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Abstract

In this paper, we present a novel and general network

structure towards accelerating the inference process of con-

volutional neural networks, which is more complicated in

network structure yet with less inference complexity. The

core idea is to equip each original convolutional layer

with another low-cost collaborative layer (LCCL), and the

element-wise multiplication of the ReLU outputs of these

two parallel layers produces the layer-wise output. The

combined layer is potentially more discriminative than the

original convolutional layer, and its inference is faster for

two reasons: 1) the zero cells of the LCCL feature maps will

remain zero after element-wise multiplication, and thus it is

safe to skip the calculation of the corresponding high-cost

convolution in the original convolutional layer; 2) LCCL

is very fast if it is implemented as a 1 × 1 convolution or

only a single filter shared by all channels. Extensive ex-

periments on the CIFAR-10, CIFAR-100 and ILSCRC-2012

benchmarks show that our proposed network structure can

accelerate the inference process by 32% on average with

negligible performance drop.

1. Introduction

Despite the continuously improved performance of con-

volutional neural networks (CNNs) [1, 10, 21, 24, 30, 32],

their computation costs are still tremendous. Without the

support of high-efficiency servers, it is hard to establish

CNN models on real-world applications. For example, to

process a 224 × 224 image, AlexNet [21] requires 725M

FLOPs with 61M parameters, VGG-S [1] involves 2640M

FLOPs with 103M parameters, and GoogleNet [32] needs

1566M FLOPs with 6.9M parameters. Therefore, to lever-

age the success of deep neural networks on mobile devices

with limited computational capacity, accelerating network

inference has become imperative.

∗This work was done when Xuanxi Dong was an Intern at 360 AI In-

stitute.
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Figure 1. Basic acceleration block. The orange panel in the figure

shows two different kinds of low-cost collaborative kernels. One

uses 1 × 1 convolution, and the other uses shared kernels (W
′

i =
W

′

j for i, j ∈ [1, T ]). The black response map represents the out-

put of the original convolutional layer with the kernel W , and the

orange response map is generated by the low-cost collaborative

layer. The purple cells represent the zero elements, of which the

calculation of corresponding positions can be skipped in the origi-

nal convolutional layer. We apply element-wise multiplication on

the activated response maps from the original convolutional layer

and low-cost layer to generate the final results of this basic accel-

eration block.

In this paper, we investigate the acceleration of CNN

models based on the observation that the response maps

of many convolutional layers are usually sparse after

ReLU [26] activation. Therefore, instead of fully calculat-

ing the layer response, we can skip calculating the zero cells

in the ReLU output and only compute the values of non-zero

cells in each response map. Theoretically, the locations of

zero cells can be predicted by a lower cost layer. The val-

ues of non-zero cells from this lower-cost layer can be col-

laboratively updated by the responses of the original filters.

Eventually, the low-cost collaborative layer (LCCL) accom-

panied by the original layer constitute the basic element of

our proposed low-cost collaborative network (LCCN).
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To equip each original convolutional layer with a LCCL,

we apply an element-wise multiplication on the response

maps from the LCCL and the original convolutional layer,

as illustrated in Fig. 1. In the training phase, this architec-

ture can be naturally trained by the existing stochastic gra-

dient descent (SGD) algorithm with backpropagation. First

we calculate the response map V
′

of the LCCL after the

activation layer, and use V
′

to guide the calculation of the

final response maps.

Despite the considerable amount of research where a

sparse-based framework is used to accelerate the network

inference, e.g. [7, 8, 22, 23, 25], we claim that LCCN

is unique. Generally, most of these sparsity-based meth-

ods [22, 25, 31] integrate the sparsity property as a regu-

larizer into the learning of parameters, which usually harms

the performance of network. Moreover, to further accel-

erate performance, some methods even arbitrarily zeroize

the values of the response maps according to a pre-defined

threshold. Compared with these methods, our LCCN au-

tomatically sets the negatives as zero, and precisely calcu-

lates the positive values in the response map with the help

of the LCCL. This two-stream strategy reaches a remark-

able acceleration rate while maintaining a comparable per-

formance level to the original network.

The main contributions are summarized as follows:

• We propose a general architecture to accelerate CNNs,

which leverages low-cost collaborative layers to accel-

erate each convolutional layer.

• To the best of our knowledge, this is the first work

to leverage a low-cost layer to accelerate the network.

Equipping each convolutional layer with a collabora-

tive layer is quite different from the existing accelera-

tion algorithms.

• Experimental studies show significant improvements

by the LCCN on many deep neural networks when

compared with existing methods (e.g., a 34% speedup

on ResNet-110).

2. Related Work

Low Rank. Tensor decomposition with low-rank

approximation-based methods are commonly used to accel-

erate deep convolutional networks. For example, in [5, 18],

the authors exploited the redundancy between convolutional

filters and used low-rank approximation to compress con-

volutional weight tensors and fully connected weight ma-

trices. Yang et al. [34] use an adaptive fastfood transform

was used to replace a fully connected layer with a series of

simple matrix multiplications, rather than the original dense

and large ones. Liu et al. [25] propose a sparse decomposi-

tion to reduce the redundancy in convolutional parameters.

In [36, 37], the authors used generalized singular vector de-

composition (GSVD) to decompose an original layer to two

approximated layers with reduced computation complexity.

Fixed Point. Some popular approaches to accelerate

test phase computation are based on “fixed point”. In [4],

the authors trained deep neural networks with a dynamic

fixed point format, which achieves success on a set of state-

of-the-art neural networks. Gupta et al. [9] use stochas-

tic rounding to train deep networks with 16-bit wide fixed-

point number representation. In [2, 3], a standard network

with binary weights represented by 1-bit was trained to

speed up networks. Then, Rastegari et al. [27] further ex-

plored binary networks and expanded it to binarize the data

tensor of each layer, increasing the speed by 57 times.

Product Quantization. Some other researchers focus

on product quantization to compress and accelerate CNN

models. The authors of [33] proposed a framework to accel-

erate the test phase computation process with the network

parameters quantized and learn better quantization with er-

ror correction. Han et al. [10] proposed to use a prun-

ing stage to reduce the connections between neurons, and

then fine tuned networks with weight sharing to quantify

the number of bits of the convolutional parameters from

32 to 5. In another work [15], the authors trained neural

networks with extremely low precision, and extended suc-

cess to quantized recurrent neural networks. Zhou et al.

[39] generalized the method of binary neural networks to

allow networks with arbitrary bit-width in weights, activa-

tions, and gradients.

Sparsity. Some algorithms exploit the sparsity property

of convolutional kernels or response maps in CNN archi-

tecture. In [38], many neurons were decimated by incorpo-

rating sparse constraints into the objective function. In [8],

a CNN model was proposed to process spatially-sparse in-

puts, which can be exploited to increase the speed of the

evaluation process. In [22], the authors used the group-

sparsity regularizer to prune the convolutional kernel tensor

in a group-wise fashion. In [7], they increased the speed

of convolutional layers by skipping their evaluation at some

fixed spatial positions. In [23], the authors presented a com-

pression technique to prune the filters with minor effects on

the output accuracy.

Architecture. Some researchers improve the efficiency

of networks by carefully designing the structure of neu-

ral networks. In [13], a simple model was trained by dis-

tilling the knowledge from multiple cumbersome models,

which helps to reduce the computation cost while preserv-

ing the accuracy. Romero et al. [28] extended the knowl-

edge distillation approach to train a student network, which

is deeper but thinner than the teacher network, by extract-

ing the knowledge of teacher network. In this way, the stu-

dent network uses less parameters and running time to gain

considerable speedup compared with the teacher network.
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Iandola et al. [16] proposed a small DNN architecture to

achieve similar performance as AlexNet by only using 50x

fewer parameters and much less computation time via the

same strategy.

3. Low-Cost Collaborative Network

In this section, we present our proposed architecture

for the acceleration of deep convolutional neural networks.

First, we introduce the basic notations used in the following

sections. Then, we demonstrate the detailed formulation of

the acceleration block and extend our framework to gen-

eral convolutional neural networks. Finally, we discuss the

computation complexity of our acceleration architecture.

3.1. Preliminary

Let’s recall the convolutional operator. For simplicity,

we discuss the problem without the bias term. Given one

convolution layer, we assume the shapes of input tensor U
and output tensor V are X×Y ×C and X×Y ×T , where X
and Y are the width and height of the response map, respec-

tively. C and T represent the channel number of response

map U and V . A tensor W with size k× k×C ×T is used

as the weight filter of this convolutional layer. Vt(x, y) rep-

resents the element of V (x, y, t). Then, the convolutional

operator can be written as:

Vt(x, y) =

k
∑

i,j=1

C
∑

c=1

Wt(i, j, c)U(x+ i− 1, y + i− 1, c) (1)

where Wt(x, y) is the element of W (x, y, t).
In the LCCN, the output map of each LCCL should

have the same size as the corresponding convolutional layer,

which means that the shape of tensor V
′

is X×Y ×T . Sim-

ilarly, we assume the weight kernel of V
′

is W
′

. Therefore,
the formula of the LCCN can be written as:

V
′

t (x, y) =
k
′

∑

i,j=1

C
∑

c=1

W
′

t (i, j, c)U(x+ i− 1, y + i− 1, c) (2)

3.2. Overall Structure

Our acceleration block is illustrated in Fig. 1. The
green block V ∗ represents the final response map collab-
oratively calculated by the original convolutional layer and
the LCCL. Generally, it can be formulated as:

V
∗

t (x, y) =

{

0 if V
′

t (x, y) = 0

V
′

t (x, y)× Vt(x, y) if V
′

t (x, y) 6= 0
(3)

where V is the output response map from the original con-
volutional layer and V

′

is from LCCL.

In this formula, the element-wise product is applied to V
and V

′

to calculate the final response map. Due to the small

size of LCCL, the computation cost of V
′

can be ignored.

Meanwhile, since the zero cells in V
′

will stay zero after

the element-wise multiplication, the computation cost of V
is further reduced by skipping the calculation of zero cells

according to the positions of zero cells in V
′

. Obviously,

this strategy leads to increasing speed in a single convolu-

tional layer. To further accelerate the whole network, we

can equip most convolutional layers with LCCLs.

3.3. Kernel Selection

As illustrated in the orange box in Fig. 1, the first form

exploits a 1×1×C×T kernel (k
′

= 1) for each original ker-

nel to collaboratively estimate the final response map. The

second structure uses a k
′

× k
′

×C × 1 filter (we carefully

tune the parameter k’ and set k’ = k) shared across all the

original filters to calculate the final result. Both these col-

laborative layers use less time during inference when com-

pared with the original convolutional layer, thus they are

theoretically able to obtain acceleration.
In many efficient deep learning frameworks such as

Caffe [19], the convolution operation is reformulated as ma-
trix multiplication by flattening certain dimensions of ten-
sors, such as:

V = U
∗ ×W

∗
s.t. U

∗ ∈ R
XY ×k2C

, W
∗ ∈ R

k2C×T
(4)

Each row of the matrix U∗ is related to the spatial posi-

tion of the output tensor transformed from the tensor U , and

W ∗ is a reshaped tensor from weight filters W . These effi-

cient implementations take advantage of the high-efficiency

of BLAS libraries, e.g., GEMM1 and GEMV2.

Since each position of the skipped cell in V ∗ corresponds

to one row of the matrix U∗, we can achieve a realistic

speedup in BLAS libraries by reducing the matrix size in the

multiplication function. Different structures of the LCCL

need different implementations. For a k×k×C×1 kernel,

the positions of the skipped cells in the original convolu-

tional layer are the same in different channels. In this situa-

tion, we can reduce the size of U∗ to S
′

× k2C, where S
′

is

the number of non-zero elements in V
′

. For a 1×1×C×T
kernel, the positions of zero cells are different in different

channels, so it is infeasible to directly use the matrix-matrix

multiplication function to calculate the result of LCCL, i.e.

V
′

. In this case, we have to separate the matrix-matrix

multiplication into multiple matrix-vector multiplications.

However, this approach is difficult to achieve the desired

acceleration effect. The unsatisfying acceleration perfor-

mance of 1× 1×C × T filters is caused by the inferior ef-

ficiency of multiple GEMV, and some extra operations also

cost more time (e.g., data reconstruction). Therefore, we

choose the k × k × C × 1 structure for our LCCL in our

experiments, and leave the acceleration of 1 × 1 × C × T
filters as our future work.

1matrix-matrix multiplication function
2matrix-vector multiplication function
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Figure 2. Connection strategy of collaborating LCCL with the original convolutional layer. The top figure shows the pre-activation residual

block [12]; the bottom figure shows a “Bef-Aft” connection strategy to speed up the residual block. “Activ” represents that the collaborative

layer is followed by BN and ReLU activation. The first LCCL receives the input tensor before being activated by BN and ReLU, and the

second one receives the input tensor after BN and ReLU. (Best viewed in the original pdf file.)

3.4. Sparsity Improvement

According to the previous discussion, the simplest way

for model acceleration is directly multiplying the tensor

V
′

and tensor V . However, this approach cannot achieve

favourable acceleration performance due to the low sparsity

rate of V
′

.
To improve the sparsity of V

′

, ReLU [26] activation is a
simple and effective way by setting the negative values as
zeros. Moreover, due to the redundancy of positive activa-
tions, we can also append L1 loss in the LCCL to further
improve the sparsity rate. In this way, we achieve a smooth

L1L2(X) = µ‖X‖+ ρ|X| regularizer penalty for each V
′

:

‖X‖ =

√

√

√

√

n
∑

i=1

X
2

i , |X| =
n
∑

i=1

|X| (5)

However, there are thousands of free parameters in the reg-

ularizer term and the additional loss always degrades the

classification performance, as it’s difficult to achieve the

balance between the classification performance and the ac-

celeration rate.

Recently, the Batch Normalization (BN) [17] is proposed

to improve the network performance and increase the con-

vergence speed during training by stabilizing the distribu-

tion and reducing the internal covariate shift of input data.

During this process, we observe that the sparsity rate of each

LCCL is also increased. As shown in Table 1, we can find

Layer
With BN Without BN

conv1 conv2 conv1 conv2

res-block-1.2 38.8% 28.8% 0.0% 0.0%

res-block-2.2 37.9% 23.4% 0.0% 0.2%

res-block-2.2 17.8% 40.4% 0.0% 40.7%

Table 1. Sparsity of the LCCL for different activations with the

same training setting. “With BN” means we activate the response

map of the LCCL by BN and ReLU; “Without BN” means we only

use ReLU activation. “x.y” means the y-th block at x-th stage of

ResNet. We equip six convolutional layers with LCCL on ResNet-

20 model.

that the BN layer advances the sparsity of LCCL followed

by ReLU activation, and thus can further improve the accel-

eration rate of our LCCN. We conjecture that the BN layer

balances the distribution of V
′

and reduces the redundancy

of positive values in V
′

by discarding some redundant ac-

tivations. Therefore, to increase the acceleration rate, we

carefully integrate the BN layer into our LCCL.

Inspired by the pre-activation residual networks [12], we

exploit different strategies for activation and integration of

the LCCL. Generally, the input of this collaborative layer

can be either before activation or after activation. Taking

pre-activation residual networks [12] as an example, we il-

lustrate the “Bef-Aft” connection strategy at the bottom of

Fig. 2. “Bef” represents the case that the input tensor is from

the flow before BN and ReLU activation. “Aft” represents
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the case that the input tensor is the same to the original con-

volutional layer after BN and ReLU activation. According

to the “Bef-Aft” strategy in Fig. 2. the “Bef-Bef”, “Aft-Bef”

and “Aft-Aft” strategies can be easily derived. During our

experiments, we find that input tensors with the “Bef” strat-

egy are quite diverse when compared with the correspond-

ing convolutional layer due to different activations. In this

strategy, the LCCL cannot accurately predict the zero cells

for the original convolutional layer. So it is better to use the

same input tensor as the original convolutional layer, i.e. the

“Bef” strategy.

3.5. Computation Complexity

Now we analyze the test-phase numerical calculation

with our acceleration architecture. For each convolutional

layer, the forward procedure mainly consists of two com-

ponents, i.e. the low cost collaborative layer and the skip-

calculation convolutional layer. Suppose the sparsity (ratio

of zero elements) of the response map V
′

is r. We formu-

late the detailed computation cost of the convolutional layer

and compare it with the one equipped with our LCCL.

Architecture FLOPs Speed-Up Ratio

CNN XY Tk2C 0

basic XY TC(k′2 + k2r) 1− (k′2/k2 + r)
(1× 1 kernel) XY TC(1 + k2r) 1− (1/k2 + r)

(weight sharing) XY Tk2(1 + Cr) 1− (1/C + r)

Table 2. Theoretical numerical calculation acceleration for convo-

lutional layers.

As shown in Table 2, the speedup ratio is highly depen-

dent on r. The term 1/C costs little time since the channel

of the input tensor is always wide in most CNN models and

it barely affects the acceleration performance. According to

the experiments, the sparsity r reaches a high ratio in cer-

tain layers. These two facts indicate that we can obtain a

considerable speedup ratio. Detailed statistical results are

described in the experiments section.

In residual-based networks, if the output of one layer in

the residual block is all zero, we can skip the calculation

of descendant convolutional layers and directly predict the

results of this block. This property helps further accelerate

the residual networks.

4. Experiments

In this section, we conduct experiments on three bench-

mark datasets to validate the effectiveness of our accelera-

tion method.

4.1. Benchmark Datasets and Experimental Setting

We mainly evaluate our LCCN on three benchmarks:

CIFAR-10, CIFAR-100 [20] and ILSVRC-12 [29]. The

CIFAR-10 dataset contains 60,000 32 × 32 images, which

are categorized into 10 classes and each class contains 6,000

images. The dataset is split into 50,000 training images and

10,000 testing images. The CIFAR-100 [20] dataset is sim-

ilar to CIFAR-10, except that it has 100 classes and 600

images per class. Each class contains 500 training images

and 100 testing images. For CIFAR-10 and CIFAR-100,

we split the 50k training dataset into 45k/5k for validation.

ImageNet 2012 dataset [29] is a famous benchmark which

contains 1.28 million training images of 1,000 classes. We

evaluate on the 50k validation images using both the top-1

and top-5 error rates.

Deep residual networks [11] have shown impressive per-

formance with good convergence behaviors. Their sig-

nificance has increased, as shown by the amount of re-

search [12, 35] being undertaken. We mainly apply our

LCCN to increase the speed of these improved deep residual

networks. In the CIFAR experiments, we use the default pa-

rameter setting as [12, 35]. However, it is obvious that our

LCCN is more complicated than the original CNN model,

which leads to a requirement for more training epochs to

converge into a stable situation. So we increase the training

epochs and perform a different learning rate strategies to

train our LCCN. We start the learning rate at 0.01 to warm

up the network and then increase it to 0.1 after 3% of the to-

tal iterations. Then it is divided by 10 at 45%, 70% and 90%

iterations where the errors plateau. We tune the training

epoch numbers from {200, 400, 600, 800, 1000} according

to the validation data.

On ILSVRC-12, we follow the same parameter settings

as [11, 12] but use different data argumentation strategies.

(1) Scale augmentation: we use the scale and aspect ratio

augmentation [32] instead of the scale augmentation [30]

used in [11, 12]. (2) Color augmentation: we use the pho-

tometric distortions from [14] to improve the standard color

augmentation [21] used in [11, 12]. (3) Weight decay: we

apply weight decay to all weights and biases. These three

differences should slightly improve performance (refer to

Facebook implementation3). According to our experiences

with CIFAR, we extend the training epoch to 200, and use a

learning rate starting at 0.1 and then is divided by 10 every

66 epochs.

For the CIFAR experiments, we report the acceleration

performance and the top-1 error to compare with the re-

sults provided in the original paper [12, 35]. On ILSVRC-

12, since we use different data argumentation strategies, we

report the top-1 error of the original CNN models trained

in the same way as ours, and we mainly compare the ac-

curacy drop with other state-of-the-art acceleration algo-

rithms including: (1) Binary-Weight-Networks (BWN) [27]

that binarizes the convolutional weights; (2) XNOR-

Networks (XNOR) [27] that binarizes both the convolu-

tional weights and the data tensor; (3) Pruning Filters for Ef-

3https://github.com/facebook/fb.resnet.torch
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Figure 3. Sparsity for the response maps from each collaborative convolutional layer in ResNet-20. We use LCCL to modify 18 convo-

lutional layers to speed up ResNet-20. “x.y” represents the y-th residual block in the x-th generalized convolutional block. “conv1” and

“conv2” represent the first and the second collaboration convolutional in the corresponding residual block.

ficient ConvNets (PFEC) [23] which prunes the filters with

small effect on the output accuracy from CNNs.

4.2. Experiments on CIFAR10 and CIFAR100

First, we study the influence on performance of using

different connection strategies proposed in the Kernel Se-

lection and Sparsity Improvement sections. We use the

pre-activation ResNet-20 as our base model, and apply the

LCCL to all convolutional layers within the residual blocks.

Using the same training strategy, the results of four different

connection strategies are shown in Table 3.

Both collaborative layers with the after-activation

method show the best performance with a considerable

speedup ratio. Because the Aft strategy receives the same

distribution of input to that of the corresponding convolu-

tion layer. We also try to use the L1L2 loss to restrict the

output maps of each LCCL. But this will add thousands of

extra values that need to be optimized in the L1L2 loss func-

tion. In this case, the networks are difficult to converge and

the performance is too bad to be compared.

Structure Top-1 Err. Speed-Up

Aft-Aft 8.32 34.9%

Aft-Bef 8.71 24.1%

Bef-Bef 11.62 39.8%

Bef-Aft 12.85 55.4%

Table 3. Before-activation and after-activation for connection strat-

egy on ResNet-20. Each LCCL uses 3× 3× k kernel.

Furthermore, we analyze the performance influenced by

using different kernels in the LCCL. There are two forms

of LCCL that collaborate with the corresponding convolu-

tional layer. One is a tensor of size 1× 1×C × T (denoted

as 1 × 1), and the other is a tensor of size k × k × C × 1

Model
1× 1× C × T k × k × C × 1

FLOPs Ratio Error FLOPs Ratio Error

ResNet-20 3.2E7 20.3% 8.57 2.6E7 34.9% 8.32

ResNet-32 4.7E7 31.2% 9.26 4.9E7 28.1% 7.44

ResNet-44 6.3E7 34.8% 8.57 6.5E7 32.5% 7.29

Table 4. Comparison of top-1 error rate on two different collabo-

rative layers. (The ‘Ratio’ represents the speedup ratio)

(denoted as k × k). As shown in Table 4, the k × k kernel

shows significant performance improvement with a similar

speedup ratio compared with a 1×1 kernel. It can be caused

by that the k×k kernel has a larger reception field than 1×1.

Statistics on the sparsity of each response map gener-

ated from the LCCL are illustrated in Fig. 3. This LCCN

is based on ResNet-20 with each residual block equipped

with a LCCL configured by a 1× 1×C × T kernel. To get

stable and robust results, we increase the training epochs

as many as possible, and the sparsity variations for all 400

epochs are provided. The first few collaborative layers show

a great speedup ratio, saving more than 50% of the compu-

tation cost. Even if the last few collaboration layers behave

less than the first few, the k × k × C × 1 based method is

capable of achieving more than 30% increase in speed.

Hitherto, we have demonstrated the feasibility of train-

ing CNN models equipped with our LCCL using different

low-cost collaborative kernels and strategies. Considering

the performance and realistic implementation, we select the

weight sharing kernel for our LCCL. This will be used in

all following experiments as default.

Furthermore, we experiment with more CNN models[12,

35] accelerated by our LCCN on CIFAR-10 and CIFAR-

100. Except for ResNet-164 [12] which uses a bottleneck
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Depth Ori. Err LCCN Speed-up

ResNet [12]
110 6.37 6.56 34.21%

164* 5.46 5.91 27.40%

WRN [35]

22-8 4.38 4.90 51.32%

28-2 5.73 5.81 21.40%

40-1 6.85 7.65 39.36%

40-2 5.33 5.98 31.01%

40-4 4.97 5.95 54.06%

52-1 6.83 6.99 41.90%

Table 5. Top-1 Error and Speed-Up of eight different CNN models

on CIFAR-10 (symbol “*” means the bottleneck structure). Ori.

Err represents the top-1 error of the original convolution network.

residual block






1 × 1

3 × 3

1 × 1







, all other models use a basic resid-

ual block
{

3 × 3

3 × 3

}

. We use LCCL to accelerate all convolu-

tional layers except for the first layer, which takes the orig-

inal image as the input tensor. The first convolutional layer

operates on the original image, and it costs a little time due

to the small input channels (RGB 3 channels). In a bottle-

neck structure, it is hard to reach a good convergence with

all the convolutional layers accelerated. The convolutional

layer with 1×1 kernel is mainly used to reduce dimension to

remove computational bottlenecks, which overlaps with the

acceleration effect of our LCCL. This property makes lay-

ers with 1 × 1 kernel more sensitive to collaboration with

our LCCL. Thus, we apply our LCCL to modify the first

and second convolutional layer in the bottleneck residual

block on CIFAR-10. And for CIFAR-100, we only mod-

ify the second convolutional layer with 3 × 3 kernel in the

bottleneck residual block. The details of theoretical numer-

ical calculation acceleration and accuracy performance are

presented in Table 5 and Table 6.

Depth Ori. Err LCCN Speed-up

ResNet [12] 164* 24.33 24.74 21.30%

WRN [35]

16-4 24.53 24.83 15.19%

22-8 21.22 21.30 14.42%

40-1 30.89 31.32 36.28%

40-2 26.04 26.91 45.61%

40-4 22.89 24.10 34.27%

52-1 29.88 29.55 22.96%

Table 6. Top-1 error and speed-up of seven different CNN models

on CIFAR-100 (symbol “*” means the bottleneck structure). Ori.

Err represents the top-1 error of the original convolution network.

Experiments show our LCCL works well on much

deeper convolutional networks, such as pre-activation

ResNet-164 [12] or WRN-40-4 [35]. Convolutional oper-

ators dominate the computation cost of the whole network,

which hold more than 90% of the FLOPs in residual based

networks. Therefore, it is beneficial for our LCCN to accel-

erate such convolutionally-dominated networks, rather than

the networks with high-cost fully connected layers. In prac-

tice, we are always able to achieve more than a 30% calcu-

lation reduction for deep residual based networks. With a

similar calculation quantity, our LCCL is capable of out-

performing original deep residual networks. For exam-

ple, on the CIFAR-100 dataset, LCCN on WRN-52-1 ob-

tains higher accuracy than the original WRN-40-1 with only

about 2% more cost in FLOPs. Note that our acceleration is

data-driven, and can achieve a much higher speedup ratio on

“easy” data. In cases where high accuracy is not achievable,

it predicts many zeros which harms the network structure.

Theoretically, the LCCN will achieve the same accuracy

as the original one if we set LCCL as an identity (dense)

network. To improve efficiency, the outputs of LCCL need

to be sparse, which may marginally sacrifice accuracy for

some cases. We also observe accuracy gain for some other

cases (WRN-52-1 in Table 6), because the sparse structure

can reduce the risk of overfitting.

4.3. Experiments on ILSVRC12

We test our LCCN on ResNet-18, 34 with some struc-

tural adjustments. On ResNet-18, we accelerate all convo-

lutional layers in the residual block. However, ResNet-34

is hard to optimize with all the convolutional layers acceler-

ated. So, we skip the first residual block at each stage (layer

2, 3, 8, 9, 16, 17, 28, 29) to make it more sensitive to col-

laboration. The performance of the original model and our

LCCN with the same setting are shown in Table 7.

Depth
Top-1 Error Top-5 Error

Speed-up
ResNet LCCN ResNet LCCN

18 30.02 33.67 10.76 13.06 34.6%

34 26.58 27.01 8.64 8.81 24.8%

Table 7. Top-1 and Top-5 Error of LCCN on ImageNet classifica-

tion task.

We demonstrate the success of LCCN on ResNet-

18, 34 [12], and all of them obtain a meaningful speedup

with a slight performance drop.

Depth Approach Speed-Up Top-1 Acc. Drop Top-5 Acc. Drop

18

LCCL 34.6% 3.65 2.30

BWN ≈ 50.0% 8.50 6.20

XNOR ≈ 98.3% 18.10 16.00

34
LCCL 24.8% 0.43 0.17

PFEC 24.2% 1.06 -

Table 8. Comparison with other acceleration methods on ResNet.

Acc. Drop represents the accuracy drop.

We compare our method with other state-of-the-art

methods, shown in Table 8. As we can see, similar to other

acceleration methods, there is some performance drop.

However, our method achieves better accuracy than other

acceleration methods.

4.4. Theoretical vs. Realistic Speedup

There is often a wide gap between theoretical and realis-

tic speedup ratio. It is caused by the limitation of efficiency
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of BLAS libraries, IO delay, buffer switch or some others.

So we compare the theoretical and realistic speedup with

our LCCN. We test the realistic speed based on Caffe [19],

an open source deep learning framework. OpenBLAS is

used as the BLAS library in Caffe for our experiments. We

set CPU only mode and use a single thread to make a fair

comparison. The results are shown in Table 9.

Model
FLOPs Time (ms) Speed-up

CNN LCCL CNN LCCL Theo Real

ResNet-18 1.8E9 1.2E9 97.1 77.1 34.6% 20.5%

ResNet-34 3.6E9 2.7E9 169.3 138.6 24.8% 18.1%

Table 9. Comparison on the theoretical and realistic speedup.

Discussion. As shown in Table 9, our realistic speedup

ratio is less than the theoretical one, which is caused mainly

by two reasons. First, we use data reconstruction and

matrix-matrix multiplication to achieve the convolution op-

erator as Caffe [19]. The data reconstruction operation costs

too much time, making the cost of our LCCL much higher

than its theoretical speed. Second, the frontal convolution

layers usually take more time but contain less sparsity than

the rear ones, which reduces the overall acceleration effect

of the whole convolution neural network. These two defects

can be solved in theory, and we will focus on the realistic

speedup in future.

Platform. The idea of reducing matrix size in convolu-

tional networks can be applied to GPUs as well in principle,

even though some modifications on our LCCN should be

made to better leverage the existing GPU libraries. Further,

our method is independent from platform, and should work

on the FPGA platform with customization.

4.5. Visualization of LCCL

Here is an interesting observation about our LCCL. We

visualize the results of LCCN on PASCAL VOC2007 [6]

training dataset. We choose ResNet-50 as the competitor,

and add an additional 20 channels’ convolutional layer with

an average pooling layer as the classifier. For our LCCN,

we equip the last 6 layers of this competitor model with our

LCCL. After fine tuning, the feature maps generated from

the last LCCL and the corresponding convolutional layer

of the competitor model are visualized in Fig. 4. As we

can observe, our LCCL might have the ability to highlight

the fields of foreground objects, and eliminates the impact

of the background via the collaboration property. For ex-

ample, in the second triplet, car and person are activated

simultaneously in the same response map by the LCCL.

At the first glance, these highlighted areas look similar

with the locations obtained by attention model. But they

are intrinsically different in many ways, e.g., motivations,

computation operations, response meaning and structures.

-

Figure 4. The feature maps (after ReLU) generated from the

last LCCL of our LCCN and the corresponding convolutional

layer of ResNet-50 are visualized for testing samples of PASCAL

VOC2007 dataset. Each triplet represents one picture and its cor-

responding feature maps. The activated area of LCCL seems high-

light more foreground objects than that of ResNet-50. In the mean-

time, LCCL is possible to depress the background area.

5. Conclusion

In this paper, we propose a more complicated network

structure yet with less inference complexity to accelerate

the deep convolutional neural networks. We equip a low-

cost collaborative layer to the original convolution layer.

This collaboration structure speeds up the test-phase com-

putation by skipping the calculation of zero cells predicted

by the LCCL. In order to solve the the difficulty of achiev-

ing acceleration on basic LCCN structures, we introduce

ReLU and BN to enhance sparsity and maintain perfor-

mance. The acceleration of our LCCN is data-dependent,

which is more reasonable than hard acceleration structures.

In the experiments, we accelerate various models on CI-

FAR and ILSVRC-12, and our approach achieves signifi-

cant speed-up, with only slight loss in the classification ac-

curacy. Furthermore, our LCCN can be applied on most

tasks based on convolutional networks (e.g., detection, seg-

mentation and identification). Meanwhile, our LCCN is

capable of plugging in some other acceleration algorithms

(e.g., fix-point or pruning-based methods), which will fur-

ther enhance the acceleration performance.
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