the range O(10) for log∼O(100), which is probably the most plausible and safe extrapola-
tion. For our purposes we will assume the nominal value from our fit ξ= 15 for log= 60÷70,
taking into account that this estimate might receive O(1) corrections.

Another quantity that characterizes the string network is the distribution of string veloci-
ties. We study this property in Appendix B.2 where we show that, in agreement with other stud-
ies [22,24,31], the strings are mildly relativistic with an average boost factor 〈γ〉 ∼ 1.3÷ 1.4.

equally all simulation data taking one data point every time one Hubble patch reentered the horizon (and in doing
so, correlations between data from the same simulation were also reduced). The most overdense set reaches the
attractor later and has been fitted from log= 5.5.

6Moreover the equations of motion contain no additional mass scales, which would break the self-similarity of
the attractor solution, suggesting that the increase is likely to continue.
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While this value appears to be approximately constant over the simulation time, the distribu-
tion of velocities shows a nontrivial evolution, with a subleading portion of the string network
reaching increasingly higher boost factors as the log increases. This property is also compatible
with the interpretation that the system is evolving towards the Nambu–Goto string network
behavior, for which the formation of kinks and cusps explores arbitrary high boosts, and loops
oscillate many times instead of shrinking and disappearing after one oscillation (more details
are given in Appendices B.2 and C). As a consequence of the increasing Lorentz contraction
from higher boosts, finite lattice spacing effects become more severe at larger values of the
log. Such effects can be seen in a variety of observables (in particular in those that are more
UV sensitive, see Appendix B for examples), and decrease the potential dynamical gain from
simulations with bigger grids.

2.2 Axion Spectrum

In an expanding universe, eq. (2) and the conservation of energy imply that the string network
continuously releases energy at a rate Γ ≃ ξµeff/t3 ≃ 8πH3 f 2

a ξ log(mr/H) (see e.g. [7] for
more details). As shown in ref. [7], although most of this energy is emitted into axions, in
simulations a non-negligible portion goes into radial modes (between 10% and 20%). Thanks
to our new data with larger final logs, and by analyzing the radial excitation spectrum, we
find that a significant part of the energy in radial modes is actually produced at the time
the network enters the scaling regime and the subsequent emission of radial modes becomes
less and less important (see the discussion in the Appendix B.4). This is compatible with the
expectation that UV modes decouple from the network evolution at large values of the log (see
Appendix B.3).7 We will therefore assume that at late times the emission of radial modes is
negligible and all the energy is released into axions.

The total energy density in axion radiation at late times is therefore ρa ≃ 4/3µeffξH2 log,
where the last log factor arises from the convolution of the emission rate over time.8 As ex-
plained at length in ref. [7], the contribution of such radiation to the final axion abundance
strongly depends on how the energy is distributed over axions of different momenta. A partic-
ularly useful quantity is the normalized instantaneous spectrum F(k/H) = ∂ log(Γ )/∂ (k/H),
which tracks the momentum distribution of axions produced at each moment in time by the
string network. As mentioned in the Introduction, F is expected to be approximately a single
power law F ∼ 1/kq between the IR scale set by Hubble and the UV one set by the string core.
Depending on whether the spectral index q is greater or smaller than unity, most of the axion
energy density emitted is thus contained either in a large number of soft axions or in a smaller
number of hard ones, with obvious implications for the resulting number density. For example,
if F is single power law 1/kq with compact support k ∈ [x0H, mr/2], the axion number den-
sity turns out to be na = 8µeffξHν(q)/x0 where the function ν(q) rapidly interpolates between
1− 1/q for q > 1 and (H/mr)

1−q for q < 1. It is therefore clear that the spectral index q plays
a crucial role in the determination of the axion abundance produced by the string network.

We extract q from simulations using both the physical theory and the fat string trick, with
the latter having a cleaner final spectrum with less residual dependence on the initial condi-
tions. We fit q in the range 30 < k/H < mr/4 over which it indeed shows a constant power
law behavior. The fitting interval has been chosen somewhat smaller than that over which the
network emits axions in order to further reduce possible systematics from finite volume and
grid size effects. In Appendix B.4 we show that our results remain consistent as this range is
changed, we discuss more properties of the spectra and give details of the simulations used.

7This also ensures that the dynamics of the string network are independent of the particular UV completion of
the axion theory chosen in eq. (1).

8This expression for ρa assumes radiation domination, and, in the large log limit, holds for any ξ that has at
most a logarithmic time dependence.
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Figure 2: The spectral index of the instantaneous axion emission q as a function of
time (represented by log(mr/H)) for the physical (left) and fat string systems (right). The
darker/lighter shaded regions correspond to the results of linear/quadratic fits to the data of
the simulations (in black). The clear increase in q implies that the axion spectrum is turning
IR dominated (i.e. q > 1), a regime that it will reach long before the physically relevant
log(mr/H) = 60÷ 70.

The value of q as a function of log(mr/H) is shown in Fig. 2. The data points represent
the average of q over many simulations and the error bars measure the associated statistical
errors.9 Although the spectral index is less than unity over the whole simulated range, a
nontrivial growth is evident, corresponding to a spectrum that is becoming more IR dominated.
The behavior is fit well by a linear function (i.e. q(log) = q0 + q1 log) in both the fat and
the physical systems (the dark shaded region in Fig. 2). Fits with an extra quadratic term
(+q2 log2) give compatible results (the lighter shaded region in Fig. 2), although with larger
uncertainties. This implies that the linear logarithmic growth will continue for, at the very
least, a few more e-foldings.

Hence the data in Fig. 2 strongly suggests that the spectrum becomes IR dominated (q > 1)
within one or two e-foldings beyond the simulation reach.10 Note however that the data
shown in Fig. 2 represent averages over many simulations: while at early times (log ® 6) all
the simulations that comprise our data sets have q < 1, at late times (log ¦ 7.5) a portion
already shows an IR dominated instantaneous spectrum with q > 1. This strengthens our
confidence that the spectrum indeed turns IR dominated at slightly larger values of log. Further
suggestive evidence can be found in Figs. 14 and 15 of Appendix B.4.1, in which the shape of
the instantaneous spectrum F at different times is plotted.

This nontrivial log dependence of the emitted axion spectrum correlates with all the other
evidence of evolution of the attractor’s parameters, in particular with the reduction of UV mode
emission. The most conservative extrapolation of the data in Fig. 2 is to values of q larger than
unity at late times. Fortunately, as we will explain in the next Section, as long as q > 1 the
final axion abundance only has a very weak dependence on its precise value. For this reason
we will not attempt to perform a real extrapolation of q from the data in Fig. 2, but we will
just assume that at log> 60 its value is definitely larger than unity (say, q > 2).

To summarize, we performed dedicated high-statistics large-grid simulations of the axion
string network, providing strong evidence for nontrivial evolution of the network’s scaling
parameters towards the expected behavior of Nambu–Goto-like strings. In particular, both the

9At late times the statistical errors increase because of the reduction in the number of independent Hubble
patches in a simulation box. Meanwhile, at small values of the log the reduced range in the spectrum to fit q

(which is particularly important for physical simulations where the contamination from not-yet-fully-redshifted
UV modes is more severe) counteracts the large number of Hubble patches available at these times.

10Confirming this directly would require grids of order 200003 or bigger, which are beyond our current reach
(but may be reachable in the coming years), or through improved numerical algorithms [32].
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string density and the axion spectrum vary in a way that, once extrapolated to the physical
parameter region relevant for QCD axions, can make the relic axion component produced by
strings orders of magnitude larger than the naive one inferred directly from simulations.

The possibility that topological defects, in particular strings, might provide the dominant
contribution of relic axions (much larger than the naive misalignment one) was already argued
long ago [33–36], by assuming that at late time the axion string network’s dynamics was well
approximated by the Nambu–Goto one, and in particular q > 1. Our results in this Section
represent the first clear evidence from full field theory simulations in support of this picture
and provide a more detailed characterization of how this limit is approached.

3 From Strings to Freedom

The scaling regime discussed in the previous Section ends at temperatures of order the QCD
scale, when the axion potential becomes relevant and the PQ symmetry is explicitly broken.
At this time each string develops N domain walls (where N = v/ fa is the QCD anomaly co-
efficient). For N = 1 (we will discuss the case N > 1 in Section 3.3) there are no conserved
quantum numbers left, and the network of strings and walls subsequently decays into axions.

As mentioned in the Introduction, a huge hierarchy of scales forbids a direct numerical
study of the system at these times. Given the observed evolution of the properties of the
string network (which dramatically changes the dynamics at large scale separations already
during the scaling regime) we cannot trust results for the string/wall system dynamics from
simulations that are carried out so far away from the physical point. Instead, we focus solely
on the contribution of axions produced before the axion potential becomes relevant (i.e. on
axions emitted while the system was still in the scaling regime), which requires far fewer
theoretical assumptions and extrapolations. To do so, we will study the nonlinear evolution
of these axions through the QCD transition in isolation, ignoring the presence of strings and
walls and the additional axions they decay into. This allows us to perform direct numerical
simulations without the need for any extrapolations. The price to pay is that we miss the
component of axions that is produced from the decay of strings and domain walls, which
will presumably contribute further to the abundance. In this way we obtain only a lower
bound on the final abundance. One may worry that the strings and walls, and the axions
produced from them afterwards, could interfere with the evolution of the preexisting axions
that we are trying to reconstruct. However, barring an unlikely highly-efficient absorption
of background axions by topological defects, their presence is not expected to alter our lower
bound considerably, and at worst might weaken it by an order one factor (which, in any case, is
not more than other sources of uncertainties that we will discuss at the end of the Section and
in Section 4). This fact is further supported by a study in Appendix F.2 where we performed
dedicated simulations to analyze the evolution of the axion radiation (as predicted by the
scaling regime at log∼ 60÷ 70) when strings and domain walls are included.

Away from topological defects the Hamiltonian density describing the propagation of the
axion field is

H =
1
2

ȧ2 +
1
2
(∇a)2 +m2

a(t) f
2
a [1− cos(a/ fa)] , (4)

where, as suggested by the dilute instanton gas approximation [37] and supported by recent
lattice simulations [38–42] (see also ref. [43] for a recent review), we assume that the axion
potential at early times is described by a single cosine potential and the axion mass has a power
dependence on the temperature ma∝ T−α/2∝ tα/4, with α≃ 8 the preferred value.11

11The temperature dependence and the form of the axion potential is expected to change at T ∼ Tc ≃ 155 MeV
and below, where the axion potential is well approximated by the zero temperature prediction [44]. However, we
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Naively one might think that the axions produced by strings propagate freely like radiation
until their momenta (which is typically of order a few H) become of the same order as the axion
mass ma, after which they would start propagating as nonrelativistic matter. Throughout this
whole process the comoving number density would be conserved. This is true if the axions
remain weakly coupled for the whole time. Indeed the axion couplings are suppressed by
either H/ fa or ma/ fa, most of the axions have small momenta of order H ≪ fa and the
effective coupling to strings is also suppressed by 1/ log≪ 1.

However, as we will see below, the large quantity of axion radiation produced during the
scaling regime implies that the average value of the field 〈a2〉1/2 ≫ fa, and nonlinear effects
have an important effect on the axion number density. This whole process can be studied
directly through numerical simulations of the axion field alone. The initial conditions are taken
from the axion spectrum emitted by strings during the scaling regime extrapolated to the time
t = t⋆, which we define as the moment when H(t⋆) = ma(t⋆), since we find that the axion
spectrum is still unaffected by the potential at this point (see Appendix D). More axions will
be emitted afterwards, however, since their spectrum is unknown, we conservatively do not
include them in the initial conditions, and therefore not in our lower bound. Before presenting
the results of our simulations we first describe what our expectations are for the effects of
nonlinearities. In particular, we derive an analytic formula for the final axion abundance that
agrees surprisingly well with the numerical results and correctly reproduces the dependence
on the relevant parameters.

3.1 Analytic Description

As mentioned in Section 2.2, the energy density of the axions produced by the string network
up until t = t⋆ isρa(t⋆)≈ ξ⋆µeff,⋆H

2
⋆ log⋆ (from now on the subscript “⋆” on a quantity indicates

that it is computed at t = t⋆, log⋆ ≡ log(mr/H⋆)), where the last log⋆ factor arises from the
convolution of axion energy densities emitted over the course of the scaling regime. Using
the results of Section 2 on the evolution of the network (in particular the fact that q > 1 long
before t∗) the overall energy density ρa,⋆ is distributed with a scale invariant spectrum (up
to logarithmic corrections), i.e. ∂ ρa/∂ k ∝ 1/k, between the IR cutoff at k ∼ kIR = x0H⋆
(with x0 =O(10)) and the redshifted UV scale at k ∼

p

H⋆mr . We refer to Appendix E for the
derivation of this result, and to eq. (23) for the explicit form of ∂ ρa/∂ k.

The evolution of high frequency modes with k ≫ kIR is dominated by the gradient term
even long after t = t⋆. Therefore, the nonlinearities arising from the axion potential are negli-
gible for the entire evolution of these modes. As a result, we have to focus only
on the IR part of the spectrum, the contribution of which to the energy density is
ρIR ≈ 8ξ⋆µeff,⋆H

2
⋆ ∼ 8πξ⋆ log⋆H2

⋆ f 2
a (more precisely we define ρIR as the integral of the axion

spectrum over momenta k < cmma, with cm = O(1) coefficient, since for higher modes the
potential term is subleading). Given the extrapolated values of ξ⋆ and log⋆ from Section 2, at
t⋆ the IR axion energy density ρIR ∼ O(104)H2

⋆ f 2
a is much larger than the contribution from

the axion potential (ρV = m2
a f 2

a [1 − cos(a/ fa)]), which is bounded by ρV,⋆ < 2H2
⋆ f 2

a . This
means that at t = t⋆ most of the energy density is still contained in the gradient part of the
Hamiltonian (1

2 ȧ2 + 1
2(∇a)2). Several implications follow from this fact.

First, since the gradient term dominates the Hamiltonian evolution of the field, even the
modes with k < ma, which in the linear regime would behave nonrelativistically, will not feel
the presence of the potential term and so continue evolving as a free relativistic field after t⋆,
until ρV becomes comparable to ρIR.

Moreover, since the typical gradient of the field is set by H⋆, in order for the gradient term

will see that for the range of parameters relevant for the QCD axion dark matter, the evolution of the axion field
will turn linear at higher temperatures while the above ansatz is expected to still hold.

11

https://scipost.org
https://scipost.org/SciPostPhys.10.2.050


Select SciPost Phys. 10, 050 (2021)

of the Hamiltonian density to account for ρIR the amplitude of the IR modes needs to be much
larger than fa, i.e. 〈a2〉/ f 2

a ∼ O(ξ⋆ log⋆).
12 This means that at large ξ⋆ log⋆ the axion field

is mostly a superposition of waves, with wavelengths of order Hubble, that wind and unwind
the fundamental axion domain (−π fa, π fa) several times in a topologically trivial way. Points
in space with a/ fa ∼ π mod 2π correspond to the core of domain walls with the topology of
a sphere. For ξ⋆ log⋆≫ 1 there will be multiple domain walls nested inside each others, with
a deformed onion-like structure. The presence of these domain walls however does not play
any role as long as ρV < ρIR since the field continues to evolve freely.

During this period the field keeps redshifting relativistically, the amplitude of the field
decreases, ρIR = ρIR,⋆(t⋆/t)2 and the comoving number density of axions remains constant.
Meanwhile, as the temperature continues to drop, approaching the QCD transition, the axion
mass andρV increase rapidly. Eventually, at t = t

ℓ
defined as the time whenρIR(tℓ) = cVρV (tℓ)

(with cV an order one constant), the presence of the axion potential becomes important and
the dynamics turn completely nonlinear. This corresponds to the moment when the domain
walls start to be resolved, i.e. when the thickness of each domain wall (∼ 1/ma(tℓ)) has shrunk
below the average distance between two walls (∼ k−1 fa/〈a2〉1/2 ∼ fa/ρ

1/2
IR (tℓ)). Soon after,

domain walls, being topologically trivial, annihilate into axions. Except for few loci where
oscillons can potentially form (which anyway can only take away a negligible portion of the
total energy density, as shown in the next Section), the axion field amplitude continues to
drop, rapidly falling below fa. Nonlinearities fade away and conservation of the comoving
axion number density is restored.

We can thus assume that during the nonlinear transient (at t ∼ tℓ) the axion energy den-
sity ρIR ∼ ρV ∼ m2

a(tℓ) f
2
a is promptly converted into nonrelativistic axions. The corresponding

number density is nstr
a (tℓ) = cnρIR(tℓ)/ma(tℓ) ≃ cnma(tℓ) f

2
a , where cn is an order one coef-

ficient taking into account transient effects, extra contributions from higher modes, etc. The
value of ma(tℓ) can be extracted from the definition of tℓ above and for α≫ 1 (i.e. neglecting
redshifting effects of ρIR with respect to the much faster axion mass growth) it is paramet-
rically given by ma(tℓ) ≃ (ξ⋆ log⋆)

1/2H⋆. We therefore expect that, up to order one factors,
the axion number density after the nonlinear regime is nstr

a (tℓ) ≃ (ξ⋆ log⋆)
1/2H⋆ f 2

a , i.e. it is
enhanced by a factor (ξ⋆ log⋆)

1/2 with respect to the misalignment contribution. Note that
the enhancement, while substantial, is parametrically smaller than the naive one obtained by
assuming that the axion field remains linear throughout the QCD transition, which would be
ξ⋆ log⋆.

The main effects of the nonlinearities can be simply summarized as follows: the large
energy density stored in the axion gradient term delays the moment when the axion mass and
potential become relevant. In the meantime the axion mass is growing fast, so that, by the
time the potential becomes relevant and the axions nonrelativistic, more energy is required to
produce each axion and the comoving number density is suppressed.

The estimate above can be improved by keeping all the order one factors, taking into
account the actual shape of the spectrum and the effects of redshifting from t⋆ to tℓ. The full
computation is discussed in Appendix E.1 and gives

Q =
nstr

a (tℓ)

n
mis,θ0=1
a (tℓ)

= Aξ⋆ log⋆,x0

�

ξ⋆ log⋆
� 1

2+
1

4+α , (5)

where n
mis,θ0=1
a (tℓ) is the axion number density from misalignment with θ0 = 1 redshifted to tℓ,

the prefactor Aξ⋆ log⋆,x0
is a function of all the parameters (including the order one coefficients

cm, cV , cn) but with only a mild logarithmic dependence on ξ⋆ log⋆, and x0 (the full form is given
in eq. (36)). The dependence on q is further suppressed by 1/ log⋆, as shown in Appendix E.1.

12See eq. (25) in Appendix E for an explicit derivation based on the spectrum.
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The result in eq. (5) assumes that ξ⋆ log⋆ ≫ 1 and involve several approximations,
parametrized by some unknown order one coefficients. These crudely describe the number
of IR modes involved in the nonlinear dynamics (cm), the relative importance of the potential
versus the gradient energy in IR modes when nonlinearities become relevant (cV ) and the con-
version factor of energy density into number density during the true nonlinear transient (cn).
While these numbers can only be fixed through numerical simulations, the full dependence on
ξ⋆ log⋆ as well as the subleading ones on α and x0 are genuine prediction of our analysis. As
we will see next, they are nicely reproduced by the numerical simulations.

3.2 Comparison with Simulations

The dynamics discussed above can be checked by numerically integrating the axion equations
of motion from the Hamiltonian density in eq. (4). We start the simulations at t = t⋆ with
initial conditions set by the axion field radiation that would be produced during the scaling
regime for different values of ξ⋆ log⋆ and x0. The form of the spectrum is characterized by the
position of the IR cutoff (x0) and the spectral index of the instantaneous spectrum (q), while
the overall size is controlled by the parameter ξ⋆ log⋆. We carry out simulations with different
values of α, which fixes the temperature dependence of the axion mass. More details are given
in Appendix E.2.

For sufficiently large ξ⋆ log⋆ the numerical simulations show that the system indeed con-
tinues to evolve as in the absence of a potential after t = t⋆, redshifting as radiation and with
a conserved comoving number density. More details and plots are given in Appendix E.3. The
larger ξ⋆ log⋆ is, the longer the period of relativistic redshift lasts. This regime ends, as ex-
pected, with a nonlinear transient, after which the mean square field amplitude rapidly drops
below fa (see Fig. 23).

At this point the field settles down around the minimum of its potential at a = 0, oscillating
with an amplitude that is much smaller than fa almost everywhere. Consequently, the system
becomes linear again except in a few localized regions of size m−1

a (t)where the field continues
oscillating with an amplitude of the order π fa. These objects, remnants of the large initial field
amplitude (with a > fa at t = tℓ), are known as oscillons or axitons [45, 46]. Oscillons are
heavy and slowly decay radiating their energy density into axion waves with momentum of
order ma. Their lifetime is long enough that they persist until the end of our simulations.
However, only a very small portion of the energy density remains trapped in oscillons, so that
their presence is irrelevant for the computation of the final axion abundance. More details
about the oscillons can be found in Appendix E.3.

Everywhere else the axion field is in the linear regime by the end of the simulations. We can
therefore calculate the total axion spectrum ∂ ρa/∂ k and number density
nstr

a =
∫

dk(∂ ρa/∂ k)/ωk (ωk =
Æ

k2 +m2
a). We do so screening away the regions occupied

by oscillons, and we use the difference with the unscreened results to estimate the uncertainty
introduced by the presence of these objects. As anticipated the difference is small, which con-
firms that only a negligible portion of the energy density is trapped in oscillons. Moreover,
as expected, after the screening the conservation of the comoving number density further im-
proves. Additional discussion and plots are given in Appendix E.2. Thanks to the rapid growth
of the axion mass, the nonlinear regime is reached not long after t⋆ and the system soon be-
comes linear again, after a short transient, as the field relaxes below fa. For this reason, in
the range of ξ⋆ log⋆ and fa under consideration (ξ⋆ log⋆ ® 105, fa ® 1011 GeV), the system
reenters the linear regime (and our simulations end) at temperatures that have dropped by, at
most, a factor of four from that at t⋆. This is still above the QCD transition, in a regime where
the axion potential used in eq. (4) should hold.

The agreement between the numerical simulations and our analytic description is not only
qualitative but also quantitative. We compare the two using the ratio Q = nstr

a /n
mis,θ0=1
a of
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Figure 3: The late time ratio between the axion number density from strings and from
misalignment (with θ0 = 1) as a function of ξ⋆ log⋆ for varying x0 (the IR cutoff of the axion
spectrum in units of Hubble) and fixed α = 8 (the power law controlling the temperature-
dependence of the axion mass). The data points are the results from simulations with statis-
tical errors, and the curves correspond to the analytic prediction of eq. (5) (see Appendix E.1
and eq. (36) for more details).

eq. (5), between the number density of axions from strings and the reference one from mis-
alignment (with initial misalignment angle θ0 = 1). Since both nstr

a and n
mis,θ0=1
a are conserved

per comoving volume at late times, Q asymptotes to a constant value. The results for Q for
α= 8 and x0 = 5,10, 30 are plotted in Fig. 3 as a function of ξ⋆ log⋆, and the comparisons for
the other values of α are reported in Appendix E.2. The three parameters of the analytical for-
mula cm, cV , cn have been fixed with a global fit of Q including all the simulations with different
values of α, x0 and ξ⋆ log⋆. The agreement between the theoretical estimate and the simula-
tion data is remarkable given that: 1) all data is fit with just three universal parameters which
indeed turn out to be of order one, and 2) the dependence on ξ⋆ log⋆, which is a prediction
(not the result of a fit), agrees very well over multiple orders of magnitude. The only slight
deviation is at low values of ξ⋆ log⋆ where the approximations used in the analytic formula
are not in fact valid. More details about the dependence on the input spectrum, the values
of the fitted input parameters and the dependence on the other parameters can be found in
Appendix E.2. Here we simply note that, as anticipated, the dependence on the spectral in-
dex q of the spectrum from the scaling regime is negligible as long as q is away from unity.
Although the numerical simulations are capable of covering the parameter space relevant for
the QCD axion (discussed in Section 4), our analytic formula, in addition to providing a better
understanding of the physics behind the nonlinear effects, would allow us to interpolate and
extrapolate the simulation results to other values of the parameters if needed.

We will discuss the phenomenological implications of our results in Section 4; first we
analyze the effects of nonlinearities on the shape of the final axion spectrum in more detail.
As shown in Fig. 25 in Appendix E.3, the spectrum continues to redshift almost unaltered after
t⋆ until it reaches the nonlinear regime at around t = tℓ. At this point the energy contained
in modes k ® ma(tℓ), is converted into massive nonrelativistic axions. For this to happen
axions with k ® ma(tℓ) need to combine with each other to generate on-shell axions with mass
ma(tℓ), and the comoving number density of this component cannot be conserved. In other
words, nonlinearities remove the IR part of the spectrum via 3-to-1, 5-to-3, etc. processes.
The smaller k-modes are those with the larger occupation number and they therefore suffer
stronger nonlinear effects. The resulting spectrum after the end of the nonlinear transient
will therefore be peaked at physical momenta that were of order ma(tℓ) at t = tℓ, which is
significantly higher than the would-be peak at x0H⋆ (at t = t⋆) had the nonlinearity been
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Figure 4: The axion energy density spectrum at H = H⋆ (dashed lines) and after the nonlin-
ear transient (at the final simulation time H = H f , solid lines) for ξ⋆ log⋆ = 102 (green), 103

(orange) and 104 (purple), as a function of the comoving momentum kcom ≡ k(H⋆/H)
1/2.

The lower and upper (solid) lines of the same color correspond to the results obtained with
and without the oscillons masked. The unfilled dots show the comoving momenta corre-
sponding to the physical momenta that are equal to the axion mass at the final time (i.e.
kcom = ma(t f )(H⋆/H f )

1/2). We also indicate the comoving momenta corresponding to the
physical momenta that are equal to the axion mass at t = tℓ (i.e. kcom = ma(tℓ)(H⋆/Hℓ)

1/2,
filled dots), which is parametrically the time when the nonlinear transient occurs.

absent. In particular, the value at the peak grows with ξ⋆ log⋆. This is shown in Fig. 4 where
we plot the spectrum as a function of the comoving momentum kcom ≡ k(H⋆/H)

1/2 for the
three values of ξ⋆ log⋆ = 102, 103, 104, at the initial time t = t⋆ and at the final simulation
time.

The deformation of the spectrum above could have important implications for the prop-
erties of the small scale structures produced by the axion inhomogeneities known as mini-
clusters [47] (see also [25,26,48,49] for recent studies).

Figure 4 also shows the role of oscillons. These only affect the spectrum at momenta of
order ma, indicated by empty dots (see Appendix E.3 for details). Since the largest contribution
to the number density comes from the peak of the spectrum, once ma(t) is sufficiently above
this (as is the case at late enough times) the screening of oscillons does not significantly affect
the measured axion number density. This matches the results for the number density evaluated
directly, described above.

We finish this Section by briefly discussing the possible effects of the presence of strings and
domain walls during the QCD transition, which have been omitted so far. We first note that at
t = t⋆ the energy density in the string network is comparable to that we considered from the
IR part of the axion radiation (ρIR), and it is mostly localized along the strings themselves, so
the dynamics of the field away from the strings should be largely unaffected by their presence.
After t⋆ domain walls start to form but their energy density is bounded by the axion potential,
and becomes relevant only much later, when the axion field has relaxed to values a ∼ π fa

everywhere. Hence away from strings we do not expect the dynamics of the axion field to
be significantly different from those we computed, at least until t ∼ tℓ. At this point the
nonlinear transient starts. The difference with respect to our simplified case is that, as well
as our topologically trivial domain walls, extra walls surrounded by strings are also present.
If the extra string-wall network decays during the transient, then as we saw before the total
energy density (that in strings walls and radiation) is expected to convert into axions with
a conserved comoving number density of order (ρtot(tℓ)/ma(tℓ)). If for some reason13 the

13One possibility could be that, analogously to string loops, which at large values of the log are expected to
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string-wall network were to survive for longer, away from them the field would still evolve as
calculated above. Therefore, we would expect that the results given above should represent,
up to O(1) factors, a lower bound on the axion abundance regardless.

It would be quite surprising if the extra string-wall system were able to wipe away the bulk
axions with a high enough efficiency to suppress their big contribution to the final abundance
significantly. To further exclude this possibility we performed dedicated simulations where,
as well as the axion radiation predicted by the scaling regime, we also included the strings
(and the domain walls that form from them) during the mass turn on. In these simulations,
the background axion radiation is as it would be with the physical parameters (i.e. with the
spectrum and energy density expected at log⋆ ∼ 60÷ 70). However, the string-domain wall
network is evolved with the currently allowed log(mr/H)® 7, so ξ⋆ log⋆ for the string system
is much smaller than the physically relevant value. As expected, the presence and decay of
strings and domain walls does not significantly alter the evolution of the preexisting back-
ground radiation, and thus does not decrease the final abundance. Since in such simulations
ξ⋆ log⋆ for the string network is small, and the emission from the decay of strings is UV domi-
nated, the inclusion of strings also does not noticeably increase the final abundance. We refer
to Appendix F for more details and the explicit results of these simulations.

From this study we learn two important lessons. Calculations of the axion abundance from
brute force simulations of the whole evolution of the string-domain wall system can easily miss
the dominant source of axion emission, underestimating the final relic abundance by more
than one order of magnitude. Moreover, the explicit inclusion of strings in the late evolution
of the field does not play a role unless their contribution starts becoming comparable to that
from radiation during the scaling regime, at which point a tuned cancellation among the two
sources would be surprising.

3.3 The case N > 1

We now discuss the generalization of our results to the case N = v/ fa > 1. First notice that in
the equations of motion from the Lagrangian in eq. (1) the scale v can be removed by rescaling
the complex scalar field φ. This means that the string dynamics during the scaling regime do
not depend on v. The way v enters observables is just fixed by dimensional analysis, and in
particular all energy densities, number densities and the string tension are proportional to v2.
Therefore, the axion spectrum produced during the scaling regime in the general case can be
recovered by simply multiplying the results of Section 2 by N2.

On the other hand, the axion potential produced by QCD in eq. (4) involves the scale fa.
In all our computations in Section 3, the scale v only enters through the axion spectrum via
the scaling solution used as an input, where it appears in combination with ξ⋆ log⋆. All the
results in Section 3 can therefore be generalized by simply substituting ξ⋆ log⋆ with N2ξ⋆ log⋆
(e.g. in eq. (5) and in Figs. 3 and 4).

The effect of v > fa is therefore to increase the energy density of the axions produced by
strings (as a result of the enhanced string tension), increasing the field amplitude and therefore
the effects of nonlinearities. Roughly, the final number density of axions will be enhanced by
an O(N) factor, and the peak in the final spectrum will be UV shifted by a similar amount.

oscillate many times before shrinking and disappearing, domain wall disks surrounded by string loops might also
behave similarly in this regime.
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4 Results and Phenomenological Implications

We can now extract some phenomenological implications from the results of the previous Sec-
tions. In particular, given the extrapolated values of the axion spectrum from the string scaling
regime, Fig. 3 and Section 3.3 provide a lower bound on the axion number density (in terms of
the easily computed misalignment result). This can be translated into corresponding bounds
on the axion mass and its decay constant requiring that such an abundance does not exceed
the current observed dark matter value. As reference values we choose ξ⋆ = 15, x0 = 10,
q > 2, α= 8, log⋆ = 64, which for N = 1 (as in the minimal KSVZ model [50,51]) imply

ma ¦ 0.5 meV , fa ® 1010 GeV , (6)

while for N = 6 (as occurs in e.g. the DSFZ model [52,53]) they imply

ma ¦ 3.5 meV , fa ® 2 · 109 GeV . (7)

For comparison, the naive axion number density from misalignment in the post-inflationary
scenario is obtained by averaging the misalignment relic abundance with a flat θ0 distribution
in the interval [0, 2π]. This gives n

mis,avg
a ≃ 5n

mis,θ0=1
a , which corresponds to ma ≃ 0.028 meV

and fa ≃ 2 · 1011 GeV, more than an order of magnitude weaker than our bound.
We do not think that it would be fair to associate an error to the figures in eqs. (6) and

(7): shifts of O(1) could be expected, but we would be surprised if these bounds relax by
significantly more than a factor of two. To provide a better feeling for the main sources of
uncertainty, and the choices of parameters used, we will now go through all the assumptions
underlying the numbers above:

ξ⋆: We fixed the value of ξ⋆ = 15 from the best fit of the scaling solution described in Sec-
tion 2. As discussed at length this number assumes that the linear-log behavior observed
in simulations extends beyond the simulation range by another order of magnitude.14

While such an assumption can be questioned, other independent studies support a simi-
lar enhanced value. These include refs. [23,27], which partially reproduce the possible
effects of an enhanced string tension and find ξ⋆ ≃ 5; Nambu–Goto simulations, which
seem to prefer values between 10 and 20 [18, 19, 28]; and recent local string simula-
tions, which give ξloc = 4(1) [23, 29]. Since the final abundance approximately scales
as ξ1/2

⋆ , even assuming that the growth of ξ saturates at the smaller values ξ⋆ ≃ 4÷ 5,
this would affect the final bound by less than a factor of 2, within our target precision.
Substantially larger deviations from our central value seem unlikely.

q: The main assumption behind the result above is associated to the spectral index q being
larger than unity. Although present simulations cannot provide a proof, our analysis in
Section 2 shows that q > 1 is by far the most conservative extrapolation of the results
from simulations. This extrapolation is also supported by theoretical arguments about
the expectation that the string network approaches the Nambu–Goto dynamics at large
values of log⋆. With q > 1 the instantaneous axion spectrum emitted by strings is IR
dominated. The corresponding integrated spectrum (which determines the final abun-
dance) is therefore fixed and only very weakly dependent on the actual value of q. As
a result, the actual extrapolated value of q does not lead to large uncertainties in our
estimate (see Appendix E.3).

log⋆: We set the reference value of log⋆ = 64, corresponding to fixing fa ≃ 1010 GeV, mr ≃ fa

and the value of α = 8 (discussed below). Much smaller values for log⋆ are in principle

14A similar linear-log increase has been seen in independent studies of global strings in [22–27].
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allowed (mr ¦ keV from astrophysical and fifth force experimental constraints) although
these are much less plausible given that the smallness of mr would not come for free.

x0: We set the position of the IR cutoff of the spectrum x0 = 10 from the results of the
simulations at log ® 8 (see Fig. 14). Within the available range of simulations x0 is
consistent with being constant, although we cannot exclude a slow evolution which
would change its value at large log⋆. One might indeed expect that x0 could increase
with ξ1/2, as the average interseparation between strings is reduced.15 The study of the
evolution of x0 from simulations is more challenging than that of q since it is much more
sensitive to finite volume effects and it requires a better understanding and modelling of
the shape of the IR peak. Fortunately, as discussed in the previous Section and explicitly
shown in Appendix E.1, the final abundance is only logarithmically sensitive to x0, so
even a substantial change at large values of log⋆ has a limited impact on the final result.
This can also be seen in Fig. 3.

α: We set the index that controls the temperature dependence of the axion potential to the
value α= 8, which corresponds to the prediction of the dilute instanton gas approxima-
tion at weak coupling. Although this computation is probably out of its regime of validity
at the temperatures we are interested in, the same value of α seems to be supported by
the most recent lattice QCD simulations. Waiting for an independent check we adopt
this value as the reference one and provide the results for generic α in Appendix E. Sim-
ilarly the results in refs. [38, 42] suggest that a simple cosine is a good approximation
to the axion potential for the temperatures relevant to the nonlinear regime.16

– Extra strings-domain walls contribution: The last source of systematic error comes from
neglecting the extra contributions from strings and domain walls present after t⋆. As
discussed at length in the previous Section, we expect these to add further to the ax-
ion abundance, hence our lower bound. If the extra contribution is subdominant then
our bounds would turn into central values for the abundance. If the extra contribution
dominates, they will become strict inequalities. We cannot exclude a partial destruc-
tive interference between these extra contributions and the axion spectrum produced at
earlier times. However it would be highly unlikely that it could weaken the bounds in
eqs. (6) and (7) beyond an O(1) factor, i.e. by more than the size of the other uncer-
tainties.

When combined with astrophysical constraints, the bounds in eqs. (6) and (7) restrict the
allowed parameter space for the QCD axion in the post-inflationary scenario quite substantially.
In particular, they motivate efforts to further explore a region of parameter space that could
in principle be probed by astrophysics, as well as axion dark matter [54–57] and non dark
matter [58–60] experiments. In Fig. 5 we show our bound for the QCD axion mass in the
post-inflationary scenario, together with constraints on the axion-photon coupling gaγγ

17 from
currently running experiments and the parameter space that could be probed by proposed
experiments.18

15We thank Javier Redondo for a discussion on this point.
16We also note that the uncertainty introduced by the number of degrees of freedom in thermal equilibrium at

t = t⋆ and t = tℓ, and by the changes between these times, is relatively small, certainty within our target precision.
17Defined as L ⊃ − 1

4 gaγγaF F̃ in the low energy theory, where F is the electromagnetic field strength.
18The existing experimental and observational bounds shown are from ADMX [61,62], earlier cavity experiments

“UF/RBF” [63, 64], HAYSTACK [65], CAST [66], observations of horizontal branch starts “HB" [67], supernova
1987a “SN1987a” [68–70] (see however [71]) and red giants and white dwarf stars “RG/WD” [72–75]. The
constraints on DSFZ axions from supernova 1987a, red giants and white dwarfs are model dependent via the
mixing angle β . For those from white dwarfs and red giants we plot the limit from [75] for tanβ = 1. The
limit from supernova 1987a is ma < 0.02 eV for tanβ = 1 and this barely weakens for smaller tanβ but it
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Figure 5: The axion parameter space in terms of its mass and coupling to photons
gaγγ. Solid green lines indicate the allowed parameter space in the post-inflationary
scenario for the minimal KSVZ model and the DFSZ model, given our constraints
from dark matter overproduction (eqs. (6) and (7)), while the dashed green lines
indicate our estimate of the uncertainty on these results. The green shaded band
indicates the post-inflationary parameter space allowed by the bound for more gen-
eral axion models. Vertical green lines show our lower bounds on the axion mass
at ma = 0.5 meV and ma = 3.5 meV for N = 1 and N = 6 respectively. We also
indicate, in red, the allowed axion masses in the pre-inflationary scenario (the cor-
responding gaγγ lie in the partially transparent grey band), the upper limit of which
ma ® 1.5 · 10−3 eV is set by isocurvature fluctuations. Existing experimental bounds
and observational constraints (solid lines) on gaγγ as a function of the axion mass
and the projected sensitivity of proposed experiments (dotted) are also shown. The
limit on DFSZ models from white dwarfs and red giants (“WD/RG”) is indicated for
tanβ = 1 [75] , while the supernova-1987a limit on such models (“SN1987a”) spans
the blurred region as tanβ varies (the corresponding constraint on KSVZ models is
ma < 15 meV) [70]. The post-inflationary region that we identify could also be
probed by future experiments sensitive to the axion’s couplings to matter [54,59]. In
combination with the bound from supernova, the region of viable QCD axion masses
in the post-inflationary scenario is restricted to ma ≈ 0.5÷ 20 meV.
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Interestingly, the allowed window is almost complementary to that of the pre-inflationary
scenario. The upper bound on the mass in this case is fa ¦ 3.7 · 109 GeV and comes from
requiring that the Hubble parameter during inflation is small enough to avoid observational
constraints on isocurvature from Planck [83], but at the same time above ma so as not to de-
plete the misalignment abundance during inflation. In fact, in the overlapping region both the
pre-inflationary and post-inflationary scenarios predict nontrivial small scale structures from
the axion self-interactions [84], although the details are expected to differ as a consequence
of the different origins of field inhomogeneities.
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A The String Network on the Lattice

In this Appendix we summarize the methodology behind our numerical simulations of the
scaling regime. In these we evolve the equations of motion of the Lagrangian in eq. (1),

φ̈ + 3Hφ̇ − ∇̃
2φ

R2
+φ

m2
r

f 2
a

�

|φ|2 −
f 2
a

2

�

= 0 , (8)

where ∇̃ is the gradient with respect to the comoving coordinates, on a discrete lattice with a
finite time-step19 (we fix v = fa as in Section 2). We assume radiation domination in a spatially
flat Friedmann-Robertson-Walker background, so the scale factor grows as
R(t)/R(t0) = (t/t0)

1/2, where t0 is the initial simulation time and H ≡ Ṙ/R = 1/(2t). The
comoving distance between lattice points remains constant, so the corresponding physical dis-
tance grows as ∆(t) =∆(t0) (t/t0)

1/2.
We carry out simulations of the physical string system, for which mr is constant, and also

the so-called fat string system in which mr(t) = mr(t0) (t0/t)1/2. The core-size of strings is
characterized by the length scale associated to the region where |φ|< fa/

p
2 and this is set by

m−1
r . Consequently, for physical strings the number of lattice points per string core decreases

through a simulation, while for the fat string system it remains constant.
As discussed in Section 2, for a given grid size the maximum log(mr/H) that a simulation

can reach is limited by the simultaneous requirements that systematic errors from the finite
lattice resolution and from the finite box size do not become too large. The former constrains
the maximum value of mr∆, while the latter imposes a lower bound on H L, where L is the

strengthens slightly (up to the edge of the blurred region) for large tanβ [70]. The proposed experiments shown
are ABRACADABRA [76], superconducting radio frequency cavities “SRF” [77] (see also [78]), CULTASK [79],
MADMAX: [80, 81], tunable plasma haloscopes “Plasma” [56], TOORAD [55], phase measurements in cavities
“phase” [60], absorption by gapped polaritons “polaritons” [57] and IAXO [58].

19Many of the details of our implementation follow those described in Appendix A of [7]. For example, it is most
convenient to work in terms of the rescaled field ψ = R(t)φ/ fa, so that the Hubble term in eq. (8) is canceled.
Rather than reviewing all such technicalities, here we focus on the key features and the differences in our present
work.
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physical box length, defined in Section 2. The corresponding maximum log(mr/H) is the same
for simulations of fat and physical strings, however the fat string system evolves for a longer
cosmic time before this is reached. The maximum gridsize is limited by the available computa-
tional resources, and we carry out simulations with up to 45003 lattice points.20 The relatively
large values of log(mr/H) accessible with such grids are vital in identifying the evolution of q

described in the main text.
The numerical values of mr∆ and H L that can be used without introducing significant

errors must be determined by direct testing in simulations. For log ® 6.5, mr∆ = 1 is suf-
ficient for most observables of interest [7], however the bigger values of log in our present
simulations necessitates that these are re-analyzed. We carry out a study of the finite lattice
spacing effects from mr∆ in Appendix B, where we show that some observables are indeed
increasingly sensitive as log increases. To maximise the accessible value of log, we ran sim-
ulations until H L = 1.5. For this value ξ still coincides with the infinite volume limit (see
Appendix B.1). The IR part of the spectrum starts being slightly distorted, but not in the range
of momenta used for the extraction of q, which still coincides with the infinite volume limit
(see Appendix B.4.2). With these choices of mr∆ and H L, our simulations reach log≃ 8.

A.1 Selecting the Initial Conditions

For simulations to show the properties and log dependence of the attractor solution as clearly
and accurately as possible, the initial conditions need to be fixed as close as possible to the scal-
ing solution. If this is not done the network will go through a transient period as it approaches
the attractor, decreasing the range of log over which its properties can be reliably studied.
Indeed, the dynamics during the transient will differ from those in the scaling regime, and ξ
and q might not show their true asymptotic evolution.

One requirement to be on scaling is connected to the initial density of strings. Simulations
with too small a density will fail to reproduce the right properties associated to string inter-
actions responsible for maintaining the attractor regime. Meanwhile, too large densities will
lead to an enhanced string interaction rate and an overproduction of radiation with respect to
the scaling regime. A possible criterion to identify the optimal initial conditions is to choose
those with the highest density of strings that do not show a clear initial drop of ξ before the
observed universal asymptotic growth.

Another source of systematic noise is associated to initial excitations of the strings core.
For example, such excitations will be triggered if the initial configuration contains strings with
core-sizes that are significantly different to those on the attractor, which are parametrically
set by m−1

r . As the network evolves the strings cores relax to the properties they have on
the attractor regime emitting UV radiation that pollutes the axion spectrum (mostly around
the frequency mr/2, as a result of the parametric resonance with the radial modes – see Ap-
pendix B.4). Although at late times (log ≃ 60 ÷ 70) such radiation is completely negligible
because of the huge redshift, the effect can be sizable in the limited extent of simulations.

The initial conditions are more important when studying the physical string system than
the fat string one for two reasons. First, thanks to the longer cosmological time range, the
fat string system reaches the attractor in a fraction of the total time (i.e. at smaller values of
the log) even with untuned initial conditions, and the radiation left over from early times is
diluted fairly efficiently by redshifting. In contrast, for physical strings the transient can easily
last for the entire span of the simulation. Second, in the fat string system mr/2 corresponds
to a fixed comoving momentum. Therefore, the radial and axion modes emitted by the string
cores only affect the UV part of the spectrum, outside the region of interest. Meanwhile, for
physical strings these modes are redshifted towards smaller frequencies, polluting part of the

20To achieve this we use MPI parallelization across multiple (up to 48) cluster nodes.
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spectrum used to extract the instantaneous emission F by creating large oscillations (we will
see this in more detail in Appendix B.4).

We use initial conditions that contain a fixed (adjustable) density of strings. For the fat
string system, these are obtained by evolving eq. (8) starting from a random field configuration
until the required total string length inside the box is reached. The field at this time is then
used as the initial condition for the main simulation. The strings produced by such a procedure
do not generally have the correct core size, since the Hubble parameter at the end of the initial
simulation does not match that at the start of the main simulation. However, as mentioned
above, the subsequent readjustment of the string cores only affect the UV part of the spectrum
and has no consequences for the study of the attractor properties.

For simulations of the physical string system we modify this procedure slightly to over-
come the issue with the spectrum discussed above. We generate initial conditions for these by
evolving eq. (8) with R∝ t and mr ∝ R−1, until the desired total string length is reached.
This choice has the advantage that both the Hubble parameter H = Ṙ/R and the string core
size m−1

r are constant in comoving coordinates, i.e. H−1/R and m−1
r /R do not change. We

chose m−1
r /R equal to m−1

r /R(t0), i.e. the core-size at the beginning of the actual simulation.
Consequently, the strings in the initial conditions have the right core-size, no matter what time
the preliminary evolution ends. Moreover, the simulations to generate the initial conditions
can run for an arbitrarily long time, since the comoving Hubble radius and the comoving core-
size do not change. For small H−1/R this evolution corresponds to a system with large Hubble
friction, which acts as a relaxation period smoothing out fluctuations of the initially random
field and diluting preexisting radiation. Meanwhile strings form and their core-sizes relax. We
choose H−1/R = H−1(t0)/R(t0). With this value the total string length in the box decreases
fairly slowly, so the relaxation period lasts a significant amount of time.

For the fat string system we start the main simulations at log(mr(t0)/H(t0)) = 0. For the
physical system we found that cleaner initial conditions were obtained by choosing
log(mr/H(t0)) = 2. When studying the evolution of ξ we varied the initial string density.
Meanwhile, when analyzing the spectrum and energies we fixed the initial string density close
to the scaling solution. With our method of generating initial conditions, this happens for
ξ(t0) = 10−2 and ξ(t0) = 0.2 for fat and physical strings respectively.

A.2 String Length and Boost Factors

To identify strings and calculate their length, we adopt the algorithm proposed in Appendix
A.2 of [22]. This involves counting the plaquettes that are pierced by a string, and converting
the result to a length using a statistical correction factor. In doing so it is assumed that the
strings are equally distributed in all directions.21

We calculate the boost factor γ in two ways, the first as in Appendix A.2 of ref. [22] and the
second as in ref. [31]. Briefly, the first method estimates the string velocity from the relativistic
contraction of the string core, extracted from the derivative of the field on the gridpoints near
the center of the string. The second instead measures the speed at which the points ~x such
that φ(t, ~x) = 0 change in time. Both methods give the (local) γ-factor at each gridpoint

where a string is identified. The frequency distribution function
dξγ
dγ of γ-factors throughout

the string network, defined in Appendix B.2, can be calculated easily. The average γ-factor
of the network is defined as the mean over all the gridpoints where a string is identified.
We checked that both methods give approximately consistent results, however the method of

21The results for the network match those of our previous algorithm (Appendix A.2 of [7]), up to a ∼ 5%
overall difference. We attribute this difference both to a small overcounting of our old method, and to a possible
small violation of the isotropy due to the discrete grid. On the other hand, the methods give different results for
individual string loops that are aligned in one particular direction, or when the density of strings is so small that
the assumption of isotropy fails.
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Figure 6: The evolution of the density of the fat string network, ξ, starting from
different initial conditions, with statistical error bars. The convergence towards a
common attractor solution, and the logarithmic growth of ξ on this, are manifest.
The best fit lines with the form eq. (3) are also shown. We identify the initial condi-
tions used for the analysis of the spectrum of axions in black.

ref. [31] leads to superluminal γ-factors on some grid points, which have to be discarded in
the counting.22 Therefore we base our analysis on results using the method of ref. [22].

B Properties of the Scaling Solution and Log Violations

In this Appendix we discuss the properties of the scaling solution in more detail. We emphasize
how the logarithmic violations of the naive scaling law affect different observables, such as the
number of strings per Hubble volume, the relativistic boost factor of the network, the energy
emitted in heavy radial modes and the axion spectrum. The dependence on log(mr/H) of these
properties (along with the supporting evidence from the dynamics of single loops studied in
Appendix C) points to a consistent picture where the heavy degrees of freedom slowly decouple
from the string network in the limit log(mr/H)→∞.

B.1 The Scaling Parameter

The evolution of scaling parameter ξ provides one of the clearest pieces of evidence of the
attractor solution, and of the logarithmic violations of its scaling properties. Both of these
features are already manifest for the physical string system in Fig. 1 and are even more evident
in the fat string one.

In Fig. 6 we show ξ for the fat string system as a function of log(mr/H)with different initial
string densities. For each initial condition we ran multiple simulations to reduce statistical
errors. Thanks to larger cosmic time available to reach the same value of log, the results for ξ
converge to the attractor at smaller values of the log. The growth of ξ on the attractor solution
appears linear over a substantial range of log.

As discussed in the main text, the time-dependence of the scaling parameter is fit well
by a universal linear function plus corrections proportional to powers of 1/ log. The latter

22This is a drawback of the way the second method works: for instance, if a shrinking elliptic loop is very
eccentric, its vertices are mistakenly interpreted as traveling at a very high speed when it is about to vanish. In the
limit of infinite eccentricity, they would travel at infinite velocity.
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encode the residual dependence on the initial conditions, and vanish in the large log limit.
Including the first two such corrections, we perform a global fit of all of the ξ data (separately
for physical and fat strings) with the function in eq. (3), where c0 and c1 are universal while
c−1,−2 are let differ for each set of initial conditions. We include only points with log> 4.5 and
log > 4 for fat and physical strings respectively and weight with the statistical errors.23 For
the latter we rescaled the χ2 function so as to have one independent contribution for every
Hubble e-folding; this is in order to avoid bias from data set with a finer time sampling and
decorrelate data from consecutive time shots. The result of the fit is fairly good, with a reduced
χ2

phys ≈ 1.1 and χ2
fat ≈ 1.5. This indicates that eq. (3) is sufficient to capture the evolution of

ξ for the entire broad range of initial conditions considered. By the end of the simulations the
fitted values of the parameters are such that the 1/ log corrections are already subleading.24

This is particularly true for the fat string network simulations that converge to the attractor
solution at smaller values of log. As it is clearly noticeable in Fig. 6, for the initial conditions
closest to the attractor solution (these correspond to the black data set, which has the smallest
values of c−1,−2), 1/ log corrections are already negligible for the entire range of log plotted.
Indeed, any fitting functions with sizable nonlinearities at late times is highly disfavored.

The coefficient of the linear log term c1 is particularly important for the extrapolation to
the physically relevent regime. The results for this in the fat and physical string systems are25

c
phys
1 = 0.24(2) , cfat

1 = 0.20(2) . (9)

Finally, we note that it has previously been shown that the percentage of the total string
length in loops with size smaller than Hubble stays constant in time [7]. This means that
the logarithmic violation in ξ are reflected in a corresponding increase in the string length
contained in small loops as well as long strings. This provides another strong piece of evidence
that logarithmic violations are a genuine feature of the scaling solution.

All the simulations in Figures 1 and 6 have 0.5 ≤ mr∆ ≤ 1, and the curves that reach
later times are the average of multiple sets of simulations with different values of mr∆. For
any given initial condition the results from simulations with different mr∆ give compatible
results. This suggests that ξ is already close to the continuum limit for mr∆ = 1 at least up
to log ∼ 8. Similarly, since the higher resolution simulations are stopped at H L = 1.5, when
the simulations with poorer resolution have H L ≫ 1, the agreement indicates that ξ is close
to the infinite volume limit for H L = 1.5.

B.2 String Velocities

Another important quantity characterizing the dynamics of the network is the boost factors
of the strings. Indeed, if strings are relativistic with an average boost 〈γ〉, their energy per
unit length is increased by a factor 〈γ〉.26 The theoretical expectation for the string tension
µ ≃ π f 2

a log(mr/H), which holds for strings at rest, is correspondingly modified to
µ = 〈γ〉π f 2

a log(mr/H). Therefore, the value and possible log dependence of 〈γ〉 must be
understood so that the energy densities during the scaling regime can be determined correctly.

23Since the most overdense set in the physical case reaches scaling only late, we include data from this set at
log> 5.5 in the global fit.

24If data at smaller logs is included higher corrections are needed to get a good fit. Meanwhile, selecting only
data at larger logs still leads to a good fit but with greater uncertainties on the coefficients.

25These are compatible with those reported in our previous analysis [7], in which we studied the network up to
log= 6.7.

26We always refer to the transverse boost, which does not lead to relativistic contraction of the string length.
Consequently our definition of 〈γ〉, which does not have any extra weighting, gives the appropriate modification
to the string tension.
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Figure 7: The dependence of the mean string boost factor, 〈γ〉, on log(mr/H) for
different lattice spacings, for fat (left) and physical strings (right). In the fat string
case the continuum extrapolation is also plotted. In the physical case, the number
of grid points per string core decreases with time, and the value of mr∆ f indicated
is at the final time log(mr/H) = 7.9. For both the fat and physical string systems
〈γ〉 = 1.3÷ 1.4 throughout, suggesting that the string network remains on average
only mildly relativistic as the scale separation increases.

In Figure 7 we show the time evolution of the network’s average γ-factor for fat and phys-
ical strings and for different lattice spacings (computed as described in Appendix A.2). Evi-
dently the boost factor is lattice spacing dependent, with 〈γ〉 smaller for coarser lattices. This
is not surprising given that the boost factor is measured by the size of the string cores, which
might not be resolved when they are relativistically contracted. The continuum extrapolation
indicates that, at least for fat strings, 〈γ〉 seems to asymptotically approach a constant mildly
relativistic value 〈γ〉= 1.3÷ 1.4.27

More detailed information about string velocities can be inferred from the γ-factor distri-
bution function. We define ξγ to be the portion of ξ with boost factor smaller than γ. Then
1
ξ

dξγ
dγ describes the distribution function of γ-factors in the network; 〈γ〉 =

∫

dγγ 1
ξ

dξγ
dγ being

its first moment.
In Figure 8 we plot the velocity distribution function at different times for fat strings (al-

ready extrapolated to the continuum limit) and physical strings (for two different lattice spac-
ings). The distribution is strongly peaked at nonrelativistic boost factors at all times with a
sharp fall off∝ γ−6. This makes the lowest moments of the distribution dominated by low
boosts factors and explains why 〈γ〉 appears time independent. On the other hand, the large
boost tail of the distribution keeps extending to increasingly large values at later times. Mean-
while, systematic errors from the finite lattice spacing affect the distribution at large γ more
at late times.28

This evolution with the log can be understood as follows: 〈γ〉 is dominated by long strings,
which are mostly nonrelativistic (due to causality and Hubble friction) and make up the ma-
jority of the length at all times (see Section 3.3 of [7]). Therefore the network remains on
average only mildly relativistic. Loops with size much smaller than Hubble provide a small,
constant, proportion of ξ, but they get more relativistic as the log increases. These contribute
to the high-γ tail of the distribution, so this extends to larger γ when the log is bigger. Sim-
ilarly, kinks and cusps from string recombination also contribute. Such a logarithmic scaling

27The continuum limit plotted has been carried out with a linear extrapolation to zero lattice spacing. A quadratic
extrapolation gives compatible results.

28This can be seen from Figure 8 (right): for log= 7 the high γ-tail actually lies below that of log= 5.5. However,
the increasing spread between the mr∆ = 1 and mr∆ = 1.5 simulations indicates that this is a lattice effect, and
the extrapolated tail at log= 7 would be above that at log= 5.5.

25

https://scipost.org
https://scipost.org/SciPostPhys.10.2.050


Select SciPost Phys. 10, 050 (2021)

log(mr/H) = 7

4

5
6

1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

γ

1

ξ

∂ξγ

∂γ

fat

log(mr/H) = 4

5.57

mr Δ f =1 1.5

1 2 3 4 5

10-5

10-4

10-3

10-2

10-1

γ

1

ξ

∂ξγ

∂γ

physical

Figure 8: Left: The γ-factor distribution function 1
ξ

dξγ
dγ for fat strings (already ex-

trapolated to the continuum limit) at different times. Right: The same function for
physical strings for two different lattice spacings (mr∆ f = 1 has the darker color,
mr∆ f = 1 the lighter). At all times, the distribution is peaked at γ = 1 with a sharp
fall off ∝ γ−6 above this, so that 〈γ〉 is nonrelativistic. As the log increases, the
high-γ tail grows, suggesting that sub-horizon loops become increasingly relativistic.

violation is in agreement with the results in Appendix C where we show that single loops with
larger initial logs get boosted more as they shrink.

We assume that the behavior identified above persists at large values of the log, and in
particular that the mean γ-factor remains approximately constant. In this case the theoretical
prediction for the string tension µ≃ π f 2

a log(mr/H) can be extrapolated to the physical scale
separation (up to an overall 〈γ〉 ≈ 1.3÷ 1.4 constant factor, which we fit at small logs in the
next Subsection).

B.3 Effective String Tension and Radial Mode Decoupling

We now show that the string tension calculated in the simulation is in agreement with the
theoretical expectation. Moreover, we show that the percentage of energy in radial modes,
although non-negligible for small logs, decreases at late times, signaling the decoupling of
heavy modes in the limit log→∞.

The total energy density of the complex scalar field ρtot ≡ 〈T00〉, where T00 is the Hamil-
tonian density from the Lagrangian in eq. (1), can be split into components as

ρtot = ρs +ρa +ρr , (10)

where ρs is the energy density in strings, ρa that in axion radiation and ρr that in radial
modes. ρa is extracted from the kinetic energy density of the axion field 2〈12 ȧ2〉 away from
string cores, and ρr from the energy density of the radial field 〈12 ṙ2 + 1

2 |∇r|2 + V (r)〉, again
away from string cores (see [7] for more details). We then obtain ρs from the difference
ρs = ρtot −ρa −ρr . The string energy ρs calculated in this way is expected to match the one
predicted from the theoretical expectation for the string tension and the measured values of
ξ(t) up to order one coefficients.

We compute the effective tension µeff = ρs(t)t
2/ξ(t) from the definition in eq. (2), using

ξ(t) and ρs(t) from simulations. This is then compared to the theoretically expected form

µth = 〈γ〉π f 2
a log

�

mr η

H
p

ξ

�

, (11)

accounting for a non-zero γ-factor, and for the dependence of the average inter-string distance
on the string density (via the factor 1/

p

ξ in the log). The coefficient η encodes the string
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Figure 9: The ratio between the string tension calculated in simulations and the
theoretical expectation in eq. (11) for fat (left) and physical strings (right). In both
cases results are shown for different lattice spacings, and the blue shaded band indi-
cates the effect of varying the parameter η in eq. (11) over the range [1

2 , 2](1/
p

4π).
The approximately constant value of µeff/µth for the whole simulation time suggests
that our method of extracting the string energy density is consistent.

shape, and we chose η = 1/
p

4π as a reference (we pick this somewhat arbitrarily based on
the average distance between strings if they were all parallel, but any roughly similar value
would also be reasonable).

In Figure 9, we plot the ratio µeff/µth as a function of time for the fat string and the
physical systems, where 〈γ〉 in µth is calculated in simulations as in the previous Section.
Different colors represent different lattice spacings, and the blue shaded region shows the
effect of varying η in the interval [1

2 , 2](1/
p

4π). For both fat and physical strings the tension
measured in the simulation and the theoretical expectation are close over the whole time
range. The 30÷ 40% difference is not unexpected, given that strictly speaking eq. (11) only
applies for straight strings and we do not have a reliable way to computeη analytically. Instead,
its value is determined by the loop distribution and the shape of the strings. Although 〈γ〉 and
ρs are rather sensitive to lattice spacing effects, µeff/µth involves the ratio of the two and seems
to have smaller systematic error. The approximately constant behaviour in Figure 9 gives us
confidence that eq. (11) can be used to calculate the string tension at large logs.

In Figure 10 we plot the proportion of the total energy that is in radial modes as a function
of time for different lattice spacings, i.e. ρr/ρtot. We also show the continuum extrapolation in
the fat case.29 The results for fat strings reveal an important feature: As the log increases the
fraction of the total energy in radial modes decreases. Lattice spacing effects become increas-
ingly significant, so this behaviour is only seen after the continuum extrapolation. Systematic
errors from the lattice spacing also have a significant (and possibly even greater) effect for
simulations of physical strings. Even though such simulations have better resolution prior to
the final time, lattice spacing effects create a fake increase from log = 6, which is shallower
for the data with better resolution. Meanwhile, we will see in Appendix B.4 that the slight
difference between the initial values of ρr/ρtot for the two resolutions for the physical strings
is due to a small difference in the initial conditions.

To sustain the scaling regime, energy density in strings is continuously emitted into axions
and radial modes. We denote the emission rates, i.e. the energy released per unit time, by Γa
and Γr respectively. These can be be computed from

Γi =
1

Rzi

∂ (Rziρi)

∂ t
, (12)

29The continuum extrapolation shown is carried out with a linear extrapolation to zero lattice spacing, a
quadratic extrapolation gives compatible results.
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Figure 10: The fraction of total energy density in simulations that is in radial modes
for physical strings (right) and fat strings (left). The results are shown for different
lattice spacings, and the continuum extrapolation is also plotted for the fat string
system. As log grows this fraction decreases for fat strings (after the continuum
extrapolation), which suggests that radial modes decouple and are increasing irrel-
evant for the string dynamics. The results for physical strings show a similar trend,
although we do not perform the continuum extrapolation.

where i = a, r, and za = zr = 4 for fat strings due to the dependence of the radial mode mass
on time.

In Figure 11 we plot the proportion of the total energy that is instantaneously emitted from
strings that goes into axions, i.e. ra ≡ Γa/ (Γa + Γr), for the fat string system. Similarly to the
energy in radial modes, the rate of emission into axions is increasingly sensitive to the lattice
resolution as the log grows (with ra larger for finer lattices). The continuum extrapolation
suggests that ra increases steadily.

Together, the log dependences identified above indicate that the radial mode plays a de-
creasing role in the dynamics at late times in simulations. They also suggest that it should
decouple in the limit log →∞. Further, since only axions will get excited in this limit, the
details of the particular UV physics that gives rise to the axion field would be unimportant for
the dynamics of the strings.

B.4 The Spectrum

As discussed in Section 2, the axion energy density spectrum, and its dependence on log, plays
a key role in determining the axion number density when its mass becomes cosmologically
relevant.

To define the axion spectrum we start from the expression for the axion energy density
ρa = 〈ȧ2〉,

ρa =
1
L3

∫

d3 xp ȧ2(xp) =
1
L3

∫

d3k

(2π)3
|˜̇a(k)|2 , (13)

where xp = R(t)x are physical coordinates, and ˜̇a(k) is the Fourier transform of ȧ(xp). The
axion spectrum ∂ ρa/∂ |k| is then fixed by requiring

∫

d|k| ∂ ρa/∂ |k| = ρa, and is therefore
given by

∂ ρa

∂ k
≡ ∂ ρa

∂ |k| =
|k|2
(2πL)3

∫

dΩk|˜̇a(k)|2 , (14)

where Ωk is the solid angle. In order to exclude strings, the field a(x) needs to be screened.
We substitute ȧ(x) → ȧscr(x) ≡

�

1+ r(x)
fa

�

ȧ(x) in eq. (13), since the factor 1+ r(x)
fa
=
|φ|
|φ|r→0
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Figure 11: The ratio ra between the instantaneous energy emission rate from strings
to axions and the total emission rate (i.e. to both axions and radial modes), as a
function of log for different lattice spacings for fat strings. The continuum extrap-
olation shows that the network increasingly emits energy to axions (rather than to
radial modes) as the log increases. This is consistent with the expectation that heavy
modes decouple in the large log limit.

automatically vanishes inside string cores and tends to unity far from strings.30

In Figure 12 we plot the axion spectrum ∂ ρa/∂ k at different times for fat and physical
strings. The initial conditions are close to the scaling solution, and correspond to the black
lines in Figures 1 and 6. In both cases, the spectrum has a peak at momenta of order 5H÷10H

and at smaller k it is power-law suppressed∝ k3. Moreover, the spectrum has a UV-cutoff at
momenta k = mr/2, above which it is highly suppressed. The shape of the spectrum remains
similar as time passes, modulo the shift in the UV-cutoff.

At the momentum k = mr/2 there is a small peak, which we attribute to the energy ex-
change between axions and radial modes via parametric resonance. Such an effect can be
understood heuristically. From eq. (8) in flat spacetime, the axion equation of motion is
(1+σ)∂µ∂

µθ + 2∂µσ∂
µθ = 0, where θ ≡ a/ fa and σ ≡ r/( fa/

p
2).31 In the presence of

a spatially homogeneous radial mode σ = σ0 sin(mr t) with σ0 < 1, the axion Fourier modes
therefore satisfy θ̈2

k
+ k2θk + 2σ0mr cos(mr t)θ̇k = 0, where we kept the first non-vanishing

dependence on σ0. If σ0 6= 0, this is a parametric resonance equation for the mode k = mr/2.
A similar effect also occurs for a non-homogeneous radial field, as it is in simulations. For fat
strings, mr decreases proportionally to the scale factor and the parametric resonance affects a
unique comoving momentum at all times, as seen in Figure 12 (left). On the other hand, for
physical strings a wide range of comoving momenta are affected, and the resulting oscillations
cover almost the entire spectrum. As discussed in Appendix A, this effect is easily triggered if
the strings in the initial conditions do not have a core-size equal to m−1

r . In this case, radial
modes will be emitted while the string core size is adjusting, and these will produce axions.32

As the string cores relax the rate of such emission will decrease, and the parametric resonance
effect will gradually disappear. This can be seen from the reduction in the amplitude of the
oscillations in the final time shots plotted in Figure 12.

We also compute the energy density spectrum of radial modes ∂ ρr/∂ k. Since radial modes
behave as massive waves, this can be defined similarly to the axion spectrum as

30As checked in [7], this method reproduces the Pseudo Power Spectrum Estimator introduced in [85] well.
31See also eq. (42) with ma = 0.
32Of course in this case the radial mode will be space-dependent and the discussion above does not strictly apply.
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Figure 12: The axion energy density spectrum at different times (i.e. at different
value of log(mr/H)) for the fat (left) and physical (right) string systems, as a func-
tion of the momentum k in units of Hubble. In both cases the spectrum is dominated
by a broad peak at around k/H = 10, and emission at lower momenta is suppressed.
For each time shot we also show the value of k = mr/2, corresponding to the para-
metric resonance frequency with the radial mode. There is little energy in modes
with momenta corresponding to scales smaller than the string cores. The physical
simulations have mr∆ = 1 at the final time, and the fat simulations have mr∆ = 1
throughout.
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Figure 13: The energy density spectrum of radial modes for the physical string sys-
tem as a function of the comoving momentum kcom ≡ k

p

mr/H at different times.
Solid lines represent results from simulations with mr∆ f = 1, and dashed lines with
mr∆ f = 1.5. The spectrum is dominated by an IR peak that comes from the initial
conditions, with modes at larger comoving momenta generated during the evolu-
tion. We also indicate the comoving momentum that corresponds to mr at each of
the times plotted.
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∫

dk∂ ρr/∂ k ≡ 〈ṙ2〉, so
∂ ρr

∂ k
=
|k|2
(2πL)3

∫

dΩk|˜̇r(k)|2 . (15)

To avoid strings in the determination of the radial spectrum we adopt the same masking tech-
nique as for the axion, i.e. in eq. (15) we substitute ṙ(x)→ ṙscr(x)≡

�

1+ r(x)
fa

�

ṙ(x).
In Figure 13 we plot the spectrum of radial modes ∂ ρr/∂ k for physical strings at three

different times and for two lattice spacings, mr∆ f = 1 and 1.5. The spectrum is plotted as a

function of the comoving momentum kcom ≡ k
p

mr/H and we also indicate the momentum
corresponding to the radial mode mass at each time.

Figure 13 reveals interesting features of the evolution of radial modes. First, the spectrum
is peaked at a fixed comoving momentum, corresponding to k = mr at the time H = mr , and it
has a sharp fall off at momenta bigger than mr at any given time. The average momentum is
therefore smaller than mr at all times and radial modes are on average nonrelativistic. Second,
the height of the peak decreases proportionally to H∝ R−2, i.e. as in the free nonrelativistic
limit. This shows that this peak is entirely produced at early times and does not receive con-
tributions afterwards. Therefore the slight differences in ρr/ρtot at low momenta observed in
Figure 10 for the two lattice spacings are only due to the initial conditions. Finally, the lattice
spacing effects at high momenta grow at larger logs, producing a fake rise in simulations with
the worse resolution. This is in turn related to the fake growth of the ratio ρr/ρtot in Figure 10
at late times.

B.4.1 The Instantaneous Emission Spectrum

We now turn to study the spectrum with which axions are instantaneously emitted by the
network. To do so, we extract F from its definition F(k/H) = ∂ log(Γ )/∂ (k/H) of Section 2.2
and express Γ in terms of the axion spectrum as in eq. (12). This leads to

F

�

k

H
,

mr

H

�

=
A

R3

∂

∂ t

�

R3 ∂ ρa

∂ k

�

. (16)

In the last equation A = H/Γ , which is a consequence of the normalization condition
∫∞

0 F[x , y] d x = 1, which follows from its definition (see ref. [7] for more details). The time
derivative in eq. (16) is calculated from simulation data by taking the difference of spectra
with ∆ log= 0.25.33

In Figure 14 we plot F at different times. We see that F[x , y] has IR and UV cutoffs at
x = 5÷ 10 and x = y/2 for all y (i.e. at all times). In between it is well approximated with
a power law 1/xq. Moreover, similarly to the total spectrum, F has significant fluctuations
at the momenta affected by the previously described resonance, which for physical strings
encompasses a large range of x (as discussed these do not represent genuine emission from
strings, but are an unphysical effect that will disappear in the large log limit).34 Finally, in
Figure 14 a change in the power-law q with the log can be seen by eye. This corresponds to
the evolution of q plotted in Figure 2 of the main text. The momentum range [30H, mr/4]
over which q is calculated in Figure 2 is highlighted in Figure 14. The increase in q is even
clearer in Figure 15 where we plot x F . At the final simulation time the instantaneous emission
is not far from reaching q = 1.

We now analyze the possible functional form of q(log) of Figure 2. The result of the linear
and the quadratic fits are shown in Figure 2 in dark and light orange respectively. The two

33With this choice the statistical fluctuations are still relatively small, while the value of F is already compatible
with the one of the ∆ log→ 0 limit.

34If initial conditions that are not sufficiently close to scaling are used, the fluctuations dominate the instanta-
neous emission for the physical system to such an extent that it will not show a clear power-law behaviour.
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Figure 14: The instantaneously emitted axion energy density spectrum F[x , y] as
a function of x = k/H at different times (represented by y = mr/H) for fat strings
(left) and physical strings (right). We also plot dotted lines corresponding to the best
fit values of q for each time (obtained by fitting the q as a linear function of log over
the complete data set, leading to eq. (17)). An increase in the slope q with log can be
seen for both the fat and physical string systems. The highlighted region corresponds
to the data points in the range [30H, mr/4], which we use for the fit of q in Section 2.
We also indicate mr/(2H) at each time, above which emission is highly suppressed.
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Figure 15: The instantaneously emitted axion energy density spectrum multiplied by
x , i.e. x F[x , y], as a function of x = k/H and at different times for fat strings (left)
and physical strings (right). The increase in q is evident and at the final time the
instantaneous emission is almost scale invariant (q = 1). It is reasonable to expect
that at log≃ 8 the slope q will overtake the value q = 1.

fits are both quite good for the fat and also the physical case. However, the result from the
quadratic fit is compatible with the linear fit, but with larger errors. This suggests that a linear
fit is enough to reproduce the data. For the linear fit q = q1 log+q2, we get

¨

q1 phys = 0.053(5)

q2 phys = 0.51(7)
,

¨

q1 fat = 0.084(2)

q2 fat = 0.28(2)
. (17)

In both the physical and the fat string systems the fit return values of q larger than unity
for log ¦ 9, which might be accessible with future generation simulations. In particular, for
physical strings, the fit gives qphys(log→ 70) = 4.1(5).
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Figure 16: The best fit power-law q as a function of log, for simulations with different
lattice spacings, in the fat (left) and physical (right) string systems. The error bars
shown are statistical. The results from different lattice spacings are compatible in
the fat string case and show a clear increase in q. For the physical case there are
fluctuations due to energy transfer from radial modes at early times (discussed in
the main text), but subsequently data from both resolutions shows a clear increase
with the log.

B.4.2 Systematics

Given the importance of q for the final axion abundance, we now analyze potential systematic
errors in its determination in detail.

Lattice spacing effects. For the fat case, we performed multiple sets of simulations with
different resolutions (from mr∆ = 1/1.8 to mr∆ = 1), and in Figure 16 (left) we plot q as
a function of log for each set. We calculate q by fitting the slope of log F (as a function of
log x) in each simulation over the momentum range [30H, mr/4], and then averaging over
simulations with the same resolution. The result for q is compatible for all lattice spacings.
Consequently, in Figure 2 in the main text we report the average of all the sets. The largest
values of log, i.e. 7.7 < log < 7.9, can be explored only with the least conservative lattice
spacing (mr∆ = 1), and therefore for those we have no direct comparison. However, given
the good agreement for smaller logs, we expect that these values are in the continuum limit
as well.

In the physical case we performed two sets of simulations, with final values of mr∆ f = 1
and 1.5 (at earlier times the resolution is better). The result for q (calculated as before) is
shown in Figure 16 (right). Due to the parametric resonance effect, q has unphysical fluctua-
tions at small log. However, for log> 6 the fluctuations are relatively minor and a growth in q

is clear for both resolutions. Moreover, the results for the two lattice spacings are mostly com-
patible with each other. Nevertheless, given the slight difference, in the main text we reported
only the results with mr∆ f = 1, which is the more conservative.

UV and IR cutoffs. In extracting q, the extremes kIR and kUV of the momentum range fitted
[kIR, kUV] need to be sufficiently far from the Hubble peak and the UV cutoff respectively. By
construction, q is therefore less prone to lattice spacing and finite volume systematics com-
pared to other quantities, such as energy densities (which are more UV sensitive) and number
densities (which are more IR sensitive). For the fat string system, in Figure 17 we plot q at
different times as kIR and kUV are varied. This shows that q has already converged to its true
value with the choice [30H, mr/4].

In the physical case the best fit value of q has a small dependence on the momentum range
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Figure 17: Left: The best fit values of q for fat strings at three different times (differ-
ent colors) for varying kIR, with kUV = mr/4 fixed. Right: The best fit q with varying
kUV and kIR = 30H fixed. It can be seen that kIR = 30H and kUV = mr/4 are sufficient
for q to have convergered to its true value. This analysis has been done for mr∆ = 1
and the times t1, t2, t3 correspond to log= 6.5,7, 7.5.
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Figure 18: The best fit values of q as a function of log for physical strings, with
statistical error bars. Left: results with q fit over the momentum range [30H, mr/4]
for data with lattice spacing at the final time mr∆ f = 1.5. Center: q fit in the range
[50H, mr/6] for mr∆a = 1. Right: q fit in the range [50H, mr/6] for mr∆ f = 1.5.
In all plots the light and dark red bands represent the best linear and quadratic fits
to q vs log with standard errors on the fit.

used. Figure 2 (left) in the main text shows the fit in [30H, mr/4] for mr∆ = 1. In Figure 18,
we show different fits choosing kIR between 30H and 50H and kUV between mr/6 and mr/4,
for the two different lattice spacings mr∆ f = 1 and 1.5. While the numerical value of q at a
particular log changes slightly, the choice of the momentum range does not change the trend
of q increasing with log. Indeed, in the same plots we also show the linear fit of q as a function
of log, and all of these have a positive gradient. We also show the quadratic fits, which are
compatible with the linear fits but with much larger uncertainties.

Finite Volume. As mentioned in Appendix A, the simulations have been run until H L = 1.5.
In Figure 19 we show F for different choices of H L at log= 6.4 for the fat string system. While
for H L = 1.5 the IR part of the spectrum gets modified compared to H L = 2, in the momentum
range where q is extracted the two are completely compatible. Although this is shown only
for log = 6.4, finite volume effects are not expected to depend strongly on log (and are also
expected to be similar for the physical string system). Thus, the choice H L = 1.5 will not
introduce a significant systematic error in the calculation of q.
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Figure 19: The instantaneous emission F for different values of H L at log = 6.4.
For H L ≥ 1.5 finite volume effects do not alter the spectrum in the momentum range
[30H, mr/4] where q is extracted. The simulations are performed with mr∆ = 1 and
a N3

x = 12503 grid.

C Log Violations in Single Loop Dynamics

In this Appendix we give additional evidence of logarithmic violations in the dynamics of global
string by studying the collapse of circular loops in flat spacetime. Sub-horizon loops make up
a small percentage of the total string length during the scaling solution [7]. However, we will
see that they can still give useful insights into the properties of the scaling regime, especially
in relation to the Nambu–Goto limit.

The dynamics of global string loops can be described by an effective theory in which
the fundamental degrees of freedom are the string and the axion radiation [21], with an
interaction governed by the Kalb–Ramond action [86]. This theory is valid in the regime
log(mrR)≫ 1, where R is the typical loop size, i.e. when the string and the emitted radiation
(with frequency ω ∼ 1/R) are not strongly coupled. In particular, this action does not capture
the dynamics when strings intersect.

As shown in [21], in this theory the coupling of the axion to the string is proportional to
1/ log(mrR). So, in the limit log(mrR)→∞, the axion radiation decouples from the string.
The string loop would therefore behave as in the free (Nambu–Goto) limit, oscillating an infi-
nite number of times. As described in [36], this suggests that for finite but still large log(mrR)

the loop might bounce many times before disappearing, emitting radiation with a typical wave-
length of the order of the initial loop size. It has been argued in [36] that this will lead to a
spectrum with q > 1. However, the previous argument is not definitive because the effective
theory breaks down when the loop has shrunk to a small size, and the dynamics when the loop
is small are critical in determining whether it bounces.

A complete analysis of the evolution of a string loop, including the bounce, can be carried
out by solving the full field equations with the heavy radial mode present. We numerically
solved eq. (8) in Minkowski spacetime with initial conditions φ(x) and φ̇(x) that resemble a
static circular loop with initial radius R0. Limitations on the gridsize require log(mrR0)® 5. In
Figure 20 we plot the loop radius R(t) (normalized to its initial value R0) as a function of time
for different log(mrR0). We also show the free Nambu–Goto time law, RNG(t) = R0 cos(t/R0).

Figure 20 has a number of interesting features. First, as log(mrR0) increases, R(t) gets
closer to the prediction for free strings.35 As a result, the relativistic boost factor increases with

35Indeed as shown in Appendix F of [7], the EFT calculation of [21] reproduces the solution of the field equations
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Figure 20: The radius R(t) vs time for circular loops, normalized to the initial ra-
dius R0. The different lines correspond to different values of the initial log(mrR0).
The dashed red line is the free Nambu–Goto solution RNG(t) = R0 cos(t/R0). As
log(mrR0) grows, the time-law R(t) approaches the Nambu–Goto limit, and the loop
tends to bounce more. This is in agreement with the picture proposed in [36].

log(mrR0), and tends to infinity in the limit log(mrR0) →∞. By taking the time derivative
of R(t) one can easily show that, for instance, the boost factor is already of order 10 for
log(mrR0) = 5. Second, the loop tends to bounce more for increasing log(mrR0): for example,
a loop with log(mrR0) = 5 oscillates producing a loop with log(mrR0)≈ 4, which subsequently
bounces to a loop with log(mrR0)≈ 2. The larger bounce is likely to be related to the increased
boost factor, because a relativistic string loop is less likely to release all its energy at once before
disappearing.36

We also note that correctly evolving strings with a large boost factor requires a fine lattice
spacing to resolve the relativistically contracted core and the bounce. For instance, the simu-
lations need to be performed with mr∆ = 1/20 or smaller for log(mrR0) = 5, otherwise the
loop will unphysically collapse as soon as it approaches its center.37

After the loop disappears, the energy will be released into axions and heavy radial modes.
As log(mrR0) increases, we checked that the percentage of the energy emitted in axions gets
larger, again pointing to the decoupling of the radial mode in the large log(mrR0) limit.38

Although not definitive because they are done at small logs, these results support the picture
proposed in ref. [36], and agree with the general discussion of the previous Appendix.

D The End of the Scaling Regime

The scaling regime of Section 2 holds in the limit of vanishing axion potential, and it ends
once the axion mass becomes cosmologically relevant, which happens when H and ma are of
the same order. In this Section we make the previous approximate expectation more precise,
and show that the scaling regime is not affected by ma 6= 0 until H > ma. Indeed we identify

for log(mrR0) = 5 well, at least when the loop has not yet collapsed and the EFT is under control.
36Indeed, the loop passes through itself during the oscillation, as we checked by calculating the sign of the phase

of φ before and after the bounce.
37This unphysical decay was interpreted in [87] as a sign of string loops not approaching the Nambu–Goto limit.

This decay is also related to a non-conservation of the total energy during the bounce.
38This has also been observed in single loop lattice simulations in [88].
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Figure 21: Left: The scaling parameter ξ as a function of time when the axion mass
is turned on at different log⋆ ≡ log (m⋆r/m

⋆
a) (solid lines), and for ma = 0 throughout

with the same initial condition (dashed lines). The x-axis is normalized with H⋆, so
it can be seen that regardless of log⋆, ξ is unaffected by the mass before H = H⋆.
Right: The relative difference between the results for ξ with and without a non-zero
axion mass, δξ/ξ, as a function of time. We define δξ ≡ (ξ − ξma=0), and ξma=0

is the string length in a simulation with ma = 0 throughout. For all values of log⋆
tested the effect of a non-vanishing axion mass is smaller than percent for H > H⋆.

H = ma as the point at which the scaling regime begins to break down.
The full Lagrangian of the system is the same as in Section 2 with the addition of a potential

for the axion, which we take of the form

L= |∂µφ|2 − V (φ) , with V (φ) =
m2

r

2 f 2
a

�

|φ|2 −
f 2
a

2

�2

+m2
a f 2

a

�

1− Re[φ]

fa/
p

2

�

, (18)

where φ = r+ fap
2

e
i a

fa and m2
a is the time dependent axion mass introduced in eq. (4). The

equation of motion from eq. (18)

φ̈ + 3Hφ̇ − ∇̃
2φ

R2
+φ

m2
r

f 2
a

�

|φ|2 −
f 2
a

2

�

−
m2

a fap
2
= 0 , (19)

does not depend on fa directly. Instead, the dependence on the two scales fa and mr can
be reabsorbed by rescaling the field φ → φ fa and the space-time coordinates t → t/mr and
x → x/mr . Therefore, up to a trivial field rescaling, the physics is only sensitive to the two
ratios mr/H = 2mr t and mr/ma, which we will refer to in the following. We implement
eq. (19) numerically in the fat string system, described in Appendix A.

As in Section 3, we define H⋆ to be the Hubble parameter at the time when H = ma, and
correspondingly ma = H⋆(H⋆/H)

α/4 and log⋆ ≡ log(m⋆r/H⋆), where m⋆r ≡ mr(t⋆). The choice
of log⋆ = log(m⋆r/m

⋆
a) determines the scale separation at H = H⋆, sets the time at which the

axion mass becomes relevant, and fixes the axion mass in units of mr in eq. (19). Although
log⋆ ≈ 60 ÷ 70 for physical axion masses, we can study the breaking of the scaling regime
only for log⋆ ® 6. To do so we analyze when the evolution of the system with finite log⋆ starts
deviating from the evolution with the same initial conditions but with ma = 0 throughout.

In Figure 21 (left) we show the evolution of the scaling parameter ξ with time for axion
masses with α = 7 and different choices of log⋆ (solid curves). We also show the evolution
for vanishing axion mass (dashed curves). The initial conditions are the same in all of the
simulations and are on the scaling solution. Figure 21 (right) shows the relative difference
between the curves with and without the axion mass as a function of time. The choice of H⋆/H

37

https://scipost.org
https://scipost.org/SciPostPhys.10.2.050


Select SciPost Phys. 10, 050 (2021)

H★/H = 0.3 1 2 3

mr/2H

1 10 100 1000

10
-1

1

k/H

∂ρa

∂k

H fa
2

fat

Figure 22: The evolution of the axion spectrum in the presence of the axion mass
with log⋆ = 5 and α = 6 (upper lines) at different times labeled by H⋆/H, and for
vanishing axion mass (lower lines, dashed). Before H = H⋆ the non-zero axion mass
has a negligible effect on the spectrum, but subsequently this gets modified starting
starting from IR momenta.

on the x-axis makes it clear that the critical Hubble at which ξ starts differing by more than
one percent is Hcrit = H⋆ for all log⋆. We stopped evolving these simulations at ma/H ≃ 10,
since at later times systematic errors due to an insufficient hierarchy between ma and mr can
become significant (discussed in Appendix F). We have checked however that at later times
the effect of a nonzero axion mass is to reduce the string length, until the whole network
disappears.

In Figure 22 we show the axion energy spectra at different times (i.e. different H⋆/H) for
a system with an axion mass such that log⋆ = 5 with α= 7. We again plot the results obtained
from a system with ma = 0 (dashed lines) for comparison. While H > H⋆ there is no significant
difference between the two spectra, and at H < H⋆ the spectrum starts differing substantially.
We note that a nonzero axion mass affects the spectrum earlier than it affects ξ. In particular
the IR modes, which contribute the most to the axion number density, are affected first and
change soon after H = H⋆. At later times UV modes are also affected. The results obtained are
similar for other values of log⋆.

We have checked that the behavior seen in Figures 21 and 22 holds for all values 0≤ α≤ 8.
As expected, for larger α the mass affects ξ and the spectrum even less while H > H⋆, but the
network shrinks within fewer Hubble times after this point.

We therefore conclude that before the critical value Hcrit = H⋆ the string system is not
affected by a non-vanishing axion mass. The accuracy of our results is not sufficient to estab-
lish whether Hcrit itself has a small residual dependence on log⋆, and indeed this is plausible
considering the log violations discussed in Appendix B. Possible violations are expected to be
small since the axion mass changes rapidly, and would therefore not significantly affect the
lower bound on the axion abundance calculated in Section 3.

As discussed in Section 4, we do not attempt to calculate the axion number density that is
emitted by the string and domain wall network as the latter is destroyed after ma = H. Indeed,
we do not expect that a direct calculation in simulations would reproduce the number density
in the physically relevant regime. In particular, at the values of log accessible in simulations
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the strings are still emitting a UV dominated spectrum and have a tension and density ξ that
is far from the physically relevant values.

E Axions through the Nonlinear Regime

In this Appendix we will give further details on the derivation of the analytic prediction for the
axion number density after its potential becomes relevant. We also describe the simulations
that we performed to confirm its validity and fit its free parameters.

E.1 Derivation of the Analytic Estimate

The initial conditions for the axion equations of motion of the Hamiltonian in eq. (4),

ä+ 3Hȧ− ∇̃
2a

R2
+m2

a fa sin
�

a

fa

�

= 0, ma = H⋆

�

H⋆

H

�α/4

, (20)

correspond to a superposition of waves with energy spectrum ∂ ρa

∂ k described in detail in Ap-
pendix B.4, emitted by strings during the scaling regime prior to H = H⋆. As discussed below,
the initial field can be obtained inverting eq. (16) as a function of ξ and F at H = H⋆. In doing
so we assume that at large log the energy from strings is emitted purely into axions (as the
results in Appendix B.3 suggest). The extrapolation of the effective string tension µeff is also
needed. As shown in Appendix B.3, µeff in simulations is reproduced well by the theoretical

expectation µth = 〈γ〉π f 2
a log
�

mr

H

ηcp
ξ

�

with ηc = 1/
p

4π and γ ≈ 1.3 constant in time, and

we assume that this remains approximately true also at large scale separations.
The actual form of F , shown in Fig. 14, has a nontrivial shape. For simplicity here we

approximate it with a single power law q and a sharp IR cutoff at x < x0,

F[x , y] =

¨

(q−1)xq−1
0

xq x ∈ [x0, y]

0 x /∈ [x0, y]
. (21)

As we will see, the results obtained from this simple form capture the main features of the
dynamics. We also considered more complex shapes reproducing the one in Fig. 14 more
closely. However, when compared to numerical simulations, the improvement with respect
to the simplified approximation in eq. (21) is negligible once compared to the uncertainties
induced by the large log⋆ extrapolation.

By inverting eq. (16), the total energy in axions will be distributed with the spectrum

∂ ρa

∂ k
(t, k) =

∫ t

d t ′
Γ
′

H ′

�

R′

R

�3

F

�

k′

H ′
,

mr

H ′

�

, (22)

where the primed quantities are computed at the time t ′, the redshifted momentum is defined
as k′ = kR/R′ (see eq. (23) of [7] for the explicit derivation). As mentioned in Section 2.2,
the emission rate Γ ≃ ξµeff/t3 ≃ 8πH3 f 2

a ξ log(mr/H) is fixed by energy conservation, and we
assume a linear logarithmic growth of ξ, as in eq. (3), and q > 1. Using eq. (21), the resulting

39

https://scipost.org
https://scipost.org/SciPostPhys.10.2.050


Select SciPost Phys. 10, 050 (2021)

convoluted spectrum at H = H⋆ for momenta k < x0
p

H⋆mr is39

∂ ρa

∂ k
(t⋆, k) =

8ξ⋆µ⋆H
2
⋆

k

�
�

1− 2
log(k/k0)

log⋆

�2

−
�

k0

k

�q−1

+4
1− 2 log(k/k0)

log⋆
−
�

k0
k

�q−1

(q− 1) log⋆
+ 8

1−
�

k0
k

�q−1

(q− 1)2 log2
⋆



 ,

(23)

where k0 = x0H⋆. For k > x0
p

H⋆mr the spectrum falls faster than 1/k and its precise form
is not important since it gives a negligible contribution to the abundance. To a good approx-
imation, we can neglect the effect of γ, ηc and the order one factor between µeff and µth of
Figure 9, so we take µ⋆ ≈ π f 2

a log⋆.
40 The terms in the last line of eq. (23) are O(1/ log⋆) and

can be neglected in the large log⋆ limit, so in this limit all the dependence of ∂ ρa

∂ k

�

�

�

⋆
on q is also

suppressed.
Due to the scaling regime, the leading dependence of the spectrum for

k > x0H⋆ is ∂ ρa

∂ k

�

�

�

⋆
∝ 1/k for all q ≥ 1 (i.e. the spectrum obtained after convoluting F is

scale invariant). Correspondingly, the energy is distributed equally in logarithmic intervals
between the momenta x0H⋆ and

p

H⋆mr . The logarithmic dependence of ξ⋆ and µ⋆ on time
induces violations of the scale invariance that are proportional to log2(k/k0).

At least up until H = H⋆, away from strings axions propagate as free waves, and their spec-
trum can therefore be used to infer the axion field itself via the relations (valid for relativistic
waves)

ρa ≡
∫

dk
∂ ρa

∂ k
=

1
V

∫

d3k

(2π)3
�

�˜̇a(~k)
�

�

2
=

1
V

∫

d3k

(2π)3
k2
�

�ã(~k)
�

�

2
, (24)

where k = |~k| and ã(~k) is the Fourier transform of a(t⋆, ~x) and V is the volume. From the last
equality of eq. (24) it also follows that the average square amplitude is




a2
�

≡ 1
V

∫

V

d3 x a2(x) =
1
V

∫

d3k

(2π)3
�

�ã(~k)
�

�

2
=

∫

dk

k2

∂ ρa

∂ k
. (25)

Combining this with eq. (23) we obtain 〈a2〉|⋆ = 4ξ⋆µ⋆ for log⋆ ≫ 1 and ξ⋆ log⋆ ≫ 1. Conse-
quently, as mentioned, 〈a2〉|⋆ is much larger than f 2

a in this limit.
Following the procedure sketched in Section 3, we can now derive the formula for the

contribution to the final abundance from the spectrum of eq. (23). In particular, in the limit
of large log⋆, the effects from the axion potential can be neglected41 also after t⋆ and the
spectrum evolves relativistically as

∂ ρa

∂ k
(t, k) =

8ξ⋆µ⋆H
2

k









1− 2
log
h

kH1/2
⋆

k0H1/2

i

log⋆





2

−
�

k0H1/2

kH
1/2
⋆

�q−1





 . (26)

This evolution holds up until the contribution from the axion potential in the Hamiltonian
(ρV = m2

a(t) f
2
a ) becomes of the same order as the gradient one from IR nonrelativistic modes,

39In principle we should include a dependence of q on log to calculate the spectrum (q ∝ log y in eq. (21)).
However, as we will see below, provided q≫ 1 its precise value and its dependence on time are not important.

40More precisely, if the extrapolation of µeff/µth of Figure 9 remains valid at large log, not taking these effects
into account induces a ∼ 20% overestimation of the energy density.

41This is reminiscent of the so-called kinetic misalignment introduced in [89,90].
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i.e. until t = tℓ when the following condition is satisfied:

ρIR(tℓ)≡
∫ cmma(tℓ)

0

dk
∂ ρa

∂ k
= cV m2

a(tℓ) f
2
a , (27)

where cV and cm are O(1) coefficients to be determined numerically.
The condition above provides the following implicit equation for tℓ, or equivalently for

ma(tℓ)/H⋆:

8ξ⋆µ⋆H
2

�

log(κ)

�

1− 2
log(κ)
log⋆

+
4
3

log2(κ)

log2
⋆

�

− 1− κ1−q

q− 1

�

= cV m2
a f 2

a , κ=
cmma

x0
p

HH⋆
, (28)

where all the quantities are evaluated at t = tℓ. We note in particular that ρIR is still much
larger than m2

a f 2
a at H = H⋆ because of the enhancement by a factor of ξ⋆µ⋆∝ log2

⋆ .
Introducing the quantity

z ≡
�

m(tℓ)

H⋆

�1+ 6
α

, (29)

which measures the delay of the nonlinear regime induced by the ξ⋆ log⋆ enhancement, eq. (28)
can be rewritten as

8πξ⋆ log⋆

�

log(κ)

�

1− 2
log(κ)
log⋆

+
4
3

log2(κ)

log2
⋆

�

− 1− κ1−q

q− 1

�

= cV z2(1− 2
α+6) , κ=

cm

x0
z1− 4

α+6 .

(30)
The equation can be further simplified by noticing that the first term dominates in the limit
log⋆≫ 1, and thus we get

8πξ⋆ log⋆ log
�

cm

x0
z1− 4

α+6

�

= cV z2(1− 2
α+6) . (31)

Eq. (31) can be solved analytically using the identity
a log(bzc) = z ⇐⇒ z = −acWk(−(acb1/c)−1) for some k ∈ Z, where Wk(z) is the Lambert
W -function evaluated on the k-th Riemann sheet and defined by zez = a ⇐⇒ z = Wk(a).
The solution is

z =







W−1

�

− cV (1+
2
α+2)

4πξ⋆ log⋆

�

x0
cm

�2(1+ 2
α+2)
�

− cV (1+
2
α+2)

4πξ⋆ log⋆







1
2(1+

2
α+4)

, (32)

where the choice of the lower branch k = −1 is dictated by the fact that the argument of W is
negative (because cm, cV > 0) and the value of Wk in eq. (32) must be negative (and large) so
that z > 1. In the limit ξ⋆ log⋆≫ 1 we can expand W−1 for small negative arguments. Noticing
that

W (−z−1) = log

�

−z−1

W (−z−1)

�

= log





−z−1

log
�

−z−1

···
�



 = − log(z log(z log(· · · ))) , (33)

where the second equality is just the recursion of the first equality and the dots stand for
infinitely nested logs, eq. (32) gives

z =

�

4πξ⋆ log⋆
cV

�

1− 2
α+ 4

�

log

�

4πξ⋆ log⋆
cV

�

1− 2
α+ 4

��

cm

x0

�2(1+ 2
α+2 )

log(...)

��
1
2 (1+

2
α+4 )

,

(34)
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where the logarithms are infinitely nested. At t = tℓ the field dynamics is completely nonlinear
with most of the spatial gradients of order the axion mass or lower and energy density of order
m2

a(tℓ) f
2
a . As the Universe continues to expand, the energy density and the field value decrease

further, and so do nonlinearities. We assume that the transient lasts O(1)Hubble times, so that
during this period the total energy is approximately conserved. After the nonlinear transient,
the axion field drops below fa, the dynamics is mostly linear and the comoving number density
is conserved again. The latter can therefore be derived from the energy density at tℓ as

na(tℓ) = cn

ρIR(tℓ)

ma(tℓ)
= cncV ma(tℓ) f

2
a , (35)

where the O(1) coefficient cn, which we will fit from numerical simulations, parametrizes
all matching effects during the nonlinear transient, such as the O(1) effects from the redshift
during the transient and the extra contribution from slightly relativistic modes above cmma(tℓ).

We finally arrive to an expression for the relative contribution of relic axions from strings
during the scaling regime normalized to the reference misalignment value at θ0 = 1 (i.e.
n

mis,θ0=1
a (tℓ) = c′nma(t⋆) f

2
a (Hℓ/H⋆)

3/2, where c′n ≡ 2.81)

Q(tℓ)≡
nstr

a (tℓ)

n
mis,θ0=1
a (tℓ)

=
cn

c′n
cV
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4πξ⋆ log⋆
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x0
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4πξ⋆ log⋆







1
2(1+

2
α+4)

=
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4πξ⋆ log⋆
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log
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4πξ⋆ log⋆
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�2(1+ 2
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log(...)

��
1
2 (1+

2
α+4 )

.

(36)

Conservation of the comoving number density implies that Q(t) is constant for t ≫ tℓ, so that
one can easily compute the number density of axions today, nstr

a (t0), from the equation above.
From the analytic expression in eq. (36) we can notice several important features. First,

as a result of the large log⋆ approximation, the explicit dependence on q has disappeared (we
will show below from the full numerical results how indeed such a dependence is subleading).
Second, the dependence on x0 (the effective IR scale of the spectrum) is only logarithmic.
This softens considerably systematic errors from neglecting a possible evolution of x0 during
the scaling regime, and makes manifest the insensitivity of the final result on the details of
the shape of the IR part of the spectrum. Third, the unknown parameters cV,m,n enter the final
formula as multiplicative factors (or in the logarithmic dependence), so that the functional
dependence on ξ⋆ log⋆, α and x0 is a true prediction of the above analytic derivation, which is
confirmed by the numerical computations. Notice finally that with α≫ 1, i.e. when the axion
potential grows fast and the redshift effects between t⋆ and tℓ can be neglected, the formula
aboves simplifies further, recovering the simple dependence Q(tℓ)∝ (ξ⋆ log⋆)

1/2, anticipated
in the main text. In Appendix E.3 we will see that eq. (36) fits well the numerical results and
we will provide numerical fits for the coefficients cV,m,n (see the caption of Fig. 24), which
indeed are of order one.

E.2 Setup of the Numerical Simulation

In Section 3 we also studied the evolution of the axion field numerically by solving eq. (20) on
a discrete lattice. Unlike our simulations of the scaling regime, eq. (20) only contains the axion
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and not the radial mode. The absence of the radial mode means that strings are automatically
absent, and simulations can reach values of H⋆ that are arbitrarily smaller than fa and mr .

The numerical implementation of eq. (20) is very similar to the string system. In particular,
it is convenient to use the rescaled field ψ = R(t) a/ fa and the conformal time τ, which is
defined as

τ(t) =

∫ t

0

d t ′

R(t ′)
∝ t1/2 . (37)

In this way eq. (20) simplifies to

ψ′′ − ∇̃2
xψ+ u(τ) sin
�

ψ

R

�

= 0 , u(τ) =

�

τ

τ⋆

�α+3

, (38)

where ψ′ and ∇̃xψ are derivatives with respect to the dimensionless variables H⋆τ and the
comoving coordinate H⋆x , and τ⋆ = τ(t⋆).

We solve eq. (38) numerically starting from τ = τ⋆ in a box with periodic boundary con-
ditions. Space is discretized on a cubic lattice of comoving side length Lc containing up to
N3

x = 30003 uniformly distributed grid points. The space-step between grid points in comov-
ing coordinates ∆c = Lc/Nx is constant in time. Eq. (38) is discretized following a standard
central-difference Leapfrog algorithm for wave-like partial differential equations, and evolved
in fixed steps of conformal time ∆τ, which we fix to ∆τ = ∆c/3.42 The derivatives are ex-
panded to fourth order in the space-step and second order in the time-step.

The physical length of the box is L(t) = LcR(t) and the physical space-step between grid
points ∆(t) = L/Nx =∆cR(t) grows∝ t1/2. Therefore, the number of Hubble patches in the
box H L decreases with time, and the axion mass in lattice units ma∆ rapidly increases. This
leads to potential systematic uncertainties in the results, which we analyze in Section E.4. Our
final results are obtained with parameter choices that are free from significant uncertainties.

The initial conditions a(t⋆, ~x) and ȧ(t⋆, ~x) are extracted from ∂ ρa

∂ k

�

�

�

⋆
via their Fourier trans-

forms from eq. (24). More precisely, eq. (24) fixes only 〈|ã(~k)|2〉 (and the time derivative), i.e.
the average over the points in a sphere in Fourier space with fixed radius |~k|. For a fixed wave-
vector ~k, we therefore generated |ã(~k)|2 randomly in the interval
〈|ã(~k)|2〉
�

1− ~k2/k2
max , 1+ ~k2/k2

max

�

, where kmax ≡ 2πNx/L and 〈|ã(~k)|2〉 is a function of |~k|
fixed from eq. (24). Similarly, the phase of ã(~k) is chosen randomly in [0, 2π) for all ~k.

In our analysis we used two different functional forms for the initial spectrum ∂ ρa

∂ k

�

�

�

⋆
. The

first is that of eq. (23), which is derived from the simplified F consisting of a single power law.
For the final results in the main text, we used a more realistic spectrum obtained by inserting
a better approximation to the true shape of F (plotted in Figure 14). This comprises four
different power laws, chosen to be x3, x1/2, x−1/2, x−q joined at the points x = x0/4, x0, 2x0, y ,
and with F[x > y, y] = 0. The intermediate power laws in this reproduce the broad IR peak
in F . For both functional forms we used q = 5, as suggested by the extrapolation of q(log⋆) of
eq. (17) at log⋆ = 70. As shown below, provided q≫ 1 its precise value is not important for
large ξ⋆ log⋆, so this choice does not have any significant effect on the results obtained.43

E.3 Further Results from Simulations and Oscillons

To understand the dynamics as the axion mass becomes cosmologically relevant it is useful to
study the mean square amplitude 〈a2〉 defined in eq. (25), the axion spectrum ∂ ρa

∂ k and the

42As shown in ref. [7] this time discretization is sufficient to avoid numerical effects at the per-mille level.
43The initial spectrum was always generated for log⋆ = 70, and different ξ⋆ log⋆ are obtained by varying ξ⋆ (so,

e.g. the normalization of eq. (23) changes, but not the k-dependence). This choice has no significant effect for
ξ⋆ log⋆≫ 1.
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Figure 23: The time evolution of the comoving number density (left) and of the mean
square axion field amplitude (right) for different values of ξ⋆ log⋆, with x0 = 10 and
α = 8. The colors on the right figure correspond to the same values of ξ⋆ log⋆ as on
the left. The lower lines, below the shaded regions, are the same observables com-
puted with oscillons masked, which only makes sense at late times once these are
well defined objects. It can be seen that after a transient the comoving axion num-
ber density approaches a constant value. Meanwhile, at early times the mean field
amplitude evolves as relativistic matter, and at late times as nonrelativistic matter, as
expected.

axion number density

∂ ρa

∂ k
≡ ∂ ρa

∂ |~k|
=
|~k|2
(2πL)3

∫

dΩk

�

1
2
|˜̇a(~k)|2 + 1

2

�

~k2 +m2
a

�

|ã(~k)|2
�

,

nstr
a =

∫

dk
Æ

k2 +m2
a

∂ ρa

∂ k
. (39)

In Figure 23 we show the time evolution of the mean square axion field amplitude 〈a2〉
and of the comoving number density Q(t) = nstr

a (t)/n
mis,θ0=1
a (t). The results are shown for

different values of ξ⋆ log⋆, and with the simplified initial axion spectrum with IR cutoff x0 = 10
and with α= 8. As mentioned in Section 3, for sufficiently large ξ⋆ log⋆ the early evolution of
these quantities matches the expectation of a relativistic regime. Calculating nstr

a makes sense
at these times since the whole potential is negligible in the Hamiltonian density (4), which
is diagonal in momentum space. After a transient period when nonlinearities dominate the
evolution of the system and nstr

a is not defined (corresponding to the dashed lines in Figure 23),
the average amplitude becomes smaller than fa. At such times the majority of the field is in
the linear regime, with the exception of objects called oscillons that are produced.

An oscillon is a localized, metastable, time-dependent solution eq. (20), in which the field
oscillates with maximum amplitude of orderπ fa within a region of (decreasing) size m−1

a [46].
It therefore contains an energy density of order 1

2 m2
a f 2

a π
2. Although oscillons decay, radiating

their energy into axions, they are thought to be very long lived [91, 92]. Indeed, we observe
that they do not disappear within the range of our simulations. As time passes, however,
they occupy an increasingly negligible proportion of space. Consequently it makes sense to
calculate the number density of axions by considering only the field far away from oscillons,
where the linear approximation to eq. (39) is valid.

We screen oscillons by multiplying the axion field and its time derivative by a window func-
tion w(ρa) of the local energy densityρa(x) (defined as in eq. (4)), i.e. ascr(x)≡ w(ρa(x))a(x).
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We choose the window function to be

w(ρa) =
1
2

�

1− tanh

�

5

�

ρa

1
2 m2

a f 2
a π

2
− 1

���

, (40)

which vanishes for ρa ¦
1
2 m2

a f 2
a π

2 and tends to 1 for ρa ≪ m2
a f 2

a as required. We have
checked the results are not sensitive to this particular functional form. The screened average
amplitude, spectrum and number density are defined as in eqs. (25) and (39) substituting
a(x)→ ascr(x) and similarly for the time derivative.

In Figure 23 we plot the mean field amplitude and the axion number density at late times
both with and without oscillon screening (respectively, the lower and upper curves between the
shaded regions).44 At earlier times (i.e. during the transient) we do not show the results with
oscillons screened since they are not yet clearly defined objected. As expected, with oscillons
screened the system reaches a regime in which the comoving number density is conserved, and
the average field amplitude decreases as in the limit of nonrelativistic dynamics.45 Moreover,
the effect of oscillons decreases at late times. We have tested that the results at the end of
simulations are not sensitive to the minimum energy density that is masked by the window
function, provided this is in a reasonable range.

Despite their interesting dynamics, we refrain from analyzing the evolution of the oscillons
in detail. Instead we just note a few relevant facts. We estimated the number of oscillons in two
ways: (1) by dividing the total volume in oscillons (defined as the points where w(ρa)> 1/2)
by the volume of one oscillons m−3

a , and (2) by dividing the total energy in oscillons by the
energy of one oscillon (m−3

a ×
1
2 m2

a f 2
a π

2). The number of oscillons computed in the two ways is
compatible and constant in time. This means that, once formed, oscillons do not decay within
the simulation time. Additionally, the number of oscillons that form depends on the initial
amplitude of the field and increases if the value of ξ⋆ log⋆ in the initial conditions is larger.

Our analytic estimate for Q has been derived only for the simplified spectrum in eq. (21).
However, this differs from the more physical spectrum only in its IR part. As argued before, Q

is not very sensitive to this part of the spectrum, so that we can apply the result from eq. (36)
to the more physical spectrum. We expect the different shape of the initial spectrum to be
reabsorbed in the numerical fit of the coefficients cm, cV , cn.

In Figure 24 and Figure 3 in the main text, we show the comoving number density of axions
Q(t f ) at the final simulation time t f as a function of ξ⋆ log⋆ for α = 4,6, 8 and x0 = 5, 10,30
for the physical initial spectrum. The errors are systematic and come from the uncertainty
in the screening of oscillons, which we estimate as the difference between the masked and
unmasked number density. The statistical errors, as well as the systematic errors from finite
volume and finite UV-cutoff are subdominant. The continuous lines in the same plot represent
the analytic estimate in eq. (36) (valid for ξ⋆ log⋆≫ 1), where the coefficients cm, cV , cn have
been fixed with a global fit of all the data points with ξ⋆ log⋆ ≥ 100 in Figures 24 and 3. We
note that the fit is good, and the dependence on ξ⋆ log⋆, α and x0 in the numerical data is
captured well by the analytic result. Equivalent plots for the simplified initial spectrum show
a similarly good fit.

Finally, in Figure 25 we show the time evolution of the spectrum ∂ ρa

∂ k for ξ⋆ log⋆ = 103 with
α = 8 and x0 = 10. As expected, the spectrum evolves as in the free relativistic limit initially,
and the nonlinear transient depletes the amplitude of modes k < ma(tℓ). Oscillons affect the
spectrum only at momenta of order of the axion mass at a given time, indicated with an empty
dot.

44Strictly speaking, the number density in eq. (39) has no physical meaning if the field is not in the linear regime,
i.e. when oscillons are not screened.

45Note that oscillons will continue radiating axions with momentum of order their inverse size, k ∼ ma. These
will not contribute significantly to the final axion number density, as can be seen in the spectrum of Figure 4.
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Figure 24: The ratio between the axion number density from strings and from mis-
alignment (with θ0 = 1) as a function of ξ⋆ log⋆ for α = 4,6 (left and right panels
respectively). The data points are simulation results, while the lines are the analytic
estimate in eq. (36) with coefficients cm = 2.08, cV = 0.13, cn = 1.35 fit from the
complete data set. The analytic fit matches the data well, including the dependence
on x0 and α (except at very small ξ⋆ log⋆ where it is expected to break down).

For all of the results presented so far we have fixed q = 5. However, there is some un-
certainty in our extrapolation of q. In Figure 26, we show the number density of axions as a
function of q before and after the nonlinear regime (at t = tℓ) for ξ⋆ log⋆ = 103, x0 = 10 and
α= 8. It is clear that provided q≫ 1, its actual value introduces only a very minor uncertainty
on the final axion number density.

E.4 Systematics

Systematic uncertainties and numerical artifacts in the axion only simulations can arise from
various sources. Here we describe the most important of these, and the choices of simulation
parameters that were used to obtain our final results.

First, we note that the number of Hubble patches in the box and the axion mass in lattice
units are

H L = H⋆L⋆

�

H

H⋆

�1/2

∝ t−1/2 , ma∆ =

�

H⋆L⋆

N

��

H⋆

H

�α/4+1/2

∝ tα/4+1/2 . (41)

The former decreases with time, while the latter increases fast. Therefore the following sources
of systematic uncertainty need to be considered.

• The continuum limit corresponds to ma∆ → 0, and in particular if ma∆ ¦ 1 lattice
effects are introduced. All our simulations are stopped when ma∆ = 1 so that the
discretization effects are negligible for practically the whole simulation time.

• The infinite volume limit corresponds to H L → ∞. In Figure 27 (left) we show that
the initial number density is free from finite volume effects provided H⋆L⋆ ≥ 1, which
matches expectations based on the form of F . Although during the subsequent evolution
H L < H⋆L⋆, since no strings are present in the simulation, no new IR axion modes are
produced and those modes that are present initially still fit in the simulation volume at
later times. Therefore, volume effects do not affect the simulation at H < H⋆. Instead,
the systematic errors introduced by a finite H⋆L⋆ even decrease over the course of a
simulation. This is because the nonrelativistic regime tends to wash out the dependence
on the IR shape of the spectrum, and this is the most affected by finite volume effects.
From eq. (41) the time range H⋆/H of a simulation (before ma∆ = 1 is reached) is
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Figure 25: The time evolution of the axion spectrum ∂ ρa

∂ k for
ξ⋆ log⋆ = 1000,α = 8, x0 = 10. Different times are represented by ma/H.
Results are shown at the initial time t⋆ (dashed line), during the relativistic regime
(second line from the top), during the transient, and at the final time once the IR
modes are evolving nonrelativistically (black line). The analytic fit for time tℓ when
ρIR ≈ V corresponds to ma(tℓ)/H(tℓ) ≈ 680. Empty dots indicate the momentum
equal to ma at any given time.

maximized by choosing the smallest viable H⋆L⋆.
46 Thus, all of our results are obtained

from simulations that have H⋆L⋆ ≥ 1.

• The maximum momentum of modes supported in a simulation is only kmax ≡ 2πNx/L,
which is far from the UV-cutoff of the (scale invariant part of the) spectrum,
i.e. k ∼
p

H⋆ fa for the physical parameters. Therefore, given the scale invariance of
the convoluted spectrum most of the kinetic energy density of the axion field will not be
contained in the grid. However, given the discussion in Section 3, the number density
nstr

a is dominated by momenta of order ma(tℓ) at t = tℓ. Thus, if the UV-cutoff ΛUV of
the grid satisfies ΛUV (Hℓ/H⋆)

1/2 ≫ ma(tℓ) the final number density is expected to be
independent of ΛUV .

We tested the dependence of nstr
a on the UV-cutoff by generating initial conditions from

the simplified spectrum, but setting ∂ ρa

∂ k

�

�

�

⋆
= 0 for k > ΛUV for different ΛUV . In Fig-

ure 27 (left) we plot the axion number density as a function of time during its mass turn
on for different ΛUV , relative to that of the largest value tested (the simulations are all
identical apart from the value of ΛUV , e.g. they are on the same sized grid). We see
that for α = 8, x0 = 10 and ξ⋆ log⋆ = 103 the dependence of Q on ΛUV is negligible if
ΛUV > 103H⋆,

We do however note that as ξ⋆ log⋆ increases so does ma(tℓ) and therefore a larger UV-
cutoff is required. The size of our grids is such that ΛUV > 103H⋆ in all our simulations,
which is sufficient to obtain accurate results.

46A large time range is needed so that the axion field reaches the nonrelativistic regime, and the asymptotic
value of nstr

a
can be calculated.
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Figure 26: The axion number density from strings relative to that from misalignment,
as a function of the power law q of the axion emission spectrum during scaling. We
have fixed ξ⋆ log⋆ = 103, x0 = 10 and α= 8. The results are shown before and after
the axion mass becomes cosmologically relevant.
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Figure 27: Left: The axion number density as a function of time for different choices
of H⋆L⋆, normalized to the values closest to the infinite volume limit H⋆L⋆ = 2.5.
Right: the same observable for different choices the UV-cutoff of the spectrum
ΛUV/H⋆, normalized to results with the largest cutoff tested ΛUV/H⋆ = 2000. The
simulations are performed for the simplified initial condition spectrum with x0 = 10
and ξ⋆ log⋆ = 103, and an axion mass power law α= 8.

F Massive Axions on a String Background

In Section 3 we studied the evolution of the axion field as the axion mass becomes cosmo-
logically relevant considering only the axions emitted at earlier times, i.e. for H > H⋆. In
reality, until the string network is completely destroyed the axion field is made of different
components: the axion radiation produced up to H⋆ by the scaling regime, axion radiation
emitted at later times as the string network is destroyed, and strings themselves. Crucially, in
the analysis of Section 3 we implicitly assumed that the presence of strings (which actually
store an order one fraction of the energy density in their spatial gradients) does not influence
the evolution of the axion radiation, or at least it does not weaken it. In this Appendix we
show that the number density of axions from the scaling regime is indeed not affected, at least
from the axion string network that can be currently simulated.
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F.1 The Decoupling Limit

For a simulation to include strings, both the axion and the radial mode must be present as
dynamical degrees of freedom, and therefore evolved e.g. following the Lagrangian in eq. (18)
of Appendix D.47 An important issue when studying this system is whether the radial mode is
sufficiently heavy that it has reached the physical decoupling limit.48 Indeed, the equations of
motion of the complex scalar field, eq. (19), tend to those of the axion, eq. (20), only when
the two limits

• ma/mr → 0

•
∂µ(a/ fa)

mr
→ 0 ,

are both satisfied.49

The first limit requires that the axion is much lighter than the radial mode, and the sec-
ond that the typical axion momenta are much smaller than mr . Although this is the case in
the physical regime, for which log⋆ ≡ log(m⋆r/m

⋆
a) ≈ 60 ÷ 70 and the spectrum is IR domi-

nated, these limits are unreachable in numerical simulations. In particular, we know that for
log® 6÷8 the spectrum is still dominated by axions with momentum of order mr . Moreover,
although ma/mr ≪ 1 is satisfied early in simulations when H⋆/H ≪ 1, it can be violated at the
final simulation times when H⋆/H ≫ 1. This is because, from eq. (20), the axion mass grows
fast for nonzero α, especially at the physical value α≈ 8. Consequently ma soon becomes close
to mr (which cannot take physically relevant value≫ H∗ due to the finite lattice spacing).

To demonstrate the importance of the decoupling limit, we study the simple homogeneous
solution of eq. (20) with a(t0) = θ0 fa and ȧ(t0) = 0. This can be compared with the solution of
eq. (19) for the full complex scalar field, with r(t0) = ṙ(t0) = 0 and the same initial conditions
for a(t0). To enable comparison with results from simulations that we show in Section F.2, we
solve eq. (19) in the fat string case (i.e. with mr decreasing with time), and we fix the axion
mass by choosing α= 6 and log⋆ = 7.

In Figure 28 we plot the time evolution of the comoving axion number densities for θ0 = 1
and t0≪ t⋆ for the theories with and without the radial mode. The comoving number density
is given by na/(H⋆ f 2

a (H/H⋆)
3/2), where na is defined as ρa/ma and ρa is the Hamiltonian

density in eq. (4). In the same plot we also show the evolution of the radial mode r/( fa/
p

2).
The non-decoupling of the radial mode modifies the oscillations of a(t) generating an unphys-
ical non-conservation of the comoving axion number density, which is already at the level of
20% for ma/mr = 1/3. At the same time, the radial mode is increasingly displaced from its
minimum, acquiring some of the energy that would otherwise be in the axion field. In other
words, light enough degrees of freedom coupled to the axion get excited. This simple analysis
shows that any prediction from a simulation where the decoupling limit is not reached will be
strongly model dependent, and will not reproduce results in the physically important regime.

47Other UV completions of the axion are also of course possible.
48This limit is qualitatively different from the condition m2

a
/m2

r
< 1/39 mentioned in [22], and applies also in

the absence of domain walls.
49This can be shown by multiplying both sides of eq. (19) by e

−i a
fa and writing φ = r+ fap

2
e

i a
fa . Working in flat

spacetime for simplicity, the imaginary and real parts of eq. (19) then become
(

(1+σ)∂µ∂
µθ + 2∂µσ∂

µθ +m2
a

sinθ = 0
1

2m2
r
∂µ∂

µσ− (1+σ) (∂µθ )
2

m2
r
+
(1+σ)

2 ((1+σ)2 − 1)− m2
a

m2
r

cosθ = 0
, σ ≡ r

fa/
p

2
, θ ≡ a

fa

. (42)

Eq. (42) with the radial mode on the VEV, r = 0, reduces to the axion equation (20) only in the limit ma/mr → 0
and ∂µθ/mr → 0, so that the second equation is trivially satisfied and the first reduces to eq. (20). If this limit is
not reached, the second and fourth terms in the second equation act as a source for the radial mode, which is then
generated even starting from r = 0.
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Figure 28: A comparison between the comoving axion number density from the ho-
mogeneous misalignment with a(t0) = fa using the axion only equations (black) and
the full complex scalar field equations with log(m⋆r/m

⋆
a) = 7 (blue). The amplitude

of the radial mode r/( fa/
p

2) is also shown. Already at ma/mr = 1/3, the radial
mode is unphysically displaced from the minimum and the axion number density is
not conserved by ≈ 20%.

F.2 The Effect of Strings

Next we test whether the presence of strings affects the dynamics of the pre-existing radiation,
and therefore the number density of axions resulting from the scaling regime. To do so we
simulate the fat string system starting from its evolution during the scaling regime, through the
time when the axion mass turns on. At H = H⋆ we modify the complex scalar field by injecting
additional axion radiation, with the spectrum that would be produced at log⋆ = 60÷ 70 from
the scaling regime with q > 1.

The extra radiation must be introduced to account for emission by the scaling regime at
large values of the log and to enable a fair comparison with Section 3. In contrast, the radiation
component emitted by the string network prior to log⋆ ≈ 7, which is directly accessible in
simulations, is still UV-dominated. This will therefore not capture the dynamics that we are
interested in, and will probably make a negligible contribution to the axion number density
compared to misalignment. Of course, with this setup we do not aim to compute the complete
axion relic abundance from strings and domain walls. Instead we simply want to confirm that
our analysis in Section 3 is not significantly altered by the actual presence of strings and domain
walls, and confirm that our analysis does indeed give a lower bound on the relic abundance.

To do so, we solved eq. (19) as in Appendix D starting from H = mr . Then when t = t⋆,
in the middle of the evolution, we substituted

φ(t⋆, ~x)→ φ(t⋆, ~x)eiaw(t⋆,~x)/ fa and φ̇(t⋆, ~x)→
d

d t

�

φ(t, ~x)eiaw(t,~x)/ fa
�

�

�

�

�

t=t⋆

. (43)

The field aw(t⋆) is the additional radiation and is extracted from the kinetic energy spectrum
∂ ρa

∂ k

�

�

�

⋆
of the scaling regime at log⋆ = 60÷ 70 (as in Appendix E.2).

There are a number of potential sources of systematic errors to be taken into account in
such simulations, on top of those already present in the analysis of the scaling regime for
vanishing axion mass.
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• The ratio mr/ma should be large enough at the final time not to introduce the non-
decoupling effects discussed in the previous Section. In particular, even if we will use
mr∆ = 1 as in the string network simulations, ma∆ = 1 at the final time will not be
sufficient. Instead we stop the simulations at mr/ma = 10 (Figure 28 suggests that this
is sufficiently large to avoid unphysical energy transfer to the radial mode, although it
is not definitive since that plot is for a homogeneous field).

• H⋆L⋆ should be large enough so that finite volume effects do not cause the string net-
work to shrink. Instead we want this to occur due to the the axion mass. The resulting
constraint on H⋆L⋆ is stronger than that discussed in Appendix E.2). For α = 6, we
checked that the scaling parameter has dropped by 50% due to the mass at H⋆/H = 4,
so choosing H⋆L⋆ ¦ 4 is sufficiently safe for our purposes.

• The UV cut-off of the injected spectrum (which is scale invariant) should be smaller than
mr/2 to satisfy the second requirement for the decoupling limit. We cutoff the injected
spectrum for momenta bigger than kUV = 50H⋆ (as is described in Appendix E.4). For
log⋆ = 7 this is sufficiently small compared to mr not to introduce major effects.50

Accommodating the competing requirements of these sources of systematic errors is chal-
lenging. Simulations cannot last as long as the axion-only simulations of Section 3, and we
cannot reach the regime where the comoving number density is precisely conserved (after
the relativistic period and the nonlinear transient). This is the case even when a spectrum
with relatively small ξ⋆ log⋆ = 200 is injected, for which the nonrelativistic regime is reached
relatively early.

Despite these difficulties, results from simulations are still sufficient to show that the pres-
ence of strings does not affect the existing radiation, enough for our present work. In Figure 29
we plot (in blue) the evolution of the axion number density when the axion spectrum corre-
sponding to ξ⋆ log⋆ = 200 is injected into a simulation with strings at the simulation time
log = log⋆ = 7.51 As in Figure 28 we take α = 6. More precisely, we calculate the axion
number density from the kinetic component of its energy, i.e. in the first term of eq. (39),
multiplied by a factor of two.52 This gives the correct result at the early and late times, and
during the transient the axion number density is not well defined anyway.

For comparison, in Figure 29 we also plot in pink the number density calculated in an
axion-only simulation of Section 3 with the same initial spectrum.53 Additionally, we plot
in orange the number density when the axion spectrum is injected into a simulation of the
complex scalar field, but with no strings or preexisting radiation present. Finally, we show
the number density arising from directly simulated strings when the axion spectrum is not
injected.

The effect of the non-decoupling of the radial mode can be seen in these results. The final
number density from simulations involving the radial mode is somewhat smaller than that from
an axion only simulation, even when there are no strings or radiation present. This happens
because we do not have the numerical power to simulate a very large hierarchy between ma

and mr at such times. As expected the number density injected is much larger than that emitted

50If substantially larger values of kUV are used the field evolution develops numerical instabilities.
51The injected spectrum has a UV cutoff at k/H = 50 to maintain the required hierarchy k ≪ mr . We choose

ξ∗ log∗ = 200, somewhat smaller than our central value for the QCD axion, since simulations with larger values
require smaller lattice spacing, increasing the computational resources required.

52We do this because the presence of strings and oscillons makes it challenging to evaluate the axion field nu-
merically without complications from discontinuities, due to its periodic nature. However, the time derivative of
the axion can easily be computed.

53Unlike Appendix E in these we calculate the number density from twice the kinetic component to enable
comparison with simulations of the complex scalar field.
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Figure 29: The evolution of the axion number density (extracted as twice the kinetic
component of the number density) through the axion mass turn on, for α = 6. We
compare simulations in which only the axion is dynamical (pink), starting with the
initial field configuration predicted from the scaling regime with ξ∗ log∗ = 200, with
results when the same axion spectrum is injected into a simulation of the axion and
radial mode that has a string background evolved with a potential such that log⋆ = 7
(blue) (via eq. (19)). In the latter, the string network is in the scaling regime prior
to the axion mass turn on, and is subsequently destroyed. We also plot the evolution
of the same axion spectrum injected into a simulation of the axion and radial mode
with no strings present (orange), and the result from the scaling regime without the
addition of the extra axion field (light blue). The agreement between the results
when the axion spectrum is evolved in complex scalar field simulations with and
without strings shows that the presence of strings with log⋆ = 7 does not have a
significant effect on the dynamics of the preexisting radiation.

by strings, during scaling and also as they are destroyed by the axion mass, at the values of
log(mr/H) that can be simulated

Most importantly, the final axion number density when the spectrum is injected into a
simulation with strings is very close to that when it is injected into a simulation of the complex
scalar with no strings. This indicates that the presence of strings, and the dynamics of their
annihilation at the end of the scaling regime, does not significantly alter the evolution of the
pre-existing axion radiation. Since the number density from the axions in the scaling regime
is not depleted by strings with log⋆ = 7, there is no reason to expect that this will not also
hold for larger log⋆. Indeed is seems implausible that strings could absorb all of the energy in
axions previously released by the scaling regime, and then emit this back as high momentum
axions, which would be required for the strings to decrease the final axion number density.

G Comparisons

Our final conclusions in Section 4 differ from those obtained by other authors in the literature
for various reasons. Here we comment only on those that are relatively close to us in their
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basic assumptions or techniques used.

• Based on the expected similarity between axion strings at log⋆ ≫ 1 and Nambu–Goto
strings, the authors in [33–36] assumed values for ξ⋆ and q numerically compatible with
those inferred by our study, and therefore got an enhanced contribution to the axion
abundance from topological defects. Their analysis however did not take into account
the effects from nonlinearities induced by the large axion field values. These, as we have
shown, crucially affect the field evolution during the QCD transition and substantially
change the final axion abundance.

• In [25] the authors performed a simulation of the entire axion string/domain-wall sys-
tem’s evolution from the scaling regime until the linear regime after the QCD transition
and beyond. The result for the abundance is substantially smaller than the bound in
eq. (6), however it is not in contradiction with it. Indeed the range of log(mr/H) that
can be directly simulated does not allow large values of ξ⋆ log⋆ to be reached (and in-
stead ξ⋆ log⋆ remains a couple of orders of magnitude below the physical one), nor does
it allow the spectrum to be seen turning IR dominated (i.e. with q > 1). Consequently,
the number of axions produced by strings will be small, thus the smaller abundance
measured in such a simulation. In studying the effect of strings and walls in the evo-
lution of the axion field during the nonlinear regime in Appendix F we also performed
simulations analogous to those of ref. [25] obtaining compatible results. However from
Fig. 29 in Appendix F.2 it is clear that ignoring a proper extrapolation of the parameters
could easily lead to the dominant contribution to the abundance being missed and the
total contribution being underestimated by more than one order of magnitude.

• As in the previous case, the authors of ref. [93] perform simulations of the entire evo-
lution from the scaling regime to the linear regime including the decay of strings and
walls. However, by changing the physics at the string core scale mr they manage to pro-
duce an effective string tension which is numerically equivalent to log⋆ ≃ 70. In doing
so they also observe an enhancement of ξ⋆ which grows by a factor of a few. At t⋆ the
system has an effective energy density prefactor ξ⋆ log⋆ of the same order of magnitude
of our extrapolated one. Despite the large energy density, the final axion abundance
found is small as if the string contribution was negligible. The result is not in obvious
contradiction with our findings and can be understood as follows. Within the range of
mr/H that can be simulated we observed that most of the energy of the string network is
still dumped into UV modes, which have not yet decoupled and instead influence the IR
string dynamics. Despite the higher string tension, the evolution of the string network in
ref. [93] is probably still dominated by UV modes (which in such a setup are unphysical)
producing a spectrum with q < 1 explaining the suppressed axion abundance. Unfortu-
nately in order to check this interpretation of the disagreement a dedicated study of the
axion spectrum in this setup is required, which is currently missing.
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