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 We address a manufacturing environment with the no-wait constraint which is common in 
industries such as metal, plastic, and semiconductor. Setup times are modelled as uncertain with 
the objective of minimizing maximum lateness which is an important performance measure for 
customer satisfaction. This problem has been addressed in scheduling literature for the two-
machine no-wait flowshop where dominance relations were presented. Recently, another 
dominance relation was presented and shown to be about 90% more efficient than the earlier ones.  
In the current paper, we propose two new dominance relations, which are less restrictive than the 
earlier ones in the literature. The new dominance relations are shown to be 140% more efficient 
than the most recent one in the literature. As the level of uncertainty increases, the newly proposed 
dominance relation performs better, which is another strength of the newly proposed dominance 
relation. Moreover, we also propose constructive heuristics and show that the best of the newly 
proposed heuristics is 95% more efficient than the existing one in the literature under the same 
CPU time. 
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1. Introduction 

The no-wait flowshop is a type of flowshop where consecutive operations are carried out with no delay. This is vital for certain 
settings in which waiting causes undue difficulty in manufacturing. A typical example is when temperature is involved, and 
operations must be completed while the material is still hot. Reducing work-in-process is another advantage of the no-wait 
flowshop, Macchiaroli et al. (1999). Scheduling of patients (Hsu et al., 2003), aircraft landing (Kim et al.; 2009), trains (Liu 
and Kozan, 2011), and bakery production (Hecker et al., 2014) are some examples where such a flowshop would be necessary. 
It is also crucial in the pharmaceutical industry, chemical industry, and plastic industry, Allahverdi (2016), and Hall and 
Sriskandarajah (1996).  
  
The amount of time required to set up a resource for production is called setup time. Since setup times clearly affect the 
completion time, it is necessary to consider them for scheduling problems. Nonetheless, a surprising percentage of scheduling 
research (at least 90%) ignores setup times, Allahverdi (2015). Among those that do not ignore, setup times are considered as 
known values, e.g., Dileepan (2004), yet there are many manufacturing settings when this is not the case. In fact, far from 
being known, they may change due to many factors such as unforeseen breakdowns and shortage of equipment, Kim and 
Bobrowski (1997). For such manufacturing settings, ignoring set up times or considering them as known values will greatly 
impact the maximum lateness, resulting in an unnecessarily poor efficiency. 
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In the scheduling literature, the assumption of a deterministic environment (where setup and/or processing times are fixed and 
known in advance) is commonly utilized, Seidgar et al. (2014) and Keshavarz and Salmasi (2013). On the other hand, 
manufacturing environments in industries are frequently subject to a wide range of uncertainties, Allahverdi (2022a), Wang 
and Choi (2012), Gonzalez-Neira et al. (2017). Hence, managers face substantial uncertainty in setup times. Moreover, 
assuming certain probability distributions for setup times may not be valid for some environments, e.g., Kouvelis and Yu 
(1997). Thus, it is essential to model setup times as uncertain.  
 
Let UBsi,k and LBsi,k be the upper and lower bounds of setup time si,k of job i on machine k, respectively. Dominance relations 
are provided by Allahverdi et al. (2003) and Allahverdi (2005) for the problems F2|LBsi,k≤ si,k≤ UBsi,k|Cmax, ∑Cj and F2|LBsi,k≤ 
si,k≤ UBsi,k|Cmax, respectively, where Cmax and ∑Cj symbolize the makespan and completion time. Additionally, dominance 
relations are provided for the problem F2|LBsi,k≤ si,k≤ UBsi,k|Cmax by Aydilek et al. (2013) assuming fixed processing times 
and by Aydilek et al. (2015) relaxing the assumption of fixed processing times, i.e., processing times are modelled as uncertain.  
Allahverdi (2022b) provided and algorithm for the problem of F2|no-wait,LBsi,k≤si,k≤UBsi,k|Lmax and showed that the algorithm 
performs much better than the earlier existing algorithms. Other papers studying uncertain environments include Braun et al. 
(2002), Sotskov et al. (2009), Matsveichuk et al. (2011), Sotskov and Lai (2012), and Sotskov and Matsveichuk (2012), where 
set up/processing times are also assumed to be within certain upper and lower bounds.  
 
Allahverdi and Allahverdi (2018) address the problem F2|no-wait,LBsi,k≤si,k≤ UBsi,k|Lmax which aims to minimize maximum 
lateness assuming setup times to be uncertain. Another dominance relation for the same problem is provided by Allahverdi et 
al. (2021), which is proven to be of higher efficiency. In the current paper, we present a new dominance relation and 
demonstrate that it is much more efficient than the one provided by Allahverdi et al. (2021). Moreover, we propose new 
heuristics for this problem and demonstrate that they are more effective than the previous heuristics in the literature while 
maintaining the same computational time. 
 
Problem definition is provided in the next section. The new dominance relations are presented in Section 3 while their 
evaluation is given in Section 4. The new heuristics are described in Section 5 while their performance compared with the 
recent heuristic in the literature is given in Section 6. Conclusion remarks are presented in Section 7.  
 
2. Problem Definition 
 
We address the problem of minimizing maximum lateness in a two-machine no-wait flowshop scheduling environment with 
separate setup times. A typical two-machine no-wait flowshop problem with three jobs can be seen in a Gantt chart in Figure 
1. We model setup times as uncertain and bounded, within lower and upper bounds. We assume that all jobs are available at 
time zero and every job has a positive processing time on each machine. A machine can process at most one job and a job can 
be processed on at most one machine at any given time.  Let sh,m and th,m denote the setup and processing times of job h on 
machine m (m=1, 2), respectively. Also let the lateness, completion time, and due date of job h be denoted by Lh, Ch and dh, 
respectively, where Lh = Ch - dh. Uncertain setup times satisfy the inequality LBsh,m ≤ sh,m ≤ UBsh,m where UBsh,m and LBsh,m 
represent upper bound and lower bound of the setup time sh,m, respectively. Closed brackets ([ ]) are used to represent the 
position of a job in a given sequence, e.g, d[h] denotes the due date of the job in position h. 
For the considered problem, the completion time of the job in position h  is 
 𝐶ሾ௛ሿ ൌ෍max ሼ𝑠ሾ௥,ଶሿ,௛

௥ୀଵ  𝑠ሾ௥,ଵሿ൅𝑡ሾ௥,ଵሿ − 𝑡ሾ௥ିଵ,ଶሿሽ ൅෍𝑡ሾ௥,ଶሿ௛
௥ୀଵ  

 where t[0,2]=0.  Therefore, lateness of the job in position h is given by 𝐿[௛] = ෍max ሼ𝑠[௥,ଶ],௛
௥ୀଵ  𝑠[௥,ଵ]൅𝑡[௥,ଵ] − 𝑡[௥ିଵ,ଶ]ሽ ൅෍𝑡[௥,ଶ]௛

௥ୀଵ − 𝑑[௛]  
(1) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. A three-job two-machine example 
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3.  More Efficient Dominance Relations   
 
A dominance relation was presented by Allahverdi and Allahverdi (2018) for the problem. Recently, Allahverdi et al. (2021) 
presented another dominance relation and showed that their dominance relation is more effective than the dominance relation 
presented by Allahverdi and Allahverdi (2018). In this section, we propose two new dominance relations (Theorems 2 and 4) 
and show that the new dominance relations are much more efficient than that of Allahverdi et al. (2021).  Let π1 be a sequence 
such that job j, in position τ, immediately precedes job i, i.e., they are adjacent. Also let π2 be another sequence obtained from 
π1 by interchanging the jobs i and j; job i precedes job j in sequence π2. Moreover, let the bold Sh,k be a random variable 
denoting the setup time of job h on machine k, which satisfies 
 𝐿𝐵𝑠௛,௞ ≤ 𝑺𝒉,𝒌 ≤ 𝑈𝐵𝑠௛,௞ (2) 
     
Let 
 ∆= ෍max {𝑠[௥,ଶ],ఛିଵ

௥ୀଵ  𝑠[௥,ଵ]+𝑡[௥,ଵ] − 𝑡[௥ିଵ,ଶ]} + ෍𝑡[௥,ଶ]ఛିଵ
௥ୀଵ  

 
Then, the lateness of jobs i and j in the two sequences π1 and π2 for jobs in positions τ, τ+1, and τ+2 are given by  
 𝐿[ఛ]ሺ𝜋ଵሻ = ∆ + max {𝑺𝒋,𝟐 , 𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡[ఛିଵ,ଶ]} + 𝑡௝,ଶ − 𝑑௝   (3) 𝐿[ఛ]ሺ𝜋ଶሻ = ∆ + max {𝑺𝒊,𝟐 , 𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡[ఛିଵ,ଶ]} + 𝑡௜,ଶ − 𝑑௜    (4) 𝐿[ఛାଵ]ሺ𝜋ଵሻ = ∆ + max൛𝑺𝒋,𝟐 ,  𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡[ఛିଵ,ଶ]ൟ+ 𝑡௝,ଶ +max൛𝑺𝒊,𝟐 , 𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡௝,ଶൟ + 𝑡௜,ଶ − 𝑑௜ (5) 𝐿[ఛାଵ]ሺ𝜋ଶሻ = ∆ + max൛𝑺𝒊,𝟐 ,  𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡[ఛିଵ,ଶ]ൟ + 𝑡௜,ଶ  +max൛𝑺𝒋,𝟐 , 𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡௜,ଶൟ + 𝑡௝,ଶ − 𝑑௝ (6) 𝐿[ఛାଶ]ሺ𝜋ଵሻ = ∆ + max൛𝑺𝒋,𝟐 ,  𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡[ఛିଵ,ଶ]ൟ+ 𝑡௝,ଶ +max൛𝑺𝒊,𝟐 ,𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡௝,ଶൟ + 𝑡௜,ଶ (7)                              +max൛𝑺[𝝉ା𝟐,𝟐],𝑺[𝝉ା𝟐,𝟏] + 𝑡[ఛାଶ,ଵ] − 𝑡௜,ଶൟ + 𝑡[ఛାଶ,ଶ] − 𝑑[ఛାଶ]  𝐿[ఛାଶ]ሺ𝜋ଶሻ = ∆ + max൛𝑺𝒊,𝟐 ,  𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡[ఛିଵ,ଶ]ൟ + 𝑡௜,ଶ +max൛𝑺𝒋,𝟐 ,𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡௜,ଶൟ + 𝑡௝,ଶ                              +max൛𝑺[𝝉ା𝟐,𝟐], 𝑺[𝝉ା𝟐,𝟏] + 𝑡[ఛାଶ,ଵ] − 𝑡௝,ଶൟ + 𝑡[ఛାଶ,ଶ] − 𝑑[ఛାଶ] (8) 

 
Lemma 1: For ρ = 1,2, …, τ-1 
 𝐿[ఘ]ሺ𝜋ଶሻ = 𝐿[ఘ]ሺ𝜋ଵሻ          
 
Proof: The proof follows from the fact that both sequences π1 and π2 have the same jobs in those positions. 
 
Theorem 1: Let jobs i and j be two adjacent jobs in a given sequence.  If the following conditions hold, 
 

a) 𝑑௜ ≤ 𝑑௝ and 𝑡௜,ଶ ≤  𝑡௝,ଶ 
b) 𝑈𝐵𝑠௜,ଵ +  𝑡௜,ଵ ≤  min௞∈{ଵ,…,௡} 𝑡௞,ଶ + 𝐿𝐵𝑠௜,ଶ 
c) 𝑈𝐵𝑠௝,ଵ +  𝑡௝,ଵ ≤  min௞∈{ଵ,…,௡} 𝑡௞,ଶ + 𝐿𝐵𝑠௝,ଶ 

 
then, max൛𝐿[ఛ]ሺ𝜋ଶሻ, 𝐿[ఛାଵ]ሺ𝜋ଶሻ, 𝐿[ఛାଶ]ሺ𝜋ଶሻ ൟ ≤ max൛𝐿[ఛ]ሺ𝜋ଵሻ, 𝐿[ఛାଵ]ሺ𝜋ଵሻ,𝐿[ఛାଶ]ሺ𝜋ଵሻ ൟ. 
 
Proof: It follows from Eq. (4) and Eq. (5) that 
 𝐿[ఛ]ሺ𝜋ଶሻ − 𝐿[ఛାଵ]ሺ𝜋ଵሻ = max൛𝑺𝒊,𝟐 ,𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡[ఛିଵ,ଶ]ൟ −  max൛𝑺𝒋,𝟐 ,  𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡[ఛିଵ,ଶ]ൟ 

                                     − max൛𝑺𝒊,𝟐 , 𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡௝,ଶൟ − 𝑡௝,ଶ  
(9) 

 
By Eq. (2) and conditions b) and c) of the theorem, Eq. (9) reduces to  
 𝐿[ఛ]ሺ𝜋ଶሻ − 𝐿[ఛାଵ]ሺ𝜋ଵሻ = −𝑺𝒋,𝟐 − 𝑡௝,ଶ 
 
Thus,  
 𝐿[ఛ]ሺ𝜋ଶሻ ≤ 𝐿[ఛାଵ]ሺ𝜋ଵሻ. (10) 
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Furthermore, by Eq. (5) and Eq. (6) 
 𝐿[ఛାଵ]ሺ𝜋ଶሻ − 𝐿[ఛାଵ]ሺ𝜋ଵሻ = max൛𝑺𝒊,𝟐 ,  𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡[ఛିଵ,ଶ]ൟ+max൛𝑺𝒋,𝟐 ,𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡௜,ଶൟ − 𝑑௝ 

                                         −max൛𝑺𝒋,𝟐 ,  𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡[ఛିଵ,ଶ]ൟ− max൛𝑺𝒊,𝟐 , 𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡௝,ଶൟ + 𝑑௜ (11) 

By Eq. (2) and conditions b) and c) of the theorem, Eq. (11) reduces to 
 𝐿[ఛାଵ]ሺ𝜋ଶሻ − 𝐿[ఛାଵ]ሺ𝜋ଵሻ = 𝑑௜ − 𝑑௝ 
 
which implies 
 𝐿[ఛାଵ]ሺ𝜋ଶሻ ≤ 𝐿[ఛାଵ]ሺ𝜋ଵሻ  (12) 
 
by condition a) of the theorem. Therefore, it follows from Eq. (10) and Eq. (12) that  
 max൛𝐿[ఛ]ሺ𝜋ଶሻ, 𝐿[ఛାଵ]ሺ𝜋ଶሻ ൟ ≤ 𝐿[ఛାଵ]ሺ𝜋ଵሻ 
 
which implies  
 max൛𝐿[ఛ]ሺ𝜋ଶሻ, 𝐿[ఛାଵ]ሺ𝜋ଶሻ ൟ ≤ max൛𝐿[ఛ]ሺ𝜋ଵሻ,𝐿[ఛାଵ]ሺ𝜋ଵሻ ൟ (13) 
 
By Eq. (7) and Eq. (8), and conditions a), b), and c) of the theorem, it follows that  
 𝐿[ఛାଶ]ሺ𝜋ଶሻ ≤ 𝐿[ఛାଶ]ሺ𝜋ଵሻ  (14) 
 
It follows from Eq. (13) and Eq. (14) that  
 max൛𝐿[ఛ]ሺ𝜋ଶሻ, 𝐿[ఛାଵ]ሺ𝜋ଶሻ,𝐿[ఛାଶ]ሺ𝜋ଶሻ ൟ ≤ max൛𝐿[ఛ]ሺ𝜋ଵሻ,𝐿[ఛାଵ]ሺ𝜋ଵሻ, 𝐿[ఛାଶ]ሺ𝜋ଵሻ ൟ.  
 
Lemma 2: For ρ = τ+3, …, n 
 𝐿[ఘ]ሺ𝜋ଶሻ ≤ 𝐿[ఘ]ሺ𝜋ଵሻ         
 
Proof: It follows by equation (1) that for ρ = τ+3, …, n 
 𝐿[ఘ]ሺ𝜋ଵሻ = ∆ + max൛𝑺𝒋,𝟐 ,  𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡[ఛିଵ,ଶ]ൟ + 𝑡௝,ଶ +max൛𝑺𝒊,𝟐 ,𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡௝,ଶൟ + 𝑡௜,ଶ +max൛𝑺[𝝉ା𝟐,𝟐],𝑺[𝝉ା𝟐,𝟏] + 𝑡[ఛାଶ,ଵ] − 𝑡௜,ଶൟ + 𝑡[ఛାଶ,ଶ] + ෍ max൛𝑺[𝒓,𝟐], 𝑺[𝒓,𝟏] + 𝑡[௥,ଵ] − 𝑡[௥ିଵ,ଶ]ൟఘ

௥ୀఛାଷ + ෍ 𝑡[௥,ଶ]ఘ௥ୀఛାଷ − 𝑑[ఘ]  
(15) 

 𝐿[ఘ]ሺ𝜋ଶሻ = ∆ + max൛𝑺𝒊,𝟐 ,  𝑺𝒊,𝟏 + 𝑡௜,ଵ − 𝑡[ఛିଵ,ଶ]ൟ + 𝑡௜,ଶ  +max൛𝑺𝒋,𝟐 ,𝑺𝒋,𝟏 + 𝑡௝,ଵ − 𝑡௜,ଶൟ+ 𝑡௝,ଶ +max൛𝑺[𝝉ା𝟐,𝟐],𝑺[𝝉ା𝟐,𝟏] + 𝑡[ఛାଶ,ଵ] − 𝑡௝,ଶൟ + 𝑡[ఛାଶ,ଶ]+ ෍ max൛𝑺[𝒓,𝟐], 𝑺[𝒓,𝟏] + 𝑡[௥,ଵ] − 𝑡[௥ିଵ,ଶ]ൟఘ
௥ୀఛାଷ + ෍ 𝑡[௥,ଶ]ఘ௥ୀఛାଷ − 𝑑[ఘ] 

 
 

(16) 
 

 From Eq. (2), Eq. (15), and Eq. (16) and conditions a), b), and c) of the theorem, we see that   𝐿[ఘ](𝜋ଶ) ≤ 𝐿[ఘ](𝜋ଵ)   for ρ = τ+3, …, n 
 
Theorem 2: Let jobs i and j be two adjacent jobs in a given sequence.  If the following conditions hold, 

a) 𝑑௜ ≤ 𝑑௝ and 𝑡௜,ଶ ≤  𝑡௝,ଶ 
b) 𝑈𝐵𝑠௜,ଵ +  𝑡௜,ଵ ≤  min௞∈{ଵ,…,௡} 𝑡௞,ଶ + 𝐿𝐵𝑠௜,ଶ 
c) 𝑈𝐵𝑠௝,ଵ +  𝑡௝,ଵ ≤  min௞∈{ଵ,…,௡} 𝑡௞,ଶ + 𝐿𝐵𝑠௝,ଶ 

then, 𝐿௠௔௫(𝜋ଶ)  ≤ 𝐿௠௔௫(𝜋ଵ), i.e. job i should precede job j.  
 
Proof: The proof directly follows from Lemma 1, Lemma 2, and Theorem 1.  
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Corollary 1: Let jobs i and j be two adjacent jobs in a given sequence.  If the following conditions hold, for a deterministic 
problem where setup times are known for certain,  
 

a) 𝑑௜ ≤ 𝑑௝ and 𝑡௜,ଶ ≤  𝑡௝,ଶ 
b) 𝑠௜,ଵ +  𝑡௜,ଵ ≤  min௞∈{ଵ,…,௡} 𝑡௞,ଶ + 𝑠௜,ଶ 
c) 𝑠௝,ଵ +  𝑡௝,ଵ ≤  min௞∈{ଵ,…,௡} 𝑡௞,ଶ + 𝑠௝,ଶ 

 
then, 𝐿௠௔௫(𝜋ଶ)  ≤ 𝐿௠௔௫(𝜋ଵ), i.e. job i precedes job j.  
 
Proof: Since the problem is deterministic, Eq. (2) reduces to  
 𝐿𝐵𝑠௛,௞ = 𝑺𝒉,𝒌 = 𝑈𝐵𝑠௛,௞ 
 
Moreover, since setup times are known values (denoted by sh,k), the last equation is equivalent to  
 
 𝐿𝐵𝑠௛,௞ = 𝑠௛,௞ = 𝑈𝐵𝑠௛,௞ 
 
Hence, the proof follows from that of Theorem 2.  
 
Theorem 3: Let jobs i and j be two adjacent jobs in a given sequence.  If the following conditions hold, 
 

a) 𝑡௝,ଶ ≤  𝑡௜,ଶ and 𝑑௜ + 𝑡௝,ଶ ≤ 𝑑௝ + 𝑡௜,ଶ  
b) 𝑈𝐵𝑠௜,ଶ +  max௞∈{ଵ,…,௡} 𝑡௞,ଶ   ≤  𝑡௜,ଵ + 𝐿𝐵𝑠௜,ଵ 
c) 𝑈𝐵𝑠௝,ଶ +  max௞∈{ଵ,…,௡} 𝑡௞,ଶ   ≤  𝑡௝,ଵ + 𝐿𝐵𝑠௝,ଵ 

 
then, max൛𝐿[ఛ](𝜋ଶ), 𝐿[ఛାଵ](𝜋ଶ), 𝐿[ఛାଶ](𝜋ଶ) ൟ ≤ max൛𝐿[ఛ](𝜋ଵ), 𝐿[ఛାଵ](𝜋ଵ),𝐿[ఛାଶ](𝜋ଵ) ൟ. 
 
Proof: By Eq. (2) and conditions b) and c) of theorem 3, Eq. (9) reduces to  
 𝐿[ఛ](𝜋ଶ) − 𝐿[ఛାଵ](𝜋ଵ) = −𝑺𝒋,𝟏 − 𝑡௝,ଵ 
 
which implies that 
 𝐿[ఛ](𝜋ଶ) ≤ 𝐿[ఛାଵ](𝜋ଵ). (17) 
 

By Eq. (2) and conditions b) and c) of Theorem (3), Eq. (11) reduces to 
 𝐿[ఛାଵ](𝜋ଶ) − 𝐿[ఛାଵ](𝜋ଵ) = −𝑡௜,ଶ − 𝑑௝ + 𝑡௝,ଶ + 𝑑௜ 
 
thus, by condition a) of Theorem 3 
 𝐿[ఛାଵ](𝜋ଶ) ≤ 𝐿[ఛାଵ](𝜋ଵ)  (18) 
 
From Eq. (7) and Eq. (8), and the conditions of Theorem 3, we obtain 
 𝐿[ఛାଶ](𝜋ଶ) ≤ 𝐿[ఛାଶ](𝜋ଵ) (19) 
      
It follows from Eq. (17), Eq. (18), and Eq. (19) that 
  max൛𝐿[ఛ](𝜋ଶ), 𝐿[ఛାଵ](𝜋ଶ),𝐿[ఛାଶ](𝜋ଶ) ൟ ≤ max൛𝐿[ఛ](𝜋ଵ),𝐿[ఛାଵ](𝜋ଵ), 𝐿[ఛାଶ](𝜋ଵ) ൟ.  
 
Theorem 4: Let jobs i and j be two adjacent jobs in a given sequence.  If the following conditions hold, 
 

a) 𝑡௝,ଶ ≤  𝑡௜,ଶ and 𝑑௜ + 𝑡௝,ଶ ≤ 𝑑௝ + 𝑡௜,ଶ  
b) 𝑈𝐵𝑠௜,ଶ +  max௞∈{ଵ,…,௡} 𝑡௞,ଶ   ≤  𝑡௜,ଵ + 𝐿𝐵𝑠௜,ଵ 
c) 𝑈𝐵𝑠௝,ଶ +  max௞∈{ଵ,…,௡} 𝑡௞,ଶ   ≤  𝑡௝,ଵ + 𝐿𝐵𝑠௝,ଵ 

 

then, 𝐿௠௔௫(𝜋ଶ)  ≤ 𝐿௠௔௫(𝜋ଵ), i.e. job i should precede job j.  
 

Proof: Note that Lemma 2 holds under the conditions of Theorem 3. Therefore, the proof follows from Lemma 1, Lemma 2, 
and Theorem 3.  
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Corollary 2: Let jobs i and j be two adjacent jobs in a given sequence.  If the following conditions hold, for a deterministic 
problem where setup times are known for certain, 
 

a) 𝑡௝,ଶ ≤  𝑡௜,ଶ and 𝑑௜ + 𝑡௝,ଶ ≤ 𝑑௝ + 𝑡௜,ଶ  
b) 𝑠௜,ଶ +  max௞∈{ଵ,…,௡} 𝑡௞,ଶ   ≤  𝑡௜,ଵ + 𝑠௜,ଵ 

c) 𝑠௝,ଶ +  max௞∈{ଵ,…,௡} 𝑡௞,ଶ   ≤  𝑡௝,ଵ + 𝑠௝,ଵ 
then, 𝐿௠௔௫(𝜋ଶ)  ≤ 𝐿௠௔௫(𝜋ଵ), i.e. job i should precede job j.   
 

Proof: For the same reasons stated in the proof of Corollary 1, it is true that 
 

 𝐿𝐵𝑠௛,௞ = 𝑠௛,௞ = 𝑈𝐵𝑠௛,௞ 
 

Thus, the proof follows from that of Theorem 4.  
 
4.  Numerical Results for Dominance Relations  
 

Allahverdi et al. (2021) presented a dominance relation for our problem and showed that their dominance relation was about 
90% more efficient than the earlier existing ones in the literature. In this paper, we develop two new dominance relations 
(Theorems 2 and 4) for the problem and show that our newly developed dominance relations are more efficient than that of 
Allahverdi et al. (2021). The dominance relation developed in Theorem 2 is denoted by DR2 and the one in Theorem 4 is 
represented by DR4. It should be noted that DR2 and DR4 are not overlapping since the conditions stated in Theorems 2 and 
4 cannot hold at the same time. In other words, these two theorems are concerned with different cases. Therefore, both 
theorems can be applied for a given sequence. Hence, we denote the combination of DR2 and DR4 by DRC.  Let n denote the 
number of jobs, R denote the range factor and T denote tardiness factor. Also, let Δ denote the uncertainty range between the 
lower and upper bounds of setup times. For a fair comparison, we use the same computational settings of Allahverdi et al. 
(2021). Specifically,  

• n ϵ {30, 40, 50, 60, 70} 
• R ϵ {0.25, 0.50, 0.75} 
• T ϵ {0.25, 0.50, 0.75} 
• Δ ϵ {5, 10, 20} 
• ti,k  follows a uniform distribution,  U(1, 100) 
• Usi,k follows a uniform distribution,  U(50, 100), 
• Lsi,k = Usi,j – Δ  
• di follows a uniform distribution, U(LB-Cmax(1-T-R/2), LB-Cmax(1-T-R/2)) where LB-Cmax is a lower bound value 

on makespan. 
 

Hall and Posner (2001) suggest generating processing times from the uniform distribution U(1,100) since its variance is very 
large. On the other hand, it is common to generate due dates using a uniform distribution between LB-Cmax(1-T-R/2) and LB-
Cmax(1-T-R/2) where R and T are usually taken between 0 and 1, e.g., Kim (1993), and Vallada and Ruiz (2010), and  LB-
Cmax is a lower bound on makespan. The following LB-Cmax is used.   

LB-Cmax = 
=

n

i 1
LBsi,2 + 

=

n

i 1
ti,2. 

Tables 1-3 present computational results for Δ=5, Δ=10, and Δ=20, respectively. The numbers in the tables are the average of 
250 replications. The first column in the tables show the R values and the second column indicates n values. The next three 
columns present the results for the percentage improvement of DR2, DR4, and DRC (combined dominance relations), 
respectively for T=0.25. The next three columns give the results for the percentage improvements for T=0.5, and the following 
three columns are the results for T=0.75. For example, the bold numbers 67.7, 66.9, and 134.6 for R=0.5, n=40, T=0.25 in 
Table 1 show that the percentage of improvement of DRC is 134.6% where 67.7% of this improvement comes from DR2 
while 66.9% of the improvement comes from DR4. This specific result shows that the newly developed dominance relation 
DRC is 134.6% more efficient than that of the best existing dominance relation in the literature. It should be noted that the 
overall percentage improvements of newly developed dominance relations with respect to all the parameters of n, R, T, Δ, and 
250 replications, which results in 33,750 runs (5×3×3×3×250), are 67.7, 69.6, 137.3 for DR2, DR4, and DRC, respectively.  
Figs. 2-5 summarize the results in Tables 1-3 with respect to n, R, T, and Δ values, respectively, where the y-axis denotes the 
percentage improvement for dominance relations. Fig. 2 shows the percentage improvements of DR2, DR4, and DRC with 
respect to the number of jobs. It shows that the percentage slightly decreases as the number of jobs increases. However, the 
percentage of improvement is at least 120 for the DRC. Results with respect to the R values are given in Fig. 3 where the 
percentage improvements of the dominance relations are independent of the R values. In other words, the improvement of 
dominance relations is similar for different due date ranges. A similar effect can be seen from Fig. 4 with respect to tardiness 
factor T. However, the percentage improvement of the dominance relations increases as the Δ (Delta) values increase. In other 
words, as the uncertainty level increases, the newly developed dominance relations perform better, which is another strength 
of the newly developed dominance relations.  
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Table 1 
Percentage Improvement of Dominance Relations (Δ = 5) 

   T=0.25   T=0.5   T=0.75  
  Dominance Relations Dominance Relations Dominance Relations 

R n DR2 DR4 DRC DR2 DR4 DRC DR2 DR4 DRC 
  30 79.9 76.4 156.3 56.3 63.9 120.2 66.5 71.9 138.3 
  40 66.9 67.8 134.7 59.0 55.0 114.0 70.3 67.8 138.1 

0.25 50 55.8 60.9 116.7 56.2 56.6 112.8 65.1 70.3 135.3 
  60 57.9 52.8 110.8 55.7 64.4 120.1 57.0 61.8 118.8 
  70 69.3 61.8 131.1 56.9 65.7 122.6 51.2 50.4 101.6 
  30 61.8 70.8 132.5 63.0 65.7 128.8 83.9 97.7 181.6 
  40 67.7 66.9 134.6 55.0 57.0 112.0 66.7 64.6 131.3 

0.5 50 67.6 64.3 131.9 49.6 53.4 103.0 49.8 59.8 109.6 
  60 54.9 55.0 109.8 53.2 57.1 110.3 65.8 60.0 125.9 
  70 49.5 49.8 99.3 58.2 58.4 116.6 61.3 60.3 121.6 
  30 47.7 54.0 101.7 56.4 66.7 123.1 69.3 65.8 135.1 
  40 64.5 59.9 124.3 54.6 59.3 113.9 62.8 56.5 119.3 

0.75 50 44.8 49.4 94.2 63.4 58.6 122.0 55.5 56.5 112.0 
  60 72.1 71.0 143.2 53.8 51.6 105.4 57.8 61.8 119.5 
  70 49.0 50.3 99.3 53.3 57.6 110.8 57.0 59.1 116.1 
  30 63.1 67.1 130.2 58.6 65.4 124.0 73.2 78.5 151.7 
  40 66.3 64.8 131.2 56.2 57.1 113.3 66.6 63.0 129.6 

Avg 50 56.1 58.2 114.3 56.4 56.2 112.6 56.8 62.2 119.0 
  60 61.6 59.6 121.3 54.2 57.7 111.9 60.2 61.2 121.4 
  70 56.0 54.0 109.9 56.1 60.5 116.7 56.5 56.6 113.1 

 
Table 2 
Percentage Improvement of Dominance Relations (Δ = 10) 

   T=0.25   T=0.5   T=0.75  
  Dominance Relations Dominance Relations Dominance Relations 
R n DR2 DR4 DRC DR2 DR4 DRC DR2 DR4 DRC 
  30 74.9 83.6 158.5 57.5 71.6 129.1 58.7 67.2 126.0 
  40 71.9 86.3 158.2 68.3 70.2 138.5 68.8 70.2 138.9 

0.25 50 63.0 62.2 125.2 107.3 113.3 220.6 62.1 63.1 125.1 
  60 63.5 62.2 125.7 50.2 58.6 108.8 47.0 58.8 105.8 
  70 54.4 54.4 108.8 59.0 62.1 121.1 50.2 49.9 100.1 
  30 88.7 88.1 176.9 62.9 64.2 127.1 80.3 94.2 174.5 
  40 61.6 64.5 126.1 56.4 54.7 111.1 66.8 66.0 132.8 

0.5 50 63.8 63.6 127.4 57.4 67.6 125.0 63.2 61.7 125.0 
  60 67.7 70.2 137.8 66.5 65.8 132.3 55.3 65.9 121.2 
  70 62.1 66.6 128.7 51.4 56.7 108.1 57.1 61.3 118.4 
  30 81.6 70.2 151.7 63.5 70.2 133.7 60.5 55.6 116.1 
  40 58.1 56.8 114.9 58.4 55.1 113.6 57.7 59.6 117.3 

0.75 50 47.1 50.2 97.3 53.9 57.1 111.0 72.3 75.1 147.3 
  60 59.7 66.0 125.7 71.8 68.9 140.7 63.6 63.5 127.1 
  70 57.0 62.2 119.1 70.0 69.9 139.8 66.2 65.6 131.8 
  30 81.7 80.6 162.4 61.3 68.6 129.9 66.5 72.3 138.9 
  40 63.8 69.2 133.0 61.0 60.0 121.0 64.4 65.3 129.7 

Avg 50 58.0 58.6 116.6 72.9 79.3 152.2 65.9 66.6 132.5 
  60 63.6 66.1 129.7 62.8 64.4 127.3 55.3 62.7 118.0 
  70 57.8 61.1 118.9 60.1 62.9 123.0 57.8 59.0 116.8 

 
Table 3 
Percentage Improvement of Dominance Relations  (Δ = 20) 

   T=0.25   T=0.5   T=0.75  
  Dominance Relations Dominance Relations Dominance Relations 
R n DR2 DR4 DRC DR2 DR4 DRC DR2 DR4 DRC 
  30 92.8 77.9 170.7 75.5 87.7 163.2 71.8 73.1 144.9 
  40 66.1 72.5 138.5 66.1 68.6 134.7 93.1 114.6 207.7 

0.25 50 97.2 106.7 204.0 96.1 99.3 195.5 94.4 79.3 173.7 
  60 75.0 69.1 144.1 58.8 60.1 118.9 84.8 88.7 173.6 
  70 68.9 63.0 131.9 65.6 73.9 139.5 54.7 52.9 107.6 
  30 81.8 78.6 160.4 107.2 89.9 197.0 81.5 84.0 165.5 
  40 80.8 100.8 181.6 70.5 90.0 160.5 92.9 88.7 181.6 

0.5 50 39.6 40.6 80.2 81.2 86.7 167.9 97.6 107.7 205.4 
  60 69.1 72.3 141.4 117.4 111.4 228.8 96.8 93.4 190.3 
  70 59.0 63.0 121.9 79.0 64.0 143.1 72.0 93.8 165.8 
  30 93.5 74.6 168.1 91.4 117.9 209.3 89.5 66.2 155.7 
  40 73.9 64.7 138.7 73.0 68.1 141.1 69.6 79.7 149.3 

0.75 50 87.4 88.3 175.7 77.8 68.9 146.7 48.4 59.1 107.5 
  60 73.1 82.2 155.3 82.1 74.6 156.7 85.2 81.7 166.9 
  70 81.8 91.3 173.2 107.1 99.6 206.7 63.9 68.5 132.4 
  30 89.4 77.0 166.4 91.4 98.5 189.9 80.9 74.4 155.3 
  40 73.6 79.3 152.9 69.9 75.6 145.4 85.2 94.3 179.5 

Avg 50 74.8 78.5 153.3 85.0 85.0 170.0 80.1 82.0 162.2 
  60 72.4 74.5 146.9 86.1 82.0 168.1 89.0 88.0 176.9 
  70 69.9 72.4 142.3 83.9 79.2 163.1 63.5 71.7 135.3 
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Fig. 2. Percentage Improvement versus number of jobs 

 
Fig. 3. Percentage Improvement versus R values 

 
Fig. 4. Percentage Improvement versus T values Fig. 5. Percentage Improvement versus Delta values 

 
5. Heuristics 
 
Allahverdi et al. (2021) recently presented a constructive heuristic, based on lower and upper bounds of setup times, with five 
versions for the considered problem. They demonstrated that one version of the heuristics, called CH4, performed better than 
the rest. In this section, we propose new heuristics for the problem and show in the next section that they are much more 
efficient than that of Allahverdi et al. (2021) with the same computational time.  Let π denote a partial sequence of scheduled 
jobs and σ the set of jobs which are going to be scheduled. Moreover, let A be the set of all jobs and nw the number of jobs 
to be scheduled. Also, let Lmax (π) represent the maximum lateness of the partial sequence π. 
 
Proposed Heuristics – PH(α, β)  
 
Step 1: Initialize the set of jobs to be scheduled to the set of all the jobs (σ ←A) and the partial sequence π to the empty 

sequence (π ← Ø) 
Step 2: Initialize the number of unscheduled jobs to the number of all jobs (nw ← n) 
Step 3: Start scheduling the first job, js ←1. 
Step 4: Choose α ϵ [0, Ν] and β ϵ [0, Ν] to be used to construct the setup time 
Step 5: Construct a setup time, Sik, between the lower (LBsik) and upper bounds (UBsik) 

Si1 ←   [αUBsi1 + (1 - α) LBsi1]/N  and Si2 ←  [βUBsi2 + (1 - β) LBsi2]/N 
Step 6: Among the unscheduled jobs, choose the job t1 ϵ σ with the smallest due date. 
Step 7: Schedule the job t1 as the first job (π ← {t1}) 
Step 8: Take the job t1 out of the set of unscheduled jobs (σ ← σ \ {t1}) 
Step 9: Reduce the number of unscheduled jobs by 1 (nw ← nw – 1)  
Step 10: Start the scheduling of the next job (js ← js + 1) 
Step 11:  For each job w from σ 

a) Form a partial sequence πw by scheduling the job w ϵ σ as the job to be processed after the jobs in the sequence 
π (πw = π U {job w}). In other words, place the job w in position js of πw. 

b) Compute the maximum lateness, Lmax (πw), of the partial sequence πw as below: 
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 Lmax = max {C[k] - d[k], k = 1,…,,js}, 
where for the job in position k, L[k] stands for the lateness, C[k] represents the completion time, d[i] stands for the 
due date. 

Step 12: Among the calculated nw values in Step 11, choose the job w* which has the smallest maximum lateness. In other 
words, Lmax (πw*) = max {Lmax (πw), w ϵ σ } 

Step 13: Form js sequences (seq1,…,seqjs) by inserting the job w* in all possible positions (positions 1 up to js) and compute 
Lmax of each sequence.  
For example, place the job w* in the first position and shift all the jobs in the sequence π by one position to the right 
to produce seq1. 
seq1 ← {job w*} U π  
Similarly, job w* is placed in the 2nd position of μ and jobs in positions greater than or equal to two are shifted by 
one position to the right (if j ≥ 2) in seq2. 

Step 14: Among the js sequences formed in Step 13, choose the sequence (seqj*) which has the largest maximum completion 
time. 

  Lmax (seqj*) = max {Lmax(seq1),…, Lmax(seqjs)} 
Step 15: Update the partial sequence of scheduled jobs π by assigning it to seqj*.  (π ← seqj*.) 
Step 16: Increase the number of scheduled jobs by 1 (js ← js + 1). 
Step 17: Decrease the number of unscheduled jobs by 1 (nw ← nw - 1). 
Step 18: Take the recently scheduled job w* out of the set of unscheduled jobs (σ ← σ \ {w*}). 
Step 19: Go to Step 11 if there are jobs waiting to be scheduled (If js < n) 

   Stop if all of the jobs are scheduled (If js = n) 
 
For our proposed heuristics, we set the parameter N to 4 after computational experiments. Hence, we set α and β to be integer 
values between 0 and 4, specifically α ϵ {0, 1, 2, 3, 4} and β ϵ {0, 1, 2, 3, 4}. This results in 25 heuristics. For example, α=2 
and β=3 in the proposed heuristic is denoted by PH(2, 3).  
 
6.  Computational Results for Heuristics 
 
We evaluate the performance of the proposed 25 heuristics, PH(0,0) to PH(4,4), and the best existing heuristic CH4 in the 
literature. Experimental computations are conducted using the software Matlab on a PC with Intel(R) Core(TM) i7-8550U 
CPU processor of 1.99 GHz with 8 GB RAM. We set the parameters to the values used in Section 4. To compare the 
performances of the proposed heuristics and the best one in the literature, the realized setup times (between the lower and 
upper bounds) are necessary. Since the actual setup times are uncertain and only the lower and upper bounds are known, we 
considered different distributions to generate actual setup times. These distributions, given below, include both skewed 
(positive and negative) and symmetric distributions. Details and justifications for using these distributions are given in 
Allahverdi et al. (2021). 
 
It should be noted that 1,200 replications are conducted for each combination of n, R, T, Δ, and distributions. More specifically, 
n changes from 30 to 70 with the increment of 10, R and T take values of 0.25, 0.50, and 0.75, Δ takes values of 5, 10, and 
20. Six different distributions are used for generating realized setup times, i.e., normal distribution, uniform distribution, 
positive and negative linear distributions, positive and negative exponential distributions. These six distributions are the 
distributions that were used in Allahverdi et al. (2021). This results in 8100 combinations, and for each combination, 1200 
replications are generated. Thus, the number of problems considered are 97,200 problems. The relative error (RE) of the 
heuristic PH(i, j) and the benchmark heuristic CH4 are computed as: 
 

RE(X) = 100 × [ Lmax(X) – Lmax(best) ] / Lmax(best) 
 

where “X” denotes one of the heuristics of PH(i, j) and CH4, and “best” refers to the best of these heuristics. There are 25 
proposed heuristics and the benchmark heuristic CH4, in total 26 heuristics, to compare with each other. The computational 
experiments were conducted for all the 26 heuristics. However, reporting all the computational results for all the heuristics is 
cumbersome and infeasible. Therefore, we present the results of the two best-proposed heuristics, PH(4, 3) and PH(5, 4), and 
the two worst proposed heuristics, PH(1, 1) and PH(2, 2), along with the benchmark heuristic CH4, in total 5 heuristics.  
 
The RE values for these 5 heuristics are presented in Table 4, Table 5, and Table 6, for Δ=5, Δ=10, and Δ=20, respectively. 
An entry in a table is the average error regarding the considered distributions with 1200 runs. Standard deviations were small 
as a result of a large number of replications, and hence, they are not reported. The results in Tables 4-6 are summarized in 
Figs. 6-10.  Fig. 6 indicates the RE values of the five heuristics with respect to the number of jobs, n. The figure clearly shows 
that the proposed heuristics PH(4, 3), PH(5, 4), PH(1, 1) and PH(2, 2) perform much better than the benchmark heuristic of 
CH4. Moreover, even though the performance of the proposed heuristics gets better as n increases, as can better be seen in 
Fig. 7, however, that of the benchmark heuristic CH4 deteriorates. It is seen in Figure 6 that the performances of the proposed 
heuristics PH(4, 3), PH(5, 4), PH(1, 1) and PH(2, 2) look much better than the heuristic CH4. Furthermore, it is clear from 
Fig. 7 (excluding CH4) that the difference between the best and the worst proposed heuristics is about 40%. The results for 
R, T, and Δ values are presented in Figures 8, 9, and 10, respectively, by excluding CH4 for a vivid comparison of the proposed 
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heuristics.  Fig. 8 shows that the performances of PH(4, 3) and PH(5, 4) get slightly better as R increases. Moreover, Figure 
9 indicates that the performances of the proposed heuristics get better as T increases. As expected, as Δ values increase, the 
RE values of the proposed heuristics slightly increase. The overall errors of the proposed heuristics PH(4, 3), PH(5, 4), PH(1, 
1), PH(2, 2), and the benchmark heuristic CH4 are 1.38, 1.37, 2.03, 1.90, 27.56, respectively. This shows that the worst of the 
proposed heuristics, PH(1, 1), reduces the error of the benchmark heuristic (the best existing heuristic in the literature), CH4, 
by 92%. Moreover, the error of the best proposed heuristic, PH(5, 4), is about 32% better than the heuristic PH(1, 1). Finally, 
it should be noted that the CPU times of the proposed heuristics and that of the benchmark heuristic CH4 were similar, and it 
was less than one second for the largest problem size.  
 
Table 4 
Heuristic RE (Δ = 5) 

   T=0.25   T=0.5   T=0.75  
   R   R   R  

n Heuristic 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 
  PH(5,4) 2.39 1.72 1.25 1.81 1.36 0.35 1.05 1.01 0.64 
  PH(4,3) 2.23 1.68 1.56 1.79 1.35 0.60 1.01 0.95 0.76 

30 PH(1,1) 3.04 2.07 2.52 2.40 1.99 1.25 1.36 1.19 0.89 
  PH(2,2) 2.95 2.01 2.44 2.33 1.81 1.11 1.34 1.19 0.97 
  CH4 15.78 20.38 83.74 14.77 8.77 28.97 19.82 16.15 20.56 
  PH(5,4) 2.00 1.54 0.85 1.81 0.89 0.69 1.03 0.88 0.62 
  PH(4,3) 1.99 1.56 1.41 1.77 0.86 0.69 1.01 0.89 0.58 

40 PH(1,1) 2.79 2.12 4.47 2.23 1.12 0.84 1.41 1.11 0.97 
  PH(2,2) 2.78 2.18 4.31 2.26 1.10 0.95 1.32 1.07 0.76 
  CH4 17.18 27.67 93.21 13.69 11.45 27.24 20.19 15.13 25.31 
  PH(5,4) 2.25 2.43 2.23 1.38 1.26 0.75 1.05 0.75 0.44 
  PH(4,3) 2.40 2.39 2.36 1.34 1.18 0.88 1.01 0.79 0.51 

50 PH(1,1) 3.07 3.44 3.64 1.78 1.70 1.30 1.39 0.95 0.85 
  PH(2,2) 3.02 3.22 3.27 1.73 1.54 1.27 1.37 0.93 0.54 
  CH4 16.27 21.13 83.05 14.12 11.59 30.24 20.25 15.55 29.42 
  PH(5,4) 1.97 1.90 1.35 1.40 1.12 0.75 1.08 0.68 0.50 
  PH(4,3) 2.00 2.07 1.39 1.49 1.06 0.85 1.08 0.75 0.50 

60 PH(1,1) 2.47 2.59 2.64 2.08 1.45 1.22 1.37 1.00 0.72 
  PH(2,2) 2.50 2.60 2.99 2.05 1.42 1.13 1.38 0.90 0.65 
  CH4 16.43 20.23 85.54 14.76 13.69 30.57 19.89 13.69 26.15 
  PH(5,4) 2.37 1.66 2.37 1.31 1.17 0.64 0.78 0.58 0.32 
  PH(4,3) 2.36 1.64 2.32 1.22 1.23 0.64 0.80 0.59 0.45 

70 PH(1,1) 3.16 2.07 3.15 1.63 1.76 1.12 1.07 0.85 0.67 
  PH(2,2) 3.15 1.99 3.05 1.60 1.56 0.91 1.06 0.79 0.71 
  CH4 15.68 23.49 92.41 15.92 15.45 36.88 20.02 17.10 28.34 

 
Table 5 
Heuristic RE (Δ = 10) 

   T=0.25   T=0.5   T=0.75  
   R   R   R  
n Heuristic 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 
  PH(5,4) 3.09 2.50 2.76 1.66 1.17 1.38 1.22 1.22 0.66 
  PH(4,3) 3.14 2.49 3.76 1.57 1.27 1.51 1.25 1.21 0.76 

30 PH(1,1) 4.13 3.53 4.79 2.17 1.66 2.27 1.76 1.59 1.18 
  PH(2,2) 3.99 3.13 4.96 2.15 1.59 2.42 1.75 1.47 1.17 
  CH4 16.75 20.67 84.54 15.49 12.25 22.21 20.06 12.71 22.99 
  PH(5,4) 2.55 2.36 1.82 1.43 1.49 0.90 1.30 0.71 0.73 
  PH(4,3) 2.53 2.28 1.78 1.42 1.52 0.80 1.26 0.84 0.66 

40 PH(1,1) 3.41 2.91 3.73 1.84 1.92 1.58 1.67 1.11 0.98 
  PH(2,2) 3.39 2.92 3.43 1.70 1.74 1.30 1.70 1.17 0.82 
  CH4 16.91 20.50 60.97 14.69 10.11 28.03 19.27 14.80 24.81 
  PH(5,4) 2.17 2.62 2.85 1.71 1.21 1.11 0.98 1.00 0.56 
  PH(4,3) 2.02 2.61 2.81 1.66 1.03 1.20 0.97 1.00 0.75 

50 PH(1,1) 2.65 3.66 4.33 2.20 1.31 1.63 1.33 1.41 1.25 
  PH(2,2) 2.47 3.39 4.10 2.27 1.14 1.52 1.27 1.33 1.21 
  CH4 17.22 23.31 72.61 13.90 14.20 27.99 20.44 13.65 23.48 
  PH(5,4) 1.80 1.76 1.91 1.25 1.11 0.96 1.14 0.79 0.60 
  PH(4,3) 1.77 1.78 2.07 1.38 1.02 0.94 1.11 0.72 0.53 

60 PH(1,1) 2.43 2.79 3.03 1.70 1.37 1.98 1.52 1.18 1.13 
  PH(2,2) 2.30 2.47 2.70 1.79 1.41 1.52 1.55 1.12 1.17 
  CH4 18.81 23.19 64.79 16.15 13.35 28.40 20.42 15.43 28.41 
  PH(5,4) 2.17 1.75 1.92 1.31 1.18 1.05 1.23 0.57 0.73 
  PH(4,3) 2.16 1.82 2.14 1.33 1.17 1.10 1.15 0.58 0.73 

70 PH(1,1) 2.97 2.84 2.78 1.92 1.79 1.78 1.49 0.98 1.23 
  PH(2,2) 3.18 2.60 2.81 1.71 1.75 1.48 1.48 0.85 1.12 
  CH4 18.83 22.10 68.34 13.49 13.06 31.82 19.95 16.81 25.50 
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Table 6 
Heuristic RE (Δ = 20) 

   T=0.25   T=0.5   T=0.75  
   R   R   R  
n Heuristic 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 
  PH(5,4) 2.69 2.54 1.95 1.67 1.17 1.19 1.31 1.02 0.94 
  PH(4,3) 2.75 2.08 2.43 1.64 1.19 1.31 1.22 0.94 0.82 

30 PH(1,1) 3.91 2.82 4.59 2.10 2.00 2.59 1.66 1.28 1.75 
  PH(2,2) 3.48 2.69 3.69 1.92 1.85 2.03 1.72 1.24 1.31 
  CH4 22.22 21.89 47.39 21.25 17.91 29.41 25.93 20.99 28.38 
  PH(5,4) 2.57 1.88 2.94 1.39 1.31 1.31 1.30 1.06 0.99 
  PH(4,3) 2.45 1.83 2.99 1.38 1.44 1.25 1.11 1.03 0.92 

40 PH(1,1) 3.08 2.61 4.60 1.98 1.97 2.10 1.57 1.38 1.29 
  PH(2,2) 2.95 2.50 4.20 1.78 1.81 1.90 1.49 1.37 1.20 
  CH4 22.47 25.20 68.78 20.49 18.37 28.68 26.03 19.80 29.78 
  PH(5,4) 2.33 1.70 2.88 1.42 1.14 1.29 1.07 0.94 0.99 
  PH(4,3) 2.05 1.61 3.63 1.34 1.18 1.41 1.02 0.94 1.01 

50 PH(1,1) 2.82 2.32 4.98 1.75 1.57 2.72 1.53 1.52 1.39 
  PH(2,2) 2.84 2.23 5.76 1.72 1.50 2.07 1.42 1.37 1.28 
  CH4 23.28 22.10 65.67 20.57 18.35 31.98 26.66 20.04 29.89 
  PH(5,4) 1.76 1.92 2.33 1.30 0.91 1.63 1.21 0.81 1.01 
  PH(4,3) 1.59 1.97 2.40 1.10 1.06 1.53 1.12 0.91 0.87 

60 PH(1,1) 2.64 2.12 4.22 1.50 1.38 2.02 1.38 1.49 1.48 
  PH(2,2) 2.31 1.97 3.15 1.40 1.33 1.86 1.29 1.23 1.18 
  CH4 22.97 24.88 71.62 21.96 20.35 32.27 26.37 21.55 31.20 
  PH(5,4) 1.80 1.94 3.25 1.53 0.96 1.24 1.05 0.82 0.73 
  PH(4,3) 1.70 1.74 3.16 1.46 0.91 1.39 1.00 0.80 0.87 

70 PH(1,1) 2.58 2.70 4.64 2.06 1.64 2.32 1.47 1.16 1.47 
  PH(2,2) 2.31 2.42 4.90 1.90 1.27 2.09 1.28 1.07 1.26 
  CH4 21.45 28.13 63.87 20.52 18.56 35.81 25.58 21.93 31.40 

 

  
Fig. 6. Heuristic comparisions with respect to number of 
jobs 

Fig. 7.  Heuristic comparisions with respect to number of 
jobs without CH4 

  
Fig. 8. Heuristic comparisions with respect to R values 

 

Fig. 9. Heuristic comparisions with respect to T values 
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Fig. 10. Heuristic comparisions with respect to Delta values 

 
 
7.  Concluding Remarks 
 
The two-machine no-wait flowshop scheduling problem is addressed with the objective of minimizing maximum lateness 
where setup times are modelled as uncertain with given lower and upper bounds. The problem was addressed earlier in the 
literature and dominance relations along with heuristics were presented. In this paper, we develop new dominance relations 
and show that they are at least 130% more efficient than the best existing one in the literature. Moreover, we propose new 
heuristics and show that the worst of the newly proposed heuristics is at least 90% more efficient than the existing one under 
the same CPU time.  Given that the newly developed dominance relations are less restrictive, and the proposed heuristics are 
more efficient and they are computationally fast, they can easily be implemented for solving real life application problems. 
The addressed problem can be extended to other performance measures such as the number of tardy jobs, e.g., Aydilek et al. 
(2017). Furthermore, setup times are considered as sequence independent in the current paper. However, since setup times 
may be sequence dependent in some real-life applications (Guevara-Guevara et al. 2022), the results of this paper may also 
be extended to the case of sequence dependent setup times. Yet another extension to the problem is to consider total tardiness 
performance measure since this is a commonly considered performance measure, e.g., Braga-Santos et al. (20220, Rosssit et 
el. (2021), González-Neira and Montoya-Torres (2019) and Akande et al. (2018).  
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