
 Open access  Journal Article  DOI:10.1039/C6AN00169F

More from less: high-throughput dual polarity lipid imaging of biological tissues.
— Source link 

Shane R. Ellis, Joanna Cappell, Nina Ogrinc Potočnik, Benjamin Balluff ...+3 more authors

Institutions: Maastricht University, University of Antwerp

Published on: 07 Jun 2016 - Analyst (The Royal Society of Chemistry)

Topics: Zebra finch and Mass spectrometry imaging

Related papers:

 
Sublimation of New Matrix Candidates for High Spatial Resolution Imaging Mass Spectrometry of Lipids:
Enhanced Information in Both Positive and Negative Polarities after 1,5-Diaminonapthalene Deposition

 
Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser
desorption/ionization time-of-flight imaging employing a scanning laser beam

 Imaging mass spectrometry

 MALDI imaging of lipid biochemistry in tissues by mass spectrometry.

 
Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in
single tissue sections.

Share this paper:    

View more about this paper here: https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-
jqpvyoaowi

https://typeset.io/
https://www.doi.org/10.1039/C6AN00169F
https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-jqpvyoaowi
https://typeset.io/authors/shane-r-ellis-b5oyhsmbuz
https://typeset.io/authors/joanna-cappell-16ndw6g7l0
https://typeset.io/authors/nina-ogrinc-potocnik-4uvsw3ijux
https://typeset.io/authors/benjamin-balluff-32sl1vw217
https://typeset.io/institutions/maastricht-university-2m7sm6qn
https://typeset.io/institutions/university-of-antwerp-2gqodjhv
https://typeset.io/journals/analyst-v59a8aj4
https://typeset.io/topics/zebra-finch-dwu3evs5
https://typeset.io/topics/mass-spectrometry-imaging-2tbg2oms
https://typeset.io/papers/sublimation-of-new-matrix-candidates-for-high-spatial-3km5y4c5ed
https://typeset.io/papers/use-of-advantageous-volatile-matrices-enabled-by-next-25l2273l2w
https://typeset.io/papers/imaging-mass-spectrometry-z87081wpjt
https://typeset.io/papers/maldi-imaging-of-lipid-biochemistry-in-tissues-by-mass-pj7zwlrjhk
https://typeset.io/papers/desorption-electrospray-ionization-then-maldi-mass-oqu7u8ifs0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-jqpvyoaowi
https://twitter.com/intent/tweet?text=More%20from%20less:%20high-throughput%20dual%20polarity%20lipid%20imaging%20of%20biological%20tissues.&url=https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-jqpvyoaowi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-jqpvyoaowi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-jqpvyoaowi
https://typeset.io/papers/more-from-less-high-throughput-dual-polarity-lipid-imaging-jqpvyoaowi


This item is the archived peer-reviewed author-version of:

More from less : high-throughput dual polarity lipid imaging of biological tissues

Reference:
Ellis Shane R., Cappell Joanna, Potocnik Nina Ogrinc, Balluff Benjamin, Hamaide Julie, Van Der Linden Anne-Marie, Heeren

Ron M. A..- More from less : high-throughput dual polarity lipid imaging of biological tissues

The analyst - ISSN 0003-2654 - 141:12(2016), p. 3832-3841 

Full text (Publishers DOI): http://dx.doi.org/doi:10.1039/C6AN00169F 

To cite this reference: http://hdl.handle.net/10067/1346580151162165141

Institutional repository IRUA

http://anet.uantwerpen.be/irua


1 

 

More From Less: High-Throughput Dual Polarity Lipid Imaging of Biological Tissues 

Shane R. Ellis
1
*, Jo Cappell

1, Nina Ogrinc Potočnik1
, Benjamin Balluff

1
, Julie Hamaide

2
, 

Annemie Van Der Linden
2
 and Ron M. A. Heeren

1
  

 

1 
M4I, The Maastricht Multimodal Molecular Imaging Institute, 6229 ER Maastricht, The 

Netherlands 

2
 Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium 

 

* Corresponding Author 

s.ellis@maastrichtuniversity.nl 

 

 

 

 

  

mailto:s.ellis@maastrichtuniversity.nl


2 

 

Abstract 

The high ion signals produced by many lipids in mass spectrometry imaging make them an 

ideal molecular class to study compositional changes throughout tissue sections and their 

relationship with disease. However, the large extent of structural diversity observed in the 

lipidome means optimal ion signal for different lipid classes is obtained in opposite polarities. 

In this work we demonstrate how new high speed MALDI-MSI technologies, combined with 

precise laser position control enables the acquisition of positive and negative ion mode lipid 

data from the same tissue section much faster than is possible with other MSI instruments. 

Critically, using this approach, we explicitly demonstrate how such dual polarity acquisitions 

provide more information regarding molecular composition and spatial distributions 

throughout biological tissues. For example, in applying this approach to the zebrafinch 

songbird brain we reveal the high abundance of DHA containing phospholipids (PC in 

positive mode and PE, PS in negative ion mode) in the nuclei that control song learning 

behaviour. To make the most of dual polarity data from single tissues we also have developed 

a pLSA-based multivariate analysis technique that includes both positive and negative ion 

data in the classification approach. In doing so the correlation amongst different lipid classes 

that ionise best in opposite polarities and contribute to certain spatial patterns within the tissue 

can be directly revealed. To demonstrate we apply this approach to studying the lipidomic 

changes throughout the tumor microenvironment within xenografts from a lung cancer model. 
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Introduction 

Our knowledge of the lipidome within tissues and cells has increased dramatically over the 

last 10-15 years.
1-4

 In no small part this has been driven by developments of mass 

spectrometry-based lipidomics methods enabling molecular-level lipid analysis from 

biological extracts.
5
 In parallel with these developments the field of mass spectrometry 

imaging (MSI) has emerged as a powerful complimentary technique allowing the spatial 

localisation of multiple molecular lipids within tissues and cells to be studied 

simultaneously.
6-10

 These approaches, spanning many ionisation techniques but in particular 

matrix-assisted laser desorption ionisation (MALDI), secondary ion mass spectrometry 

(SIMS) and desorption electrospray ionisation (DESI) have provided powerful tools for 

understanding how the lipid composition of tissues changes within different tissue types and 

sub-types. One key application of this has been to use the localised changes in lipid profiles to 

readily distinguish and chemically characterise different tissue regions, such as those 

encountered in tumors.
7, 11-17

 

Despite lipids producing typically abundant signals in MSI experiments, a comprehensive 

molecular coverage requires tissues be analysed in both positive and negative mode. The vast 

structural diversity of lipids results in preferential ionisation of certain lipid classes in a single 

polarity. For example zwitterionic PCs and sphingomyelins, along with neutral lipids such as 

triacylglycerols are observed almost exclusively in positive ion mode while other 

phospholipids such as PI, PS, PE and PGs in addition to many sialyated glycosphingolipids 

and cardiolipins are observed much more efficiently in negative ion mode. With MALDI, the 

most common approach for lipid MSI, there are two possibilities to approach dual-polarity 

acquisitions. The first is to perform each experiment on adjacent tissue sections using 

optimised matrices for each polarity. For example, such an approach has been demonstrated 

for the metabolites and lipid imaging of corn seeds
18

 and for tumor tissue.
19

 The second 
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approach is to acquire both polarities from the same tissues section. This is advantageous as it 

allows direct correlation of positive and negative data on the same tissue without the need to 

correct for small alignment problems arising from deformations during sectioning and for 

small histological changes between adjacent sections. Moreover, it makes most efficient use 

of precious tissues, such as those from biopsies. Several recent studies have demonstrated this 

approach using rapid polarity switching from pixel-to-pixel however this approach is not 

available on all instrument platforms.
20, 21

 Alternatively, using MALDI matrices that produce 

efficient ionisation in both polarities (for example DAN,
22

 dithranol and DHAP
23

) one 

polarity can be acquired with sufficient gaps left between the analysed areas which are then 

used for acquisition of the second polarity sequentially with an appropriate stage offset.
22, 24

 

However, time is an important consideration of acquisitions in general and dual-polarity 

acquisitions take twice as long as a single polarity acquisition acquired with the same 

resolution. This can become a limiting factor (for example in the analysis of large tissue 

cohorts). The highest achievable spatial resolution is also lowered by a factor of 2.  

Recently we have demonstrated that the use of new, high-speed MALDI-MSI instrumentation 

using a self-scanning laser beam facilitates the extremely high throughput acquisition of dual-

polarity lipid MSI data at high spatial resolutions over 20-50 times faster than other MALDI-

MSI systems.
23

 Here we demonstrate this technique can be used to extract more molecular 

information and spatial patterns from tissue sections on rapid time scales. We demonstrate its 

use for comprehensive, high-throughput dual polarity lipid MSI of multiple tumors to 

investigate the lipidomics changes within the tumor microenvironment and also within the 

brain of the zebra finch songbird. Using multivariate image segmentation of the high 

dimensional dual-polarity data we show that dual polarity MSI reveals more tissue-specific 

features than a single polarity alone. Moreover by combining both datasets into a single 
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multivariate analysis model, underlying spatial correlation of many lipids classes can be 

directly revealed.  

 

 

Experimental Methods 

Materials 

Methanol was purchased from Biosolve BV (Valkenswaard, The Netherlands). Chloroform 

(anhydrous, ≥99%), Ethanol and norharmane matrix were purchased from Sigma Aldrich 

(Zwijndrecht, The Netherlands). Indium tin oxide (ITO) coated glass slides were purchased 

from Delta Electronics (Loveland, CO, USA, 4–8 Ω/sq). 

 

Tissue Collection and Preparation 

Frozen mouse xenograft material from human cancer cell line NCI-H460 was received from 

AstraZeneca, UK and stored at -80 °C. Sections of 7 µm were taken from four xenografts at -

18 °C on a Cryostat HM525 (Microm, Walldorf, Germany) and thaw mounted onto ITO 

coated glass slides previously cleaned in hexane and ethanol (10 minutes each) and dried 

under vacuum. Fresh frozen adult male zebra finch (Taeniopygia guttata) brain (120 days post 

hatching) was sectioned into 12 µm sagittal sections and thaw mounted on conductive ITO 

slides. Norharmane matrix was applied to sections at 7 mg/ml in 2:1 chloroform:methanol 

(v/v) using a SunCollect automatic pneumatic sprayer (Sunchrom GmbH, Friedrichsdorf, 

Germany). 
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Data Acquisition 

All data was acquired on a Bruker RapifleX MALDI Tissuetyper™ system operating in 

reflectron mode (Bruker Daltonik GmbH, Bremen, Germany) with a nominal acceleration 

potential of ±20 kV. MSI data was acquired using a 50×50µm
2
 raster and a 20×20 µm

2 
beam 

scan area for each polarity with 200 laser shots accumulated at each pixel. The average 

acquisition rate was 23 pixels/sec. Following acquisition of negative ion data, the instrument 

was switched to positive ion mode and data acquired using the same coordinates but with a 25 

µm stage offset. The total size of the tumor and zebrafinch brain datasets was 181,278 and 

80,226 pixels respectively. For further analysis data was exported as imzML files.
25

 MS/MS 

spectra were acquired from adjacent tissues using on a Waters Synapt G2SI HDMS mass 

spectrometer (Waters, Manchester, UK). Time-of-flight calibration was performed using red 

phosphorous clusters in both positive and negative ion modes. All images are normalised to 

the total ion count. 

 

Tissue Staining 

For the tumor samples after MSI the matrix was washed off using 3 x 30 second submersions 

into EtOH. Tissue was rehydrated in 96% EtOH, 70% EtOH, 35% EtOH and dH2O, 2 

minutes each. The slide was placed in haematoxylin (Merck, Darmstadt, Germany) for 2 

minutes, removed and washed in running tap water for 4 minutes. The slide wash then 

counterstained in eosin (JT Baker,Center Vally, PA, USA) for 40 seconds and washed in 

running tap water for 1 minute. The slide was finally washed in 100% EtOH for 2 minutes 

and dehydrated in xylene for 30 seconds.  

For zebra finch tissue staining the sections were washed for 1 min in EtOH to remove the 

residual matrix. The tissue was subsequently dipped for 2 min in different EtOH solutions 
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(96%, 70%, dH2O). After re-hydration the sections were placed in  0.1% cresyl violate 

solution (Merck, Darmstadt, Germany) in an oven at 60°C.The stained sections were washed 

for 2 min  in dH2O, dipped in 100% EtOH and dehydrated in xylene for 30s. After staining 

optical images were acquired using a MIRAX Desk scanner (Zeiss, Gottingen, Germany). 

 

Multivariate Data Analysis 

The imzML files of both polarities were read separately into the Matlab (v. R2015a) 

environment. Peak picking was done on the baseline subtracted and smoothed average 

spectrum. Smoothing was performed using the mslowess function (Bioinformatics Toolbox) 

with Gaussian kernel, order 0 and a 5 data points span width and the baseline was subtracted 

using the imtophat function (Image Processing Toolbox) with a window size calculated as the 

dataset individual bin size * 1E4. Peaks were picked with the mspeaks function 

(Bioinformatics Toolbox) with a relative intensity threshold compared to the basepeak of 

0.5% for the zebrafinch brain datasets and 1% for the tumor dataset. The peak lists were then 

used to reduce the datasets by extracting the total-ion-count normalized intensities for each 

peak from each spectrum (pixel). Multivariate analysis was performed on the single polarity 

datasets first and then on the combined (dual) polarity datasets using the probabilistic latent 

semantic analysis (pLSA).
26

 Combined datasets of both polarities were created by simple 

concatenation of negative and positive polarity datasets in the feature dimension. 
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Results and Discussion 

Data Acquisition Approach 

The precise laser control afforded by the employed MALDI instrument facilitated efficient 

dual polarity data acquisition using the stage offset approach. Figure 1a shows optical images 

of norharmane matrix deposited onto an ITO slide following MSI using a laser scan of 20×20 

µm
2
 and a raster width of 50×50 µm

2
. Well-defined square ablation regions ~20×20 µm

2 

within each raster position are observed. The corresponding image acquired following a 

second acquisition with a 25µm stage offset in the x and y directions, is shown in Figure 1b. 

Here it is clearly observed the second dataset is acquired from previously unablated areas in 

between the previous analysed regions. It should be noted that this approach has still only 

irradiated less than half of the sample. The remaining areas could be used, for example for 

MS/MS or high mass resolution data acquisitions, further enhancing the information acquired 

from a single tissue section. 

Figures 1 c and d shows the corresponding positive and negative ion spectra from a zebra 

finch brain using the approach described above and norharmane matrix. Strong, 

complimentary lipid signals are clearly observed with virtually no lipid overlap across both 

polarities. In the negative ion mode strong lipid signals are observed for many lipid classes 

including PE, PS, PI and ST while at higher masses gangliosides were also be observed (data 

not shown). In positive mode PCs and several SM lipids are observed with the protonated ions 

being significantly more abundant than the corresponding sodiated and potassiated ions that 

are often found to be the dominant ion formed upon direct tissue analysis. 

Having demonstrated the rapid and sensitive acquisition of lipids in positive and negative ion 

mode with 50 µm pixel sizes, we have investigated below the added value of dual polarity 
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acquisitions for better understanding and visualisation of local lipidomics changes within the 

zebra finch songbird brain and the tumor microenvironment. 

 

Lipid Imaging of the Zebra finch Songbird Brain 

The neuronal processes associated with song learning of songbirds provide an interesting 

opportunity to study their influence on behaviour and learning. The avian forebrain of the 

songbirds is interconnected with discreet nuclei which control the song learning behaviour. 

During the song learning phases these nuclei undergo a series of anatomical, neurochemical 

and molecular changes.
27

 The song nuclei are interconnected in a way that they form two 

different pathways. The anterior forebrain pathway or the sensory pathway receives the signal 

at the HVc (Higher vocal center) and projects it to the striatal nucleus AreaX. The pathway 

continues through the dorsomedial division of the medial thalamus - DLM towards the lateral 

portion of the magnocellular nucleus of the anterior neostriatum (LMAN) reaching the robust 

nucleus of the archistriatum (RA). A subsequent interconnection from the LMAN to AreaX 

provides an additional signal interchange in the anterior forebrain pathway.
27

 The caudal 

motor pathway forms a direct connection between HVC and RA and is responsible for the 

motoric aspect of singing. Several studies have provided evidence for the critical roles of 

lipids in the song learning process.
28-31

 While SIMS has been used to study the distribution of 

fatty acids (mostly as fragments of larger lipids) within zebra finch brain tissue,
32, 33

 due to the 

extensive fragmentation induced by SIMS the distribution of intact molecular-lipids has not 

been reported. Here we have employed dual-polarity imaging to study the distribution of 

intact lipids within the zebra finch brain with an emphasis on the composition and distribution 

of specific lipid compounds in the discreet nuclei and the neuronal connections.  
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The average positive and negative ion spectra acquired from the tissue are shown in Figure 1. 

Both the positive and negative ion data sets were subjected to multivariate analysis, the 

complete results of which are provided in the Supporting Information Figures S1 and S2). 

Positive ion component 4 (Figure 2b) is strongly correlated with the Area X and RA nuclei 

and the ipsilateral optic tectum (TeO). The loading plot of positive ion component 4 (Figure 

2c) revealed the strongest contributions towards this component arising from m/z 734.5, 

760.6, 806.6 and 834.6. While the single ion images of m/z 734.5 and 760.6, identified as the 

[M+H]
+
 ions of PC (32:0) and PC(34:1), were relatively homogenously distributed throughout 

the tissue (data not shown), lipid ions at m/z 806.6 and m/z 834.6 (Figure 2d and e) revealed 

much more specific enrichment in Area X, RA and TeO and partly LMAN upon comparing 

their ion distributions with the annotated cresyl violet stained section . The MS/MS spectrum 

of m/z 806 yielded an abundant fragment ion at m/z 184 with no neutral losses arising from 

the phosphocholine headgroup, suggesting the presence of a protonated PC (MS/MS spectra 

are provided as Supporting Information Figure S3 and S4). Low abundance ions were also 

observed at m/z 478 and 496 and assigned to the neutral loss of a 22:6 fatty acid and ketene, 

and m/z 550 and 568 assigned as the analogous neutral losses from a 16:0 fatty acid. The ion 

at m/z 834.5 yielded analogous low abundance fragment ions allowing the assignment of a 

22:6 and an 18:0 fatty acid. Based on the preferred regioselectivity of polyunsaturated fatty 

acids to the sn2 position of the glycerol backbone, these lipids can be tentatively assigned as 

protonated PC (16:0/22:6) and PC (18:0/22:6). These results are consistent with earlier SIMS 

data providing evidence for the enrichment of 22:6 (DHA) fatty acids in the RA and LMAN 

regions region
33

 and provide the first molecular lipid localisation in the zebra finch brain, 

however significant enrichment of 22:6 in Area X was not observed by SIMS. One possible 

explanation is that the tissues may have been taken from different locations throughout the 

volume of the brain containing AreaX and the molecular composition may change with depth 
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thought the brain. Interestingly in the negative ion pLSA analysis the assignment of a spectral 

distribution correlating specifically with AreaX, RA and TeO was less pronounced. 

Examination of the negative mode single m/z images that did show some correlation with 

these regions (Negative components 2 and 8) revealed the localisation of further DHA 

containing phospholipids in AreaX, RA and TeO (Supporting Information Figure S5). For 

example, m/z 774 produced specific fragment ions upon MS/MS corresponding to the 

presence of a 22:6 fatty acid and can thus be assigned as [PE(p-18:0/22:6)-H]
-
. Based on these 

results, those of Amaya et al.
32

 and the known importance of DHA in brain development and 

function
34-38

 it appears DHA containing lipid plays an important role in the songbird control 

and learning circuitry. 

In the negative ion mode (Component 3, Figure 2f) the laminae that partition the brain in 

different subareas can be observed. These laminae are not as strongly observed in the positive 

ion pLSA analysis. The loadings spectrum for negative component 3 reveals strong 

correlations between m/z 904.6, 888.6, 862.6 and 806.6 and the component 3 image. The 

dominant lipids contributing to these signals were identified via MS/MS (see Supporting 

Information Figure S4) as [ST(d18:1/24:1(OH))-H]
- 

(m/z 904.6), [ST(d18:1/24:1)-H]
-
 (m/z 

888.6) and [ST(d18:1/22:0)-H]
-
 (m/z 862.6). The ion at m/z 806 appeared as mixture of 

[PS(16:0/22:6)-H]
-
 and [ST(d18:1/18:0)-H]

-
. Interestingly, this ion also showed some 

enrichment in AreaX, RA and TeO providing evidence for the presence of an additional DHA 

containing lipid, PS (16:0/22:6) within these regions. Ion images for m/z 862.6 and 888.6 are 

provided in Figure 2 h and i, respectively. The laminae have been observed with myelin 

staining
39

 and thus the high concentration of sulfatides can be explained by their typically 

high abundance of in myelin. Myelin is also known to be rich in structurally-related 

galactosylceramides and upon close examination of the positive ion data several low intensity 

peaks at m/z 848 and 832, having mass defects ~0.1 Da higher than that typically observed for 
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phospholipids were identified and are tentatively assigned as the potassium and sodium 

adducts of the galactoslycermaide (d18:1/24:1) (Supporting Information Figure S6). These 

ions are observed in the positive component 1 loadings spectra (Supporting Information 

Figure S1). This component reveals a related distribution but with the some laminae not as 

clearly observed regions, possibly due to the low abundance of many of the myelin-specific 

ions in the positive ion mode. This highlights the additional biochemical and spatial 

information that is obtained by dual-polarity MSI.  
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Lipid Imaging of the Tumor Microenvironment 

In cancer research the capability to image the molecular microenvironment of tumours is 

essential to both fundamental understanding of the processes that drive tumour biology, and 

preclinical and clinical procedures including drug discovery, and oncology diagnostics. 

Considering the essential roles of lipids in cell function, proliferation, differentiation and 

apoptosis,
40-44

 lipids are intimately involved in tumor biology. MSI can provide valuable 

information regarding the intratumour pathways involved in the formation, preservation and 

progression of the microenvironment. To better visualise lipid changes within the tumor 

microenvironment we have also employed dual-polarity MALDI-MSI to rapidly image 

changes in lipid distribution and composition within 5 sections from 4 different lung cancer 

xenograft tumours. 

The full MS spectra in both polarities acquired from each xenograft are shown in Figure 3. 

Manual interrogation of the positive mode MSI datasets revealed the largest differences 

between xenograft 3 and the remaining 4 xenografts. Examination of this xenograft in the 

optical image from H&E staining showed that this is the only xenograft out of the five that did 

not contain a clear area of necrosis and this was supported by the MSI data. For example, m/z 

725 in positive ion mode, identified as [SM (d18:1/16:0)+Na]
+
 from MS/MS (See Supporting 

Information) strongly correlated with the regions of necrosis and revealed significantly lower 

abundance in xenograft 3, consistent with previous reports using a MDA-MB-231-tdTomato 

breast cancer model.
45

 

Figure 3 f and g show overlay images of 3 different m/z values that reveal different spatial 

distributions as observed in the negative and positive ion mode MSI data, respectively. In the 

negative ion mode few lipid-related signals were observed from the necrotic regions (see also 

Figures 4 and 5). However, strong signals were observed from the viable and regions adjacent 
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to the necrotic regions. The selected ions shown at m/z 861.5 (red), 766.5 (blue) and 913.5 

(green) all reveal different spatial distributions throughout the viable tissue, a reflection of the 

underlying tissue heterogeneity. MS/MS data identified the strongest lipid contributor to these 

signals as the [M-H]
-
 ions of PI(40:4) containing a 22:4 and 18:0 fatty acid, PE(38:4) 

containing an 18:0 and 20:4 fatty acid and PI (36:2) containing an 18:0 and 18:2 fatty acid, 

respectively (MS/MS spectra are provided as Supporting Information)). It should be noted 

that the MS/MS spectra in many cases reveal contributions from isomeric and isobaric lipids, 

suggesting the lipid compositions are much more complex than revealed by the ToF-MSI 

data. In addition, a variety of other lipid classes such as PE, PS, and PG were also observed in 

negative ion mode. Figure 3g shows an overlay of m/z 808.6 (red), 732.6 (blue) and 725.6 

(green) observed in positive ion mode. The dominant lipids contributing to these ion signals 

were are assigned as sodiated PC(36:2), protonated PC (32:1) and sodiated SM (18:1/16:0) 

based on the acquired on tissue MS/MS spectra (see Supporting Information Figure). The ion 

image of m/z 808.6 reveals it to be is primarily distributed around the edges of the necrotic 

region while m/z 732.6 is mostly observed in the viable tissue. 

To further investigate the underlying spatial features within the MSI datasets, both positive 

and negative ion data was subjected to multivariate image segmentation using pLSA. The 

individual component images and their loadings spectra are provided in the Supporting 

Information (Figure S7 and S8). Many components appeared to map to histologically different 

tissue regions as observed upon correlation with the H&E stained optical image (Supporting 

Information Figure S9). Component 1 in the positive ion dataset correlated strongly with the 

regions of necrosis in all xenografts. The underlying loading spectrum reveals the peaks 

contributing to this spatial distribution and many of these were confirmed upon visualisation 

of the single ion images. For example ions at m/z 725, 742, 768 and 835 were almost 

exclusively observed in the necrotic tissue and assigned as [SM(d18:1/16:0)+Na]
+
 (m/z 725), 
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[PC(O-34:1)+Na]
+ 

(m/z 768) and [SM(d18:1/24:1)+Na]
+
 (m/z 835), respectively. The ion at 

m/z 742 is assigned as both 
13

C isotope of the potassiated adduct of SM(d18:1/16:0) and 

[PC(O-32:0)+Na]
+
 based on the observation of a neutral loss of 205 Da (sodium 

phosphocholine), confirming the presence of a sodium adducted PC. That xenograft 3 did not 

show a significant contribution to positive ion component 1 provides further molecular 

evidence for the absence of necrosis in xenograft 3. Interestingly sodium adducted lipids 

dominated the spectra from the necrotic tissue, whereas protonated ions were primarily 

observed form the remaining tissue areas. We hypothesis this is due to the release of salts and 

other cellular material during necrosis that is then available for adduct formation during 

MALDI. Positive ion components 4, 8 and 10 also appeared to correlate with necrotic or near-

necrotic regions. Each of these appeared correlated with a specific tissue structure revealed by 

the H&E image from a representative tissue region. The final four tissue-related components 

correlate to non-necrotic/viable regions which, although clearly molecularly distinct, are not 

readily distinguished from each other in the H&E staining. The microenvironmental 

heterogeneity described in these components may indicate more subtle cell processes within 

the tissue. Analysis of the corresponding negative ion data revealed many different spatial 

patterns in the MSI data. While little-to-no lipid signal was observed from the strongly 

necrotic regions as observed in positive ion mode, many distributions outside of the necrotic 

tissue were observed in the negative mode. 

To evaluate the complementarity between the two data sets, we calculated Pearson correlation 

coefficients between the negative and positive component images (data not shown). With this 

approach it is possible to quantify the degree of linear correlation between two variables X 

(negative ion component) and Y (positive ion component), and thus provide a measure of 

similarity between the positive and negative ion MSI data. The coefficient ranges from +1 

(strongly correlated, very similar) to -1 (totally anti-correlated), where 0 is no correlation (no 
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similarity). This method has been used as standard in MSI to calculate the similarity between 

a pair of MSI images.
46

 Using Pearson correlation coefficients the strongest spatial 

correlations components relating to on-tissue features were observed between positive 

component 10 and negative component 2 (coefficient=0.75), positive components 10 and 6 

with negative component 2 (0.75 and 0.77), and positive component 7 with negative 

component 5 (0.67) The remaining component pairs revealed lower correlation values (<0.5), 

demonstrating the different features that can be observed from the MSI data when both 

positive and negative ion data is acquired from the same tissue. 

Finally, to make most use of the extra biochemical information within the combined polarity 

datasets we developed a combined pLSA model that incorporated both the positive and 

negative ion data into a single classification. This approach facilitates direct correlation of 

positive and negation ion lipids that contribute to the pLSA-revealed spatial features. The full 

combined pLSA component images are provided in the Supporting Information (Figure S10). 

Figure 4 shows several of these combined component images alongside optical images of the 

H&E stained section from regions appearing to overlay with the specific component. These 

demonstrate that the dual-polarity component images reveal many features that correspond to 

histologically distinct tissue regions across multiple tissues while simultaneously providing 

greater lipidome coverage than possible using a single polarity alone. For example combined 

components 3 and 6 appear correlated with the viable tissue regions. Component 7 is 

correlated with the tissue adjacent to the necrotic regions. It is possible this is tissue that is 

undergoing early necrosis. Component 9 is characterized as pre-necrotic with an increased 

presence of tumour stroma and some apoptotic nuclei while component 10 is directly 

correlated with the necrotic regions. Importantly xenografts 1 and 2 which are adjacent 

sections from the same animal give rise to very similar pLSA features demonstrating the 

technical reproducibility of the classification. A key advantage of this combined dual-polarity 
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approach is that the corresponding loadings spectra reveal, not only spectral features within a 

certain polarity that contribute to a particular spatial distribution, but also correlations between 

polarities allowing the relationships of all phospholipid classes to be revealed in a single 

analysis from the same tissue (Figure 5 and Supporting Information Figure S10). As an 

example, using the dual polarity loadings observed for the viable tissue in combined 

component 6 the abundant ion signals at m/z 742.6, 788.6, 863.6, 775.5, and 915.6 in negative 

mode are revealed to be related to the presence of m/z 760.5, 788.5, 798.5, 732.5, 826.5 and 

808.5 in positive ion mode. These peaks have been identified in negative ion mode as 

(predominantly) the [M-H]- ions of PE 36:2; PS 36:1; and PI 36:1; PG 36:1; and PI 40:3, 

respectively. In positive ion mode, peaks were identified as phosphocholine species; 

PC(34:1+H]
+
, PC(36:1+H]

+
, PC(34:1+K]

+
, PC(32:1+H]

+
, PC(36:1+K]

+
 and PC(36:2+Na]

+
, 

respectively. Such analytical approaches therefore enable the spatial correlation of a variety of 

lipid classes to be revealed in a single analysis, including, in this case PE, PS, PI and PC, and 

saturated and unsaturated fatty acid structures. This combined approach thus provides the 

research with a deeper understanding of changes occurring in the lipidome and the spatial 

correlations amongst different lipid classes not all observed in a single polarity alone. 

 

 

 

 

  



18 

 

Conclusions 

In this work we have explicitly demonstrated the added biochemical and spatial information 

acquired when imaging tissue sections in both positive and negative mode using high-speed 

MALDI-MSI. Using norharamane as the MALDI matrix not only does each polarity provide 

complementary lipidomic coverage but each can reveal different spatial features within the 

MSI data. To take full advantage of the data produced by dual-polarity imaging from single 

sections we have developed a combined pLSA-based image segmentation approach that 

combines data acquired from each pixel in both polarity modes into a single image 

classification model. In applying this approach to investigating the spatial lipidomics changes 

within lung cancer xenografts we have shown that not only does the combined polarity 

classification model allow identification of chemically and histologically different tissue 

regions, but also the correlations between the highly complementary positive and negative 

lipid ion signals and their relationships to particular spatial features within the data can be 

directly revealed. Such approaches provide powerful analytical approaches for biomarker 

discovery, and open up the possibilities of correlating lipid MSI data to lipid pathways due to 

the greater lipidomics coverage and spatial correlations revealed. Combined with the rapid 

acquisition speed now possible with such instruments,
23, 47

such dual polarity data analysis 

approaches provide a powerful and rapid tool to the lipidomics community that can now be 

fully exploited. 
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Figure 2 
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Figure 4 
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Figure 5 
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Figure Captions 

Figure 1. (a) Optical image of norharmane matrix deposited onto an ITO slide and after laser 

desorption using a 20×20 µm
2
 beam scan and a 50×50 µm

2
 raster. (b) Optical image of 

norharmane matrix after a laser desorption step using identical parameters as (a) except with a 

25×25 µm
2 

stage offset applied for the second acquisition. Note for illustration purposes data 

was acquired with more laser shots and laser energy than typically used for MSI acquisitions. 

(c) Average positive and negative ion spectra acquired across a zebra finch brain section using 

norharmane matrix. 

 

Figure 2. (a) Optical image of cresyl violet stained zebra finch section with key regions 

labelled. (b) Positive ion pLSA component 4 image. (c) Positive ion pLSA component 4 

loadings spectrum. (d) and (e) Selected positive ion images of m/z 806.5 ([PC (16:0/22:6+H]
+
) 

and 834.5 5 ([PC (18:0/22:6+H]
+
). (f) Negative ion pLSA component 3 image. (g) Negative 

ion pLSA component 4 loadings spectrum. (h) and (i) Selected negative ion image of m/z 

862.6 ([ST(d18:1/22:0)-H]
-
) and 888.6 ([ST(d18:1/24:1)-H]

-
). 

 

Figure 3. (a)-(e) Integrated positive and negative ion spectra acquired from each tumor 

xenograft. (f) Negative ion overlay image showing m/z 861.5 (red), m/z 766.5 (blue) and m/z 

913.5 (green) within the xenograft sections. (g) Positive ion overlay image showing m/z 808.6 

(red), m/z 732.6 (blue) and m/z 725.6 (green) within the xenograft sections. Sections one and 

two are replicates from the same xenograft 
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Figure 4. 5 selected pLSA component images generated from the combined positive and 

negative ion dataset. Components correlate with histologically different tissue regions. Above 

each pLSA image are enlarged images of the H&E stained section from different xenografts 

that correspond in location to the regions indicated by the red arrows. Sections one and two 

are replicates from the same xenograft 

Figure 5. pLSA loadings spectra produced from the combined positive and negative ion mode 

dataset and corresponding to the images shown in Figure 4. Positive ion contributions are 

shown in red and negative ion contributions shown in black. Such analyses allow direct 

correlation of positive and negative ion lipid data to spatial features revealed by pLSA.  

 




