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We investigate the interactions among the pion, vector mesons and external gauge fields
in the holographic dual of massless QCD proposed in a previous paper [T. Sakai and S. Sugi-
moto, Prog. Theor. Phys. 113 (2005), 843; hep-th/0412141] on the basis of probe D8-branes
embedded in a D4-brane background in type IIA string theory. We obtain the coupling con-
stants by performing both analytic and numerical calculations, and compare them with
experimental data. It is found that the vector meson dominance in the pion form factor as
well as in the Wess-Zumino-Witten term holds in an intriguing manner. We also study the
ω → πγ and ω → 3π decay amplitudes. It is shown that the interactions relevant to these
decay amplitudes have the same structure as that proposed by Fujiwara et al. [T. Fujiwara,
T. Kugo, H. Terao, S. Uehara and K. Yamawaki, Prog. Theor. Phys. 73 (1985), 926]. Vari-
ous relations among the masses and the coupling constants of an infinite tower of mesons are
derived. These relations play crucial roles in the analysis. We find that most of the results
are consistent with experiments.

§1. Introduction

In a previous paper, Ref. 1), we proposed a holographic dual of U(Nc) QCD with
Nf massless flavors, which is constructed by putting probe D8-branes in the D4-brane
background. It was shown there that various phenomena that are expected to occur
in low energy QCD can be reproduced in this framework. For instance, we showed
that the chiral U(Nf )L×U(Nf )R symmetry is spontaneously broken to the diagonal
subgroup U(Nf )V . The associated Nambu-Goldstone (NG) bosons were found and
identified with the pion. Moreover, we found vector mesons in the spectrum, and the
masses and some of the coupling constants among them turn out to be reasonably
close to the experimental values.

The purpose of this paper is to study the D4/D8 model in more detail in order to
explore the low-energy phenomena involving the mesons. The effective action of our
model consists of two parts. One is the five-dimensional Yang-Mills (YM) action on a
curved background, which originates from the non-abelian Dirac-Born-Infeld (DBI)
action on the probe. The other is the integral of the Chern-Simons (CS) five-form,
which results from the CS term on the probe D8-brane. From these, we compute the
cubic and some quartic interaction terms among the pion, the vector mesons and
the external gauge fields associated with the chiral U(Nf )L × U(Nf )R symmetry.

∗) E-mail: tsakai@mx.ibaraki.ac.jp
∗∗) E-mail: sugimoto@yukawa.kyoto-u.ac.jp

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/114/5/1083/1858905 by guest on 20 August 2022



1084 T. Sakai and S. Sugimoto

The results are compared with the experimental data in order to quantitatively test
the conjectured duality. For recent developments toward holographic descriptions of
QCD, see also Refs. 2)–19).

In particular, we are interested in the coupling to the external photon field.
We examine whether the vector meson dominance hypothesis20),21) is satisfied in
this model. This hypothesis states that the exchange of vector mesons dominates
the electromagnetic interactions of hadrons. For example, the electromagnetic form
factor of the pion is dominated by the ρ meson pole as

Fπ(k2) � gρgρππ

k2 +m2
ρ

, (1.1)

where gρ is the ρ meson decay constant, mρ is the ρ meson mass and gρππ is the ρ ππ
coupling. In other words, the direct couplings between the photon and the pion are
small compared with the indirect interactions resulting from the ρ meson exchange.
It has been shown in Refs. 2),9),15) and 16) that the pion form factor exhibits vector
meson dominance in generic holographic models of QCD, where the contributions
from infinitely many vector mesons are important. We reexamine this feature in
our model and present a numerical estimation of the dominant terms. Furthermore,
we analyze the Wess-Zumino-Witten (WZW) term that includes an infinite tower of
vector mesons and demonstrate the complete vector meson dominance in this sector.

The subjects considered in this paper also include the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) relations,22),23) the pion charge radius, a1 → π γ
and a1 → πρ decay, ππ scattering, the Weinberg sum rules,24) and ω → π0γ and
ω → π0π+π− decay. For most of the cases, we obtain considerably good agreement
with the experimental data.

This paper is organized as follows. In §2, we review the D4/D8 model to the
extent needed in this paper. Note that the notation used in this paper is slightly
different from that used in Ref. 1). We define our notation in this section. In §3, we
investigate the DBI part of the model. Section 4 is devoted to analyzing the WZW
term. In §5, we reanalyze the effective action using a different gauge, which simplifies
the treatment of the vector meson dominance. We end this paper with summary
and discussion in §6. The two appendices summarize some technical computations.

§2. The model

In this section, we review the D4/D8 model proposed in Ref. 1) and define the
notation used in this paper.

The D4/D8 model is formulated by placing probe D8-branes into the D4-brane
background proposed in Ref. 25) as a supergravity dual of four-dimensional U(Nc)
Yang-Mills theory. The metric, dilaton φ, and the RR three-form field C3 in the
D4-brane background are given as

ds2 =
(
U

R

)3/2 (
ηµνdx

µdxν + f(U)dτ2
)

+
(
R

U

)3/2 ( dU2

f(U)
+ U2dΩ2

4

)
,
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More on a Holographic Dual of QCD 1085

eφ = gs

(
U

R

)3/4

, F4 ≡ dC3 =
2πNc

V4
ε4 , f(U) ≡ 1 − U3

KK

U3
. (2.1)

Here the coordinates xµ (µ = 0, 1, 2, 3) and τ parameterize the directions along which
the D4-brane is extended, and U corresponds to the radial direction transverse to
the D4-brane. From the definition of the function f(U), we see that U is bounded
from below as U ≥ UKK. The quantities dΩ2

4 , ε4 and V4 = 8π2/3 are the line
element, the volume form, and the volume of a unit S4 surrounding the D4-brane,
respectively, and R and UKK are constant parameters. The constant R is related to
the string coupling gs and the string length ls as R3 = πgsNcl

3
s . This background

represents Nc D4-branes wrapped on a supersymmetry breaking S1 parameterized
by the parameter τ , whose period is chosen as

τ ∼ τ + 2πM−1
KK , MKK ≡ 3

2
U

1/2
KK

R3/2
, (2.2)

in order to avoid a conical singularity at U = UKK. Along this S1, fermions are taken
to be anti-periodic, and they become massive as four-dimensional fields. Adjoint
scalar fields on the D4-brane are also expected to acquire a mass via quantum effects,
since the supersymmetry is completely broken. Thus, the world-volume theory on
the D4-brane effectively becomes the four-dimensional Yang-Mills theory below the
Kaluza-Klein mass scale MKK. The Yang-Mills coupling gYM (at the scale MKK) is
given by g2

YM = 2πMKKgsls, which is read off of the DBI action of the D4-brane
compactified on S1. The parameters R, UKK and gs are expressed in terms of MKK,
gYM and ls. One can easily show that ls does not appear in the effective action if it
is written in terms of MKK and gYM. Therefore, without loss of generality, we can
set

2
9
M2

KKl
2
s = (g2

YMNc)−1 ≡ λ−1 , (2.3)

which makes R and UKK independent of gYM and Nc. Furthermore, because the
MKK dependence is easily recovered through dimensional analysis, it is convenient
to work in units in which MKK = 1. Then, we have the relations

MKK = 1 , R3 =
9
4
, UKK = 1 ,

1
gsl3s

=
4π
9
Nc . (2.4)

The relations (2.3) and (2.4) make it clear that the α′ expansion and the loop expan-
sion in string theory correspond to the expansion with respect to 1/λ and λ3/2/Nc

in Yang-Mills theory, respectively. In this paper, we consider only the leading terms
in this expansion by taking Nc and λ to be sufficiently large.

In order to add Nf flavors of quarks to the supergravity dual of the Yang-Mills
theory described by the background (2.1), we place Nf probe D8-branes extended
along xµ (µ = 0, 1, 2, 3), the S4 directions, and one of the directions in the (U, τ)
plane. Here we adopt the probe approximation, assuming Nc � Nf , and ignore
the backreaction from the D8-branes to the D4-brane background. To describe the
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1086 T. Sakai and S. Sugimoto

D8-branes, it is convenient to introduce new coordinates (y, z) defined by

(y, z) ≡
(√

U3 − 1 cos τ ,
√
U3 − 1 sin τ

)
. (2.5)

It is easy to show that the metric written in (y, z) is smooth everywhere. We con-
sider the probe D8-branes placed at y = 0 and extended along the z direction. As
discussed in Ref. 1), this brane configuration corresponds to a D4/D8/D8 system
that represents U(Nc) QCD with Nf massless flavors.

Note that this system possesses SO(5) symmetry corresponding to the rotations
of S4. In this paper, we concentrate on the states that are invariant under SO(5)
rotations for simplicity. Because QCD does not have such an SO(5) symmetry, the
meson in realistic QCD can only be found in this sector.∗) Therefore, we can reduce
the nine-dimensional gauge theory on the D8-brane to a five-dimensional theory with
a five-dimensional U(Nf ) gauge field denoted by Aµ(xµ, z) and Az(xµ, z).∗∗)

The effective action on the probe D8-brane embedded in the background (2.1)
consists of two parts. One is the (non-Abelian) DBI action, and the other is the
CS term. After the Kaluza-Klein reduction on S4, the leading terms in the 1/λ
expansion of the DBI action read

SDBI
D8 = κ

∫
d4xdz tr

[
1
2
K−1/3F 2

µν +KF 2
µz

]
, (2.6)

where

κ ≡ λNc

108π3
, K(z) ≡ 1 + z2 . (2.7)

The CS term is

SCS
D8 =

Nc

24π2

∫
M4×R

ω5(A) , (2.8)

where ω5(A) is the Chern-Simons five-form written in terms of the five-dimensional
differential form A = Aµdx

µ +Azdz as

ω5(A) = tr
(
AF 2 − 1

2
A3F +

1
10
A5

)
, (2.9)

and M4 × R is the five-dimensional space-time parameterized by (xµ, z).
In order to extract four-dimensional meson fields from the five-dimensional gauge

field, we expand the gauge field as

Aµ(xµ, z) =
∞∑

n=1

B(n)
µ (xµ)ψn(z) , (2.10)

Az(xµ, z) = ϕ(0)(xµ)φ0(z) +
∞∑

n=1

ϕ(n)(xµ)φn(z) , (2.11)

∗) It is believed somewhat optimistically that states charged under SO(5) decouple in the

MKK → ∞ limit. (See Ref. 26) and references therein.) See also Ref. 27) for a recent analysis.
∗∗) Here we omit the scalar field y(xµ, z), which corresponds to fluctuations of the D8-brane along

the transverse direction, for simplicity.
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More on a Holographic Dual of QCD 1087

using the complete sets {ψn(z)}n≥1 and {φn(z)}n≥0 of functions of z. In order
to diagonalize the kinetic terms and the mass terms of the four-dimensional fields
B

(n)
µ (xµ) and ϕ(n)(xµ), we choose the functions ψn(z) to be eigenfunctions satisfying

the equation
−K1/3 ∂z (K ∂zψn) = λnψn , (2.12)

where λn is the eigenvalue, and the normalization condition is taken to be

κ

∫
dz K−1/3ψnψm = δnm . (2.13)

The functions φn(z) are chosen to satisfy φn(z) ∝ ∂zψn(z) (n ≥ 1) and φ0(z) =
1/(

√
πκK(z)), with the normalization condition

κ

∫
dz Kφnφm = δnm , (2.14)

which is compatible with (2.12) and (2.13).
Inserting the expansion consisting of (2.10) and (2.11) into the action (2.6) and

integrating over z, we obtain

SDBI
D8 �

∫
d4x tr

[
(∂µϕ

(0))2

+
∞∑

n=1

(
1
2
(∂µB

(n)
ν − ∂νB

(n)
µ )2 + λn(B(n)

µ − λ−1/2
n ∂µϕ

(n))2
)]

+ (interaction terms) . (2.15)

From this, we see that we have one massless scalar field, ϕ(0), and a tower of massive
vector fields, B(n)

µ , of mass squared λn. The scalar fields ϕ(n) with n ≥ 1 are eaten
by the vector fields B(n)

µ . We interpret ϕ(0) as the massless pion field and B
(n)
µ as

vector meson fields.
In the expansion given in (2.10) and (2.11), we have implicitly assumed that

the gauge field asymptotically vanishes AM (xµ, z) → 0 as z → ±∞. The residual
gauge transformation that does not violate this condition is obtained with a gauge
function g(xµ, z) that asymptotically becomes constant: g(xµ, z) → g± as z → ±∞.
We interpret (g+, g−) as an element of the chiral symmetry group U(Nf )L×U(Nf )R

in QCD with Nf massless flavors.
In the following sections, we study the interaction of the mesons with the external

gauge fields (ALµ, ARµ) introduced by weakly gauging the U(Nf )L × U(Nf )R chiral
symmetry. Of particular interest are the couplings of the mesons to the photon field
Aem

µ , which can be extracted by setting

ALµ = ARµ = eQAem
µ , (2.16)

where e is the electromagnetic coupling constant and Q is the electric charge matrix
given, for example, by

Q =
1
3

 2
−1

−1

 , (2.17)
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1088 T. Sakai and S. Sugimoto

for the Nf = 3 case. It is also necessary to introduce the external gauge fields in
the calculation of correlation functions among the currents associated with the chiral
symmetry following the prescription used in the AdS/CFT correspondence.28),29) In
order to turn on the external gauge fields, we impose the asymptotic values of the
gauge field Aµ on the D8-brane as

lim
z→+∞Aµ(xµ, z) = ALµ(xµ) , lim

z→−∞Aµ(xµ, z) = ARµ(xµ) . (2.18)

This is implemented by modifying the mode expansion (2.10) as

Aµ(xµ, z) = ALµ(xµ)ψ+(z) +ARµ(xµ)ψ−(z) +
∞∑

n=1

B(n)
µ (xµ)ψn(z) , (2.19)

where the functions ψ±(z) are defined as

ψ±(z) ≡ 1
2
(1 ± ψ0(z)) , ψ0(z) ≡ 2

π
arctan z , (2.20)

which are the non-normalizable zero modes of (2.12) satisfying ∂zψ±(z) ∝ φ0(z).
Note that if we insert the expansion (2.19) into the action (2.6) and perform the

integration over z, the coefficients of the kinetic terms of the gauge fields ALµ and
ARµ diverge, because ψ± are non-normalizable. This divergence simply reflects the
fact that the gauge coupling corresponding to the chiral U(Nf )L×U(Nf )R symmetry
is zero. One way to regularize the divergence is to cut off the integration over z at
some large but finite value. Another possibility is to simply ignore the divergent
kinetic terms of the external gauge field, since we are interested only in the structure
of the interactions.

In this paper, we work mainly in the Az = 0 gauge, which can be realized
by applying the gauge transformation AM → gAMg

−1 + g∂Mg
−1 with the gauge

function

g−1(xµ, z) = P exp
{
−
∫ z

0
dz′Az(xµ, z′)

}
. (2.21)

Then, the asymptotic values (2.18) change to

lim
z→+∞Aµ(xµ, z) = A

ξ+
Lµ(xµ) , lim

z→−∞Aµ(xµ, z) = A
ξ−
Rµ(xµ) , (2.22)

where ξ±(xµ) ≡ limz→±∞ g(xµ, z) and

A
ξ+
Lµ(xµ) ≡ ξ+(xµ)ALµ(xµ)ξ−1

+ (xµ) + ξ+(xµ)∂µξ
−1
+ (xµ) , (2.23)

A
ξ−
Rµ(xµ) ≡ ξ−(xµ)ARµ(xµ)ξ−1

− (xµ) + ξ−(xµ)∂µξ
−1
− (xµ) . (2.24)

Then, the gauge field in the Az = 0 gauge can be expanded as

Aµ(xµ, z) = A
ξ+
Lµ(xµ)ψ+(z) +A

ξ−
Rµ(xµ)ψ−(z) +

∞∑
n=1

B(n)
µ (xµ)ψn(z) . (2.25)
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More on a Holographic Dual of QCD 1089

The residual gauge symmetry in the Az = 0 gauge is given by the z-independent
gauge transformation. The residual gauge symmetry h(xµ) ∈ U(Nf ) and the weakly
gauged chiral symmetry (g+(xµ), g−(xµ)) ∈ U(Nf )L ×U(Nf )R act on these fields as

ALµ → g+ALµg
−1
+ + g+∂µg

−1
+ , (2.26)

ARµ → g−ARµg
−1
− + g−∂µg

−1
− , (2.27)

ξ± → h ξ± g−1
± , (2.28)

B(n)
µ → hB(n)

µ h−1 . (2.29)

Here, the functions ξ±(xµ) are interpreted as the U(Nf ) valued fields ξL,R(xµ) that
carry the pion degrees of freedom in the hidden local symmetry approach.30),31)

Actually, the transformation property (2.28) is the same as that for ξL,R(xµ) if we
interpret h(xµ) ∈ U(Nf ) as the hidden local symmetry. These fields are related to
the U(Nf ) valued pion field U(xµ) in the chiral Lagrangian by

ξ−1
+ (xµ)ξ−(xµ) = U(xµ) ≡ e2iΠ(xµ)/fπ . (2.30)

The pion field Π(xµ) is identical to ϕ(0)(xµ) in (2.11) up to linear order.∗)

Choosing h(xµ) in (2.28) appropriately, we can choose the gauge such that

ξ−1
+ (xµ) = ξ−(xµ) = eiΠ(xµ)/fπ . (2.31)

In this gauge, the gauge potential in (2.25) can be expanded up to quadratic order
in the fields as

Aµ =
(
Vµ +

1
2f2

π

[Π, ∂µΠ ] − i

fπ
[Π,Aµ ]

)
+

(
Aµ +

i

fπ
∂µΠ − i

fπ
[Π,Vµ ]

)
ψ0

+
∞∑

n=1

vn
µ ψ2n−1 +

∞∑
n=1

an
µ ψ2n + · · · , (2.32)

with

Vµ ≡ 1
2
(ALµ +ARµ) , Aµ ≡ 1

2
(ALµ −ARµ) , vn

µ ≡ B(2n−1)
µ , an

µ ≡ B(2n)
µ . (2.33)

Note that the functions ψn(z) are even and odd functions of z for odd and even values
of n, respectively. This implies that vn and an are vector and axial-vector mesons,
respectively. As discussed in Ref. 1), the lightest vector meson, v1, is interpreted as
the ρ meson [ρ(770)] and the lightest axial vector meson, a1, is interpreted as the a1

meson [a1(1260)]. The fields v2, v3, · · · and a2, a3, · · · represent the heavier vector
and axial-vector mesons with the same quantum numbers: ρ(1450), ρ(1700), · · · and
a1(1640), · · · , respectively.

In the Az = 0 gauge, the CS term (2.8) becomes

SCS
D8 = − Nc

24π2

∫
M4

(
α4(dξ−1

+ ξ+, AL) − α4(dξ−1
− ξ−, AR)

)
+

Nc

24π2

∫
M4×R

(
ω5(A) − 1

10
tr(gdg−1)5

)
, (2.34)

∗) Here we take the pion field Π(xµ) to be a Hermitian matrix, while ϕ(0)(xµ) and the vector

meson fields B
(n)
µ (xµ) are anti-Hermitian.
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1090 T. Sakai and S. Sugimoto

where g is the gauge function given in (2.21), and α4 reads

α4(V,A) ≡ −1
2

tr
(
V (AdA+ dAA+A3) − 1

2
V AV A− V 3A

)
. (2.35)

The four-dimensional effective action of the mesons written in terms of ξ± (or
U) and B

(n)
µ , including the external gauge fields (ALµ, ARµ), can be obtained by

substituting the gauge potential (2.25) or (2.32) into the five-dimensional Yang-Mills
action (2.6) and the CS-term (2.34). This action is automatically consistent with
the symmetry expressed by (2.26)–(2.29). The explicit calculation of this effective
action is partly given in Ref. 1). It has been shown that the effective action of the
pion is given by the Skyrme model32) as

SDBI
D8

∣∣∣
vn

µ=an
µ=Vµ=Aµ=0

=
∫
d4x

(
f2

π

4
tr

(
U−1∂µU

)2 +
1

32e2S
tr

[
U−1∂µU,U

−1∂νU
]2)

,

(2.36)

where the pion decay constant fπ and the dimensionless parameter eS are given by

f2
π ≡ 4

π
κ =

1
27π4

λNc , (2.37)

e−2
S ≡ κ

∫
dz K−1/3(1 − ψ2

0)
2 . (2.38)

Also, the CS term (2.34) is identical to the WZW term in QCD that includes the
pion field as well as the external gauge fields when we omit the vector meson fields
B

(n)
µ :

SCS
D8

∣∣∣
vn

µ=an
µ=0

= − Nc

48π2

∫
M4

Z − Nc

240π2

∫
M4×R

tr(gdg−1)5 , (2.39)

where

Z = tr[(ARdAR + dARAR +A3
R)(U−1ALU + U−1dU) − p.c.]

+ tr[dARdU
−1ALU − p.c.] + tr[AR(dU−1U)3 − p.c.]

+
1
2

tr[(ARdU
−1U)2 − p.c.] + tr[UARU

−1ALdUdU
−1 − p.c.]

− tr[ARdU
−1UARU

−1ALU − p.c.] +
1
2

tr[(ARU
−1ALU)2] . (2.40)

Here “p.c.” represents the terms obtained by making the exchange AL ↔ AR and
U ↔ U−1.

In this paper, we analyze the couplings among the pions and vector mesons,
including the external gauge fields in more detail. In particular, we examine whether
the vector meson dominance hypothesis holds for both the DBI part and the WZW
term. We analyze the DBI part in §3 and the WZW term in §4.
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§3. DBI part

3.1. The effective action

In this subsection, we analyze the effective action obtained by inserting the mode
expansion (2.32) into the action (2.6). The effective action written in terms of vn

µ,
an

µ and ξ±, including the external gauge fields (ALµ, ARµ), is given in Appendix A.
Here we consider some of the couplings read off of the action.

It is useful to write the action as

SDBI
D8 =

∫
d4xLdiv +

∑
j≥2

∫
d4xLj , (3.1)

where Lj contains the terms of order j in the fields Π, vn
µ, a

n
µ,Vµ and Aµ. The

quantity Ldiv contains the divergent terms that result from the non-normalizable
modes Vµ and Aµ. The explicit form of Ldiv is given in (A.16).

For the quadratic terms, we find

L2 =
1
2

tr
(
∂µv

n
ν − ∂νv

n
µ

)2 +
1
2

tr
(
∂µa

n
ν − ∂νa

n
µ

)2

+aVvn tr (∂µVν − ∂νVµ)
(
∂µv

n
ν − ∂νv

n
µ

)
+ aAan tr (∂µAν − ∂νAµ)

(
∂µa

n
ν − ∂νa

n
µ

)
+tr (i∂µΠ + fπAµ)2 +m2

vn tr
(
vn
µ

)2 +m2
an tr

(
an

µ

)2
, (3.2)

where

m2
vn ≡ λ2n−1 , m2

an ≡ λ2n , (3.3)

aVvn ≡ κ

∫
dz K−1/3ψ2n−1 , aAan ≡ κ

∫
dz K−1/3ψ2nψ0 , (3.4)

and we have used the fact that the pion decay constant fπ is given by (2.37). Here
and in the following, the summation symbol “

∑∞
n=1” is often omitted for notational

simplicity.
In order to diagonalize the kinetic term, we define

ṽn
µ ≡ vn

µ + aVvnVµ , (3.5)
ãn

µ ≡ an
µ + aAanAµ . (3.6)

Then, (3.2) becomes

L2 =
1
2

tr
(
∂µṽ

n
ν − ∂ν ṽ

n
µ

)2 +
1
2

tr
(
∂µã

n
ν − ∂ν ã

n
µ

)2 + tr (i∂µΠ + fπAµ)2

+m2
vn tr

(
ṽn
µ − aVvnVµ

)2 +m2
an tr

(
ãn

µ − aAanAµ

)2
. (3.7)

Here, corrections to the kinetic terms of Vµ and Aµ in Ldiv are omitted.
We segregate the cubic terms L3 into terms of equal orders in the pion field

Π(xµ):

L3 = L3|π0 + L3|π1 + L3|π2 . (3.8)
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Note that L3|π3 does not exist because of parity symmetry.
Let us first examine L3|π2 , which is relevant to the electromagnetic form factor

of the pion:

L3|π2 =
bVππ

f2
π

tr ((∂µVν − ∂νVµ)[∂µΠ, ∂νΠ ])

+
bvnππ

f2
π

tr
(
(∂µv

n
ν − ∂νv

n
µ)[∂µΠ, ∂νΠ ]

)− 2 tr (Vµ[Π, ∂µΠ ]) (3.9)

=
1
f2

π

(bVππ − aVvnbvnππ) tr ((∂µVν − ∂νVµ)[∂µΠ, ∂νΠ ])

+
bvnππ

f2
π

tr
(
(∂µṽ

n
ν − ∂ν ṽ

n
µ)[∂µΠ, ∂νΠ ]

)− 2 tr (Vµ[Π, ∂µΠ ]) , (3.10)

where

bVππ ≡ κ

∫
dz K−1/3

(
1 − ψ2

0

)
, (3.11)

bvnππ ≡ κ

∫
dz K−1/3ψ2n−1

(
1 − ψ2

0

)
. (3.12)

Note here that the coefficient of the first term in (3.10) is zero. Actually, using the
completeness relation

κ
∞∑

n=1

K−1/3(z′)ψn(z)ψn(z′) = δ(z − z′) , (3.13)

we can verify that
∞∑

n=1

aVvnbvnππ = bVππ . (3.14)

Therefore, (3.10) becomes

L3|π2 =
bvnππ

f2
π

tr
(
(∂µṽ

n
ν − ∂ν ṽ

n
µ)[∂µΠ, ∂νΠ ]

)− 2 tr (Vµ[Π, ∂µΠ ]) . (3.15)

In order to compare the effective action with that given in the literature (e.g.
Ref. 31)) we rewrite the Lagrangian using

v̂n
µ ≡ ṽn

µ +
bvnππ

2f2
π

[Π, ∂µΠ] , (3.16)

and remove the term of the form tr
(
(∂µṽ

n
ν − ∂ν ṽ

n
µ)[∂µΠ, ∂νΠ]

)
. Then, we obtain

L2 + L3|π2 =
1
2

tr
(
∂µv̂

n
ν − ∂ν v̂

n
µ

)2 +
1
2

tr
(
∂µã

n
ν − ∂ν ã

n
µ

)2 + tr (i∂µΠ + fπAµ)2

+m2
an tr

(
ãn

µ − aAanAµ

)2 +m2
vn tr

(
v̂n
µ − aVvnVµ

)2

−m
2
vnbvnππ

f2
π

tr
(
v̂n
µ [Π, ∂µΠ]

)
+

(
m2

vnbvnππaVvn

f2
π

− 2
)

tr (Vµ[Π, ∂µΠ])

+
m2

vnb2vnππ

4f4
π

tr [Π, ∂µΠ]2 − b2vnππ

2f4
π

tr [∂µΠ, ∂νΠ]2 . (3.17)
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Here, it is very important to note the relation

∞∑
n=1

m2
vnbvnππaVvn = 2f2

π , (3.18)

which follows straightforwardly from the completeness condition (3.13) and the equa-
tion (2.12). This shows that the ππV coupling in (3.17) vanishes. As shown in §3.5,
this fact is important with regard to the vector meson dominance in the electromag-
netic form factor of the pion. Similarly, we can also show the following relations:∗)

∞∑
n=1

m2
vnb2vnππ =

4
3
f2

π ,

∞∑
n=1

b2vnππ = e−2
S . (3.19)

Using (3.18) and (3.19), the Lagrangian (3.17) can be rewritten as

L2 + L3|π2 =
1
2

tr
(
∂µv̂

n
ν − ∂ν v̂

n
µ

)2 +
1
2

tr
(
∂µã

n
ν − ∂ν ã

n
µ

)2 + tr (i∂µΠ + fπAµ)2

+m2
an tr

(
ãn

µ

)2 − 2gan tr
(
ãn

µAµ
)

+m2
ana2

Aan tr (Aµ)2

+m2
vn tr

(
v̂n
µ

)2 − 2gvn tr
(
v̂n
µVµ

)
+m2

vna2
Vvn tr (Vµ)2

−2gvnππ tr
(
v̂n
µ[Π, ∂µΠ]

)
+

1
3f2

π

tr [Π, ∂µΠ]2 − 1
2e2Sf4

π

tr [∂µΠ, ∂νΠ]2 , (3.20)

where

gan ≡ m2
anaAan , gvn ≡ m2

vnaVvn , gvnππ ≡ bvnππm
2
vn

2f2
π

. (3.21)

Here, we can verify that gvn and gan are equal to the decay constants of the vector
meson vn and the axial-vector meson an, respectively, by showing that

〈0|J (V )a
µ (0)|vnb〉 = gvnδabεµ , 〈0|J (A)a

µ (0)|anb〉 = ganδabεµ , (3.22)

where the quantities J (V,A)
µ are the conserved vector and axial-vector currents coupled

with Vµ and Aµ, respectively, εµ are the polarizations of the vector mesons, and the
indices a and b are associated with the generators T a of U(Nf ) as

vn
µ = ivna

µ T a , an
µ = iana

µ T a , Vµ = iVa
µT

a , Aµ = iAa
µT

a . (3.23)

Note that the decay constants can be recast as

gvn=−κ
∫
dz ∂z (K∂zψ2n−1) = −2κ(K∂zψ2n−1)

∣∣∣
z=+∞

,

gan=−κ
∫
dz ψ0 ∂z (K∂zψ2n) = −2κ(K∂zψ2n)

∣∣∣
z=+∞

, (3.24)

∗) The sum rules (3.14), (3.18) and (3.19) for a closely related five-dimensional model are also

derived in Ref. 19) using a similar method.
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where we have used (2.12). This shows that the decay constants gvn and gan are
fixed uniquely by the asymptotic behavior of the mode functions ψ2n−1 and ψ2n,
respectively. (See Ref. 2) for analogous formulas.)

The terms linear in Π are

L3|π1 =
2i
fπ

tr

[
∂µ(∂µVν − ∂νVµ)[Π,Aν ] bVππ + ∂µ(∂µv

n
ν − ∂νv

n
µ)[Π,Aν ] bvnππ

+∂µ(∂µAν − ∂νAµ)[Π, vnν] (bvnππ − aVvn)
+∂µ(∂µVν − ∂νVµ)[Π, amν ] (−aAam) + ∂µ(∂µv

n
ν − ∂νv

n
µ)[Π, amν ] (−cvnamπ)

+∂µ(∂µa
m
ν − ∂νa

m
µ )[Π, vnν ] (−cvnamπ)

]
−2ifπ tr (Aµ[Π,Vµ]) , (3.25)

up to total derivative terms. Here, we have defined

cvnamπ ≡ κ

∫
dz K−1/3ψ0ψ2n−1ψ2m . (3.26)

Using the sum rule (3.14) and the relations

∞∑
n=1

aVvncvnamπ = aAam , (3.27)

∞∑
m=1

aAamcvnamπ = aVvn − bvnππ , (3.28)

which also follow from the completeness condition (3.13), the Lagrangian (3.25) can
be rewritten as

L3|π1=
2i
fπ

tr

[
∂µ(∂µv̂

n
ν − ∂ν v̂

n
µ)[Π,Aν ] aVvn + ∂µ(∂µã

m
ν − ∂ν ã

m
µ )[Π,Vν ] aAam

+∂µ(∂µv̂
n
ν − ∂ν v̂

n
µ)[Π, ãmν ] (−cvnamπ) + ∂µ(∂µã

m
ν − ∂ν ã

m
µ )[Π, v̂nν ] (−cvnamπ)

]
−2ifπ tr (Aµ[Π,Vµ]) + (quartic terms) . (3.29)

Finally, we consider the rest of L3, which contains no pion field Π(xµ). It can
be shown that

L3|π0

= tr

(
(∂µVν − ∂νVµ)

×
{

([Vµ, v
n
ν ] − [Vν , v

n
µ]) aVvn + ([Aµ, a

n
ν ] − [Aν , a

n
µ]) aAan + [vn

µ, v
n
ν ] + [an

ν , a
n
µ]
}

+ (∂µvlν − ∂νvlµ)
{

[Vµ,Vν ] aVvl + [Aµ,Aν ](aVvl − bvlππ) + ([Vµ, v
l
ν ] − [Vν , v

l
µ])
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+ ([Aµ, a
m
ν ] − [Aν , a

m
µ ]) cvnamπ + [vm

µ , v
n
ν ] gvlvmvn + [am

µ , a
n
ν ] gvlaman

}
+ (∂µAν − ∂νAµ)

{
([Vµ, a

n
ν ] − [Vν , a

n
µ]) aAan

+ ([Aµ, v
n
ν ] − [Aν , v

n
µ])(aVvn − bvnππ) + ([vn

µ, a
m
ν ] − [vn

ν , a
m
µ ]) cvnamπ

}
+ (∂µanν − ∂νanµ)

{
([Vµ,Aν ] − [Vν ,Aµ]) aAan + ([Vµ, a

n
ν ] − [Vν , a

n
µ])

+ ([Aµ, v
m
ν ] − [Aν , v

m
µ ]) cvmanπ + ([vl

µ, a
m
ν ] − [vl

ν , a
m
µ ]) gvlaman

})
, (3.30)

where

gvlvmvn ≡κ
∫
dz K−1/3ψ2l−1ψ2m−1ψ2n−1 ,

gvlaman ≡κ
∫
dz K−1/3ψ2l−1ψ2mψ2n . (3.31)

If we rewrite (3.30) in terms of ṽn
µ and ãn

µ defined in (3.5) and (3.6), we obtain

L3|π0 =tr

(
gvlvmvn

(
∂µṽlν − ∂ν ṽlµ

) [
ṽm
µ , ṽ

n
ν

]
+ gvlaman

(
∂µṽlν − ∂ν ṽlµ

) [
ãm

µ , ã
n
ν

]
+gvlaman

(
∂µãnν − ∂ν ãnµ

){ [
ṽl
µ, ã

m
ν

]
−

[
ṽl
ν , ã

m
µ

]})
. (3.32)

Here, corrections to the cubic term in Ldiv are omitted. From (3.32), we see that the
direct cubic couplings of the vector mesons vn

µ and an
µ to the external gauge fields

Vµ and Aµ disappear.
For L4, we focus on the quartic terms in the pion field. As explained in §2, the

low energy effective action of the pion is given by the Skyrme model (2.36). Then,
it follows from (2.36) that

L4|π4 = − 1
3f2

π

tr [Π, ∂µΠ]2 +
1

2e2Sf4
π

tr [∂µΠ, ∂νΠ]2 . (3.33)

Note that (3.33) exactly cancels the O(Π4) terms (the last two terms) in (3.20).

3.2. Numerical results

Here, we summarize the numerically obtained values of the coupling constants to
provide a rough estimate of the physical quantities. Listed below are the numerical
estimates for some of the masses and coupling constants defined in (3.3) and (3.21)
in units for which MKK = 1.

n m2
vn κ−1/2gvn κ1/2gvnππ m2

an κ−1/2gan

1 0.669 2.11 0.415 1.57 5.02
2 2.87 9.10 −0.109 4.55 14.4
3 6.59 20.8 0.0160 9.01 28.3
4 11.8 37.1 −0.00408 15.0 46.9

(3.34)
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These are obtained by solving the equation (2.12) numerically using the shooting
method, as in Ref. 1).

The coupling constants given in (2.37), (2.38) and (3.11) are easily calculated as

f2
π � 1.27 · κ , e−2

S � 2.51 · κ , bVππ � 4.69 · κ . (3.35)

It is, however, important to keep in mind that we should not take these nu-
merical values too seriously, because the approximation made in our analysis is very
crude. As discussed in Ref. 1), the present model deviates from realistic QCD above
the energy scale of MKK, which is the same as the mass scale of the vector mesons.
Furthermore, all the quarks are assumed to be massless, and the supergravity de-
scription and the probe approximation are valid only when Nc � Nf and λ � 1.
In the following subsections, we compare the numerical values of the coupling con-
stants obtained in our model with the experimental values in order to get some idea
of whether or not we are on the right track. It would be interesting to improve the
approximation in order to make more accurate predictions.

3.3. The Skyrme term

The second term in (2.36), which is called the Skyrme term, can be written as

1
32e2S

tr
[
U−1∂µU,U

−1∂νU
]2 = L1P1 + L2P2 + L3P3 (3.36)

for Nf = 3, where

P1 ≡ [
tr(∂µU

−1∂µU)
]2

, P2 ≡ tr(∂µU
−1∂νU) tr(∂µU−1∂νU) ,

P3 ≡ tr(∂µU
−1∂µU∂νU

−1∂νU) , (3.37)

and

L1 =
1

32e2S
, L2 =

1
16e2S

, L3 = − 3
16e2S

. (3.38)

For the case Nf = 2, we have the additional relation P3 = 1
2P1. The experimental

values for the coefficients Li (i = 1, 2, 3) (at the scale of the ρ meson mass) are given
in Ref. 33) as

L1|exp � (0.4 ± 0.3) × 10−3,

L2|exp � (1.4 ± 0.3) × 10−3,

L3|exp � (−3.5 ± 1.1) × 10−3. (3.39)

Our result (3.38) is roughly consistent with experimental results in the case κ �
(7 − 9) × 10−3. Note that this value of κ is also consistent with that obtained by
combining the experimental values fπ|exp � 92.4 MeV and mρ|exp � 776 MeV with
the numerical results (3.34) and (3.35):

MKK � 949 MeV , κ � 7.45 × 10−3 . (3.40)
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3.4. KSRF relations

Here we examine the KSRF relations,22),23)

gρ = 2gρππf
2
π (KSRF(I)) , (3.41)

m2
ρ = 2g2

ρππf
2
π (KSRF(II)) . (3.42)

These two relations lead to

gρgρππ = m2
ρ . (3.43)

Then, using the experimental values gρππ|exp � 5.99 and gρ|exp � 0.121 GeV2,34) we
obtain

4g2
ρππf

2
π

m2
ρ

∣∣∣∣∣
exp

� 2.03 ,
gρgρππ

m2
ρ

∣∣∣∣
exp

� 1.20 , (3.44)

which show that the relations (3.42) and (3.43) are satisfied to within 20%.
The corresponding values in our model can be estimated by using the numerical

values listed in §3.2. The result is

4g2
v1ππf

2
π

m2
v1

� 1.31 ,
gv1gv1ππ

m2
v1

� 1.31 . (3.45)

Note that these values are independent of the parameters in the model. If we use
the values of MKK and κ in (3.40), we obtain

gv1ππ � 4.81 , gv1 � 0.164 GeV2 . (3.46)

Remarkably, it is found that the relations given in (3.45) are equivalent to picking
out the dominant contribution from the following sum rules:

∞∑
n=1

4g2
vnππf

2
π

m2
vn

=
4
3
, (3.47)

∞∑
n=1

gvngvnππ

m2
vn

= 1 . (3.48)

The relation (3.47) is equivalent to the first relation in (3.19), and (3.48) follows
from (3.18). The sum rules given in (3.47) and (3.48) were first reported in Refs. 16)
and 2), respectively, and have been shown to be satisfied in general five-dimensional
models. As a check, using the numerical results for n = 1, 2, 3 and 4 given in (3.34),
the left-hand sides of (3.47) and (3.48) are evaluated as

∞∑
n=1

4g2
vnππf

2
π

m2
vn

� 1.31 + 0.0210 + 0.000197 + 0.00000717 + · · · � 1.33 , (3.49)

∞∑
n=1

gvngvnππ

m2
vn

� 1.31 − 0.346 + 0.0505 − 0.0128 + · · · � 1.00 , (3.50)

from which we see that the contribution of the lightest vector meson v̂1 (the ρ meson)
dominates the sum.
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3.5. Electromagnetic form factors

Let us consider the pion form factor Fπ(p2) defined by

〈πa(p)|J (V )c
µ (0)|πb(p′)〉 = fabc(p+ p′)µFπ((p− p′)2) , (3.51)

where fabc is the structure constant of U(Nf ).
Combining the v̂nV and v̂nππ vertices in (3.20) as well as the v̂n propagators,

as depicted in Fig. 1, we obtain

Fπ(k2) =
∞∑

n=1

gvngvnππ

k2 +m2
vn

. (3.52)

π

π

v̂n

γ

Fig. 1. Pion form factor.

Crucial in this computation is the re-
lation (3.18), which ensures that the di-
rect Vππ coupling in (3.17) vanishes. As
a consistency check of (3.52), we note
that

Fπ(0) =
∞∑

n=1

gvngvnππ

m2
vn

= 1 , (3.53)

due to (3.48).
We thus see that our model possesses vector meson dominance for the pion form

factor (3.52), because the form factor is saturated by the exchange of vector mesons.
This fact was first pointed out in Ref. 2), in which (3.52) is derived by taking the
continuum limit in the discretized version of the five-dimensional model. General
analyses of the vector meson dominance in various holographic models are also given
in Refs. 9),15) and 16). As we have seen in §3.4, the sum (3.48) is dominated by the
ρ meson. Hence, our model exhibits ρ meson dominance to a good approximation in
the form factor Fπ(k2). Manifestation of the vector meson dominance in the WZW
term is examined in the next section, and more general consideration is given in §5.

By expanding the form factor in k2 as

Fπ(k2) = 1 −
∞∑

n=1

gvngvnππ

m4
vn

k2 + O(k4) , (3.54)

we can extract the charge radius of the pion as

〈r2〉π±
= 6

∞∑
n=1

gvngvnππ

m4
vn

. (3.55)

Using the sum rule (3.14), we can show

∞∑
n=1

gvngvnππ

m4
vn

=
1

2f2
π

∞∑
n=1

aVvnbvnππ =
π

8
κ−1bVππ � 1.84 ·M−2

KK , (3.56)
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and hence

〈r2〉π±
=

3π
4
κ−1bVππ � 11.0 ·M−2

KK , (3.57)

where we have recovered MKK in the last expression. If we use the value of MKK

given in (3.40), we have

〈r2〉π± � (0.690 fm)2 . (3.58)

The experimental value for this is34)

〈r2〉π±
∣∣∣
exp

� (0.672 fm)2 . (3.59)

It is also interesting to note the sum rules

∞∑
n=1

gvngvnvkvl

m2
vn

= δkl ,
∞∑

n=1

gvngvnakal

m2
vn

= δkl , (3.60)

which are the analogs of (3.53) for (axial-)vector mesons. If the sums in both (3.53)
and (3.60) (for k = l) are dominated by the contribution of the ρ meson (n = 1), we
obtain the approximate relation

gρππ � gρvmvm � gρamam � m2
ρ

gρ
, (3.61)

which leads to the universality of the ρ meson couplings,

gρHH � m2
ρ

gρ
, (H = π, vm, am) (3.62)

as discussed in Ref. 15).
In order to determine the extent to which the relation (3.62) is valid, we list

some numerical results for gρvnvn and gρanan :

n κ1/2gρvnvn κ1/2gρanan

1 0.447 0.286
2 0.269 0.257
3 0.252 0.249
4 0.247 0.246

(3.63)

As argued in Ref. 1), gρππ and gρρρ are nearly equal. However, these two values are
not in good agreement with those of gρvnvn (n ≥ 2) and gρvnvn (n ≥ 1), among which
the universality holds to a good approximation. The contributions from the first five
terms in the summations in (3.60) for k = l = 1, 2 are estimated as

∞∑
n=1

gvngvnv1v1

m2
vn

� 1.41 − 0.464 + 0.0581 − 0.00116 + 0.000845 + · · · � 1.00 ,(3.64)
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∞∑
n=1

gvngvnv2v2

m2
vn

� 0.846 + 0.135 + 0.381 − 0.466 + 0.0993 + · · · � 0.995 , (3.65)

∞∑
n=1

gvngvna1a1

m2
vn

� 0.902 + 0.467 − 0.453 − 0.0822 + 0.00273 + · · · � 1.00 , (3.66)

∞∑
n=1

gvngvna2a2

m2
vn

� 0.810 + 0.119 + 0.104 + 0.316 − 0.468 + · · · � 0.882 . (3.67)

3.6. a1 → πγ and a1 → πρ decay

The a1 meson is the lightest axial-vector meson of JPC = 1++. In our model,
it is identified with B(n=2)

µ = a1
µ. Here we discuss the decay amplitudes of a1 → πγ

and a1 → πρ.
First we show that the decay amplitude of a1 → πγ computed from the effective

action in §3.1 vanishes. More generally, we can show that the decay amplitude of
am → πγ vanishes for every m ≥ 1, where am is the axial-vector meson am

µ = B
(2m)
µ .

The relevant diagrams for this decay amplitude, depicted in Fig. 2, are (1) the direct
coupling of ãmπV in (3.29), which yields an amplitude proportional to aAam , and
(2) the ãmπv̂n vertex in (3.29) accompanied by the v̂n-V transition in (3.17). This
amplitude is found to be proportional to

−
∑
n≥1

cvnamπ
gvn

m2
vn

= −
∑
n≥1

cvnamπaVvn = −aAam , (3.68)

where the sum rule (3.27) is used. Therefore, the two diagrams sum to zero. This
fact can be understood more easily from the Lagrangian (3.2) and (3.25).

The vanishing of the a1 → πγ decay amplitude has been observed in the HLS
model31),35) and closely related five-dimensional models.2),16),19) From the phenom-
enological point of view, this is not in serious conflict with experiments. The ex-
perimental value of the partial width of the a1 → πγ decay mode is approximately
640 KeV, while the total width of a1 is 250− 600 MeV.34) Hence, it seems plausible
that the a1 → πγ decay process is due to the order 1/Nc subleading terms or higher
derivative terms, as suggested in Refs. 35) and 31).

Let us next consider the decay mode a1 → πρ, or, more generally, am → πvn.
The decay amplitude can be read from the second line of (3.29). Using the equations
of motion,

∂µ(∂µv̂
n
ν − ∂ν v̂

n
µ) = m2

vn v̂n
ν + · · · , (3.69)

(1)

ãm

π

V (2)

ãm

π

v̂n

V

Fig. 2. The relevant diagrams for the a1 → πγ decay amplitude.
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∂µ(∂µã
n
ν − ∂ν ã

n
µ) = m2

an ãn
ν + · · · , (3.70)

the relevant couplings are extracted as

L3|π1 ∼ · · · − 2i gamvnπ tr
(
ãm

µ [Π, v̂nµ]
)

+ · · · , (3.71)

with

gamvnπ ≡ 1
fπ

(m2
vn −m2

am) cvnamπ . (3.72)

Then the decay width is given by35)

Γ (am → πvn) =
g2
amvnπ

4πm2
am

|pvn |
(

1 +
|pvn |2
3m2

vn

)
, (3.73)

where pvn is the momentum carried by the vn meson. From the experimental
value,34)

ma1 |exp � 1230 MeV , Γ (a1 → πρ)|exp � 150 ∼ 360 MeV , (3.74)

the coupling is estimated as g2
a1ρπ|exp � 7.6 − 18 GeV2, and the experimental value

of the dimensionless combination cρa1π, which is related to ga1ρπ through (3.72), is

cρa1π ≡ fπga1ρπ

m2
ρ −m2

a1

∣∣∣∣
exp

� 0.28 − 0.43 . (3.75)

On the other hand, the numerical analysis of cv1a1π, defined in (3.26), yields

cv1a1π � 0.528 . (3.76)

3.7. ππ scattering

It is known that in the chiral limit, the low energy behavior of the ππ scattering
amplitude is governed by only the π4 vertex in the lowest derivative term of the
chiral Lagrangian (2.36). However, because the π4 interaction in (3.33) is canceled
by that in (3.20), one might think that the low energy theorem is somehow violated
in our model. This, of course, is not true. Here we argue that taking account of the
vector meson exchange diagrams yields a ππ scattering amplitude that is consistent
with the low energy theorem.

The vertices needed to derive the ππ scattering amplitude, depicted in Fig. 3,
consist of (1) the π4 couplings in (3.33), (2) the direct π4 couplings in (3.20), and
(3) the ππv̂n couplings in (3.20), two of which are contracted by the vector meson
exchanges. As we have seen in §3.1, the contributions from (1) and (2) cancel.
Also, the effective π4 vertex obtained from the exchange of the vector mesons (3) is
computed as

−
∞∑

n=1

g2
vnππ

m2
vn

tr[Π, ∂µΠ]2 . (3.77)
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(1)
π

π

π

π

− 1
3f2

π

(2)
π

π

π

π

+ 1
3f2

π

(3)
π

π

π

π

v̂n

−g2
vnππ

m2
vn

Fig. 3. The relevant diagrams for the ππ scattering.

Then, using the sum rule (3.47), we end up with a term that is identical to the first
term (3.33), and we thus conclude that the contribution from (3) is the same as that
from (1). In other words, the contributions from (2) and (3) cancel, and the low
energy ππ scattering amplitude is governed by the chiral Lagrangian. This fact is
trivial if we use the effective action given in Appendix A. Note that the situation
here is very similar to that in the HLS model with a = 4/3, though vector meson
dominance does not hold in that case. (See p. 35 of Ref. 36))

3.8. Weinberg sum rules

Before closing this section, let us make a few comments on the Weinberg sum
rules, which turn out to be problematic in our model. In our notation, the Weinberg
sum rules24) state

∞∑
n=1

(
g2
vn

m2
vn

− g2
an

m2
an

)
= f2

π [Weinberg sum rule (I)] , (3.78)

∞∑
n=1

(
g2
vn − g2

an

)
= 0 [Weinberg sum rule (II)] . (3.79)

It was shown in Ref. 2) that both (3.78) and (3.79) are satisfied in the discretized
version of the five-dimensional model. On phenomenological grounds, it is often
assumed that the sum rules are almost completely dominated by the contributions
from the ρ and a1 mesons alone, that is, that we have

g2
ρ

m2
ρ

− g2
a1

m2
a1

� f2
π , g2

ρ � g2
a1
. (3.80)

In our case, however, the infinite sums in (3.78) and (3.79) do not converge, as one
can guess from the behavior of the numerical data (3.34). Even if this divergence can
be removed by appropriately regularizing the infinite sum, as in Refs. 2) and 19), the
sums (3.78) and (3.79) are not dominated by ρ and a1.∗) In fact, the ratios of the
left-hand sides to the right-hand sides of the relations given in (3.80) are estimated
in our model as

1
f2

π

(
g2
v1

m2
v1

− g2
a1

m2
a1

)
� −7.38 ,

g2
v1

g2
a1

� 0.177 , (3.81)

∗) This problem was pointed out in Ref. 37) in the context of the discretized model proposed in

Ref. 2).
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which are both far from 1.
Note that the experimental value of ga1 estimated using τ decay38) is ga1 |exp �

0.177±0.014 GeV2, and the lattice measurement39) gives ga1 |lat � 0.21±0.02 GeV2.
Both of these values suggest that ga1 is larger than gρ|exp � 0.12 GeV2, though they
are still inconsistent with our numerical result, ga1/gρ � 2.38. It would be interesting
to calculate the corrections in our model to see if this discrepancy is reconciled.

§4. WZW term

In this section, we study the WZW term (2.34) to obtain some interaction terms
that involve vector mesons. Here again we work in the Az = 0 gauge and write
the five-dimensional gauge field in terms of the differential one-form, A = Aµdx

µ +
Azdz = Aµdx

µ. It is useful to first denote the one-form gauge field in (2.25) or (2.32)
as

A = v + a , (4.1)

where

v ≡ 1
2
(A+ +A−) +

∞∑
n=1

vn ψ2n−1 , (4.2)

a ≡ 1
2
(A+ −A−)ψ0 +

∞∑
n=1

an ψ2n , (4.3)

and

A+ ≡ A
ξ+
L = ξ+ALξ

−1
+ + ξ+dξ

−1
+ , A− ≡ A

ξ−
R = ξ−ARξ

−1
− + ξ−dξ−1

− . (4.4)

Inserting (4.1) into the Chern-Simons 5-form ω5(A) in (2.34), we obtain∫
M4×R

ω5(A)

=
1
2

∫
M4

tr
[
(A+A− −A−A+) d(A+ +A−) +

1
2
A+A−A+A− + (A3

+A− −A3
−A+)

]
+
∫

M4×R

tr
(
3 a dv dv + a da da+ 3 (v2a+ a v2 + a3) dv + 3

[
a v a da

]
non-zero

)
.

(4.5)

(See Appendix B for details.) Here, [ · · · ]non-zero denotes the contribution from the
non-zero modes that contain terms with at least one vector meson. It is shown in
Ref. 1) that the first line in (4.5), together with the other terms in (2.34), gives
the well-known expression of the WZW term (2.39) that depends only on the pion
field U and the external gauge fields AL,R. The terms in the second line of (4.5) are
the new terms that include the interaction with the vector mesons. As a result, we
obtain

SD8
CS = − Nc

48π2

∫
M4

Z − Nc

240π2

∫
M4×R

tr(gdg−1)5
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+
Nc

24π2

∫
M4×R

tr
(

3 a dv dv + a da da

+ 3 (v2a+ a v2 + a3) dv + 3
[
a v a da

]
non-zero

)
. (4.6)

In the earlier works concerning the incorporation of vector mesons into the WZW
term, there are several adjustable parameters that cannot be fixed by the symmetry
in QCD.40) (See also Refs. 31) and 36).) Contrastingly, the couplings including
infinitely many vector mesons in (4.6) are completely fixed, and there is no adjustable
parameter. It would therefore be very interesting to determine whether a WZW
term of the form (4.6) is consistent with the experimental data. In the following
subsections, we examine the phenomenology concerning the πvv, πvV, πVV, vπ3

and Vπ3 vertices.

4.1. πvv, πvV and πVV vertices

Note that πvv and πvV couplings appear only in the first term of the second
line in (4.5).

We set A = 0 for simplicity. Then, from the expansion (2.32), we have

v = V +
1

2f2
π

[Π, dΠ] +
∞∑

n=1

vnψ2n−1 + · · · , (4.7)

a =
i

fπ
(dΠ + [V, Π])ψ0 +

∞∑
n=1

anψ2n + · · · . (4.8)

Inserting these forms into (4.5), we obtain∫
M4×R

ω5(A)
∣∣∣
πvv, πvV

=
∫

M4×R

tr (3 a dv dv)
∣∣∣
πvv, πvV

= − 6i
fπ

∫
M4

tr (Π (dvndV + dVdvn)) cvn

− 6i
fπ

∫
M4

tr (Π dvndvm) cvnvm , (4.9)

where

cvn ≡ 1
2

∫
dz ∂zψ0 ψ2n−1 =

1
π

∫
dz K−1ψ2n−1 , (4.10)

cvnvm ≡ 1
2

∫
dz ∂zψ0 ψ2n−1ψ2m−1 =

1
π

∫
dz K−1ψ2n−1ψ2m−1 . (4.11)

Then, using ṽn defined in (3.5) and the sum rules
∞∑

m=1

aVvmcvnvm = cvn ,
∞∑

n=1

aVvncvn = 1 , (4.12)

(4.9) can be written∫
M4×R

ω5(A)
∣∣∣
πvv, πvV

=
6i
fπ

∫
M4

tr (Π dVdV ) − 6i
fπ

∫
M4

tr (Π dṽndṽm) cvnvm . (4.13)
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It is easy to check that the contributions to the π0 → γγ decay amplitude from
the two terms in (4.13) cancel. This is obvious from the fact that there is no πVV
vertex in (4.9) that is written in terms of vn and V.

The πVV vertex comes from Z given in (2.40):∫
M4

Z
∣∣∣
πVV

=
∫

M4

(
tr

[
(ARdAR + dARAR)U−1dU − p.c.

]
+ tr

[
dARdU

−1ALU − p.c.
] )∣∣∣

πVV

=
12i
fπ

∫
M4

tr (Π dVdV ) . (4.14)

Combining (4.13) and (4.14), and, furthermore, rewriting them in terms of ṽn given
in (3.5) or v̂n given in (3.16), we obtain

SD8
CS

∣∣∣
πvv, πvV, πVV

= − Nc

48π2

∫
M4

Z
∣∣∣
πVV

+
Nc

24π2

∫
ω5(Ag)

∣∣∣
πvv, πvV

= − Nc

4π2

i

fπ

∫
M4

tr (Π dṽndṽm) cvnvm

= − Nc

4π2

i

fπ

∫
M4

tr (Π dv̂ndv̂m) cvnvm

− Nc

2π2

i

f3
π

(cn − dn)
∫

M4

tr (dΠ dΠ dΠ v̂n) + O(Π5) , (4.15)

where

dvn ≡ 1
2

∫
dz ψ2

0∂zψ0 ψ2n−1 =
1
π

∫
dz K−1ψ2

0ψ2n−1 , (4.16)

and we have used the sum rule
∞∑

m=1

bvmππcvnvm = cvn − dvn . (4.17)

We thus conclude that there exist no direct three-point couplings including the ex-
ternal photon field. This demonstrates the vector meson dominance in this sector.

4.2. vπ3 and Vπ3 vertices

The vnπ3 vertex comes from the 3 a dv dv, 3 a3dv and 3[a v a da]non-zero terms in
(4.5): ∫

M4×R

tr(3 a dv dv)
∣∣∣
vπ3

=
12i
f3

π

∫
M4

tr ( dΠ dΠ dΠ vn) cvn , (4.18)

∫
M4×R

tr
(
3 a3dv + 3

[
a v a da

]
non-zero

) ∣∣∣∣∣
vπ3

= −12i
f3

π

∫
M4

tr (dΠ dΠ dΠ vn) dvn .

(4.19)
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From (4.18) and (4.19), we obtain∫
M4×R

ω5(A)
∣∣∣
vπ3

=
12i
f3

π

(cvn − dvn)
∫

M4

tr(dΠ dΠ dΠ vn) . (4.20)

Rewriting this relation in terms of ṽn in (3.5), and using the sum rules

∞∑
n=1

aVvncvn = 1 ,
∞∑

n=1

aVvndvn =
1
π

∫
dz K−1ψ2

0 =
1
3
, (4.21)

we obtain∫
M4×R

ω5(A)
∣∣∣
vπ3

=
12i
f3

π

(cvn − dvn)
∫

M4

tr(dΠ dΠ dΠ ṽn) − 8i
f3

π

∫
M4

tr(dΠ dΠ dΠ V) . (4.22)

The Vπ3 vertex can be read off of Z in (2.40):∫
M4

Z
∣∣∣
Vπ3

=
∫

M4

tr
[
AR(dU−1U)3 − p.c.

] ∣∣∣
Vπ3

= −16i
f3

π

∫
M4

tr (dΠ dΠ dΠ V) . (4.23)

Collecting (4.22) and (4.23), we obtain

SD8
CS

∣∣∣
vπ3,Vπ3

= − Nc

48π2

∫
M4

Z
∣∣∣
Vπ3

+
Nc

24π2

∫
M4×R

ω5(A)
∣∣∣
vπ3,Vπ3

=
Nc

2π2

i

f3
π

(cvn − dvn)
∫

M4

tr(dΠ dΠ dΠ ṽn) . (4.24)

This again exhibits the vector meson dominance. Moreover, if we write the action in
terms of v̂n, the v̂nπ3 coupling in (4.24) cancels that in (4.15), and we finally obtain

SD8
CS

∣∣∣
πvv, πvV, πVV,vπ3,Vπ3

= − Nc

4π2

i

fπ

∫
M4

tr (Π dv̂ndv̂m) cvnvm + O(Π5) . (4.25)

4.3. ω → π0γ and ω → π0π+π− decay

From the coupling (4.25), we can calculate the ω → π0γ and ω → π0π+π−
decay amplitudes. Here, ω is the iso-singlet component of the lightest vector meson,
v̂1. Because of the complete vector meson dominance and the absence of the direct
v̂nπ3 coupling, the former is given by the vertex ω → v̂nρ, followed by the v̂n → γ
transition, and the latter is given by ω → πv̂n, followed by v̂n → 2π (see Fig. 4).
These diagrams are identical to those in the Gell-Mann - Sharp - Wagner (GSW)
model,41) which is known to be in good agreement with experimental data. Let us
examine how it works in our model.
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(1)

ω

π

v̂n

γ (2)

ω
v̂n

π

π

π

Fig. 4. The relevant diagrams for (1) ω → πγ and (2) ω → πππ.

The calculation of the ω → π0γ decay amplitude is analogous to that given in
Refs. 40) and 36), and we obtain

Γ (ω → π0γ) =
N2

c

3
α

64π4f2
π

( ∞∑
m=1

cv1vmgvm

m2
vm

)2

|pπ|3 =
N2

c

3
α

64π4f2
π

c2v1 |pπ|3 ,

(4.26)

where α = e2/4π, and we have used the sum rule (4.12). Here, cv1 plays the role of
the parameter g in Ref. 40) and it is shown there that the decay width is consistent
with the experimental value when g � gρππ.∗) Remarkably, this is exactly what we
have in our model. In fact, it can easily be shown that, in general,

cvn = gvnππ , (4.27)

using (2.12) and integrating by parts in the expression for gvnππ given by (3.21) and
(3.12).

Similarly, the ω → π0π+π− decay width is36),40)

Γ (ω → π0π+π−) =
mω

192π3

∫ ∫
dE+dE−

[|q−|2|q+|2 − (q+ · q−)2
] |Fω→3π|2 ,

(4.28)

where E± are the energies and q± are the momenta of π± in the rest frame of ω,
and

Fω→3π ≡ − Nc

4π2fπ

∞∑
n=1

cv1vngvnππ

×
(

1
m2

vn + (q+ + q−)2
+

1
m2

vn + (q− + q0)2
+

1
m2

vn + (q0 + q+)2

)
,

(4.29)

where q0 and q± are the four momenta of π0 and π±, respectively. The results of our
numerical analysis suggest that the n = 1 term dominates the sum. If we replace
the entire sum with this single term, the expression for the decay width in (4.28)

∗) A recent experiment value34) is Γ (ω → π0γ)
˛
˛
exp

� 0.757 MeV, which implies cω|exp � 5.80.
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becomes the same as that in Ref. 36) with the parameters g and ci (i = 1, 2, 3) chosen
as

g =
2f2

πgv1ππ

m2
v1

cv1v1 = bv1ππcv1v1 , (4.30)

and c1 − c2 = c3 = 1. It is shown in Refs. 40) and 36) that the decay width is
consistent with the experimental results again with g � gρππ. Note that the right-
hand side of the relation (4.30) is the main contribution on the left-hand side of
(4.17). If we approximate (4.30) with (4.17), the relation (4.30) is replaced by

g � cv1 − dv1 = gv1ππ − dv1 , (4.31)

where we have used (4.27). We have found numerically that dv1 is much smaller
than cv1 , as seen in (4.32). This implies that g � gρππ, as desired.

Here we list the results of our numerical estimations of several quantities:

n κ cv1vn κ−1/2bvnππ κ1/2cvn κ1/2dvn

1 0.202 1.58 0.415 0.0875
2 −0.0992 −0.0964 −0.109 0.0485
3 0.0284 0.00619 0.0160 −0.0367
4 −0.00618 −0.000880 −0.00408 0.00887

(4.32)

As a check, we note that the numerically determined value of (4.30) is g � 0.319κ−1/2,
while that of (4.31) is g � 0.328κ−1/2. It is found that the above approximation
gives reasonable results, though they are not extremely close to gv1ππ � 0.415κ−1/2.
If we use the value of κ in (3.40), the parameter g in (4.30) is estimated as g � 3.69,
which is about 64% of the experimental value of gρππ.

To determine the extent to which the result is affected by including the contri-
butions from n > 1 terms in (4.29), let us estimate the decay width by performing
the integration in (4.28). By using (3.40) and the experimental values Nc = 3,
mπ± � 140 MeV and mπ0 � 135 MeV, we obtain

Γk(ω → π+π−π0) � {2.48, 2.58, 2.58, 2.58, · · · } MeV . (4.33)

Here, Γk(ω → 3π) denotes the decay width with the exchange of the vn (1 ≤ n ≤ k)
vector mesons incorporated in (4.29). Therefore, the contribution of the ρ meson
exchange dominates the sum. Unfortunately, this value is much smaller than the
experimental value, Γ (ω → π+π−π0)|exp � 7.56 MeV.34) This is mainly due to the
smallness of the coupling g estimated above.

§5. Vector meson dominance revisited

In the previous sections, we have shown that our model exhibits the vector meson
dominance by examining the couplings with the external gauge fields one by one.
Here we present a more systematic way to understand why it works.

In this subsection, we work with the expansions given in (2.19) and (2.11). We
can gauge away ϕ(n) in (2.11) without changing the asymptotic condition (2.18).
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Then, these expansions are written as

Aµ = Vµ + Aµψ0 +
∞∑

n=1

vn
µ ψ2n−1 +

∞∑
n=1

an
µ ψ2n , (5.1)

Az = −iΠ φ0 , (5.2)

where Π denotes the pion field ϕ(0) in (2.11). Note that vn
µ, an

µ and Π in these
expansions are not exactly equal to those appearing in §§3 and 4, but they are
related through certain field redefinitions. If we rewrite the expansion (5.1) in terms
of ṽn

µ and ãn
µ given in (3.5) and (3.6), we have

Aµ = Vµ ψv + Aµψa +
∞∑

n=1

ṽn
µ ψ2n−1 +

∞∑
n=1

ãn
µ ψ2n , (5.3)

where∗)

ψv ≡ 1 −
∞∑

n=1

aVvnψ2n−1 , ψa ≡ ψ0 −
∞∑

n=1

aAanψ2n . (5.4)

Note that it can be shown using (2.13) and (3.4) that

0 =
∫
dz K−1/3ψvψm =

∫
dz K−1/3ψaψm (5.5)

for all m. Equivalently, we have

0 =
∫
dz K−1/3ψvf =

∫
dz K−1/3ψaf (5.6)

for an arbitrary normalizable function f(z). From this fact, we immediately see that
if we write the action in terms of ṽn

µ and ãn
µ defined in (3.5) and (3.6), many of the

couplings that include Vµ or Aµ vanish. In fact, following the procedure described
in Appendix A, we obtain

κ

∫
dz tr

[
1
2
K−1/3F 2

µν

]
= tr

[
1

2e2
(
(FAL

µν )2 + (FAR
µν )2

)
+

1
2
(∂µṽ

n
ν − ∂ν ṽ

n
µ)2 +

1
2
(∂µã

n
ν − ∂ν ã

n
µ)2

+(∂µṽ
n
ν − ∂ν ṽ

n
µ)([ṽpµ, ṽqν ] gvnvpvq + [ãpµ, ãqν ] gvnapaq)

+(∂µã
n
ν − ∂ν ã

n
µ)([ṽpµ, ãqν ] − [ṽqν , ãpµ]) gvpanaq

+
1
2
[ṽm

µ , ṽ
n
ν ][ṽpµ, ṽqν ] gvmvnvpvq

+
1
2
[ãm

µ , ã
n
ν ][ãpµ, ãqν ] gamanapaq

∗) The infinite sums in (5.4) should be regarded as formal expressions, since they do not uni-

formly converge to smooth, normalizable functions. In the following, we take the limit of an infinite

sum after performing the integration over z.
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1110 T. Sakai and S. Sugimoto

+
(
[ṽm

µ , ṽ
n
ν ][ãpµ, ãqν ] + [ṽm

µ , ã
p
ν ][ṽ

nµ, ãqν ]

− [ṽm
µ , ã

p
ν ][ṽ

nν , ãqµ]
)
gvmvnapaq

]
. (5.7)

[See (A.24) for the definition of the four-point coupling constants.] This shows that
all the couplings between the external gauge fields (AL, AR) and the vector meson
fields (ṽn, ãn) vanish in the first term of the effective action (2.6). Here we have used
the relations

κ

∫
dz K−1/3ψn

aψ
m
v = κ

∫
dz K−1/3ψaψ

n−1
0 , (for n ≥ 1, m ≥ 0) (5.8)

κ

∫
dz K−1/3ψn

aψ
m
v = κ

∫
dz K−1/3ψn

0ψv , (for m ≥ 1, n ≥ 0) (5.9)

which can be shown by using (5.6), and we have set

e−2 ≡ κ

4

∫
dz K−1/3ψv(1 + ψ2

0) .

This is divergent (or ill-defined), because ψv is a function that approaches 1 at
z → ±∞.

It is important to note that we cannot conclude that ψv = ψa = 0 from the
relation (5.6). Actually, using (2.12) and (2.13), one can show

κ

∫
dz K ∂zψv ∂zψ2n−1 = −λ2n−1aVvn , (5.10)

κ

∫
dz K ∂zψa ∂zψ2n = −λ2naAan . (5.11)

Then, the second term in the effective action (2.6) is calculated as

κ

∫
dz tr

[
KF 2

zν

]
= tr

[
m2

vn(ṽn
µ − aVvnVµ)2 +m2

an(ãn
µ − aAanAµ)2 + (i∂µΠ + fπAµ)2

+ 2igamvnπ ã
m
µ [Π, ṽnµ] − 2gvnππ ṽ

n
µ [Π, ∂µΠ]

− canam [Π, ãn
µ][Π, ãnµ] − cvnvm [Π, ṽn

µ][Π, ṽnµ]
]
, (5.12)

where

canam ≡ 1
π

∫
dz K−1ψ2nψ2m . (5.13)

Here, we have used the relation (4.27), as well as the fact that gamvnπ defined in
(3.72) is equal to

gamvnπ = fπ

∫
dz ψ2m∂zψ2n−1 , (5.14)
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which can be shown by using (2.12). The mesons couple to the external gauge fields
only through the ṽn → V and ãn → A transitions in (5.12).

The expression for the WZW term can also be simplified by using the expansions
(5.3) and (5.2). It is easy to see that all the terms including Vµ and Aµ vanish because
of the relation (5.6). This demonstrates the complete vector meson dominance in
the WZW term. Moreover, because the pion field Π appears only in (5.2), the terms
with two or more pion fields vanish, as we partly observed in §4.2. Inserting (5.3)
and (5.2) into (2.8), we obtain

SCS
D8 = − Nc

4π2

i

fπ

∫
M4

tr
[
Π dBndBm cnm

+Π (dBmBnBp +BmBndBp) cmnp +Π BmBnBpBq cmnpq

]
+

Nc

24π2

∫
M4

tr
[
BmBndBp dmn|p −

3
2
BmBnBpBq dmnp|q

]
, (5.15)

where B2n−1 ≡ ṽn, B2n ≡ ãn and

cmn ≡ 1
π

∫
dz K−1ψmψn , cmnp ≡ 1

π

∫
dz K−1ψmψnψp ,

cmnpq ≡ 1
π

∫
dz K−1ψmψnψpψq ,

dmn|p ≡
∫
dz (ψn∂zψm − ψm∂zψn)ψp , dmnp|q ≡

∫
dz ψmψnψp ∂zψq . (5.16)

§6. Summary and discussion

In this paper, we computed the effective action including the pion, the vector
mesons and the external gauge fields associated with the chiral U(Nf )L × U(Nf )R

symmetry, based on the D4/D8 model proposed in Ref. 1), which is conjectured to be
a holographic dual of large Nc QCD with Nf massless flavors. We estimated various
coupling constants numerically and compared these values with the experimental
values. The agreement was, of course, not perfect, but we think that it is good
enough to believe that our model nicely captures the expected features of QCD even
quantitatively.

One of the major issues addressed in this paper is vector meson dominance.
An intuitive explanation for this phenomenon in our model is as follows (see also
Ref. 16)). As seen in §5, the external gauge fields appearing in (5.3) have support
only at the boundary, corresponding to z → ±∞, while the pion and the vector
mesons correspond to the normalizable modes, which vanish as z → ±∞. Therefore
the external gauge fields cannot couple to the mesons, unless the divergent factor K
in the second term of (2.6) picks up the contribution in the z → ±∞ limit. For the
second term of (2.6), we know that the fields vn

µ are the mass eigenmodes and hence
that the fields ṽn

µ mix with Vµ.
We have found various useful sum rules among the masses and the coupling

constants of an infinite tower of vector mesons. These follow from the complete-
ness condition of the mode functions (3.13). As far as we have determined, the
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1112 T. Sakai and S. Sugimoto

contribution from the ρ meson is always the most dominant term in the sum rules.
Approximating these infinite sums with the contribution from only the ρ meson, we
obtained KSRF-type relations in §3.4 and, furthermore, the approximate ρ meson
dominance and ρ meson coupling universality, as explained in §3.5.

In order to make more reliable predictions, we must take into account the string
loop corrections and the α′ corrections and also go beyond the probe approximation.
It would be quite interesting to see how our results for the KSRF relations, the Wein-
berg sum rules, the a1 meson decay amplitudes, etc., are improved by incorporating
such corrections. (See a forthcoming paper, Ref. 42) for a discussion along this line.)
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Appendix A
The Effective Action (DBI Part)

Here we calculate the field strength of the gauge field appearing in (2.25) and
(2.32):

Aµ =
1
2
(Aξ+

Lµ +A
ξ−
Rµ) +

1
2
(Aξ+

Lµ −A
ξ−
Rµ)ψ0 +

∞∑
n=1

vn
µ ψ2n−1 +

∞∑
n=1

an
µ ψ2n

= V̂µ + Âµψ0 +
∞∑

n=1

vn
µ ψ2n−1 +

∞∑
n=1

an
µ ψ2n , (A.1)

where

V̂µ ≡ 1
2
(Aξ+

Lµ +A
ξ−
Rµ) , Âµ ≡ 1

2
(Aξ+

Lµ −A
ξ−
Rµ) . (A.2)

In the ξ−1
+ = ξ− = eiΠ/fπ gauge, we can expand these fields as

V̂µ = Vµ +
1

2f2
π

[Π, ∂µΠ ] − i

fπ
[Π,Aµ ] + · · · , (A.3)

Âµ = Aµ +
i

fπ
∂µΠ − i

fπ
[Π,Vµ ] + · · · . (A.4)

Then, the field strengths are obtained as

Fzµ = ∂zAµ = Âµ
2
πK

+
∞∑

n=1

vn
µ ∂zψ2n−1 +

∞∑
n=1

an
µ ∂zψ2n , (A.5)
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and

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = Fµν

∣∣∣
even

+ Fµν

∣∣∣
odd

, (A.6)

Fµν

∣∣∣
even

= F
bV
µν + [Âµ, Âν ]ψ2

0 +
∑
n≥1

(DbV
µv

n
ν −D

bV
ν v

n
µ)ψ2n−1

+
∑
n≥1

([Âµ, a
n
ν ] − [Âν , a

n
µ])ψ0ψ2n

+
∑

n,m≥1

[vn
µ, v

m
ν ]ψ2n−1ψ2m−1 +

∑
n,m≥1

[an
µ, a

m
ν ]ψ2nψ2m , (A.7)

Fµν

∣∣∣
odd

= (DbV
µ Âν −D

bV
ν Âµ)ψ0 +

∑
n≥1

(DbV
µa

n
ν −D

bV
ν a

n
µ)ψ2n

+
∑
n≥1

([Âµ, v
n
ν ] − [Âν , v

n
µ])ψ0ψ2n−1

+
∑

m,n≥1

([vn
µ, a

m
ν ] − [vn

ν , a
m
µ ])ψ2mψ2n−1 , (A.8)

where Fµν

∣∣∣
even

and Fµν

∣∣∣
odd

denote the parts that are even and odd under z → −z,
respectively, and we have defined

F
bV
µν ≡ ∂µV̂ν − ∂ν V̂µ + [V̂µ, V̂ν ] , D

bV
µ∗ ≡ ∂µ + [V̂µ, ∗] . (A.9)

The following are useful relations here:

F
bV
µν + [Âµ, Âν ]ψ2

0 =
1
2
(ξ+FAL

µν ξ
−1
+ + ξ−FAR

µν ξ
−1
− ) − [Âµ, Âν ](1 − ψ2

0) , (A.10)

D
bV
µ Âν −D

bV
ν Âν =

1
2
(ξ+FAL

µν ξ
−1
+ − ξ−FAR

µν ξ
−1
− ) . (A.11)

The action (2.6) is calculated as follows. The second term in (2.6) is

κ

∫
dz K trF 2

zµ = tr
[

4
π
κ Â2

µ +m2
vn(vn

µ)2 +m2
an(an

µ)2
]

= tr

[
f2

π

4
(U−1∂µU)2 +m2

vn(vn
µ)2 +m2

an(an
µ)2

+
f2

π

4
(
A2

Lµ +A2
Rµ − 2U−1ALµUA

µ
R

− 2Aµ
LU∂µU

−1 − 2Aµ
RU

−1∂µU
)]

, (A.12)

where we have used the relation (2.37). The first term in (2.6) is more complicated.
We segregate it into terms of equal orders in the vector meson fields (vn

µ, a
n
µ) as

κ

∫
dz

1
2
K−1/3 trF 2

µν = κ

∫
dz

1
2
K−1/3 tr

[
Fµν

∣∣∣2
even

+ Fµν

∣∣∣2
odd

]
≡ L(a,v)0 + L(a,v)1 + L(a,v)2 + L(a,v)3 + L(a,v)4 , (A.13)
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where L(a,v)m denotes the terms with m vector meson fields vn
µ and an

µ. The order
zero terms are

L(a,v)0 = κ

∫
dz

1
2
K−1/3 tr

[(
1
2
(ξ+FAL

µν ξ
−1
+ + ξ−FAR

µν ξ
−1
− ) − [Âµ, Âν ](1 − ψ2

0)
)2

+
(

1
2
(ξ+FAL

µν ξ
−1
+ − ξ−FAR

µν ξ
−1
− )

)2

ψ2
0

]

= tr

[
1

2e2
(
(FAL

µν )2 + (FAR
µν )2

)
+
bVππ

4
U−1FAL

µν UF
AR µν

− bVππ

2
(ξ+FAL

µν ξ
−1
+ + ξ−FAR

µν ξ
−1
− )[Âµ, Âν ] +

1
2e2S

[Âµ, Âν ]2
]
, (A.14)

where

e−2 ≡ κ

4

∫
dz K−1/3(1 + ψ2

0) ,

bVππ ≡ κ

∫
dz K−1/3(1 − ψ2

0) , e−2
S ≡ κ

∫
dz K−1/3(1 − ψ2

0)
2 . (A.15)

Here, e−2 is divergent, and we should cut off the z integral to make it finite. Hence,
the divergent part Ldiv consists simply of the kinetic terms of ALµ and ARµ:

Ldiv =
1

2e2
tr

[
(FAL

µν )2 + (FAR
µν )2

]
. (A.16)

The terms linear in vn
µ or an

µ are

L(a,v)1 = tr

[(
1
2
(ξ+FAL µνξ−1

+ + ξ−FAR µνξ−1
− )

)
×

(
(DbV

µv
n
ν −D

bV
ν v

n
µ) aVvn + ([Âµ, a

n
ν ] − [Âν , a

n
µ]) aAan

)
− [Âµ, Âν ]

(
(DbV

µv
n
ν −D

bV
ν v

n
µ) bvnππ + ([Âµ, a

n
ν ] − [Âν , a

n
µ]) banπππ

)
+

(
1
2
(ξ+FAL µνξ−1

+ − ξ−FAR µνξ−1
− )

)
×

(
(DbV

µa
n
ν −D

bV
ν a

n
µ) aAan + ([Âµ, v

n
ν ] − [Âν , v

n
µ ]) (aVvn − bvnππ)

)]
,

(A.17)

where

aVvn ≡ κ

∫
dz K−1/3ψ2n−1 , aAan ≡ κ

∫
dz K−1/3ψ0ψ2n , (A.18)

bvnππ ≡ κ

∫
dz K−1/3ψ2n−1(1 − ψ2

0) , banπππ ≡ κ

∫
dz K−1/3ψ0ψ2n(1 − ψ2

0) .

(A.19)
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The terms quadratic in (vn
µ , a

n
µ) are

L(a,v)2 = tr

[
1
2
(DbV

µv
n
ν −D

bV
ν v

n
µ)2

+
1
2
([Âµ, a

n
ν ] − [Âν , a

n
µ])([Âµ, am ν ] − [Âν , am µ]) canamππ

+ (DbV
µv

n
ν −D

bV
ν v

n
µ)([Âµ, am ν ] − [Âν , am µ]) cvnamπ

+
1
2
(
ξ+F

AL µνξ−1
+ + ξ−FAR µνξ−1

−
) (

[vn
µ, v

n
ν ] + [an

µ, a
n
ν ]
)

− [Âµ, Âν ]
(
[vn

µ, v
m
ν ](δnm − cvnvmππ) + [an

µ, a
m
ν ](δnm − canamππ)

)
+

1
2
(DbV

µa
n
ν −D

bV
ν a

n
µ)2

+
1
2
([Âµ, v

n
ν ] − [Âν , v

n
µ ])([Âµ, vm ν ] − [Âν , vm µ]) cvnvmππ

+ (DbV
µa

m
ν −D

bV
ν a

m
µ )([Âµ, vn ν ] − [Âν , vn µ]) cvnamπ

+
1
2
(
ξ+F

AL µνξ−1
+ − ξ−FAR µνξ−1

−
)
([vn

µ, a
m
ν ] − [vn

ν , a
m
µ ]) cvnamπ

]
,

(A.20)

where

cvnamπ ≡ κ

∫
dz K−1/3ψ0ψ2n−1ψ2m ,

canamππ ≡ κ

∫
dz K−1/3ψ2

0ψ2nψ2m ,

cvnvmππ ≡ κ

∫
dz K−1/3ψ2

0ψ2n−1ψ2m−1 . (A.21)

Similarly, L(a,v)3 and L(a,v)4 are

L(a,v)3 = tr

[
(DbV

µv
n
ν −D

bV
ν v

n
µ) ([vpµ, vq ν ] gvnvpvq + [ap µ, aq ν ] gvnapaq)

+
(
[Âµ, a

n
ν ] − [Âν , a

n
µ]
)

([vp µ, vq ν ] ganvpvq + [ap µ, aq ν ] ganapaq)

+
(
(DbV

µa
n
ν −D

bV
ν a

n
µ) gvpanaq + ([Âµ, v

n
ν ] − [Âν , v

n
µ ]) gaqvpvn

)
× ([vpµ, aq ν ] − [vp ν , aq µ])

]
, (A.22)

and

L(a,v)4 = tr

[
1
2
[vm

µ , v
n
ν ][vpµ, vq ν ] gvmvnvpvq +

1
2
[am

µ , a
n
ν ][ap µ, aq ν ] gamanapaq
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+
(
[vm

µ , v
n
ν ][ap µ, aq ν ] + [vm

µ , a
p
ν ][vn µ, aq ν ] − [vm

µ , a
p
ν ][vn ν , aq µ]

)
gvmvnapaq

]
,

(A.23)

where

gvnvpvq ≡ κ

∫
dz K−1/3ψ2n−1ψ2p−1ψ2q−1 ,

gvnapaq ≡ κ

∫
dz K−1/3ψ2n−1ψ2pψ2q ,

ganvpvq ≡ κ

∫
dz K−1/3ψ0ψ2nψ2p−1ψ2q−1 ,

ganapaq ≡ κ

∫
dz K−1/3ψ0ψ2nψ2pψ2q ,

gvmvnvpvq ≡ κ

∫
dz K−1/3ψ2m−1ψ2n−1ψ2p−1ψ2q−1 ,

gamanapaq ≡ κ

∫
dz K−1/3ψ2mψ2nψ2pψ2q ,

gvmvnapaq ≡ κ

∫
dz K−1/3ψ2m−1ψ2n−1ψ2pψ2q . (A.24)

Appendix B
Calculation of

∫
5 ω5(A)

Here we outline the derivation of (4.5). Because we are working in the Az = 0
gauge, we have

ω5(A) = tr
(
AdAdA+

3
2
A3dA

)
. (B.1)

We then find∫
5
trAdAdA =

∫
5
tr ((v + a)d(v + a)d(v + a))

=
∫

5
tr (v dv da+ v da dv + a dv dv + a da da)

=
∫

5
tr (−d(v dv a+ v a dv) + 3 a dv dv + a da da)

=
1
2

∫
4
tr((A+A− −A−A+) d(A+ +A−)) +

∫
5
(3 a dv dv + a da da) ,

(B.2)∫
5
trA3dA =

∫
5
tr(v + a)3d(v + a)

=
∫

5
tr

(
(v3 + v a2 + a v a+ a2v) da+ (a v2 + v a v + v2a+ a3) dv

)
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=
∫

5
tr

(
2(v2a+ a v2 + a3) dv + 2 a v a da− d(v3a+ v a3 + a v a2 + a2v a)

)
= 2

∫
5
tr

(
(v2a+ a v2 + a3) dv + a v a da

)
− 1

8

∫
4
tr

(
(A+ +A−)3(A+ −A−) + (A+ +A−)(A+ −A−)3

)
. (B.3)

The first line on the right-hand side of (B.3) contains some terms that do not include
vector mesons:

2
∫

5
tr(a v a da) =

1
8

∫
5
tr ((A+ −A−)ψ0(A+ +A−)(A+ −A−)ψ0d ((A+ −A−)ψ0))

+ 2
∫

5

[
tr(a v a da)

]
non-zero

=
1
12

∫
4
tr

(
(A+ +A−)(A+ −A−)3

)
+ 2

∫
5

[
tr(a v a da)

]
non-zero

.

(B.4)

As above, [ · · · ]non-zero extracts the terms that include at least one vector meson.
Then using (B.4), (B.3) can be rewritten as∫

5
trA3dA = 2

∫
5
tr

(
(v2a+ a v2 + a3) dv +

[
a v a da

]
non−zero

)
+

1
3

∫
4
tr

[
1
2
A+A−A+A− + (A3

+A− −A3
−A+)

]
. (B.5)

Finally, combining (B.2) and (B.3), we obtain (4.5).
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