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Abstract. The purpose of this article is to prove several evaluations of determinants of matrices,
the entries of which are given by the recurrence ai,j = ai−1,j−1+ai−1,j , i, j ≥ 2, with various choices
for the first row a1,j and first column ai,1.
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1. Introduction. Determinants have played a significant part in various areas
in mathematics. For instance, they are quite useful in the analysis and solution of
systems of linear equations. There are different perspectives on the study of deter-
minants. One may notice several practical and effective instruments for calculating
determinants in the nice survey articles [3] and [4].

Much attention has been paid to the symbolic evaluation of determinants of matri-
ces, especially when their entries are given recursively (see Section 5.6 in [4]). Toward
these matrices one usually introduces the first row and column as initial conditions
for a recurrence relation used for constructing the other entries. Both this relation
and the initial conditions play an important part in constructing the matrix, as well
as in evaluating its determinant. Several relevant studies on evaluating determinants
can be found in the literature; e.g., see [1, 2, 5, 7]. In this article we are inter-
ested in the sequences of determinants of matrices satisfying the recurrence relation
ai,j = ai−1,j−1 + ai−1,j for 2 ≤ i, j ≤ n, with various choices for the first row a1,j and
first column ai,1.

To state our results we need to introduce some notation. The Fibonacci numbers
F (n) satisfy

{
F (0) = 0, F (1) = 1
F (n + 2) = F (n + 1) + F (n) (n ≥ 0).

Throughout this article, we also use the following notation:
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ωk(n) = (ωk
i )1≤i≤n = (1, 1, . . . , 1︸ ︷︷ ︸

k−times

, 0, 0, . . . , 0︸ ︷︷ ︸
(n−2k)−times

, 1, 1, . . . , 1︸ ︷︷ ︸
k−times

),

	k(n) = (	k
i )1≤i≤n = ( 1, 1, . . . , 1︸ ︷︷ ︸

(n−k)−times

, 0, 0, . . . , 0︸ ︷︷ ︸
k−times

) ,

χk = (χk
i )i≥1 = (a, a, . . . , a︸ ︷︷ ︸

k−times

, 0, 0, 0, . . .) ,

ϑk = (ϑk
i )i≥1 = (a, 0, 0, . . . , 0︸ ︷︷ ︸

k−times

, a, 0, 0, 0, . . .).

Given a matrix A we denote by Ri(A) and Cj(A) the row i and the column j of A,
respectively. We denote by ei,j the square matrix having 1 in the (i, j) position and
0 elsewhere. Now, it is easy to see that

ei,j · ek,l = δjkei,l. (1.1)

In the case that the two matrices ei,j and A are to be multiplied together, we obtain

Rk(ei,j · A) = δkiRj(A) and Ck(A · ei,j) = δkjCi(A). (1.2)

In fact, the matrix ei,j ·A is a matrix that all its rows except for the ith row are 0 and
its ith row is the jth row of the matrix A. Similarly, the matrix A · ei,j is a matrix
that all its columns except for the jth column are 0 and its jth column is the ith
column of the matrix A.

2. Main Results.
Theorem 2.1. Let α = (αi)i≥1 be a given sequence and let A = (ai,j)1≤i,j≤n be

the doubly indexed sequence given by the recurrence

ai,j = ai−1,j−1 + ai−1,j , 2 ≤ i, j ≤ n, (2.1)

and the initial conditions ai,1 = α1 + (i − 1)d, a1,j = αj, 1 ≤ i, j ≤ n. Then we
have A = L · B, where L = (Li,j)1≤i,j≤n is a lower triangular matrix given by the
recurrence

Li,j = Li−1,j−1 + Li−1,j , 2 ≤ i, j ≤ n, (2.2)

and the initial conditions L1,1 = 1, L1,j = 0, 2 ≤ j ≤ n, and Li,1 = 1, 2 ≤ i ≤ n, and
B = (Bi,j)1≤i,j≤n is a matrix given by the recurrence

Bi,j = Bi−1,j−1, 2 ≤ i, j ≤ n, (2.3)

and the initial conditions B1,j = αj, 1 ≤ j ≤ n, B2,1 = d and Bi,1 = 0, 3 ≤ i ≤ n.
Note that B is a Hessenberg-Töplitz matrix. In particular, det(A) = det(B).

Proof. For the proof of the claimed factorization we compute the (i, j)−entry of
L ·B, that is

(L ·B)i,j =
n∑

k=1

Li,kBk,j .
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In fact, so as to prove the theorem, we should establish

R1(L ·B) = R1(A) = (α1, α2, . . . , αn),

C1(L · B) = C1(A) = (α1, α1 + d, . . . , α1 + (n− 1)d),

and

(L ·B)i,j = (L ·B)i−1,j−1 + (L ·B)i−1,j , (2.4)

for 2 ≤ i, j ≤ n.
Let us do the required calculations. First, suppose that i = 1. Then

(L ·B)1,j =
n∑

k=1

L1,kBk,j = L1,1B1,j = αj ,

and so R1(L ·B) = R1(A) = (α1, α2, . . . , αn).
Next, we suppose that j = 1, and we obtain

(L · B)i,1 =
n∑

k=1

Li,kBk,1 = Li,1B1,1 + Li,2B2,1 = α1 + (i− 1)d,

which implies that C1(L ·B) = C1(A) = (α1, α1 + d, . . . , α1 + (n− 1)d).
Finally, we must establish Eq. (2.4). At the moment, let us assume that 2 ≤

i, j ≤ n. In this case we have
(L · B)i,j =

Pn
k=1 Li,kBk,j

= Li,1B1,j +
Pn

k=2 Li,kBk,j

= Li,1B1,j +
Pn

k=2(Li−1,k−1 + Li−1,k)Bk,j (by (2.2))

= Li,1B1,j +
Pn

k=2 Li−1,k−1Bk,j +
Pn

k=2 Li−1,kBk,j

= Li,1B1,j +
Pn

k=2 Li−1,k−1Bk−1,j−1 +
Pn

k=1 Li−1,kBk,j − Li−1,1B1,j

(by (2.3))

= (Li,1 − Li−1,1)B1,j +
Pn

k=1 Li−1,kBk,j−1 +
Pn

k=1 Li−1,kBk,j

(it should be noticed that Li−1,n = 0)

= (L · B)i−1,j−1 + (L · B)i−1,j ,

which is Eq. (2.4). Our proof is thus complete.
An interesting corollary to Theorem 2.1 is the following.
Corollary 2.2. In Theorem 2.1, if α = ωk(n), d = 1 and D(n) = det(A), then

D(n) = (−1)k+1D(n− k − 1), (n > 3k). (2.5)

Furthermore, we have
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(1) if k = 2, then

D(n) =




2 (resp. − 2) if n
6≡ 0 (resp. 3)

0 if n
6≡ 1, 4

1 (resp. − 1) if n
6≡ 2 (resp. 5)

(2) if k ≥ 3 is even, then

D(n) =




1 if n
2k+2≡ 0, 1,

−1 if n
2k+2≡ k + 1, k + 2,

0 otherwise.

Also, if k ≥ 3 is odd, then

D(n) =

{
1 if n

k+1≡ 0, 1
0 otherwise.

Proof. Using Theorem 2.1, D(n) = det(B) where B = (Bi,j)1≤i,j≤n is a matrix
given by the recurrence

Bi,j = Bi−1,j−1, 2 ≤ i, j ≤ n,

and the initial conditions B1,j = ωk
j , 1 ≤ j ≤ n, B2,1 = 1 and Bi,1 = 0, 3 ≤ i ≤ n. To

obtain the result we thus need to compute det(B). Put B = Bk(n).
We claim that

B = U · B̃ · L,
where the matrices U = (Ui,j)1≤i,j≤n, B̃ = (B̃i,j)1≤i,j≤n, and L = (Li,j)1≤i,j≤n are
defined as follows:

Ui,j =




1 if i = j,
−1 if j = i + n− 2k, 1 ≤ i ≤ k,
0 otherwise,

B̃i,j =




1 if 1 ≤ i ≤ k and n− 2k + i− 1 ≤ j ≤ n− k + i− 1,
0 if (i, j) = (n− k, n− k − 1),
Bi,j otherwise,

Li,j =




1 if i = j or (i, j) = (n− 1, n− k − 1),
−1 if (i, j) = (n, n− k − 1),
0 otherwise.

It is obvious that, the matrices U and L are the upper triangular matrix and lower
triangular one, respectively, with 1’s on their diagonals. In addition, we can restate
the matrices U and L as follows:

U = I −
k∑

i=1

ei,n−2k+i and L = I + en−1,n−k+1 − en,n−k−1.
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Moreover, we can partition the matrix B̃ in this way

B̃ =
[

B1 ∗
0 B2

]
,

where B1 = Bk(n− k − 1), and

B2 =




1 1 1 . . . 1 0
1 1 1 . . . 1 1
0 1 1 . . . 1 1
0 0 1 . . . 1 1
...

...
... · · · ...

...
0 0 0 . . . 1 1



.

Since det(B2) = (−1)k+1, it is obvious that the claimed factorization of B immediately
implies the validity of Eq. (2.5).

For the proof of the claim, we observe that
U · B̃ · L = (I − ∑k

i=1 ei,n−2k+i) · B̃ · (I + en−1,n−k−1 − en,n−k−1)

= (B̃ − ∑k
i=1 ei,n−2k+i · B̃) · (I + en−1,n−k−1 − en,n−k−1)

= (B − en−1,n−k−1 + ek,n−k−1) · (I + en−1,n−k−1 − en,n−k−1)

= B + B · en−1,n−k−1 −B · en,n−k−1 − en−1,n−k−1 + ek,n−k−1

(by (1.1))
.

Thus, it is enough to show that B ·en−1,n−k−1−B ·en,n−k−1−en−1,n−k−1+ek,n−k−1 =
0. To see this, from Eq. (1.2), we obtain

Cl(B · en−1,n−k−1) = δl,n−k−1Cn−1(B) and Cl(B · en,n−k−1) = δl,n−k−1Cn(B),

for l = 1, 2, . . . , n. Hence, by the structure of B, it follows that

B · en−1,n−k−1 −B · en,n−k−1 = en−1,n−k−1 − ek,n−k−1.

The rest of the proof is simple and left to the reader.
Second Proof of Corollary 2.2. Here, we compute det(B) directly. We will

assume that k > 1, since the case k = 1 is easy. Put Ri = Ri(B) and Cj = Cj(B).
We first subtract C1 from C2 through Ck and from Cn−k+2 through Cn. Then we
subtract R2 from R1. So this leaves us with a matrix

B1 =




0 0 . . . 0 −1 . . . 1 0 . . . 0
1 0 . . . 0

∗


 ,

where the boxed entries −1 and 1 are in positions (1, k + 1) and (1, n− k + 1)
respectively, and the ∗ part is unchanged from B. The goal now is to push the
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entries 1 and −1 all the way to position (1, n), with no other changes in the
matrix. Let us first deal with 1 . Unless k = 2, we can get rid of it by replacing
R1 → R1 + Rn−k+1 − Rn−k+2. If k = 2, we make R1 → R1 − Rn and we then have
−1 at (1, n). Next we treat −1 . We can move it k + 1 positions to the right by
doing R1 → R1 + Rk+2 −Rk+3. We can repeatedly move it to the right k + 1 places
by adding and subtracting the appropriate consecutive rows. This is done until we
are at (1, r) for r > n− k. There are three cases:

(i) If n ≡ 0 (mod k + 1), we bring the −1 to (1, n).
(ii) If n ≡ 1 (mod k+1), then −1 is brought to (1, n−1) and then R1 → R1+Rn

brings it to (1, n) by changing sign.
(iii) Otherwise we bring −1 to (1, r) for n− k < r < n− 1 and then we make

it disappear by R1 → R1 + Rr+1 −Rr+2. At this point we have the matrix

B2 =


 0 . . . 0 c

1 0 . . . 0
∗


 ,

where c = an + bn for

an =
{ −1 k = 2

0 k > 2 and bn =




−1 n ≡ 0 (mod k + 1)
1 n ≡ 1 (mod k + 1)
0 otherwise

.

Expanding det(B2) by the first row we see that det(B) = det(B2) = (−1)n−1c, and
the corollary follows from here immediately. �

Corollary 2.3. Suppose that in Theorem 2.1, D(n) = det(A). Then
(i) If α = χk, then

D(n) = a

k∑
i=1

(−d)i−1D(n− i), n ≥ k + 1.

In particular, in case that k = 2 and a = 1, we have

D(n) =
1
η

[(1 + η

2

)n+1

−
(1 − η

2

)n+1]
.

where η =
√

1 − 4d.
(ii) If α = 	k(n) and d = 1, then we have

det(A) =




(−1)n if n ≡ 0 (mod n− k + 1),
(−1)n+1 if n ≡ 1 (mod n− k + 1),
0 otherwise.

(iii) If α = ϑk, then

D(n) =




an if 1 ≤ n ≤ k + 1,
an + (−1)n−1adn−1 if n = k + 2,
aD(n− 1) + a(−d)k+1D(n− k − 2) if n ≥ k + 3.
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Proof. First of all, by Theorem 2.1, D(n) = det(B) where B = (Bi,j)1≤i,j≤n is a
matrix given by the recurrence

Bi,j = Bi−1,j−1, 2 ≤ i, j ≤ n,

and the initial conditions B1,j = αj , 1 ≤ j ≤ n, B2,1 = d and Bi,1 = 0, 3 ≤ i ≤ n.
(i). Suppose α = χk. If we expand the determinant det(B) along the first row,

then the (1, j) cofactor is of the form det(dIj−1 ⊕ Bn−j), where Bn−j equals the
principal submatrix of B taking the first n− j rows and columns. Now, we easily get
the desired recursion, that is

D(n) = a

k∑
i=1

(−d)i−1D(n− i), n ≥ k + 1.

Now, assume k = 2 and a = 1. In this case, we have

D(1) = 1, D(2) = 1 − d, and D(n) = D(n− 1) − dD(n− 2), n ≥ 3.

To solve this recurrence relation, we see that its characteristic equation as follows

x2 − x + d = 0,

and its characteristic roots are

x1 =
1 − η

2
and x2 =

1 + η

2
,

where η =
√

1 − 4d. Therefore, the general solution is given by

D(n) = λ1

(1 − η

2

)n

+ λ2

(1 + η

2

)n

, (2.6)

where λ1 and λ2 are constants. The initial conditions D(1) = 1 and D(2) = 1 − d
imply that λ1 = − 1

η (1−η
2 ) and λ2 = 1

η (1+η
2 ), and so

D(n) =
1
η

[(1 + η

2

)n+1

−
(1 − η

2

)n+1]
.

(ii). Assume α = 	k(n) and d = 1. We put n− k = p. Similar arguments as in
part (i) with k replaced by p, show that

D(1) = 1, D(2) = D(3) = · · · = D(p) = 0,

and

D(n) =
p∑

i=1

(−1)i+1D(n− i), n ≥ p + 1.
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Hence, we observe that

D(m + p + 1) =
∑p

i=1(−1)i+1D(m + p + 1 − i)

= D(m + p) +
∑p

i=2(−1)i+1D(m + p + 1 − i)

=
∑p

i=1(−1)i+1D(m + p− i) +
∑p

i=2(−1)i+1D(m + p + 1 − i)

= (−1)p+1D(m), (m ≥ 1).

(2.7)
Now, using the division algorithm we find integers r and s such that

n = s(p + 1) + r, and 0 ≤ r < p + 1.

First, assume that r = 0. In this case, from Eq. (2.7) we obtain

D(n) = D(s(p + 1)) = (−1)(s−1)(p+1)D(p + 1) = (−1)(s−1)(p+1)(−1)(p+1) = (−1)n.

Next assume that 1 ≤ r < p + 1. In this case, again by Eq. (2.7) it follows that

D(n) = D(s(p + 1) + r) = (−1)s(p+1)D(r) =

{
0 if 1 < r < p + 1

(−1)n−1 if r = 1.

This completes the proof of part (ii).
(iii) The proof is similar to the previous parts.
Theorem 2.4. Let α = (αi)i≥1 be a given sequence and let β = (βi)i≥1 be a

sequence satisfying β1 = α1, β2 = α2 and the linear recursion

βi = βi−2 + βi−1, i ≥ 3.

Let (ai,j)i,j≥1 be the doubly indexed sequence given by the recurrence

ai,j = ai−1,j−1 + ai−1,j , i, j ≥ 2, (2.8)

and the initial conditions ai,1 = βi and a1,j = αj, where i, j ≥ 1. Then

det
1≤i,j≤n

(ai,j) =




α1 if n = 1,
α2

1 − α2
2 + α1α2 if n = 2,

(α2
1 − α2

2 + α1α2)(α1 + α2 − α3)n−2 if n ≥ 3.

Proof. For n ≤ 3 the result is straightforward. Hence, we assume that n ≥ 4. Let
A denote the matrix (ai,j)1≤i,j≤n. We claim that

A = L ·B,

where L = (Li,j)1≤i,j≤n is a lower triangular matrix by the recurrence

Li,j = Li−1,j−1 + Li−1,j , i ≥ 2, j ≥ 3, (2.9)
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and the initial conditions Li,1 = F (i), L1,i = 0, i ≥ 2, and Li,2 = F (i− 1), i ≥ 2, and
where B = (Bi,j)1≤i,j≤n with

Bi,j =




αj if i = 1, j ≥ 1,
α2 − α1 if i = 2, j = 1,
B2,j−1 + B2,j −B1,j if i = 3, j ≥ 2,
Bi−1,j−1 if i 
= 1, 3, j ≥ 2,
0 if i ≥ 3, j = 1.

(2.10)

For instance, when n = 4 the matrix B is hence given by

B =




α1 α2 α3 α4

α2 − α1 α1 α2 α3

0 0 α1 + α2 − α3 α2 + α3 − α4

0 0 0 α1 + α2 − α3


 .

Notice that, by the structure of matrices L and B, for every i ≥ 2, it follows that

Li,3 − Li−1,3 = Li−1,2, Li,2 = Li−1,1, B2,i = B1,i−1. (2.11)

By expanding, in terms of the first column, we easily see that

det(B) =




α1 if n = 1,
α2

1 − α2
2 + α1α2 if n = 2,

(α2
1 − α2

2 + α1α2)(α1 + α2 − α3)n−2 if n ≥ 3,

and so the claimed factorization of A immediately implies the validity of the theorem.
As before, the proof of the claim requires again some calculations. In fact, it

suffices to show that R1(L ·B) = R1(A), C1(L ·B) = C1(A) and

(L ·B)i,j = (L ·B)i−1,j−1 + (L ·B)i−1,j , (2.12)

for 2 ≤ i, j ≤ n.
First, suppose that i = 1. Then

(L ·B)1,j =
n∑

k=1

L1,kBk,j = L1,1B1,j = αj ,

and so R1(L ·B) = R1(A) = (α1, α2, . . . , αn).
Next, we assume that i ≥ 2 and j = 1. In this case we have

(L · B)i,1 =
n∑

k=1

Li,kBk,1 = Li,1B1,1 + Li,2B2,1

= F (i)α1 + F (i− 1)(α2 − α1) = F (i− 2)α1 + F (i− 1)α2,

and we get C1(L · B) = C1(A) = (α1, α2, . . . , F (n− 2)α1 + F (n− 1)α2).
Finally, we must establish Eq. (2.12). Therefore, we assume that 2 ≤ i, j ≤ n. In

this case we have
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(L · B)i,j =
Pn

k=1 Li,kBk,j

=
P3

k=1 Li,kBk,j +
Pn

k=4 Li,kBk,j

=
P3

k=1 Li,kBk,j +
Pn

k=4(Li−1,k−1 + Li−1,k)Bk,j (by (2.9))

=
P3

k=1 Li,kBk,j +
Pn

k=4 Li−1,k−1Bk,j +
Pn

k=4 Li−1,kBk,j

=
P3

k=1 Li,kBk,j +
Pn

k=4 Li−1,k−1Bk−1,j−1 +
Pn

k=4 Li−1,kBk,j

(by (2.10))

=
P3

k=1 Li,kBk,j +
Pn

k=3 Li−1,kBk,j−1 +
Pn

k=4 Li−1,kBk,j

(it should be noticed that Li−1,n = 0)

= (L · B)i−1,j−1 + (L · B)i−1,j +
P3

k=1 Li,kBk,j

−P2
k=1 Li−1,kBk,j−1 −P3

k=1 Li−1,kBk,j ,

= (L · B)i−1,j−1 + (L · B)i−1,j + (Li,1 − Li−1,1)B1,j + (Li−1,2

+Li−1,3)B3,j − Li−1,2B2,j−1 − Li−1,2B2,j − Li−1,3B3,j ,

(by (2.11))

= (L · B)i−1,j−1 + (L · B)i−1,j + Li−1,2(B1,j + B3,j − B2,j−1 − B2,j),

(because Li,1 − Li−1,1 = Li−2,1 = Li−1,2)

= (L · B)i−1,j−1 + (L · B)i−1,j (by (2.10)),

which is Eq. (2.12), and the proof is completed.
As an immediate consequence of Theorem 2.4, we have the following corollary.
Corollary 2.5. In Theorem 2.4, if α = ωk(n) with k ≥ 2 and β = (βi)1≤i≤n =

(1, 1, 2, . . . , F (n)), then

det
1≤i,j≤n

(ai,j) =




1 if k = 2, n = 4,
2n−2 if k = 2, n ≥ 5,
1 if k ≥ 3, n ≥ 2k.

Theorem 2.6. Let (ai,j)1≤i,j≤n be the doubly indexed sequence given by the
recurrence

ai,j = ai−1,j−1 + ai−1,j , i, j ≥ 2, (2.13)

and the initial conditions ai,1 = F (i) and a1,j = ω1
j , where 1 ≤ i, j ≤ n. Then

det
1≤i,j≤n

(ai,j) =
{

2 if n even,
0 if n odd;

where n ≥ 3.
Proof. Let us denote the matrix (ai,j)1≤i,j≤n by A. We claim that

A = L ·B,
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where L = (Li,j)1≤i,j≤n is a matrix by the recurrence

Li,j = Li−1,j−1 + Li−1,j , i ≥ 2, j ≥ 3, (2.14)

and the initial conditions Li,1 = F (i), L1,i = 0, and Li,2 = F (i− 1), i ≥ 2, and where
B = (Bi,j)1≤i,j≤n with

Bi,j =




ω1
j if i = 1, j ≥ 1,

B2,j−1 + B2,j −B1,j if i = 3, j ≥ 2,
Bi−1,j−1 if i 
= 1, 3, j ≥ 2,
0 if i ≥ 2, j = 1.

(2.15)

The proof of the claim is quite similar to the proof of Theorem 2.4 and we leave
it to the reader. Notice that, the matrix L is a lower triangular one with 1’s on
the diagonal, and hence det(A) = det(B). Through a short computation one gets
det(B) = 1 + (−1)n, and so the theorem follows now immediately.
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