
Explaining how semantic representations of words 
are derived from experience is a central task for high-
 dimensional semantic space models such as the hyper-
space analogue to language (HAL) framework of Burgess 
and Lund (2000), latent semantic analysis (LSA; Landauer 
& Dumais, 1997), and other lexical co- occurrence mod-
els of semantic memory. Although the models differ 
considerably in the algorithms used, they are all funda-
mentally based on the principle that a word’s meaning 
can be induced by observing its statistical usage across 
a large sample of language. Evaluation typically pro-
ceeds by first training a model on a corpus of text, after 
which the model can generate similarity ratings between 
word pairs for comparison with human judgments. For 
example, if humans rate the words “cat” and “feline” as 
closer in meaning than the words “cat” and “cupboard,” 
it would be desirable for a semantic space model to do so 
as well. Because the similarity ratings of semantic space 
models are used for experimental stimulus selection and 
for model evaluation, close correspondence with human 
data is critically important.

Starting from the premise that “simple associations 
in context are aggregated into conceptual representa-
tions” (Burgess & Lund, 2000), semantic space models 
typically apply techniques that go beyond direct lexical 
co- occurrence to induce more abstract semantic repre-
sentations. Perhaps the best-known example is LSA’s 
use of singular value decomposition (SVD), a technique 
from linear algebra. As described by Landauer, Foltz, and 
Laham (1998), LSA operates by first constructing a term–

document matrix in which the value of each cell (i, j) rep-
resents the number of occurrences of word i in document j. 
Each term is then weighted with a log–entropy transform 
applied to the value of each cell in order to reduce the influ-
ence of very frequent words. Next, the matrix is factored, 
using SVD, allowing the construction of a new matrix of 
lower rank which can be thought of as a low-dimensional 
approximation of the original matrix. Finally, two rows of 
the final matrix can be correlated to obtain the semantic 
similarity between the rows’ corresponding terms. Because 
the optimal choice of dimensionality for an LSA space var-
ies depending on the choice of task and training corpus, it 
is generally chosen by recomputing the SVD over a wide 
range of possible choices and selecting the one for which 
the final matrix performs the best on the task at hand (Que-
sada, 2006). Similar probabilistic methods for inferring 
latent semantic components are arguably even more so-
phisticated and computationally intensive (e.g., Griffiths, 
Steyvers, & Tenenbaum, 2007; Hoffman, 1999).

The computational expense of the dimension reduction 
step raises several challenging issues for LSA and related 
semantic inference models. The first is lack of scalability. 
Because standard algorithms for computing SVDs require 
the entire term–document matrix to be held in memory, 
training LSA on corpora of many tens of millions of to-
kens is infeasible, even with high-end supercomputing re-
sources. The problem is exacerbated by the fact that as the 
size of the corpus increases, the number of rows and col-
umns in the matrix both increase significantly, the number 
of columns growing linearly with the number of docu-
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This is problematic, because the original matrix is no lon-
ger presumed to be stored in memory after the SVD step 
has been computed (Landauer & Dumais, 1997). This 
lack of incrementality decreases the cognitive plausibil-
ity of LSA as a model of semantic organization (Lemaire 
& Denhière, 2004; Perfetti, 1998), and the appeal of 
static systems when learning from dynamically changing 
textbases.

Finally, there is the issue of complexity. Computational 
models of word segmentation, semantics, and syntax 
“often assume a computational complexity and linguistic 
knowledge likely to be beyond the abilities of develop-
ing young children” (Onnis & Christiansen, 2008). Given 
two models that correlate with human data equally well, 
the principle of scientific parsimony would tend to favor 
the one that makes fewer assumptions about the capabili-
ties of the developing brain. SVD is arguably a complex 
process without an obvious explanation of how it might 
be implemented in humans. From the beginning, the SVD 
realization of LSA has been regarded more as a conve-
nient expedient for dimensionality reduction than a claim 
about the specific analysis that humans apply to the data. 
Landauer and Dumais (1997, p. 218) stated that SVD 
should be considered as only one of a class of mathemati-
cal techniques worth exploration, and that additional fea-
tures could be added to the dimensionality reduction step 
to “make it more closely resemble what we know or think 
we know about the basic processes of perception, learn-
ing, and memory.”

These considerations motivated us to take a different 
approach. Rather than adding additional features to di-
mensional reduction algorithms to make them more scal-
able and psychologically plausible, our approach was to 
throw much more data at the problem, even if doing so 
required a less sophisticated learning algorithm. Recent 
discoveries in the field of computational linguistics have 
revealed that much more progress has been made toward 
systems for automatic parsing and sense disambiguation 
by training existing simple systems on more language 
data as it became available, rather than by investing in the 
development of superior algorithms. We take this lesson 
from computational linguistics as a useful indicator that 
computational models of semantics may reap greater ben-
efits from more data rather than from developing more 
clever learning algorithms, and our goal in this article is 
to explore that hypothesis.

Pointwise mutual information (PMI) is one such mea-
sure that meets the previously discussed desiderata of 
scalability, incrementality, and simplicity, and which has 
been shown to yield high performance on forced-choice 
tests of semantic similarity (Bullinaria & Levy, 2006; 
Terra & Clarke, 2003; Turney, 2001). However, PMI has 
not yet been shown to outperform LSA on a wide variety 
of evaluation tasks. Budiu, Royer, and Pirolli (2007) found 
that PMI outperformed LSA on a variety of semantic tasks 
when trained on a larger corpus, but their work confounded 
corpus size and corpus quality. Bullinaria and Levy, using 
PMI to compare vectors of co-occurrence counts (i.e., the 
rows of a term  term matrix), found that PMI outper-

ments and the number of rows growing in approximate 
proportion to the square root of the number of tokens. A 
promising class of algorithms known as “out-of-core” 
methods for SVD calculation (Lin, 2000) have recently 
been shown to calculate large SVDs without having to 
store the entire matrix in memory (Martin, Martin, Berry, 
& Browne, 2007). However, no publicly available imple-
mentations of LSA currently make use of these methods. 
Even if out-of-core SVD algorithms can be shown to solve 
LSA’s memory bottleneck, the high computational de-
mands of computing extremely large SVDs may continue 
to be prohibitive for quite some time.

The standard LSA space used by most researchers (and 
available at lsa.colorado.edu) is trained on the Touch-
stone Applied Science Associates (TASA) corpus of 
textbook readings from a variety of grade levels (Zeno, 
Ivens, Millard, & Duvvuri, 1995). This corpus comprises 
some 11 million tokens,1 a reasonable (perhaps even 
generous) approximation of the number of tokens most 
adults schooled in the United States have been exposed to 
through reading, given estimates that most children have 
read around only 3.8 million words by late grade school 
(Landauer & Dumais, 1997).

However, these estimates do not take into account 
the amount of language input that humans are exposed 
to through speech; indeed, 11 million tokens is approxi-
mately one third the number that children are estimated 
to have heard by the time they are 3 years old (Risley & 
Hart, 2006). Risley and Hart estimated that most Ameri-
can children hear between 10 and 33 million words in 
their first 3 years of life, not counting the 4 to 12 million 
that they produce during this time. By the age of 18—a 
lower bound for the age of study participants from whom 
semantic similarity judgments are collected—it is safe to 
assume that most would have experienced many times this 
amount. Although Landauer and Dumais (1997) argued 
convincingly that older children acquire most of their 
new word meanings from reading, this does not mean that 
these meanings cannot change over time as a result of 
additional exposure. If co-occurrence information plays 
a significant role in shaping humans’ lexical semantic 
representations over time, one would expect our represen-
tations of word meaning to be shaped by co-occurrences 
in speech as well as in print. Given that semantic similar-
ity judgments are collected from adult study participants, 
being able to scale semantic space models to large data 
sets is extremely important. We found training LSA or 
the topics model (Griffiths et al., 2007) on corpora sig-
nificantly larger than TASA to be infeasible, given our 
resources and the massive computational demands of the 
learning algorithms.

Another challenge for LSA is a lack of incrementality: 
an inability to update semantic representations incremen-
tally in response to a continual accumulation of language 
input. Humans update their semantic representations in 
response to new data continuously over time. In contrast, 
after an LSA space has been built, additional documents 
cannot be incorporated into the space without recomput-
ing the low-rank approximation of the original matrix. 
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effects of corpus size and quality on PMI. Their evaluation 
tasks consisted of TOEFL, a distance comparison (another 
forced-choice task in which the model must select the 
most semantically similar word out of a collection of alter-
natives), and two categorization tasks, one semantic and 
one syntactic. Rather than using the PMI score itself as the 
similarity value, Bullinaria and Levy constructed vectors 
for each word w in which each element corresponded to 
the PMI between w and another term from the training 
data. One can think of this as building up a term  term 
matrix; similarity scores between two words are estimated 
by calculating the distance between the corresponding two 
rows of the matrix. Using this method, the distance metric 
used to assess the similarity between vectors significantly 
affects the results. Bullinaria and Levy exhaustively tested 
a wide variety of distance metrics, along with other pa-
rameters, such as the number of vector components and 
the size of the context window. Although TOEFL was the 
only task on which Bullinaria and Levy directly compared 
LSA with PMI, they found that when these two methods 
were equated for corpus size and quality, comparing vec-
tors of PMI scores using the cosine distance metric out-
performed LSA even on a small corpus. They also found 
that additional training data greatly enhanced the perfor-
mance of PMI on each of their evaluation tasks.

Finally, Budi, Royer, and Pirolli (2007) compared the 
performance of PMI with that of LSA and GLSA (Mat-
veeva, Levow, Farahat, & Royer, 2005) on a variety of 
tasks across two corpora: the aforementioned TASA cor-
pus of general textbook readings ranging from first grade 
through college, and the much larger Stanford corpus, 
consisting of the first 6.7 million pages of the WebBase 
project (Cho et al., 2006), a public-domain collection of 
Web page snapshots archived from 2004 to 2008. They 
found that a version of PMI trained on Stanford (PMI-
Stanford) performed better than a version of LSA trained 
on TASA on several semantic similarity tasks. They also 
found that PMI-Stanford performed better on these tasks 
than a version of PMI trained on TASA did. They con-
cluded that training on more data was what caused PMI’s 
performance to improve.

However, the study confounded corpus size and corpus 
type, since TASA and the Stanford corpus represent two 
very different genres of text. TASA consists of a collec-
tion of readings “carefully put together to reflect college 
students’ vocabulary, whereas Stanford is generated by 
a web crawl” (Budiu et al., 2007). It may be that PMI-
Stanford produced a closer correspondence with human 
judgments, not because the Stanford corpus is larger, but 
rather because it is a better representation of the sort of 
language to which humans are exposed in everyday life. If 
LSA had been trained not on TASA but rather on a subset 
of the Stanford corpus, it might have performed better. 
Therefore, the experiment was inconclusive on the ques-
tion of whether PMI would outperform LSA if both mea-
sures were trained on the same type of text. Likewise, if 
a version of PMI were trained on a representative subset 
of the Stanford corpus, that version might have done no 
better than PMI-Stanford did. In Experiment 1, we com-

formed LSA on the test of English as a foreign language 
(TOEFL) forced-choice synonymy test when both meth-
ods were trained on a small corpus derived from Grolier’s 
Academic American Encyclopedia. However, they did not 
correlate the performance of PMI and LSA with human 
judgments of semantic similarity.

First, we set out to determine whether PMI could pro-
vide a better match than LSA to human judgments of simi-
larity when both measures were trained on the same type 
of text and only corpus size was varied. Finding this to be 
the case, we compared the performance of PMI trained 
on a large text corpus with several other measures of se-
mantic relatedness, its high performance motivating us to 
release an easy-to-use resource for obtaining similarity 
judgments from arbitrary corpora. We end with a brief 
discussion of the theoretical and practical ramifications 
of these results.

Previous Research
PMI was first introduced in the context of word asso-

ciations by Church and Hanks (1990). PMI is a very sim-
ple information-theoretic measure that, when computed 
between two words x and y, “compares the probability of 
observing x and y together (the joint probability) with the 
probabilities of observing x and y independently (chance)” 
(Church & Hanks, 1990, p. 23). It is defined as
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In practice, P(x) can be approximated as the number of 
times that x appears in the corpus, P( y) as the number of 
times y appears in the corpus, and P(x, y) as the number 
of times the two words co-occur in a context. Because a 
logarithm is a monotonically increasing function, relative 
ordinal rankings between PMI estimates are maintained 
if the log is dropped. Because we are interested in rank 
correlations to human similarity judgments, we use the 
term PMI in the remainder of this article to refer simply 
to the number of co-occurrences of x and y divided by the 
product of their individual frequencies.

Turney (2001) found that a version of PMI that used 
search engine hit counts to estimate lexical co- occurrences 
outperformed LSA on two forced choice vocabulary tests 
(TOEFL and ESL, described later), suggesting that PMI 
might be capable of approximating human similarity judg-
ments more closely than LSA. However, LSA and PMI 
were trained on vastly different genres and sizes of text, 
leaving open the question of whether LSA would have per-
formed better if trained on the same kind of text as PMI. 
Terra and Clarke (2003) also found high performance of 
PMI on TOEFL. They found that in general, performance 
seemed to increase with corpus size up to a point of around 
850 GB, although the picture was muddied by the discrete 
nature of the evaluation metric. Furthermore, ESL and 
TOEFL constitute forced choice synonymy tests; correla-
tions with human judgments of word similarity were not 
attempted in either study.

In an excellent comparison of algorithms and metrics, 
Bullinaria and Levy (2006) systematically investigated the 
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pedia’s average sentence length was only 17.7 words, which meant 
that the resulting subset of 37,600 Wikipedia sentences contained 
far fewer tokens than TASA did and, because of inadequate vocabu-
lary coverage, yielded extremely poor performance for both models. 
Therefore, we redefined a document as any contiguous sequence of 
10 sentences that were all part of the same article. Representing a 
wide variety of topics and articles, 37,600 documents were sampled 
randomly without replacement from the full corpus. This yielded 
a subset of Wikipedia with roughly the same document count and 
mean document length as TASA (document counts, 37,600 for each; 
mean document lengths, 166 and 162, respectively). The final sub-
set contained 6,102,845 tokens and 251,703 types, in contrast to 
417,775,181 tokens and 3,404,652 types in the full corpus.

Design and Procedure. We trained PMI on the Wikipedia subset 
and the full Wikipedia corpus. As previously discussed, LSA could 
be trained on the subset only. So that our work could be easily repli-
cated, we implemented LSA according to Quesada’s (2006) guide-
lines for constructing LSA spaces. The singular value decomposition 
was computed using Rohde’s (2005) SVDLIBC implementation. 
To reduce memory demands, we restricted the terms in our term–
document matrix to those terms which occurred in at least two docu-
ments in the Wikipedia subset. We judged that this should not impair 
LSA’s performance, since terms occurring in only one document do 
not provide latent co-occurrence information useful for judging the 
similarity between any two other terms. In addition, terms occurring 
in any of our evaluation tasks were not excluded, even if they oc-
curred in only one document. Like Budiu et al. (2007), we computed 
SVDs ranging from 100 to 500 dimensions in increments of 10 and 
selected the dimensionality for which LSA performed optimally for 
each evaluation task. Plotting LSA’s performance against dimen-
sionality on each task revealed U-shaped curves similar to those de-
scribed in Landauer and Dumais (1997); it did not seem that smaller 
increments would have significantly increased performance.

PMI estimates for each pair of words x and y were calculated by 
dividing the number of times that x and y co-occurred within a single 
document with the product of the respective frequencies of x and y 
in the entire corpus. To assist with this task, we developed a soft-
ware tool for efficiently calculating PMI scores from large corpora, 
described in more detail later in the article. As with the Wikipedia 
subset, documents were defined as contiguous sequences of 10 sen-
tences that were part of the same article.

Results
For each model version and each list of word pairs 

(MC, R, RG, WS353), a Spearman rank correlation was cal-
culated between the similarity judgments of the model and 
the normative human similarity judgments for that list. For 

pared the performance of LSA and PMI trained on a rep-
resentative TASA-sized subset of the Wikipedia corpus, 
as well as with the performance of PMI trained on the full 
Wikipedia corpus (an infeasible task for LSA), in order to 
clarify whether corpus size or type of text was the causal 
factor behind PMI’s success.

EXPERIMENT 1

Method
Evaluation Materials. We evaluated PMI and LSA on two 

forced choice synonymy tests and four lists of word pairs. The forced 
choice tests were the English as a second language (ESL) data set 
(Turney, 2001) and the TOEFL synonymy assessment (Landauer 
& Dumais, 1997). We used the lists of word pairs and accompany-
ing human judgments of similarity compiled by Finkelstein et al. 
(2002), Miller and Charles (1991), Resnik (1995), and Rubenstein 
and Goodenough (1965). Both synonymy tests and all four word lists 
were also used as evaluation metrics by Budiu et al. (2007), and our 
abbreviations (ESL, TOEFL, MC, R, RG, and WS353, respectively) 
mimic theirs for consistency.

The ESL data set consists of a collection of synonymy questions 
for nonnative speakers of English. It was first used as a performance 
benchmark by Turney (2001) and later by Rohde, Gonnerman, and 
Plaut (2006, cited by Budiu et al., 2007). The data set consists of 
50 questions, each consisting of a cue word (e.g., “envious”) and a 
list of four possible choices (e.g., “jealous,” “enthusiastic,” “hurt,” 
“relieved”). The object is to select from the list the word closest in 
meaning to the cue.

Consisting of 80 retired items from the Educational Testing Ser-
vice’s test of English as a foreign language, the TOEFL data set was 
used as a test bed for LSA by Landauer and Dumais (1997) and 
has later been employed extensively as a performance benchmark 
for many corpus-based approaches to capturing semantic similarity 
(Bullinaria & Levy, 2006; Matveeva et al., 2005; Pado & Lapata, 
2007; Rapp, 2003). As with ESL, each item consists of a cue word 
paired with four possible synonyms.

Human judgments of word similarity were obtained from four col-
lections of human similarity ratings. Rubenstein and Goodenough 
(1965) constructed a set of 65 noun pairs that varied widely in seman-
tic similarity, ranging from near-synonyms (e.g., “car; automobile”) 
to highly unrelated (e.g., “noon; string”), collecting judgments of 
semantic similarity from 51 participants. Miller and Charles (1991) 
selected a 30-pair subset of this data set and collected similarity rat-
ings from 38 participants. In a replication study, Resnik (1995) pub-
lished similarity judgments for 28 of the 30 Miller and Charles pairs, 
finding a correlation of .96 between his 10 participants’ mean ratings 
and the mean ratings published by Miller and Charles. The Miller and 
Charles word pairs are also included in the WordSimilarity-353 test 
collection of Finkelstein et al. (2002), but the entire data set is over 
10 times larger, consisting of a total of 353 word pairs. For each word 
pair, Finkelstein et al. instructed at least 13 participants to assess the 
relatedness on a scale ranging from 0 to 10. It is the only one of the 
four collections of similarity ratings to include proper nouns, adjec-
tives, verbs, and gerunds, in addition to common nouns.

Training Materials. We trained PMI and LSA on a corpus de-
rived from Wikipedia. The version of Wikipedia we refer to as the 
“Wikipedia corpus” consists of 2.5 GB of text from English Wiki-
pedia articles downloaded in 2006, segmented into sentences and 
articles but otherwise stripped of formatting, markup, and nonal-
phabetic characters by Willits, D’Mello, Duran, and Olney (2007). 
We also trained each model on a small representative subset of 
the full Wikipedia corpus. For consistency, we decided to include 
37,600 documents, the same number that TASA contains (Kanerva, 
Kristoferson, & Holst, 2000). Because Wikipedia’s articles are on 
average larger than TASA documents, we originally planned to de-
fine a Wikipedia “document” as a single sentence. However, Wiki-

Table 1 
Comparisons Between Human Judgments of Semantic 

Similarity and Model Estimates

Trained on Trained 
on Full 

Wikipedia

Wikipedia
Subset

 Task  PMI  LSA  PMI  

ESL .35 .36 .62
TOEFL .41 .44 .64
MC .47 .62 .78
R .46 .60 .86
RG .46 .46 .76
WS353 .54 .57 .73

Note—For synonymy tests (ESL, TOEFL), values represent the percent-
age of correct responses. For all other tasks, values represent Spearman 
rank correlations between human judgments of semantic similarity and 
those of the model. Abbreviations for tasks are defined in the main text 
of the article.
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programmers to train reasonably well-performing models 
of semantic similarity on arbitrary corpora, using only a 
personal computer. To be useful in a practical sense, how-
ever, the tool would have to be shown to produce results 
competitive with other publicly available tools.

In Experiment 2, we compared PMI-Wiki with 19 other 
publicly available measures of semantic relatedness. Be-
cause these measures vary in the type and amount of data 
they are trained on, we make no claims about the superior-
ity or inferiority of PMI to other metrics on the basis of the 
results of Experiment 2. However, if PMI correlates with 
human similarity judgments at a level comparable with 
other public tools, it would suggest that a tool allowing 
nonprogrammers to train PMI on any corpus could be a 
great benefit to researchers.

EXPERIMENT 2

Method
Materials. Experiment 2 employed the same six evaluation tasks 

and the same version of PMI-Wiki as described in Experiment 1. 
The metrics of semantic similarity against which we compared PMI-
Wiki were those available at the Rensselaer measures of semantic re-
latedness (MSR) Web site (http://cwl-projects.cogsci.rpi.edu/msr/), 
a server which aggregates several publicly available measures of se-
mantic relatedness into a single Web interface (Veksler, Grintsvayg, 
Lindsey, & Gray, 2007).

Design and Procedure. We used the MSR Web interface to 
gather similarity judgments on the word pairs in our evaluation tasks 
for all available models. The measures listed on the MSR Web site as 
NSS-GReuters and GLSA had to be omitted from the analysis be-
cause the Web interface reported errors in retrieving a large number 
of similarity judgments from these models on all tasks. Additionally, 
one question from TOEFL had to be omitted, since the Web inter-
face reported an error in retrieving similarity judgments from almost 
every model, most likely because that question contained an ex-
tremely rare word likely to be missing from most models’ lexicons.

Results
PMI-Wiki was compared against a total of 19 measures 

on the MSR Web site. The same criteria described in Ex-
periment 1 were used for evaluation on the two synonymy 
tests and the four similarity judgment tasks. Table 2 dis-
plays the performance of PMI-Wiki with that of the eight 
measures that averaged the highest performance across all 
tasks. These were the WordNet::Similarity vector measure 
(Pedersen, Patwardhan, & Michelizzi, 2004), versions of 
PMI implemented by Veksler et al. (2007) that calculate 
co-occurrences via a Google search of Wikipedia as well 
as directly from the Factiva business news corpus (Dow 
Jones & Co., 2008), normalized search similarity (Cili-
brasi & Vitányi, 2007; cited by Veksler, Gray, Gamard, 
Grintsvayg, & Lindsey, 2008) trained on Factiva and 
TASA, spreading activation (Anderson & Pirolli, 1984; 
cited by Farahat, Pirolli, & Markova, 2004)3 trained on 
Factiva and TASA, and LSA trained on TASA (Landauer 
& Dumais, 1997). In Table 2, these measures are abbrevi-
ated WN, PMI.W, PMI.F, NSS.F, NSS.T, SA.N, SA.W, and 
LSA.T, respectively. Values in bold represent the highest 
and second highest values for each task. For both syn-
onymy tests and three of the four sets of similarity judg-
ments, PMI-Wiki was the second highest performing 

the two synonymy tests (ESL, TOEFL), performance was 
assessed by the percentage of correct responses.2 The results 
are displayed in Table 1. For all four sets of similarity judg-
ments, LSA trained on the Wikipedia subset (LSA-Subset) 
produced judgments equally or more highly correlated with 
human data than did the version of PMI trained on the Wiki-
pedia subset (PMI-Subset). However, for all sets of similar-
ity judgments, the version of PMI trained on the full version 
of Wikipedia (PMI-Wiki) produced higher correlations with 
human data than did LSA-Subset. Similarly, LSA-Subset 
scored higher on both synonymy tests than PMI-Subset did, 
but scored more poorly than PMI-Subset did.

Discussion
We began this experiment with the question: Does 

PMI produce semantic ratings that more closely resemble 
judgments from humans, when provided with a quantity 
of data more representative of the amount that humans 
experience? Although previous work had suggested that 
the answer might be yes, no study had yet systematically 
investigated PMI’s performance on a battery of seman-
tic tasks while controlling for the type as well as the 
quantity of data. Are the additional data enough to ap-
proximate human semantic judgments more accurately 
than LSA, even though PMI does not take higher order 
co-occurrence information into account? Again, studies 
had shown that simple models exposed to huge amounts 
of data could outperform a TASA-trained LSA, but it re-
mained unclear whether this was caused by differences in 
the amount of data, differences in the type of data, or to 
other uncontrolled factors such as document size. How-
ever, the present work suggests that PMI benefits from 
additional data, and benefits enough to outperform at least 
one more sophisticated but less scalable model. Given that 
PMI is an extremely simple, scalable, incremental model 
of semantic similarity, these results argue for the cogni-
tive plausibility of semantic models that do nothing more 
sophisticated than increase the similarity of co-occurring 
terms, provided they have some mechanism to diminish 
the influence of highly frequent terms.

This work also has practical import, given PMI’s ease 
of computation and low memory demands. Automatic ap-
proximations of semantic similarity are extremely useful 
for experimental stimulus development for any study in 
which semantic similarity might confound the factor of 
interest. For example, in investigations of orthographic 
or phonological priming, researchers must ensure that 
prime–target pairs in experimental and control groups do 
not systematically vary in semantic similarity. Addition-
ally, the needs of researchers sometimes call for domain-
specific similarity judgments. Examples include the use 
of an LSA training corpus, consisting of a small set of 
encyclopedia articles about the heart, to compute the co-
herence of texts on this topic (Foltz, Kintsch, & Landauer, 
1998); and the work of Kaur and Hornof (2005), demon-
strating that training semantic models on domain-specific 
corpora improved the models’ correlations to human 
data in an information foraging task. Given the potential 
benefits to researchers in cognitive psychology, there is 
a need for an easy-to-use software tool that allows non-
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than the 10-sentence documents of PMI-Wiki; this could 
also have hurt the performance of PMI.W, given that 
Turney (2001) and Bullinaria and Levy (2006) reported 
greater success with relatively small windows of text than 
with large documents (see also Hare, Jones, Thomson, 
Kelly, & McRae, in press). The version of PMI trained on 
Factiva, PMI.F, also performed competitively but not at 
the level of PMI-Wiki, probably because the restricted se-
mantic domain of the Factiva corpus (business news) was 
not a good match for many of the evaluation tasks.

PMI-Wiki’s impressive performance against most of 
the measures on the MSR Web site suggests that PMI is a 
viable choice for researchers looking to train a measure of 
semantic similarity on domain-specific corpora. However, 
we must emphasize that the goal of Experiment 2 was not 
to make a theoretical claim about PMI as opposed to other 
measures, since this study does not provide sufficient evi-
dence to conclude that PMI is a superior measure overall. 
First, the measures are all trained on different corpora. In 
addition, such a comparison would be unfair to models 
such as LSA that are sensitive to parameterization; infor-
mal tests suggested that the MSR interface queries the 
LSA server with the default number of factors, rather than 
optimizing against some set of external human similarity 
judgments.

LMOSS: A Tool for Training Lightweight Metrics 
of Semantic Similarity on Large Corpora

Earlier, we pointed out the need for an easy-to-use re-
source for obtaining similarity judgments from arbitrary 
corpora. The promising performance of PMI-Wiki en-
couraged us to release a freely available version of Light-
weight Metrics of Semantic Similarity (LMOSS, available 
at www.indiana.edu/~clcl/LMOSS/). LMOSS is a GUI in-
terface to our implementation of PMI, allowing research-
ers to train PMI on their own corpora and retrieve similar-
ity judgments quickly and efficiently. To our knowledge, 
this is the only free, publicly available tool that allows 
nonprogrammers to train a lexical co-occurrence metric 
on their own large corpora. The Web site offers a precom-
piled binary of LMOSS that has been tested on Windows 
XP and Vista systems. LMOSS was created in C# and 
makes use of Microsoft’s .NET platform. Theoretically, 
it should be able to be compiled on other platforms via 

measure, outperformed solely by the WordNet::Similarity 
vector measure (WN). On the remaining word similarity 
data set, PMI-Wiki was the highest performing measure.

Discussion
Given its simplicity, PMI-Wiki makes a strong showing 

when compared with numerous publicly available mea-
sures of semantic relatedness. WN also emerged as an 
extremely strong measure, outperforming all other mea-
sures on nearly all tasks. However, WN is also the only 
model based on hand-coded intelligence and is limited to 
the words in the WordNet lexicon, since it relies heavily 
on WordNet’s dictionary glosses (Pedersen et al., 2004). 
This constitutes an important difference with scalable, in-
cremental algorithms, which construct representations via 
unsupervised processing of large textbases. It is notable 
that WS353, the only task on which PMI-Wiki vastly out-
performed WN, was also the only task to include adjec-
tives and verbs, which may differ from nouns in terms of 
the characteristics of their WordNet dictionary glosses. 
Although this is not the only difference between WS353 
and the other tasks, the inclusion of adjectives and verbs is 
a plausible explanation for WN’s decreased performance 
on the WS353 data set. Thus, WN’s impressive perfor-
mance suggests that it is a viable choice for researchers 
looking for general approximations of semantic similarity 
between English nouns; for tasks that would benefit from 
training on domain-specific corpora, or that involve words 
not included in the WordNet hypernym hierarchy, PMI 
trained on a suitably large corpus may be a better choice.

Given the success of PMI-Wiki, it may seem puz-
zling that PMI.W (the version of PMI that estimated 
co-occurrences using a Google search of Wikipedia) 
performed relatively poorly. One potential reason is that 
Google reports approximate hit counts that vary with the 
order of the query terms and other factors, and thus do 
not reflect exact co-occurrences between search terms. 
For example, at the time of writing, the Google query 
two AND three site:wikipedia.org reports 368,000 hits, 
three AND two site:wikipedia.org reports 342,000, two 
three site:wikipedia.org reports 354,000, and three two 
site:wikipedia.org reports 346,000. The Web pages that 
Google indexes, which in this case correspond roughly to 
full Wikipedia articles, are also likely to be much larger 

Table 2 
Comparisons Between Human Semantic Judgments and Measures of Semantic Relatedness

Measure of Semantic Relatedness

Task  PMI-Wiki  WN  PMI.W  PMI.F  NSS.F  NSS.T  SA.N  SA.W  LSA.T

ESL .62 .70 .50 .42 .44 .56 .39 .51 .44
TOEFL .64 .87 .42 .51 .59 .50 .61 .59 .55
MC .78 .88 .50 .46 .62 .53 .49 .39 .69
R .86 .90 .54 .41 .56 .54 .49 .52 .74
RG .76 .77 .41 .51 .61 .56 .45 .45 .61
WS353 .73 .46 .29 .58 .60 .59 .40 .38 .60

Note—For synonymy tests (ESL, TOEFL), values represent the percentage of correct responses. For all 
other tasks, values represent Spearman rank correlations between human judgments of semantic similar-
ity and those of the corresponding measure of semantic relatedness. Values in bold represent the highest 
and second-highest values in each row. Abbreviations for tasks and for measures of semantic relatedness 
are defined in the main text of the article.
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Finally, the failure to incorporate word order information 
is a complaint commonly leveled at lexical co-occurrence 
models of semantic similarity. Information about word 
order can be combined with nonpositional co-occurrence 
information, via simple addition, to produce better corre-
spondences to human semantic similarity judgments than 
would result from either information source alone (e.g., 
Jones, Kintsch, & Mewhort, 2006). Thus, LMOSS also 
includes an implementation of PMI/Order, an experimen-
tal metric we developed that takes positional information 
about surrounding words into account. To calculate the 
similarity of two terms x and y using PMI/Order, LMOSS 
first calculates PMI(x, y). Then it adds to this value [(# of 
times w appears m words after x)(# of times w appears 
m words after y)] /[(freq w * freq x)(freq w * freq y)(|m|)]
for each word w in the lexicon and for each value of m 
(excluding zero) from n to n, where n is half the order 
window size set by the user. The |m| in the denominator 
serves to weight words that appear closer to x and y as 
more important, making PMI/Order more sensitive to 
local context; for example, if the phrase “furry cat” were 
to appear much more often than would be expected if the 
distributions of “furry” and “cat” were independent, and 
if the same were true for the phrase “furry dog,” cat and 
dog would get a large similarity boost. The system does 
this not only for the words appearing immediately before 
cat and dog (m  1), but for each nonzero value of m 
from n to n, with each position given a weight of 1/|m|. 
We found slight improvements in correlations to human 
semantic similarity judgments when incorporating posi-
tional information about surrounding words in this way 
(an average improvement of .025 on correlations to human 
similarity judgments, and .024 on average forced-choice 
test accuracies).

Currently, PMI and PMI/Order are the only metrics 
available in LMOSS. In future versions, we plan to pro-
vide additional options allowing users to build up vec-
tors of PMI scores in the fashion of Bullinaria and Levy 
(2006), allowing users to select the distance metric, vector 
length, and other parameters most appropriate for their 
particular task. In the meantime, however, our results in 
Experiment 2 show that even LMOSS’s simplistic PMI 
estimate—provided that it is trained on a suitably large 
and high-quality corpus—rivals other publicly available 
measures of semantic similarity, serving as a valuable tool 
for researchers interested in obtaining corpus-specific ap-
proximations of human semantic similarity judgments. 
The system also makes it convenient for users to train their 
own corpora, selected specifically by genre or content do-
main, to create semantic metrics more sensitive to the con-
textual usage of words in their experiments.

GENERAL DISCUSSION

In Experiment 1, we found that PMI, a scalable, in-
cremental, and simple measure of semantic similarity, 
greatly benefited from training on additional data, so 
much so that it outperformed a version of LSA trained 
on less of the same type of data over a variety of ex-

the Mono 2.0 open source .NET development framework 
(Novell, 2008), but we have not yet attempted to do so.

LMOSS can be trained easily and efficiently on any 
text corpus that the user defines. This is particularly use-
ful for calibrating stimuli when one is concerned about 
the decontextualized similarity metrics retrieved from 
systems trained on corpora such as TASA. The represen-
tation for a word learned by LSA from TASA is a melding 
of what would be multiple contextual senses in WordNet. 
For example, the vector for heart contains information 
about love and emotion, but also about arteries and pump-
ing blood. Although techniques do exist for evaluating the 
contextual sense of a word in LSA from the composite rep-
resentation (Kintsch, 2001), in many domains it is much 
better to train on a corpus related to the sense of the word 
relevant to an experiment. This was the original motiva-
tion for the “smallheart” version of LSA on the Colorado 
Web interface (it contains representations trained only on 
articles relating to the biological sense of the word heart), 
and more recent research has demonstrated that very large 
gains in performance can be seen in text classification sys-
tems trained on text corpora specific to the subject domain 
(Stone, Dennis, & Kwantes, 2008).

Speed and ease of use were primary considerations in 
the construction of LMOSS. On a 32-bit dual-core Dell In-
spiron 1420 with 3 GB of memory and a processor speed 
of 1.83 GHz, we found that training PMI on the Wikipedia 
corpus (specifying 1,024 different words that the model 
would be tested on for purposes of evaluation) took less 
than 20 min. LMOSS also allows the resulting PMI model 
to be saved to a binary file, so that even models trained 
on extremely large corpora can be reloaded in seconds. 
Partly inspired by the LSA Web interface at lsa.colorado.
edu, LMOSS offers a graphical user interface allowing 
similarity judgments to be evaluated in four different ways. 
Matrix comparison returns similarity judgments between 
every possible pairing of words on a list provided by the 
user; one-to-many comparison returns judgments between 
a single word and every word on a separate list; pairwise 
comparison returns judgments between arbitrary pairs of 
words; and forced-choice comparison evaluates PMI on a 
forced-choice task provided by the user (such as ESL or 
TOEFL). To assist users who have access to large corpora 
but who may be unfamiliar with basic scripting techniques, 
we provided an option to have LMOSS preprocess the train-
ing corpus text by stripping punctuation and nonalphanu-
meric characters and treating all words as lowercase.

Consonant with findings that counting co-occurrences 
within small windows of text produces better results than 
does counting co-occurrences within larger contexts (Bul-
linaria & Levy, 2006; Turney, 2001), LMOSS allows PMI 
to be trained using window sizes of a user-specified length. 
Counting co-occurrences within documents of arbitrary 
size, rather than windows of n words, can be accomplished 
by setting the window size to a number of words larger 
than any document in the corpus. LMOSS considers each 
line of the training input to constitute a separate docu-
ment, and does not allow text windows to simultaneously 
include text from two adjacent documents.
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vector accumulation techniques like BEAGLE (Jones & 
Mewhort, 2007) and random indexing (Kanerva et al., 
2000; Sahlgren, 2006), which also increase the similarity 
of words that commonly co-occur while simultaneously 
correcting for global frequency; and which do so in a 
scalable, incremental, and simple manner. Because PMI 
is a general measure that can be implemented or approxi-
mated in many different ways, it is worth investigating 
models that share PMI’s basic properties and that actually 
specify the details of how semantic representations are 
constructed.

In Experiment 2, we found that a version of PMI trained 
on Wikipedia outperformed several publicly available 
measures of semantic relatedness. This is interesting from 
a practical standpoint, since PMI similarity judgments are 
fast and easy to calculate, even on huge data sets. Because 
similarity measurements have practical applications for 
calibrating stimuli in a variety of experimental situations, 
we also released a free tool that lets researchers calculate 
PMI similarity estimates for themselves without high-
performance cluster computing systems; one could even 
use it to create new large-scale data sets of PMI similarity 
estimates for use by others. Such resources should prove 
useful both for stimulus development and for improving 
our understanding of the mechanisms that humans use to 
organize meaning in memory.

One final note deserves comment. In making the criti-
cism that an individual’s ambient speech environment 
contains far more tokens than does the text corpora on 
which semantic models are commonly trained, we are 
aware that more tokens does not necessarily mean that 
humans experience more information than is present in 
current text corpora. For this claim to be true, it would re-
quire an implicit assumption that text and speech have the 
same statistical structure; and this is known to be false. 
For example, Hayes (1988) conducted a corpus compari-
son of the differences between written language and tran-
scribed conversations. He found that the lexical diversity 
of conversation is much less rich than is the diversity in 
text. The greater volumes of data that we imply humans 
learn from may indeed be greater volumes of redundant 
data, and text corpora such as TASA may well contain 
the same or more bits of information, even though they 
contain far fewer tokens. Hence, it is possible that we pro-
vided the right number of tokens to PMI by using Wiki-
pedia, but far more information than humans typically 
experience. Realistic scale corpora of ambient speech 
environments such as Infoture’s (2008) Lena corpus will 
soon be available on which to train semantic models, and 
may help constrain plausible cognitive mechanisms for 
how humans learn semantic information from distribu-
tional experience.
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periments and tasks. This was found to be the case, even 
though LSA was trained on a quantity of data compa-
rable to the TASA corpus (often used as a standard for 
LSA comparisons) and which was close to the limit that 
we could train LSA upon given our computational re-
sources. Previous work had found that a version of PMI 
trained on a large amount of data produced higher cor-
relations with human semantic similarity judgments than 
did a TASA-trained version of LSA, but this work had 
not controlled for factors such as type of data and docu-
ment size.

Although ours is the first study to systematically in-
vestigate the effect of corpus size on PMI using a wide 
variety of semantic benchmarks, it is well known in 
computational linguistics that increasing training cor-
pus size greatly improves performance in a variety of 
tasks that involve learning from unstructured natural 
language (Banko & Brill, 2001). The situation in the se-
mantic modeling literature is similar to how Banko and 
Brill described the computational linguistics literature 
of 8 years ago: 

The empirical NLP community has put substantial 
effort into evaluating performance of a large number 
of machine learning methods over fixed, and rela-
tively small, data sets. Yet since we now have access 
to significantly more data, one has to wonder what 
conclusions that have been drawn on small data sets 
may carry over when these learning methods are 
trained using much larger corpora. (p. 26)

These lessons from the field of computational lin-
guistics, along with the present work, call into question 
whether present models of human semantic learning are 
overly complex as theories, and whether humans might 
apply a much simpler heuristic to create meaning from 
experience. Currently popular semantic inference models 
may tend to err on the side of complexity, because the 
field has previously been restricted to data not on a scale 
comparable to human experience; this forces these models 
to make do with far less data than is available to humans. 
For example, contemporary models of human semantic 
cognition (e.g., Rogers & McClelland, 2004) may inad-
vertently hardwire too much complexity into their pro-
cessing architecture, because the models are trained on 
small data samples that are less complex than the large 
samples that humans experience. To make the model 
behave in a complex fashion—like a human but on less 
data—it becomes necessary to build complexity into the 
system. However, the truth may be that the requisite com-
plexity for this behavior is already present in the structure 
of language if a realistic sample is taken, and humans may 
only require much simpler learning mechanisms than we 
needed to build into the model.

Notably, PMI achieves high performance despite its 
extreme simplicity—it is a straightforward tabulation of 
co-occurrence counts, with a normalization term to penal-
ize words with high co-occurrence counts merely because 
they are highly frequent in the language as a whole. This 
suggests a possible connection between PMI and scalable 



MORE DATA TRUMPS SMARTER ALGORITHMS    655

Kaur, I., & Hornof, A. J. (2005). A comparison of LSA, WordNet and 
PMI-IR for predicting user click behavior. In G. C. van der Veer & 
C. Gale (Eds.), Proceedings of the 2005 Conference on Human Factors 
in Computing Systems (CHI) (pp. 51-60). New York: ACM Press.

Kintsch, W. (2001). Predication. Cognitive Science, 25, 173-202.
Landauer, T. K., & Dumais, S. (1997). A solution to Plato’s problem: 

The latent semantic analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological Review, 104, 211-240.

Landauer, T. K., Foltz, P., & Laham, D. (1998). An introduction to 
latent semantic analysis. Discourse Processes, 25, 259-284.

Lemaire, B., & Denhière, G. (2004). Incremental construction of 
an associative network from a corpus. In K. Forbus, D. Gentner, & 
T. Regier (Eds.), Proceedings of the 26th Annual Meeting of the Cog-
nitive Science Society (pp. 825-830). Austin, TX: Cognitive Science 
Society.

Lin, M.-H. (2000). Out-of-core singular value decomposition (Report 
TR-83). New York: Stony Brook University, Experimental Computer 
Systems Laboratory.

Martin, D. I., Martin, J. C., Berry, M. W., & Browne, M. (2007). 
Out-of-core SVD performance for document indexing. Applied Nu-
merical Mathematics, 57, 1230-1239.

Matveeva, I., Levow, G., Farahat, A., & Royer, C. (2005, September). 
Terms representation with generalized latent semantic analysis. Presen-
tation at the International Conference on Recent Advances in Natural 
Language Processing, Borovets, Bulgaria.

Miller, G. A., & Charles, W. G. (1991). Contextual correlates of se-
mantic similarity. Language & Cognitive Processes, 6, 1-28.

Novell, Inc. (2008). Mono 2.0 [Computer software]. Retrieved Au-
gust 1, 2008, from www.mono-project.com.

Onnis, L., & Christiansen, M. H. (2008). Lexical categories at the 
edge of the word. Cognitive Science, 32, 184-221.

Pado, S., & Lapata, M. (2007). Dependency-based construction of se-
mantic space models. Computational Linguistics, 33, 161-199.

Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). 
WordNet::Similarity: Measuring the relatedness of concepts. In D. L. 
McGuinness & G. Ferguson (Eds.), Proceedings of the 19th National 
Conference on Artificial Intelligence (Intelligent Systems Demonstra-
tions) (pp. 1024-1025). Cambridge, MA: MIT Press.

Perfetti, C. A. (1998). The limits of co-occurrence: Tools and theories 
in language research. Discourse Processes, 25, 363-377.

Quesada, J. (2006). Creating your own LSA space. In T. Landauer, 
D. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent 
semantic analysis. Mahwah, NJ: Erlbaum.

Rapp, R. (2003). Word sense discovery based on sense descriptor dis-
similarity. In Proceedings of the 9th Machine Translation Summit 
(pp. 315-322). New Orleans.

Resnik, P. (1995). Using information content to evaluate semantic simi-
larity. In C. S. Mellish (Ed.), Proceedings of the 14th International 
Joint Conference on Artificial Intelligence (IJCAI) (pp. 448-453). San 
Francisco: Morgan Kaufmann.

Risley, T. R., & Hart, B. (2006). Promoting early language develop-
ment. In N. F. Watt, C. Ayoub, R. H. Bradley, J. E. Puma, & W. A. 
LeBoeuf (Eds.), The crisis in youth mental health: Critical issues and 
effective programs: Vol. 4. Early intervention programs and policies 
(pp. 83-88). Westport, CT: Praeger.

Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A 
parallel distributed processing approach. Cambridge, MA: MIT 
Press.

Rohde, D. (2005). SVDLIBC [Computer software]. Retrieved from 
http://tedlab.mit.edu/~dr/svdlibc/.

Rohde, D., Gonnerman, L., & Plaut, D. (2006). An improved model 
of semantic similarity based on lexical co-occurence. Manuscript sub-
mitted for publication.

Rubenstein, H., & Goodenough, J. (1965). Contextual correlates of 
synonymy. Communications of the ACM, 8, 627-633.

Sahlgren, M. (2006). The word-space model: Using distributional 
analysis to represent syntagmatic and paradigmatic relations between 
words in high-dimensional vector spaces. Unpublished doctoral dis-
sertation, Stockholm University.

Stone, B. P., Dennis, S. J., & Kwantes, P. J. (2008). A systematic 
comparison of semantic models on human similarity rating data: The 
effectiveness of subspacing. In B. C. Love, K. McRae, & V. M. Slout-

REFERENCES

Anderson, J. R., & Pirolli, P. L. (1984). Spread of activation. Journal 
of Experimental Psychology: Learning, Memory, & Cognition, 10, 
791-798.

Banko, M., & Brill, E. (2001). Scaling to very very large corpora for 
natural language disambiguation. In Proceedings of the 39th Annual 
Conference of the Association for Computational Linguistics (pp. 26-
33). Stroudsburg, PA: Association for Computational Linguistics.

Budiu, R., Royer, C., & Pirolli, P. L. (2007). Modeling information 
scent: A comparison of LSA, PMI and GLSA similarity measures 
on common tests and corpora. In Proceedings of the 8th Annual 
Conference of the Recherche d’Information Assistée par Ordinateur 
(RIAO). Pittsburgh, PA: Centre des Hautes Études Internationales 
d’Informatique Documentaire.

Bullinaria, J. A., & Levy, J. P. (2006). Extracting semantic represen-
tations from word co-occurrence statistics: A computational study. 
Behavior Research Methods, 39, 510-526.

Burgess, C., & Lund, K. (2000). The dynamics of meaning in memory. 
In E. Dietrich & A. Markman (Eds.), Cognitive dynamics: Conceptual 
and representational change in humans and machines (pp. 117-156). 
Mahwah, NJ: Erlbaum.

Cho, J., Garcia-Molina, H., Haveliwala, T., Lam, W., Paepcke, A., 
Raghavan, S., & Wesley, G. (2006). Stanford WebBase compo-
nents and applications. ACM Transactions on Internet Technology, 
6, 153-186.

Church, K. W., & Hanks, P. (1990). Word association norms, mutual 
information, and lexicography. Computational Linguistics, 16, 22-29.

Cilibrasi, R., & Vitányi, P. M. B. (2007). The Google similarity dis-
tance. IEEE Transactions on Knowledge & Data Engineering, 19, 
370-383.

Deane, P., Sheehan, K. M., Sabatini, J., Futagi, Y., & Kostin, I. 
(2006). Differences in text structure and its implications for as-
sessment of struggling readers. Scientific Studies of Reading, 10,  
257-275.

Dow Jones & Co. (2008). Available from Dow Jones Factiva Web site: 
http://factiva.com.

Farahat, A., Pirolli, P., & Markova, P. (2004). Incremental methods 
for computing word pair similarity (TR-04-6). Palo Alto, CA: Palo 
Alto Research Center, Inc.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., 
Wolfman, G., & Ruppin, E. (2002). Placing search in context: The 
concept revisited. ACM Transactions on Information Systems, 20, 
116-131.

Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998). The measure-
ment of textual coherence with latent semantic analysis. Discourse 
Processes, 25, 285-307.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in 
semantic representation. Psychological Review, 114, 211-244.

Hare, M., Jones, M. N., Thomson, C., Kelly, S., & McRae, K. (in 
press). Activating event knowledge. Cognition.

Hayes, D. P. (1988). Speaking and writing: Distinct patterns of word 
choice. Journal of Memory & Language, 27, 572-585.

Hoffman, T. (1999). Probabilistic latent semantic indexing. In Proceed-
ings of the 22nd Annual Special Interest Group on Information Re-
trieval (SIGIR) Conference (pp. 50-57). New York: ACM Press.

Infoture, Inc. (2008, September). Transcriptional analyses of the In-
foture natural language corpus (Report ITR-06-2). Retrieved Decem-
ber 15, 2008, from www.infoture.org/TechReport.aspx/Transcription/
ITR-06-2/ITR-06-2_Transcription.pdf.

Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-
 dimensional semantic space accounts of priming. Journal of Memory 
& Language, 55, 534-552.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word mean-
ing and order information in a composite holographic lexicon. Psy-
chological Review, 114, 1-37.

Kanerva, P., Kristoferson, J., & Holst, A. (2000). Random index-
ing of text samples for latent semantic analysis. In L. R. Gleitman 
& A. K. Joshi (Eds.), Proceedings of the 22nd Annual Meeting of 
the Cognitive Science Society (pp. 103-106). Austin, TX: Cognitive 
Science Society. (Also available at www.rni.org/kanerva/cogsci2k 
-abstract.ps.)



656    RECCHIA AND JONES

Zeno, S., Ivens, S., Millard, R., & Duvvuri, R. (1995). The educa-
tor’s word frequency guide. Brewster, NY: Touchstone.

NOTES

1. The number of “tokens” refers to the number of words in a corpus, 
whereas the number of “types” refers to the number of unique words 
in a corpus. The total number of tokens in TASA is sometimes cited 
as 10 million (Kanerva, Kristoferson, & Holst, 2000; Turney & Litt-
man, 2003), and sometimes as 17 million (Budiu, Royer, & Pirolli, 2007; 
Deane, Sheehan, Sabatini, Futagi, & Kostin, 2006). Although the ver-
sion of the corpus that Zeno et al. (1995) used to compile their word 
frequency guide contained 17 million tokens, Landauer et al. (1998) 
clarified that the machine-readable version they used to construct their 
LSA space contained 11 million tokens.

2. A full point was awarded only if the model unambiguously picked 
out the correct answer as most similar to the cue. If the model judged n of 
the four answers as equally good (with the correct answer being among 
these n), 1/n points were awarded (the expected value if the model were 
to guess randomly among what it judged as the best answers).

3. The formula used is that of Anderson and Pirolli (1984), but Fara-
hat et al. (2004) were the first to use it directly as a metric of word pair 
association.
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