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Summary
The case-cohort study design, used to reduce costs in large cohort studies, is a random sample of
the entire cohort, named the subcohort, augmented with subjects having the disease of interest but
not in the subcohort sample. When several diseases are of interest, several case-cohort studies may
be conducted using the same subcohort, with each disease analyzed separately, ignoring the
additional exposure measurements collected on subjects with the other diseases. This is not an
efficient use of the data, and in this paper, we propose more efficient estimators. We consider both
joint and separate analyses for the multiple diseases. We propose an estimating equation approach
with a new weight function, and we establish the consistency and asymptotic normality of the
resulting estimator. Simulation studies show that the proposed methods using all available
information gain efficiency. We apply our proposed method to the data from the Busselton Health
Study.

Some key words
Case-cohort study; Multiple disease outcomes; Multivariate failure time; Proportional hazards;
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1. Introduction
For large epidemiologic cohort studies, assembling some types of covariate information, e.g.
measuring genetic information or chemical exposures from stored blood samples, for all
cohort members may entail enormous cost. With cost in mind, Prentice (1986) proposed the
case-cohort study design, which requires covariate information only for a random sample of
the cohort, named the subcohort, as well as for all subjects with the disease of interest. One
important advantage of the case-cohort study design is that the same subcohort can be used
for studying different diseases, whereas for designs such as the nested case-control design,
new matching of cases and controls is needed for different diseases (Langholz & Thomas,
1990; Wacholder et al., 1991).

Many methods have been proposed for case-cohort data under the proportional hazards
model. Prentice (1986) and Self & Prentice (1988) studied a pseudo-likelihood approach,
which is a modification of the partial likelihood method (Cox, 1975) that weights the
contributions of the cases and subcohort differently. To improve the efficiency of the
pseudo-likelihood estimator, Chen & Lo (1999) and Chen (2001b) studied different classes

NIH Public Access
Author Manuscript
Biometrika. Author manuscript; available in PMC 2014 June 10.

Published in final edited form as:
Biometrika. 2013 ; 100(3): 695–708. doi:10.1093/biomet/ast018.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of estimating equations and used a local type of average as weight, respectively. Borgan et
al. (2000) proposed using time-varying weights, and Kulich & Lin (2004) developed a class
of weighted estimators by using all available covariate data for the full cohort. Breslow &
Wellner (2007) considered the semiparametric model using inverse probability weighted
methods with two-phase stratified samples. Various other semiparametric survival models
have also been modified to accommodate case-cohort studies (e.g. Chen, 2001a; Chen &
Zucker, 2009; Kong et al., 2004; Kulich & Lin, 2000; Lu & Tsiatis, 2006).

Taking advantage of the case-cohort design, several diseases are often studied using the
same subcohort. In such situations, the information on the expensive exposure measure is
available on the subcohort as well as any subjects with any of the diseases of interest. For
example, in the Busselton Health Study, two case-cohort studies were conducted to
investigate the effect of serum ferritin on coronary heart disease and on stroke, respectively
(Knuiman et al., 2003). Serum ferritin was measured on the subcohort, a random sample of
the cohort, as well as in all subjects with coronary heart disease and/or stroke. Typically, the
coronary heart disease analysis would not include any exposure information collected on
stroke patients not in the subcohort, and vice versa. In this paper, we develop more efficient
estimators for a single disease outcome, which can effectively use all available exposure
information. Because it is often of interest to compare the effect of a risk factor on different
diseases, we propose a more efficient version of the Kang & Cai (2009) test of association
across multiple diseases.

2. Model and Estimation
2·1. Model definitions and assumptions

Suppose that there are n independent subjects in a cohort study with K diseases of interest.
Let Tik denote the potential failure time and Cik denote the potential censoring time for
disease k of subject i. Let Xik = min(Tik, Cik) denote the observed time, Δik = I(Tik ≤ Cik) the
indicator for failure, and Nik(t) = I(Xik ≤ t, Δik = 1) and Yik(t) = I(Xik ≥ t) the counting and at-
risk processes for disease k of subject i, respectively, where I(·) is the indicator function. Let
Zik(t) be a p × 1 vector of possibly time-dependent covariates for disease k of subject i at
time t. The time-dependent covariates are assumed to be external (Kalbfleisch & Prentice,
2002). Let τ denote the end of study time. We assume that Tik is independent of Cik given
the covariates Zik and follows the multiplicative intensity process (Cox, 1972)

(1)

where λ0k(t) is an unspecified baseline hazard function for disease k of subject i and β0 is p-
dimensional vector of fixed and unknown parameters. Model (1) can incorporate disease-

specific effect model, , as a special case. Specifically,

we define  and

, letting 0T be a 1 × p zero vector.

Then we have .

Assume that there are ñ subjects in the subcohort. Let ξi be an indicator for subcohort
membership, i.e. ξi = 1 denotes that subject i is selected into the subcohort and ξi = 0 denotes
otherwise. Let α̃ = pr(ξi = 1) = ñ/n denote the selection probability of subject i into the
subcohort. The covariates Zik(t) (0 ≤ t ≤ τ) are measured for subjects in the subcohort and
those with any disease of interest.
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2·2. Estimation for univariate failure time
First, we consider the situation in which only one disease is of interest, but covariate
information is available for subjects with other diseases. In the Busselton Health study, for
example, this corresponds to the situation in which we are interested in the effect of serum
ferritin on coronary heart disease with additional serum ferritin measurements available on
subjects outside the subcohort who had stroke.

In this situation, the observable information is {Xik,Δik,ξi, Zik(t), 0 ≤ t ≤ Xik} when ξi = 1 or
Δik = 1, and is (Xik,Δik,ξi) when ξi = 0 and Δik = 0 (k = 1,…, K). If we are interested in
disease k and ignore the covariate information collected on subjects with other diseases, we
can use Borgan et al. (2000)’s estimator with time-varying weights. Specifically, the
estimator is the solution to

(2)

where  for d= 0,1 and 2 with a⊗0 = 1, a⊗1

= a, and a⊗2 = aaT, and the time-varying weight  with

. Here α̂k(t), an estimator for the true
selection probability α̃, is the proportion of the sampled censored subjects for disease k
among censored subjects who remain in the risk set at time t for disease k. This estimator
does not use the covariate information from subjects outside the subcohort who had other
diseases.

To use the collected covariate information on subjects who are outside the subcohort and
have other diseases, we consider the pseudo-partial likelihood score equations

(3)

where

and . Here α̃k(t) is the
proportion of sampled subjects among subjects who do not have any diseases and are
remaining in the risk set at time t. Our proposed weight for disease k is ψik(t) = 1 when Δij =

1 for some j, and  when ξi = 1 and Δij = 0 for all j (j = 1,…, k). This weight
takes the failure status of the other diseases into consideration, and thus our proposed
estimator will use the available covariate information for other diseases.
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2·3. Estimation for multivariate failure time
For multivariate failure time data in case-cohort studies, Kang & Cai (2009) proposed the
pseudo-likelihood score equations

(4)

with the corresponding solution denoted β̂M.

As with Borgan et al. (2000)’s estimator, when calculating the contribution of disease k in

the estimating equation, the quantity  does not use the covariate information
collected on subjects with other diseases outside the subcohort. In order to improve
efficiency, we consider the pseudo-likelihood score equations with new weights

(5)

When there is only a single disease of interest, i.e. K = 1, (5) reduces to (3). Let β̃M denote
the solution of equation (5). We estimate the baseline cumulative hazard function for disease

k using a Breslow–Aalen type estimator , where

(6)

3. Asymptotic properties
Because the estimators for the univariate failure time are special cases of those for the
multivariate failure time, we present results only for the multivariate case. We make the
following assumptions:

a. (Ti, Ci, Zi, i = 1,…, n) are independently and identically distributed, where Ti = (Ti1,
…, TiK)T, Ci = (Ci1,…, CiK)T, and Zi = (Zi1,…, ZiK)T ;

b. pr{Yik(t) = 1} > 0 for t ∈ [0,τ], i = 1,…, n and k = 1,…, K;

c.  for i = 1,…, n and k = 1,…, K almost surely, where
Dz is a constant;

d. for d = 0, 1, 2, there exists a neighborhood  of β0 such that  are

continuous functions and  in probability,

where ;

e. the matrix  is positive definite for k = 1,…,

K, where  and

;
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f. for all β∈ , t ∈ [0,τ], and k = 1,…, K, , and

, where , d = 0, 1, 2 are
continuous functions of β∈  uniformly in t ∈ [0,τ] and are bounded on  × [0,τ],

and  is bounded away from zero on  × [0,τ];

g. for all k = 1,…, K, ; and

h. limn→∞ α̃ = α, where α̃ = ñ/n and α is a positive constant.

Theorem 1—Under regularity conditions (a)–(h), β̃M converges in probability to β0 and
n1/2(β̃M − β0) converges in distribution to a mean zero normal distribution with covariance
matrix A(β0)−1Σ(β0)A(β0)−1, where

The outline of the proof is given in the Appendix. The covariance matrix Σ(β0) consists of
two parts: VI (β0) is a contribution to the variance from the full cohort, and VII (β0) is due to
sampling the subcohort from the full cohort.

We summarize the asymptotic properties of the proposed baseline cumulative hazard

estimator  in the next theorem.

Theorem 2—Under regularity conditions (a)–(h),  is a consistent estimator of
Λ0k(t) in t ∈ [0,τ] and

converges weakly to the Gaussian process (t) = { (t),…, (t)}T in D[0,τ]K with mean
zero and the following covariance function (t, s) between (t) and (s) for j ≠ k

where
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The proof of Theorem 2 is outlined in the Appendix.

4. Simulations
We conducted simulation studies to examine the performance of the proposed methods and
to compare them with the Borgan et al. (2000) method for univariate outcomes and the Kang
& Cai (2009) method for multiple outcomes. We also compared separate analysis with joint
analysis. Suppose case-cohort studies have been conducted for diseases 1 and 2. Then
covariate information is collected for the subcohort and all the subjects with disease 1 and/or
2. We generated bivariate failure times from the Clayton–Cuzick model (Clayton & Cuzick,
1985) with the conditional survival function

where λ0k(t) and βk (k = 1, 2) are the baseline hazard function and the effect of a covariate
for disease k, respectively, and θ is the association parameter between the failure times of
the two diseases. Kendall’s tau is τθ = (2θ+ 1)−1. Smaller Kendall’s tau values represent
lower correlation between T1 and T2. Values of 0·1, 4, and 10 are used for θ, with
corresponding Kendall’s tau values 0·83, 0·11, and 0·05, respectively. We set the baseline
hazard functions λ01(t) ≡ 2 and λ02(t) ≡ 4. We consider the situation Z1 = Z2 = Z, where Z is
generated from a Bernouilli distribution with pr(Z = 1) = 0·5. Censoring times are simulated
from a uniform distribution [0, u], where u depends on the specified level of the censoring
probability. We set the event proportions of approximately 8% and 20% for k = 1, and 14%
and 35% for k = 2. The corresponding u values are 0·08 and 0·22, respectively, for β1 = 0·1;
they are 0·06 and 0·16 for β1 = log 2. The sample size of the full cohort is set to be n = 1000.
We create the subcohort by simple random sampling and consider subcohort sizes of 100
and 200. For each configuration, 2000 simulations were conducted.

In the first set of simulations, we consider the case that disease 1 is of primary interest. We
compare the performance of our proposed estimator with the estimator of Borgan et al.
(2000). Table 1 summarizes the results. We see that both methods are approximately
unbiased. The average of the estimated standard error of the proposed estimator is close to
the empirical standard deviation, and the coverage rate of the 95% confidence interval is
close to the nominal level. As expected, the variation of the estimators in general decreases
as the subcohort size increases. Our proposed estimators have smaller variance relative to
the estimators of Borgan et al. (2000) in all cases. This shows that the extra information
collected on subjects with the other disease helps to increase efficiency. The efficiency gain
is larger in situations with larger event proportions, smaller subcohort sizes and lower
correlation. We also considered disease 2 with β2 = log 2 and conducted additional
simulations to compare our proposed estimator with those of Prentice (1986), Self &
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Prentice (1988), Kalbfleisch & Lawless (1988), and Barlow (1994). Similar results were
obtained but are not presented in the paper due to space limitations.

In the second set of simulations, we are interested in the joint analysis of the two diseases.
We fit the following models:

We compare the performance of the proposed estimator with the estimator of Kang & Cai
(2009). Table 2 provides summary statistics for the estimator of β1 for different
combinations of event proportion, subcohort sample size, and correlation. The estimates
from both methods are nearly unbiased, and their estimated standard errors are close to the
empirical standard deviations. Our method is more efficient than that of Kang & Cai (2009).
The efficiency gain is very limited when the event proportion is small. Higher efficiency
gains are associated with smaller subcohort sizes. Estimates for β2 are not shown in Table 2,
but the overall performance is similar to that of β1.

We also compared separate analysis of the two diseases with the joint analysis using the
proposed method. Data were generated satisfying the following model:

where β1 represents the effect of Z on the risk of disease 1, β2 represents the effect of Z on
the risk of disease 2, and β3 represents the common effect of Z* for both diseases. We set β1
= β2 = log 2 and β3 = 0·1. Table 3 summarizes the results for β1. The sample standard
deviations of Kang & Cai’s estimator in the joint analysis are slightly smaller than Borgan’s
estimator in the separate analysis. The sample standard deviations of the proposed estimators
are similar in the joint and separate analyses, and they are smaller than Kang & Cai’s and
Borgan’s estimators, respectively. Conclusions for the estimator of β2 are similar. We also
conducted hypothesis tests for H0 : β1 = β2. Table 4 presents the Type I error rates and
power of the tests at the 0·05 significance level. The tests under the separate analysis treat
the two estimates, β̂1 and β̂2, as from two independent samples. Type I error rates from
separate analyses are much lower than 5% while those from the joint analysis are close to
5%. The settings for power analysis are the same as before except that β1 = 0·1 and β2 = 0·7.
Tests based on the proposed methods are more powerful than those based on Kang & Cai’s
and Borgan’s methods, and the joint analysis produces more powerful tests than the separate
analysis.

5. Data analysis
We apply the proposed method to analyze data from the Busselton Health Study (Cullen,
1972; Knuiman et al., 2003), conducted in the south-west of Western Australia, and intended
to evaluate the association between coronary heart disease and stroke and their risk factors.
General health information for adult participants was obtained by questionnaire every three
years from 1966 to 1981. This study population consists of 1612 men and women aged 40–
89 who participated in 1981 and were free of coronary heart disease or stroke at that time.
Coronary heart disease event is defined as hospital admission, any procedure, or death
related to coronary heart disease. Stroke event is defined as hospital admission, any
procedure, or death from stroke. The outcomes of interest were time to the first coronary
heart disease event and time to the first stroke event. The event time for a subject was
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considered censored if the subject was free of that event type by December 31, 1998 or lost
to follow-up during the study period.

One of the main interests of the study was to compare the effect of serum ferritin on
coronary heart disease with its effect on stroke. To reduce cost and preserve stored serum,
case-cohort sampling was used. Serum ferritin was measured for all the subjects with
coronary heart disease and/or stroke as well as those in the subcohort. We conduct a joint
analysis of the two diseases. In our analysis, the full cohort consists of 1210 subjects with
viable blood serum samples, which includes 174 subjects with only coronary heart disease,
75 with only stroke, and 43 with both diseases. The subcohort consisted of 334 disease-free
subjects, 61 with only coronary heart disease, 36 with only stroke, and 19 with both
diseases. The total number of assayed sera samples was 626. If a subject was censored and
free of both events at the censoring time, then the censoring times for the two disease events
were the same. Two subjects died due to both coronary heart disease and stroke, for whom
the times for both events were the same. No other subjects died at the first diagnosis of
either disease. For this study, it is reasonable to assume, as in the original study (Knuiman et
al., 2003), that censoring was conditionally independent of the event processes.

We fit the following model

where Z1, Z2, Z3, and Z4 denote the logarithm of serum ferritin level, age in years,
triglycerides in millimoles per liter, and whether subjects had blood pressure treatment,
respectively. We then tested H0 : β21 = β22, β31 = β32, β41 = β42 based on the proposed
method, and the p-value is 0·138. Therefore, we fit the final model

Table 5 summarizes the results of the final fit. With a 1 unit increase in the logarithm of the
serum ferritin level, the hazard ratio for coronary heart disease risk is increased by 16% and
for stroke risk by 19%. When we tested H0 : β11 = β12, H0 was not rejected with the p-value
= 0·823. We also fit the same model using Kang & Cai (2009)’s method. The standard errors
for the effects of the logarithm of the serum ferritin level are slightly larger, 0·0949 for
coronary heart disease and 0·1304 for stroke.

6. Concluding Remarks
When disease rates are low, the efficiency gain of the proposed method is not large. When
the event rates are low, the number of cases is small, and consequently, the amount of extra
information is small. In the case of common diseases, sampling all cases in the traditional
case-cohort design with multiple diseases limits applications (Breslow & Wellner, 2007).
Instead, a generalized case-cohort design (Cai & Zeng, 2007) in which cases are sampled
can be considered. Extending the proposed weights to this general case merits further
investigation.

In our proposed estimation framework, time-dependent covariates can be allowed. However,
estimation generally requires one to know the entire history of time-dependent covariates. In
many follow-up studies, this may not be true. One commonly used approach for handling
time-dependent covariates is to consider the last-value-carry-forward, but this could
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introduce bias. A more sensible approach is to consider the joint modeling of survival times
and longitudinal covariates via shared random effects, which has not been studied for case-
cohort data.

When studying multiple diseases, different diseases may be competing risks for the same
subject. In a competing risks situation, a subject can only experience at most one event; in
the situation we considered, a subject can still experience the other events. Consequently, in
the competing risks situation, a subject is at risk for all types of events simultaneously and
will not be at risk for any other events as soon as one event occurs. Our approach in this
paper can be adapted to competing risks by modifying the at-risk process and the weight
function, but analysis will be based on the cause-specific hazards as studied in Sorensen &
Andersen (2000).

The current method is based on estimating equations, which improves the estimation
efficiency by incorporating a refined weight function for the risk set. However, it is not
semiparametric efficient. To derive the most efficient estimator, we need to specify the joint
distribution of the correlated failure times from the same subject and consider nonparametric
maximum likelihood estimation based on the joint likelihood function for case-cohort
sampling. This may be very challenging, especially when expensive covariates are
continuous. This is an interesting topic which warrants future research.
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Appendix. Outline of the Proofs of Theorems 1 – 2
Under the assumptions in Section 3, we outline the proofs for the main theorems. To prove
the asymptotic properties for the proposed estimators, the following lemmas are used. The
proof of Lemma 1 is in Lin (2000) and Lemma 2 is in Lemma A1 in Kang & Cai (2009).

Lemma 1
Let (t) and (t) be two sequences of bounded processes. If we assume that the following
conditions (i), (ii), and (iii) hold for some constant τ, for which (i) sup0≤t≤τ || (t) − (t) ||→
0 in probability for some bounded process (t); (ii) (t) is monotone on [0,τ]; and (iii) 
(t) converges to a zero-mean process with continuous sample paths, then

 in probability, and

 in probability.
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Lemma 2
Let Bi(t) (i = 1,…, n) be independent and identically distributed real-valued random process
on [0,τ], and denote random process vector, B(t) = {B1(t),…, Bn(t)} with E{Bi(t)} ≡ μB(t),
var{Bi(0)} < ∞, and var{Bi(τ)} < ∞. Let ξ= [ξ1,…,ξn] be random vector containing ñ ones
and n − ñ zeros with each permutation equally likely. Let ξ be independent of B(t). Suppose

that almost all paths of Bi(t) have finite variation. Then, 
converges weakly in l∞[0,τ] to a zero-mean Gaussian process, and

 converges in probability to zero uniformly in t.

Proof of Theorem 1
First, the proof of consistency of β̃M can be shown by the extension of Fourtz (1977): (I)

 exists and is continuous in an open neighborhood  of β0; (II) 

is negative definite with probability going to one as n → ∞; (III)  converges

to A(β0) in probability uniformly for β in an open neighborhood about β0; (IV) 

converges to 0 in probability, where . Clearly, (I) is satisfied. If we show that

 converges to zero in probability uniformly in β∈  as n → ∞,
then (II) and (III) are satisfied. We have

. Each of
the three parts converges to zero in probability by Lemma 2, the Lenglart inequality, and

conditions (d), (e), (f), and (g). Convergence of  to zero in probability shows that (IV)
is satisfied. Therefore, β̃M converges to β0 in probability and is a consistent estimator of β0.

To establish the asymptotic normality of , we decompose it into two parts:

. The first

term is asymptotically equivalent to  by Spiekerman & Lin
(1998). The second term can be decomposed into two parts

, where . The first term converges in
probability uniformly in t to zero by van der Vaart & Wellner (1996), the Kolmogorov–
Centsov Theorem, conditions (c), (d), and (f), and Lemma 1. The second term is
asymptotically equivalent to

by Lemma

1. Hence,  is asymptotically equivalent to

. By
Spiekerman & Lin (1998), the first term converges weakly to a zero-mean normal vector
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with covariance matrix . The second term is asymptotically a
zero-mean normal vector with covariance matrix

 by Hájek (1960)’s central

limit theorem for finite sampling. In addition,  and

 are independent. Thus n1/2(β̃M − β0)
converges weakly to a zero-mean normal vector with covariance matrix
A(β0)−1Σ(β0)A(β0)−1. This completes the proof of Theorem 1.

Proof of Theorem 2

We decompose  as

(A1)

The first term here converges to zero in probability uniformly in t by Taylor expansion and
Lemma 1. The second term can be written as n1/2lk(β, t)T (β̃M − β0) + op(1), where

 by Taylor expansion, uniform convergence of 

and , d=0,1, and boundedness of dΛ0k(u), where β* is on the line segment

between β̃M and β0. Because  can be written as a sum of two monotone

functions in t and converges uniformly to , in which  is bounded away

from 0, and  converges to a zero-mean Gaussian process with
continuous sample path, the third term in (A1) can be written as

. Due to the uniform convergence of

 to , where  is bounded away from 0, the last term in
(A1) is asymptotically equivalent to

. Using a decomposition of
n1/2(β̃M − β0), we have

.

Let H(t) = {H(1)(t) + H(2)(t)}, where

, and

. By Spiekerman & Lin (1998),

 converges weakly to a Gaussian process
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 whose mean is zero and covariance function between

 and  is E{η1j(β0, t),η1k(β0, s)} for t, s ∈ [0,τ] in D[0,τ]K. By Lemma 1,
Lemma 2, boundedness conditions, and the Cramer–Wold device, it can be shown that

 converges weakly to a Gaussian process

 whose mean is zero and covariance function between

 and  is {1 − α}α−1E{ζ1j(β0, t),ζ1k(β0, s)} for t, s ∈ [0,τ] in D[0,τ]K. It can
easily be shown that H(1)(t) and H(2)(s) are independent. Therefore the conclusion in
Theorem 2 holds. This completes the proof of Theorem 2.
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