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We investigate the interactions among the pion, vector mesons and external gauge fields
in the holographic dual of massless QCD proposed in a previous paper [T. Sakai and S. Sugi-
moto, Prog. Theor. Phys. 113 (2005), 843; hep-th/0412141] on the basis of probe D8-branes
embedded in a D4-brane background in type ITA string theory. We obtain the coupling con-
stants by performing both analytic and numerical calculations, and compare them with
experimental data. It is found that the vector meson dominance in the pion form factor as
well as in the Wess-Zumino-Witten term holds in an intriguing manner. We also study the
w — 7y and w — 37w decay amplitudes. It is shown that the interactions relevant to these
decay amplitudes have the same structure as that proposed by Fujiwara et al. [T. Fujiwara,
T. Kugo, H. Terao, S. Uehara and K. Yamawaki, Prog. Theor. Phys. 73 (1985), 926]. Vari-
ous relations among the masses and the coupling constants of an infinite tower of mesons are
derived. These relations play crucial roles in the analysis. We find that most of the results
are consistent with experiments.

§1. Introduction

In a previous paper, Ref. 1), we proposed a holographic dual of U(N,) QCD with
Ny massless flavors, which is constructed by putting probe D8-branes in the D4-brane
background. It was shown there that various phenomena that are expected to occur
in low energy QCD can be reproduced in this framework. For instance, we showed
that the chiral U(Ny)r x U(Ny)g symmetry is spontaneously broken to the diagonal
subgroup U(Ny)y. The associated Nambu-Goldstone (NG) bosons were found and
identified with the pion. Moreover, we found vector mesons in the spectrum, and the
masses and some of the coupling constants among them turn out to be reasonably
close to the experimental values.

The purpose of this paper is to study the D4/D8 model in more detail in order to
explore the low-energy phenomena involving the mesons. The effective action of our
model consists of two parts. One is the five-dimensional Yang-Mills (YM) action on a
curved background, which originates from the non-abelian Dirac-Born-Infeld (DBI)
action on the probe. The other is the integral of the Chern-Simons (CS) five-form,
which results from the CS term on the probe D8-brane. From these, we compute the
cubic and some quartic interaction terms among the pion, the vector mesons and
the external gauge fields associated with the chiral U(Ny)r, x U(Ny)g symmetry.

*) E-mail: tsakai@mzx.ibaraki.ac.jp
**) Ermail: sugimoto@yukawa.kyoto-u.ac.jp
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1084 T. Sakai and S. Sugimoto

The results are compared with the experimental data in order to quantitatively test
the conjectured duality. For recent developments toward holographic descriptions of
QCD, see also Refs. 2)-19).

In particular, we are interested in the coupling to the external photon field.
We examine whether the vector meson dominance hypothesis??):21) is satisfied in
this model. This hypothesis states that the exchange of vector mesons dominates
the electromagnetic interactions of hadrons. For example, the electromagnetic form
factor of the pion is dominated by the p meson pole as

F (k%) ~ IpIpmr_ 1.1

)= 39 (1)
where g, is the p meson decay constant, m, is the p meson mass and gy is the p7m
coupling. In other words, the direct couplings between the photon and the pion are
small compared with the indirect interactions resulting from the p meson exchange.
It has been shown in Refs. 2),9),15) and 16) that the pion form factor exhibits vector
meson dominance in generic holographic models of QCD, where the contributions
from infinitely many vector mesons are important. We reexamine this feature in
our model and present a numerical estimation of the dominant terms. Furthermore,
we analyze the Wess-Zumino-Witten (WZW) term that includes an infinite tower of
vector mesons and demonstrate the complete vector meson dominance in this sector.

The subjects considered in this paper also include the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) relations,?2:23) the pion charge radius, a; — mw~y
and a1 — 7wp decay, 7 scattering, the Weinberg sum rules,??) and w — 7%y and
w — 777~ decay. For most of the cases, we obtain considerably good agreement
with the experimental data.

This paper is organized as follows. In §2, we review the D4/D8 model to the
extent needed in this paper. Note that the notation used in this paper is slightly
different from that used in Ref. 1). We define our notation in this section. In §3, we
investigate the DBI part of the model. Section 4 is devoted to analyzing the WZW
term. In §5, we reanalyze the effective action using a different gauge, which simplifies
the treatment of the vector meson dominance. We end this paper with summary
and discussion in §6. The two appendices summarize some technical computations.

§2. The model

In this section, we review the D4/D8 model proposed in Ref. 1) and define the
notation used in this paper.

The D4/D8 model is formulated by placing probe D8-branes into the D4-brane
background proposed in Ref. 25) as a supergravity dual of four-dimensional U(N,)
Yang-Mills theory. The metric, dilaton ¢, and the RR three-form field C3 in the
D4-brane background are given as

7\ 3/2 R\?? / qu?
ds® = (E) (nudatda” + f(U)dr?) + <5> <f(U) + U2d92> ;
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More on a Holographic Dual of QCD 1085

AR 27N, U3
d): s — F Ed = ¢ El—ﬁ 21
e’ =y <R> , Fy=dCs T fU) iE (211)

Here the coordinates z# (u = 0, 1,2, 3) and 7 parameterize the directions along which
the D4-brane is extended, and U corresponds to the radial direction transverse to
the D4-brane. From the definition of the function f(U), we see that U is bounded
from below as U > Ukk. The quantities dQA%, €4 and V; = 87r2/3 are the line
element, the volume form, and the volume of a unit S* surrounding the D4-brane,
respectively, and R and Ukk are constant parameters. The constant R is related to
the string coupling gs and the string length I, as R® = mgsN 2. This background
represents N, D4-branes wrapped on a supersymmetry breaking S' parameterized
by the parameter 7, whose period is chosen as

1/2
T~TH+2TMpy , Mgk =-S5 (2-2)

in order to avoid a conical singularity at U = Ukyk. Along this S!, fermions are taken
to be anti-periodic, and they become massive as four-dimensional fields. Adjoint
scalar fields on the D4-brane are also expected to acquire a mass via quantum effects,
since the supersymmetry is completely broken. Thus, the world-volume theory on
the D4-brane effectively becomes the four-dimensional Yang-Mills theory below the
Kaluza-Klein mass scale Mkk. The Yang-Mills coupling gynm (at the scale Mkk) is
given by g2\; = 2w Mgxkgsls, which is read off of the DBI action of the D4-brane
compactified on S'. The parameters R, Uxk and g5 are expressed in terms of Mgk,
gym and ls. One can easily show that [ does not appear in the effective action if it
is written in terms of Mk and gyn. Therefore, without loss of generality, we can
set

2

2 M2 = (g N =4 (29)

which makes R and Ukgk independent of gyy and N.. Furthermore, because the
Mxxk dependence is easily recovered through dimensional analysis, it is convenient
to work in units in which Mgk = 1. Then, we have the relations

1 47

9
Mgk =1, R*=>, Ugx=1, —r=—
KK 4 KK gsl§ 9

N, . (2:4)

The relations (2-3) and (2-4) make it clear that the o’ expansion and the loop expan-
sion in string theory correspond to the expansion with respect to 1/ and \3/2/N,
in Yang-Mills theory, respectively. In this paper, we consider only the leading terms
in this expansion by taking N. and A to be sufficiently large.

In order to add Ny flavors of quarks to the supergravity dual of the Yang-Mills
theory described by the background (2-1), we place Ny probe D8-branes extended
along z# (u = 0,1,2,3), the S* directions, and one of the directions in the (U, T)
plane. Here we adopt the probe approximation, assuming N. > Ny, and ignore
the backreaction from the D8-branes to the D4-brane background. To describe the
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1086 T. Sakai and S. Sugimoto

D8-branes, it is convenient to introduce new coordinates (y, z) defined by
Z)E(\/U3—1COST,\/U3—1SiHT) . (2-5)

It is easy to show that the metric written in (y, z) is smooth everywhere. We con-
sider the probe D8-branes placed at y = 0 and extended along the z direction. As
discussed in Ref. 1), this brane configuration corresponds to a D4/D8/D8 system
that represents U(N.) QCD with Ny massless flavors.

Note that this system possesses SO(5) symmetry corresponding to the rotations
of §*. In this paper, we concentrate on the states that are invariant under SO(5)
rotations for simplicity. Because QCD does not have such an SO(5) symmetry, the
meson in realistic QCD can only be found in this sector.”) Therefore, we can reduce
the nine-dimensional gauge theory on the D8-brane to a five-dimensional theory with
a five-dimensional U(N;) gauge field denoted by A, (z#,z) and A, (z*, 2).**)

The effective action on the probe D8-brane embedded in the background (2-1)
consists of two parts. One is the (non-Abelian) DBI action, and the other is the
CS term. After the Kaluza-Klein reduction on S%, the leading terms in the 1/X
expansion of the DBI action read

1
SPBT — / d*zdz tr [§K VSF2 + KF2, |, (2-6)
where
AN, _ 9
The CS term is
N,
SEs = ws(A) (2-8)

2
247T M4%R

where ws(A) is the Chern-Simons five-form written in terms of the five-dimensional
differential form A = A, dz" + A.dz as

ws(A) = tr (AF2 — %A:”F + %A5> , (2-9)

and M* x R is the five-dimensional space-time parameterized by (z*, z).
In order to extract four-dimensional meson fields from the five-dimensional gauge
field, we expand the gauge field as

ZB (") (2) , (210)

Az(2#, 2) = O (@) do(2) +Z<p”>m” (2) (2:11)

*) It is believed somewhat optimistically that states charged under S O(5) decouple in the
Mgk — oo limit. (See Ref. 26) and references therein.) See also Ref. 27) for a recent analysis.
**) Here we omit the scalar field y(z*, z), which corresponds to fluctuations of the D8-brane along
the transverse direction, for simplicity.
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More on a Holographic Dual of QCD 1087

using the complete sets {1, (2)}n>1 and {¢n(2)}n>0 of functions of z. In order
to diagonalize the kinetic terms and the mass terms of the four-dimensional fields
B,S") (z*) and ™ (2*), we choose the functions 1, (z) to be eigenfunctions satisfying
the equation

—K'Y38, (K 0.0) = Atn | (2:12)
where )\, is the eigenvalue, and the normalization condition is taken to be
K / dz K™Y 3 0t = G - (2-13)

The functions ¢,(z) are chosen to satisfy ¢,(z) x 0,¢n(2) (n > 1) and ¢o(z) =
1/(v/7kK(z)), with the normalization condition

H/dz K¢pbdm = Onm (2-14)

which is compatible with (2-12) and (2-13).
Inserting the expansion consisting of (2:10) and (2-11) into the action (2-6) and
integrating over z, we obtain

SEBL ~ /d4x tr [(%cp(o))Q

- 1 n n n - n
+ Z <§(auB£ /- aVB;(L ))2 + )‘n(B;(x = )‘nl/QauSD( ))2> ]
n=1

+ (interaction terms) . (2-15)

From this, we see that we have one massless scalar field, np(o), and a tower of massive
vector fields, Bﬁn), of mass squared )\,,. The scalar fields go(”) with n > 1 are eaten

by the vector fields Ban). We interpret »(© as the massless pion field and Bfln) as
vector meson fields.

In the expansion given in (2-10) and (2-11), we have implicitly assumed that
the gauge field asymptotically vanishes Ay (z#,2) — 0 as z — +oo. The residual
gauge transformation that does not violate this condition is obtained with a gauge
function g(z*, z) that asymptotically becomes constant: g(z*,z) — g4 as z — +o0.
We interpret (g4, g—) as an element of the chiral symmetry group U(Ny)r x U(Ny)r
in QCD with Ny massless flavors.

In the following sections, we study the interaction of the mesons with the external
gauge fields (Ar,, Ag,) introduced by weakly gauging the U(Ny), x U(Ny)g chiral
symmetry. Of particular interest are the couplings of the mesons to the photon field
A", which can be extracted by setting

App = Apy = eQAZm ) (2-16)

where e is the electromagnetic coupling constant and @ is the electric charge matrix
given, for example, by

Q=3 - , (2:17)
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1088 T. Sakai and S. Sugimoto

for the Ny = 3 case. It is also necessary to introduce the external gauge fields in
the calculation of correlation functions among the currents associated with the chiral
symmetry following the prescription used in the AdS/CFT correspondence.?®):29) In
order to turn on the external gauge fields, we impose the asymptotic values of the
gauge field A, on the D8-brane as

lim A,(zt,z) = Ar,(at) lim A, (z", z) = Apu(z") . (2-18)

z—400 Z——00

This is implemented by modifying the mode expansion (2-10) as
At 2) = Apu(a*) g4 (2) + Agu(ah)p-(2) + ZB (@")n(2) ,  (2:19)

where the functions ¢4 (z) are defined as

EREN

(It4o(z)), o(z) =—arctanz , (2-20)

N | =

Yi(z) =

which are the non-normalizable zero modes of (2-12) satisfying 0,9+ (z) x ¢g(2).

Note that if we insert the expansion (2-19) into the action (2-6) and perform the
integration over z, the coefficients of the kinetic terms of the gauge fields Az, and
Ap,, diverge, because 14 are non-normalizable. This divergence simply reflects the
fact that the gauge coupling corresponding to the chiral U(Ny)r, xU(Ny) g symmetry
is zero. One way to regularize the divergence is to cut off the integration over z at
some large but finite value. Another possibility is to simply ignore the divergent
kinetic terms of the external gauge field, since we are interested only in the structure
of the interactions.

In this paper, we work mainly in the A, = 0 gauge, which can be realized
by applying the gauge transformation Ay, — gAp gt + gOyg~' with the gauge
function

g 1 (z", z) = Pexp {—/ dz' AZ(:C“,Z/)} . (2-21)
0
Then, the asymptotic values (2-18) change to

lim Ay(a, 2) =AY ("), lim A, (a#,2) = Ay (a#) (2:22)

Z——+00 Z——00
where &4 (z#) = lim, 4o g(2*, ) and
AT (a#) = & (0" A ()€ (2#) + &4 (27) 9,87 () | (2:23)
ARy (a#) = £ (@) Apy ()& (@) + € (") (@) - (224)
Then, the gauge field in the A, = 0 gauge can be expanded as

Azt 2) = AT (a) (2) + A, +ZB (2")bn(z) . (2:25)
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More on a Holographic Dual of QCD 1089

The residual gauge symmetry in the A, = 0 gauge is given by the z-independent
gauge transformation. The residual gauge symmetry h(z*) € U(Ny) and the weakly
gauged chiral symmetry (g4 (x#),g—(x#)) € U(Ny)r x U(Ny)r act on these fields as

Ay — 9+ ALugy ' + 940,97 ", (2:26)
Apy — 9-Arug~" +9-0u9~" (2:27)
§e —hérgi', (2-28)
n n)—1
B — hBMh ", (2-29)
)

Here, the functions &4 (2#) are interpreted as the U(Ny) valued fields &g, r(x#) that
carry the pion degrees of freedom in the hidden local symmetry approach.3?):31)
Actually, the transformation property (2-28) is the same as that for &, p(a*) if we
interpret h(z*) € U(Ny) as the hidden local symmetry. These fields are related to
the U(Ny) valued pion field U(z#) in the chiral Lagrangian by

& aME(at) = Uat) = 2 (2:30)

The pion field IT(z*) is identical to ¢(®) (z#) in (2-11) up to linear order.*
Choosing h(z*) in (2-28) appropriately, we can choose the gauge such that
€71 (a) = £_(a) = eI (2:31)

In this gauge, the gauge potential in (2:25) can be expanded up to quadratic order
in the fields as

1 i i i
AM = <VM+ ﬁ[ﬂ,auﬂ] - f_[ﬂaAM]> + <AM+ _8MH_ f_[ﬂ’vﬂ]) Yo
+) vl on1+ Y A thon -+, (2:32)
n=1 n=1

with
1 1 — n n
V, = §(AL” + Agy) , Ay = E(AL” —ARry) , v, = Bf” D ay, = B/(f ) .(2:33)

Note that the functions v, (2) are even and odd functions of z for odd and even values
of n, respectively. This implies that v" and a™ are vector and axial-vector mesons,
respectively. As discussed in Ref. 1), the lightest vector meson, v!, is interpreted as
the p meson [p(770)] and the lightest axial vector meson, a', is interpreted as the a;
meson [a1(1260)]. The fields v?,v3,--- and a?,a3,--- represent the heavier vector
and axial-vector mesons with the same quantum numbers: p(1450), p(1700),--- and
a1(1640), - - -, respectively.
In the A, = 0 gauge, the CS term (2-8) becomes

N, B )
5207 |, , (0a(dEC €4 AL) — ca(dEZ'6-, An)
Ne
2472 Jyraxr

cs _
Sps =

(1) - g5 ot ™)) 234

*) Here we take the pion field IT(z") to be a Hermitian matrix, while ¢(®) (z*) and the vector
meson fields BY" (z*) are anti-Hermitian.
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1090 T. Sakai and S. Sugimoto

where g is the gauge function given in (2-21), and a4 reads
1 1
ay(V,A) = —3 tr <V(AdA +dAA + A3) — §VAVA — V3A> . (2-35)

The four-dimensional effective action of the mesons written in terms of £y (or

U) and B,Sn), including the external gauge fields (Ar,, Ary), can be obtained by
substituting the gauge potential (2-25) or (2-32) into the five-dimensional Yang-Mills
action (2-6) and the CS-term (2-34). This action is automatically consistent with
the symmetry expressed by (2-26)—(2-29). The explicit calculation of this effective
action is partly given in Ref. 1). It has been shown that the effective action of the
pion is given by the Skyrme model®?) as

2 1 2
GDBI _ /d4 f_ﬂt U0.U0) + ——tr [U19,U U-te,U
D8 aLL:V;/,:Au:O v 4 ' ( g ) " 326% ' [ o :| ’

) (2-36)

"

where the pion decay constant f; and the dimensionless parameter eg are given by

4 1
2 = — e .

f= =g AN, (2:37)

g’ = /@/dz K131 — 2)? . (2:38)

Also, the CS term (2-34) is identical to the WZW term in QCD that includes the
pion field as well as the external gauge fields when we omit the vector meson fields

Ban):

e N, N,

= Z— tr(gdg™1)° 2-39
b8 vn=an=0 4872 [hsa 24072 Japavp t(gdg ™) (2:39)

where

Z = tr[(ApdAg + dARAR + A}) (U TALU + U HdU) — p.c]
+tr[dARdU YA U — p.c.] + tr[Ag(dU'U)® — p.c/]

1
+5 tr[(ArdU'U)? — p.c.] + tr[UARU AL dUdU ™" — p.c]

1
—tr[ARdU UARU YA U — p.c.] + 5 tr[(ApULALU)Y . (2-40)

Here “p.c.” represents the terms obtained by making the exchange A; « Agr and
U—U-L.

In this paper, we analyze the couplings among the pions and vector mesons,
including the external gauge fields in more detail. In particular, we examine whether
the vector meson dominance hypothesis holds for both the DBI part and the WZW
term. We analyze the DBI part in §3 and the WZW term in §4.
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More on a Holographic Dual of QCD 1091
§3. DBI part

3.1. The effective action

In this subsection, we analyze the effective action obtained by inserting the mode
expansion (2-32) into the action (2-6). The effective action written in terms of vy,
ay, and {1, including the external gauge fields (AL, Agy), is given in Appendix A.
Here we consider some of the couplings read off of the action.

It is useful to write the action as

SDBI / d'z Lo+ / d*z L; (3-1)
j>2

where £; contains the terms of order j in the fields II,v};,aj;,V, and A,. The
quantity Lg;y contains the divergent terms that result from the non- normahzable
modes V), and A,. The explicit form of Lg;, is given in (A-16).

For the quadratic terms, we find

Lo = %tr (8vaf — E?VUZ)Z + %tr (8uaﬁ — 81,(1”)2
Fayyn tr (OHVY — 9V VH) (8 — Jyv ) + apggn tr (O*A” — 9" A*) (auaf; - 8,,&2)

+tr (10,01 + frAu)? +m2a tr (v;‘) +m2. tr (au)2 , (3-2)
where
M2n = Aap—1, M2n = Aop (3-3)
avin = [dK s, apn = [ K Py, (30

and we have used the fact that the pion decay constant fr is given by (2-37). Here
and in the following, the summation symbol “Y">° ;” is often omitted for notational
simplicity.

In order to diagonalize the kinetic term, we define

U, = vy + apnVy (3-5)
a, = a, + apgn Ay (3-6)
Then, (3-2) becomes
o= S tr (9,07 — 0,7) + L tr (B, — 0,a")° + tr (10,1 + fr A
2—§ I‘(#UV_ I/’UM) +§ I'( a, — ya) +T(Z +f7r ,u)
+m?2, tr( — aypn Wy ) +m2. tr( — agomA ) (3-7)

Here, corrections to the kinetic terms of V,, and A, in Lg;, are omitted.
We segregate the cubic terms L3 into terms of equal orders in the pion field
II(xH):

L3 = [:3‘”0 + ﬁg‘ﬂl + ﬁg‘ﬁz . (3’8)
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1092 T. Sakai and S. Sugimoto

Note that L3],3 does not exist because of parity symmetry.
Let us first examine L3|,2, which is relevant to the electromagnetic form factor
of the pion:

Ll = T e (0V) — B,V (00T, 07 1T )

IE
+bv;g7r tr ((8Mvﬁ — Oyuy) 0", 8”]]]) —2tr (V,[II,0"1T]) (3-9)
= % (bvrr — ayunbynar) tr ((0uVy — OLV,)[0711, 0" 1T )
+b“;§” tr (0,0 — 8,05)[0M 11,011 ]) — 2tx (V,[IT,0"IT]) , (3-10)
where
byrr = /{/dz K~/3 (1 — 1/)3) , (3-11)
bynrn = “/dz K™%0 1 (1= 4f) . (3-12)

Note here that the coefficient of the first term in (3-10) is zero. Actually, using the
completeness relation

£Y KT n(2)en() = 6(z = ') (3:13)
n=1
we can verify that
> aypnbynar = byrx - (3-14)
n=1

Therefore, (3-10) becomes
bUnTWT ~n ~n v
L3]2 = 72 tr (8,07 — 0,0;,)[0" 11,0 IT |) — 2tr (V,[I1,0"IT]) . (3-15)

In order to compare the effective action with that given in the literature (e.g.
Ref. 31)) we rewrite the Lagrangian using

~n bv"7r7r
Tt S UL 0T (3-16)

and remove the term of the form tr (9,0} — 0y, [OM11, 9”II]). Then, we obtain

“~n
Y

1 ~n -~n 1 ~-n ~n :
Lo+ Ll = 5 tr (98] — 0,00)° + 5 tr (9 0,a%)” + tr (10,01 + frA,)?

+m?2, tr (EZ — aAanAM)2 + m?2. tr (UZ — aanM)z

mgnb@nﬂﬂ— m%nbv”ﬂanU”
E tr (0 [11, 0" I)) + <—f,% - 2> tr (V,[I1,0"11))
2nb2n b27l
Dot g (17,9, 1) — 22Tty (9,11, 9, 11)° (3:17)

Af3 213
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More on a Holographic Dual of QCD 1093

Here, it is very important to note the relation

> minbynarayyn = 2f7 | (3-18)

n=1

which follows straightforwardly from the completeness condition (3-13) and the equa-
tion (2-12). This shows that the 77V coupling in (3-17) vanishes. As shown in §3.5,
this fact is important with regard to the vector meson dominance in the electromag-
netic form factor of the pion. Similarly, we can also show the following relations:*)

4
vanbvnm =3 2, Zbynm =e5” . (3-19)

Using (3-18) and (3-19), the Lagrangian (3-17) can be rewritten as

1 JC I N .
Lo+ Lalee = 5 tr (9,87 — 0,03)° + 5 tr (9, — 0,a)° + tr (10,11 + frAy)?

+mintr (@ ) — 2gqn tr (aj A") + m2naign tr (A,)?

+mzn tr (0 ) — 2gyn tr (T VH) + m2nadyn tr (V,)°
—2gvn,m tr (07} [11, 0" IT])

1
3f2tr[H8H] 2%f4tr[817817] (3-20)
where
b 7L7|—7-(-m2n
Jar = mznaAan . Gon = mgnavvn I U—zv . (3-21)
2f7

Here, we can verify that g,» and g,» are equal to the decay constants of the vector
meson v" and the axial-vector meson a”, respectively, by showing that

(0]M)(0)[v") = gond®e, ,  (0[JEV(0)[a™) = gand®e, (3-22)
where the quantities J,SV’A) are the conserved vector and axial-vector currents coupled

with V# and A*, respectively, €, are the polarizations of the vector mesons, and the
indices @ and b are associated with the generators 7% of U(Ny) as
v, = w, T, ay =ia,"T* , V), =iV T, A, =1A;T". (3-23)

Note that the decay constants can be recast as

p— / dz . (Kdban1) = —26(KO-tban—1)

)
z=-400

, (3-24)

z=-400

p— / dz 0 0 (K0.ba) = —20(K Dby

*) The sum rules (3-14), (3-18) and (3-19) for a closely related five-dimensional model are also
derived in Ref. 19) using a similar method.
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1094 T. Sakai and S. Sugimoto

where we have used (2:12). This shows that the decay constants g,» and g,» are
fixed uniquely by the asymptotic behavior of the mode functions 9,1 and s,
respectively. (See Ref. 2) for analogous formulas.)

The terms linear in I] are

N
L] = f—z tr (00, Vs — Oy V) IT, A byer + 0% (0,07} — D07 IT, AY] by

+0M(Ou Ay — Oy Ap) T, 0™ (bynr — ayon)

(Vs — DV IT, ™) (—auam) + 0*(D,0f — Do) [IT,a™] (= Cynamn)

—l—@“(auafyn - al,azl)[ﬂ, Uny] (—Cvnamﬂ-)

2 tr (AL, VH]) (3-25)

up to total derivative terms. Here, we have defined
Congmn = K / dz K=Y 34p0ipon_1am - (3-26)

Using the sum rule (3-14) and the relations

)
Z Ayyn Cyngma = A Aq™ (327)
n=1
0

Z A Aqgm Cyngma = AYyn — bynrr s (328)

m=1

which also follow from the completeness condition (3-13), the Lagrangian (3-25) can
be rewritten as

21 ~ ~ U
L3|1= ﬁ tr | 0" (0,0, — 0,0, [T, Al ayyn + 0" (9uay’ — Ovay, )11, V"] a ggm

+0"(9uvy; — 8,,5'3)[]7, a™ ] (=conamz) + 0" (Opay," — al,fizl)[ﬂ, "] (—cynamn)

—2ifrtr (A, [T, V*]) + (quartic terms) . (3-29)

Finally, we consider the rest of L3, which contains no pion field IT(x*). It can
be shown that

L350
= tr <(aﬂvv — VM)

A Vi ol) = Mo avn + (A @3] = v, a3]) aaan + o 0f) + [a, ] |

+ (8M'Uly - 81/,Ulu){[v‘m VV] Ayt + [“A,LM AV](aVvl - b’Ul7T7l') + ([Vlﬂ Ulu] - [VW UL])
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(s @] = [Av, 02 comama + [0, V5] Gutymor + (050, 03] Gutarman }

+ (0" A = 0" A (Vo 3] — Vi) apan

Vs 12
+ (A, vp] = [Av, UZ])(‘IVU” = bynar) + ([Uﬁ, ay'] = oy, GT]) Cv"amﬂ}

(0 = @) (Vi Al = Vs Aul) g + (Vi) = Vi)

vy Gy
-+quv¢]—LAmvﬁonww+«wpaﬁy—[LaSD%MmM}>, (330
where
gvlvmvnzﬂ/d?«’ K30 1o —1tpan—1

Gylgman EH/dz K_1/3¢2l—1¢2mw2n . (331)

If we rewrite (3-30) in terms of v}; and aj; defined in (3-5) and (3-6), we obtain
Ls] 0 =tr <gvlvmvn (aﬂaﬂy - a”aﬂ#) [’6;7 'ﬁ"} + Gytgman (aﬂal” - ayal#) [a;y, aﬂ

FGyigman (aﬂa"” . ayaw){ [17;,5;31} - [’55,5;7] }) . (3-32)

Here, corrections to the cubic term in Lg;, are omitted. From (3-32), we see that the
direct cubic couplings of the vector mesons vy, and aj; to the external gauge fields
V,, and A, disappear.

For L4, we focus on the quartic terms in the pion field. As explained in §2; the
low energy effective action of the pion is given by the Skyrme model (2-:36). Then,
it follows from (2-36) that

1

2 1 2
E4’ﬂ.4 = _3—f7% tr [H, 8NH] + @tr [auﬂ, 8,/]]] . (333)

Note that (3-33) exactly cancels the O(IT*) terms (the last two terms) in (3-20).

3.2. Numerical results

Here, we summarize the numerically obtained values of the coupling constants to
provide a rough estimate of the physical quantities. Listed below are the numerical
estimates for some of the masses and coupling constants defined in (3-3) and (3-21)
in units for which Mgk = 1.

n H qujn K/_l/zg’v” 51/2911"71'71' mgn 5_1/2911”

1| 0.669 2.11 0.415 1.57 5.02

2| 2.87 9.10 —0.109 | 455 144 (3-34)
3| 6.59 20.8 0.0160 9.01 28.3

4| 11.8 37.1 —0.00408 | 15.0 46.9
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1096 T. Sakai and S. Sugimoto

These are obtained by solving the equation (2-12) numerically using the shooting
method, as in Ref. 1).
The coupling constants given in (2-37), (2-38) and (3-11) are easily calculated as

2127k, eg?~251 K, by ~4.69 K. (3-35)

It is, however, important to keep in mind that we should not take these nu-
merical values too seriously, because the approximation made in our analysis is very
crude. As discussed in Ref. 1), the present model deviates from realistic QCD above
the energy scale of Mxk, which is the same as the mass scale of the vector mesons.
Furthermore, all the quarks are assumed to be massless, and the supergravity de-
scription and the probe approximation are valid only when N, > Ny and A > 1.
In the following subsections, we compare the numerical values of the coupling con-
stants obtained in our model with the experimental values in order to get some idea
of whether or not we are on the right track. It would be interesting to improve the
approximation in order to make more accurate predictions.

3.3. The Skyrme term

The second term in (2-36), which is called the Skyrme term, can be written as

sz T (U790, U'9,U]° = L1Py + LoPy + Ly Py (3-36)
S

for Ny = 3, where

P = [tr(ﬁuU_lf)“U)f . Py=tr(0,U 0, U) tr(0*U 10U

Py = tr(9,U '0"U0,U10"U) | (3-37)
and
1 1 3
I — _ Ly=—— . 3-38
P32 P 16er T T 166 (3:38)

For the case Ny = 2, we have the additional relation P3 = %Pl. The experimental
values for the coefficients L; (i = 1,2, 3) (at the scale of the p meson mass) are given
in Ref. 33) as

Lilexp =~ (0.4 £0.3) x 1073,
Lolexp =~ (1.4 4 0.3) x 1073,
Lslexp ~ (3.5 £ 1.1) x 1072, (3-39)

Our result (3-38) is roughly consistent with experimental results in the case k ~
(7—19) x 1073, Note that this value of & is also consistent with that obtained by
combining the experimental values fr|exp > 92.4 MeV and my|exp >~ 776 MeV with
the numerical results (3-34) and (3-35):

Myg ~ 949 MeV , k=~ 7.45x 1073 . (3-40)
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3.4. KSRF relations

Here we examine the KSRF relations,22)23)
9p = 29p7r7rf7% (KSRF(I)) > (3'41)
m>=2g> . f7  (KSRF(II)) . (3-42)

These two relations lead to
9pY9prnm = m?; . (3'43)

Then, using the experimental values gprr|exp =~ 5.99 and g, |exp =~ 0.121 GeV23Y we
obtain

4 2 2
Gomnfn| Loy, SSmnl g (3-44)
rnp Tnp e
exp Xp

which show that the relations (3:42) and (3:43) are satisfied to within 20%.
The corresponding values in our model can be estimated by using the numerical
values listed in §3.2. The result is
4912,17m.f 7%

2
vl

vl Gulrr

m vl

Note that these values are independent of the parameters in the model. If we use
the values of Mkk and x in (3-40), we obtain

Goinn ~ 481, g1 ~0.164 GeV? | (3-46)

Remarkably, it is found that the relations given in (3-45) are equivalent to picking
out the dominant contribution from the following sum rules:

P} — )
= Min 3
SN
v Yur
n=1 v

The relation (3-47) is equivalent to the first relation in (3:19), and (3:48) follows
from (3-18). The sum rules given in (3-47) and (3-48) were first reported in Refs. 16)
and 2), respectively, and have been shown to be satisfied in general five-dimensional
models. As a check, using the numerical results for n = 1,2, 3 and 4 given in (3-34),
the left-hand sides of (3-47) and (3-48) are evaluated as

(o]
4. f2

S Munmnln ) 31 40,0210 4 0.000197 + 0.00000717 + - ~ 1.33 , (3-49)
myn

n=1 v

(o)

3 IV 131 - 0.346 + 0.0505 — 0.0128 + --- = 1.00 , (3:50)
myn

n=1 v

from which we see that the contribution of the lightest vector meson o' (the p meson)
dominates the sum.

220z 1snbny 0z uo 1senb Ag G068581/€80L/S/1 L L/ejonue/did/woo dnoolwepeoe)/:sdyy woly pspeojumoq



1098 T. Sakai and S. Sugimoto

3.5.  FElectromagnetic form factors

Let us consider the pion form factor Fy(p?) defined by
(m IO @) = f 0+ ) Fr((p = P)?) (3-51)

where £ is the structure constant of U(Ny).
Combining the "V and v vertices in (3-20) as well as the v" propagators,
as depicted in Fig. 1, we obtain

)
2\ § : gun Gunpr
n=1 v

Crucial in this computation is the re-

o lation (3-18), which ensures that the di-
rect V7 coupling in (3-17) vanishes. As
“‘. HNANN, 7 a consistency check of (3-52), we note
o that
o o)
iy Fw(U)Zqu}Tﬁ%Zl . (353)
Fig. 1. Pion form factor. n=1 v

due to (3-48).

We thus see that our model possesses vector meson dominance for the pion form
factor (3-52), because the form factor is saturated by the exchange of vector mesons.
This fact was first pointed out in Ref. 2), in which (3-52) is derived by taking the
continuum limit in the discretized version of the five-dimensional model. General
analyses of the vector meson dominance in various holographic models are also given
in Refs. 9),15) and 16). As we have seen in §3.4, the sum (3-48) is dominated by the
p meson. Hence, our model exhibits p meson dominance to a good approximation in
the form factor Fy(k?). Manifestation of the vector meson dominance in the WZW
term is examined in the next section, and more general consideration is given in §5.

By expanding the form factor in k% as

Fr(k?) =1- Y 20902 4 okt (3-54)

n=1 Myyn

we can extract the charge radius of the pion as
Nt — v Gurwr
L
(ro)™ = 63_1 ﬁ . (3-55)
Using the sum rule (3-14), we can show

o o0

n (yn 1 ™ _ _
Z gvng# =35 § ayynbynr = 3" Yoyrr ~ 1.84 - M2 (3-56)
n=1 Cls T n=1
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and hence

3
()™ = {n—lbvﬂr ~11.0- M2 | (3:57)
where we have recovered Mgk in the last expression. If we use the value of Mgk

given in (3-40), we have

3™ ~ (0.690 fm)? . (3-58)

The experimental value for this is?%

(r2y« ~ (0.672 fm)? . (3-59)

exp

It is also interesting to note the sum rules

00 00
Z gvvlg;];vkvl — Sy Z gvn,’iv;akal — 6 (3-60)
n—l v’VL v’!L

n=1
which are the analogs of (3-53) for (axial-)vector mesons. If the sums in both (3-53)
and (3:60) (for k = 1) are dominated by the contribution of the p meson (n = 1), we
obtain the approximate relation

m2

Gprr = Gpumom X Gpgmam - (3-61)
9p

which leads to the universality of the p meson couplings,

m2

9pHH ~ £ s (H =T, 'Um, am) (362)
p
as discussed in Ref. 15).
In order to determine the extent to which the relation (3-62) is valid, we list
some numerical results for g,,nyn and gpgnan:

n H "fl/zgpvnvn "fl/zgpa"a"

1 0.447 0.286

2 0.269 0.257 (3-63)
3 0.252 0.249

4 0.247 0.246

As argued in Ref. 1), gprr and g,,, are nearly equal. However, these two values are
not in good agreement with those of gyynyn (n > 2) and gpynen (n > 1), among which
the universality holds to a good approximation. The contributions from the first five
terms in the summations in (3-60) for k =1 = 1,2 are estimated as

oo

Y 9onIurell 141 — 0.464 + 0.0581 — 0.00116 + 0.000845 + --- = 1.00 ,(3-64)
myn

n=1 v
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3 %f# ~ 0.846 + 0.135 + 0.381 — 0.466 + 0.0993 + - -- ~ 0.995 ,  (3-65)
n=1 G

o
S gv"gv%lal ~ 0.902 + 0.467 — 0.453 — 0.0822 + 0.00273 + - - - ~ 1.00 , (3-66)
m

n=1 i

> 242

Y GrIviata’ o 0.810 +0.119 +0.104 + 0.316 — 0.468 + --- ~ 0.882 . (3-67)
myn

n=1 v

3.6. a1 — 7wy and a1 — wp decay

JPC¢ = 17+, In our model,

The a; meson is the lightest axial-vector meson of
it is identified with B,S”:2) = at. Here we discuss the decay amplitudes of a; — 7y
and a; — 7p.

First we show that the decay amplitude of a; — 7y computed from the effective
action in §3.1 vanishes. More generally, we can show that the decay amplitude of
a™ — vy vanishes for every m > 1, where a™ is the axial-vector meson a;;’ = B;(fm).
The relevant diagrams for this decay amplitude, depicted in Fig. 2, are (1) the direct
coupling of a7V in (3-29), which yields an amplitude proportional to ag4m, and
(2) the a™7mv"™ vertex in (3-29) accompanied by the v"-V transition in (3-17). This
amplitude is found to be proportional to

g n
- Z Cv”amﬂng = - Z CyngmpQyyn = —AAqm , (368)

n>1 i n>1

where the sum rule (3-27) is used. Therefore, the two diagrams sum to zero. This
fact can be understood more easily from the Lagrangian (3-2) and (3-25).

The vanishing of the a; — 7wy decay amplitude has been observed in the HLS
model3V):3%) and closely related five-dimensional models.?) 1619 From the phenom-
enological point of view, this is not in serious conflict with experiments. The ex-
perimental value of the partial width of the a; — 7y decay mode is approximately
640 KeV, while the total width of a1 is 250 — 600 MeV.3% Hence, it seems plausible
that the a; — 77y decay process is due to the order 1/N, subleading terms or higher
derivative terms, as suggested in Refs. 35) and 31).

Let us next consider the decay mode a; — mp, or, more generally, a
The decay amplitude can be read from the second line of (3-29). Using the equations
of motion,

m— ™.

O (D, — B, 0) = mE T A - (3-69)
(1) % (2) v
K T .“‘
s

Fig. 2. The relevant diagrams for the a; — 7y decay amplitude.
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O (Oay — Oyay) = mindy + -+ (3-70)

the relevant couplings are extracted as

L3l ~ - = 20 ggmyng tr (ay [IT,0™]) +-- -, (3:71)
with
1
Gamong = —(M20 — M2m) Conamy . (3-72)
fr

Then the decay width is given by3%)

2 2
I'(am™ — m™) = gam—”;ﬂpvn] <1 + P ) ; (3-73)

4rmsm 3m2,

where p,» is the momentum carried by the v"™ meson. From the experimental
value, 3%

Mgt |exp = 1230 MeV ,  I'(a1 — 7p)|y, = 150 ~ 360 MeV (3-74)

exp

the coupling is estimated as ggl p7r|exp ~ 7.6 — 18 GeV?, and the experimental value
of the dimensionless combination cpq,, which is related to gq,pr through (3-72), is

frGa1pr
Cpa17r = ﬁ ~ 028 - 043 . (375)
mp ai lexp

On the other hand, the numerical analysis of ¢, defined in (3-26), yields

alms
Colglae = 0.528 . (376)

3.7. 7w scattering

It is known that in the chiral limit, the low energy behavior of the w7 scattering
amplitude is governed by only the 7% vertex in the lowest derivative term of the
chiral Lagrangian (2-36). However, because the 7# interaction in (3-33) is canceled
by that in (3-20), one might think that the low energy theorem is somehow violated
in our model. This, of course, is not true. Here we argue that taking account of the
vector meson exchange diagrams yields a w7 scattering amplitude that is consistent
with the low energy theorem.

The vertices needed to derive the w7 scattering amplitude, depicted in Fig. 3,
consist of (1) the 7* couplings in (3-33), (2) the direct 7* couplings in (3-20), and
(3) the mmv™ couplings in (3-20), two of which are contracted by the vector meson
exchanges. As we have seen in §3.1, the contributions from (1) and (2) cancel.
Also, the effective 74 vertex obtained from the exchange of the vector mesons (3) is
computed as

x 9
Gungr
-> U (I, 0,11 . (3-77)
n=1

pn
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(1) (2) (3)

T AT T AT . T
‘I.I: . .:.
T B . T T B . T 7-‘— T
I L L g ’L2) N
32 N =

Fig. 3. The relevant diagrams for the 7mm scattering.

Then, using the sum rule (3-47), we end up with a term that is identical to the first
term (3-33), and we thus conclude that the contribution from (3) is the same as that
from (1). In other words, the contributions from (2) and (3) cancel, and the low
energy 7w scattering amplitude is governed by the chiral Lagrangian. This fact is
trivial if we use the effective action given in Appendix A. Note that the situation
here is very similar to that in the HLS model with a = 4/3, though vector meson
dominance does not hold in that case. (See p. 35 of Ref. 36))

3.8. Weinberg sum rules

Before closing this section, let us make a few comments on the Weinberg sum
rules, which turn out to be problematic in our model. In our notation, the Weinberg
sum rules®® state

0o g2n g2n
Z < =5 > = f2 [Weinberg sum rule (I)] , (3-78)
n=1 Myn Mgn
Z (ggn - ggn) =0 [Weinberg sum rule (IT)] . (3:79)
n=1

It was shown in Ref. 2) that both (3-78) and (3:79) are satisfied in the discretized
version of the five-dimensional model. On phenomenological grounds, it is often
assumed that the sum rules are almost completely dominated by the contributions
from the p and a; mesons alone, that is, that we have

92 2

P Ya, 2 2 2

— = — [, ~ . 3-80
2 21 T gp Yay ( )

In our case, however, the infinite sums in (3-78) and (3-79) do not converge, as one
can guess from the behavior of the numerical data (3-34). Even if this divergence can
be removed by appropriately regularizing the infinite sum, as in Refs. 2) and 19), the
sums (3-78) and (3-79) are not dominated by p and a1.*) In fact, the ratios of the
left-hand sides to the right-hand sides of the relations given in (3-80) are estimated
in our model as

1 (g2 : .
— <gv21 _ ga; ) ~ —7.38, 9%1 ~ 0.177 , (3-81)
f7r m m a1

*) This problem was pointed out in Ref. 37) in the context of the discretized model proposed in
Ref. 2).

al
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which are both far from 1.

Note that the experimental value of g,, estimated using 7 decay®® is Gar lexp
0.17740.014 GeV?, and the lattice measurement?) gives ga, [lat ~ 0.21£0.02 GeV?2.
Both of these values suggest that g,, is larger than g,|exp = 0.12 GeV?, though they
are still inconsistent with our numerical result, gq, /g, =~ 2.38. It would be interesting
to calculate the corrections in our model to see if this discrepancy is reconciled.

§84. WZW term

In this section, we study the WZW term (2-34) to obtain some interaction terms
that involve vector mesons. Here again we work in the A, = 0 gauge and write
the five-dimensional gauge field in terms of the differential one-form, A = A, dx* +
A.dz = A,dxt. Tt is useful to first denote the one-form gauge field in (2-25) or (2-32)
as

A=v+a, (4-1)
where
1 o
v= §(A+ +A-) + nz:lv" Yon-1, (4-2)
1 x
a= §(A+—A—)T/)o +n§::lan7/)2n , (4-3)
and

Ay = A5 = AL+ Edest, A =AY =€ ApeTl e dest . (44)
Inserting (4-1) into the Chern-Simons 5-form ws(A) in (2:34), we obtain

/ ws(A)

M4xR

— %/ tr [(A+A_ —A_A+)d(A++A_)+%A+A_A+A_ ‘l-(AE)’,_A_ —A3_A+)}
M4

+/ tr(Sadvdv+adada+3(vza+av2+a3)dv+3[avada] )

M4 xR non-zero
(4:5)

(See Appendix B for details.) Here, [ - |non-zero denotes the contribution from the

non-zero modes that contain terms with at least one vector meson. It is shown in
Ref. 1) that the first line in (4-5), together with the other terms in (2-34), gives
the well-known expression of the WZW term (2-39) that depends only on the pion
field U and the external gauge fields Ay r. The terms in the second line of (4-5) are
the new terms that include the interaction with the vector mesons. As a result, we
obtain

gps _ _ Ne N
s 4872 24072 Jypaup

tr(gdg")°
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N,
—< tr ( 3advdv + adada
2471'2 MA%R
+3(02a+av2—|—a3)dv—|—3[avada] > . (4-6)
non-zero

In the earlier works concerning the incorporation of vector mesons into the WZW
term, there are several adjustable parameters that cannot be fixed by the symmetry
in QCD.*Y (See also Refs. 31) and 36).) Contrastingly, the couplings including
infinitely many vector mesons in (4-6) are completely fixed, and there is no adjustable
parameter. It would therefore be very interesting to determine whether a WZW
term of the form (4-6) is consistent with the experimental data. In the following
subsections, we examine the phenomenology concerning the wvv, mvV, ©VV, vr’
and V73 vertices.

4.1. mov, vV and wVV vertices

Note that wmvv and wv) couplings appear only in the first term of the second
line in (4-5).
We set A = 0 for simplicity. Then, from the expansion (2-32), we have

U:V+2177%[H,dﬂ]+;v"¢2nl+... ’ (47)
o= fi(dﬂ+ V) o+ S o+ (4-8)
™ n=1

Inserting these forms into (4-5), we obtain

/ ws(A) = / tr (3adv dv)
MAXR Tov, TVY MAXR

Tov, TvY
61
= ——/ tr (II (dv"dV + dVdv™)) cyn
fr o
61 "o m
- — tr (11 dv"dv™) cynym (4-9)
T J M4
where
1 1 .
Cyn = 5 dz 0,1b0 Yon—1 = ; dz K™ "Yan—1 , (410)
1 1 _
Congm = 5 /dz 0,00 an—1Vam—1 = - /de Ybon—_10am—1 - (4-11)
Then, using v" defined in (3-5) and the sum rules
Z AYym Cynym = Cyn Z AYyn Cyn = 1 y (412)
m=1 n=1
(4-9) can be written
61 61 o~
/ ws(A) = —/ tr (1 dVdy) — —/ tr (I dv"do™) cynym . (4-13)
MAXR mov, TvY fﬁ M4 fﬂ M4
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More on a Holographic Dual of QCD 1105

It is easy to check that the contributions to the 7% — v+ decay amplitude from
the two terms in (4-13) cancel. This is obvious from the fact that there is no 7VV
vertex in (4-9) that is written in terms of v™ and V.

The mVV vertex comes from Z given in (2-40):

/z
M4

. = /M4 (tl“ [(ARdAR + dARAR)U_ldU — p.C.]

+ tr [dARAU™' ALU ~ pec] )
12
- —Z/ tr (17 dVdY) . (4-14)
fr Jare
Combining (4-13) and (4-14), and, furthermore, rewriting them in terms of v" given
in (3-5) or v" given in (3-16), we obtain

2%

N, N,
D8 ___tYe 7 c / A9
oS Tov, TV, TVV 4872 M4 VYV + 2472 CU5( ) Tov, TvY
N, i
= _47'('2 ﬁ /M4 tr (U dﬂnd{}/m) Cyngym
N. i Y
e /M4 tr (1T d"d5™) cymyn
N. i 5
where
1 1 _
don =5 [ds0B00 v = 1 [de kU (4-16)
and we have used the sum rule
x
Z bvmﬂﬂ-cvnvm = Cyn — dvn . (417)
m=1

We thus conclude that there exist no direct three-point couplings including the ex-
ternal photon field. This demonstrates the vector meson dominance in this sector.

4.2. vr3 and V3 vertices

The v"™m3 vertex comes from the 3 a dv dv, 3 a*>dv and 3lav ada]non-zero terms in
(4-5):

124
/ tr(3 adv dv) = —; / tr (dII dII dITv") cyn (4-18)
M4AXR vmd fﬂ. M4
5 12i .
tr(3a dv—}-S[avada] ) =-—— tr (dI1 dII dIT v™) dyn .
MAXR non-zero o f7r M4

(4-19)
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1106 T. Sakai and S. Sugimoto

From (4-18) and (4-19), we obtain

Jyvg

Rewriting this relation in terms of ™ in (3-5), and using the sum rules

124

v7r3_f_7‘?

(Cvn — dvn) / tr(dU dIl dIl Un) . (420)
M4

s

§ AyppnCyn =1, § ayppndyn = — /dz K™ lyp2 =2, (4-21)
n=1 n=1 3

we obtain

/M4><Rw5(A)

1o .
= (e _dvn)/ tr(dIT dIT dITT") — ﬁ/ tr(dIl dIT dITV) . (4-22)
f? M4 fg M4

The V3 vertex can be read off of Z in (2:40):

/z
M4

vd

/ tr [Ag(dU'U)? — p.c]
M4

Vr3d V3
167
= —— tr (dII dITdITV) . (4-23)
S T
Collecting (4-22) and (4-23), we obtain
N, N,
SDS - _ [ c
s vm3, Vrd 4872 M4 Vrd * 2472 M4XRW5 vm3, Y3
Nc i
= ——=(cyn —dyn I dITdIT o) . 4-24
g (e ) /M4 te(dIT dIT dIT ™) (4:24)

This again exhibits the vector meson dominance. Moreover, if we write the action in
terms of 9", the 9"7® coupling in (4-24) cancels that in (4-15), and we finally obtain

N. 1
SDS ___-'¢ _/ tr (IT do™do™ . ) H5 (4.95
CS | v, oV, 7YV o Va3 FRCIIN r (11 dv"do™) cynym + O(I1°) . ( )

4.3. w— 7% and w — 7T T~ decay

From the coupling (4-25), we can calculate the w — 7% and w — 707" 7~
decay amplitudes. Here, w is the iso-singlet component of the lightest vector meson,
o!. Because of the complete vector meson dominance and the absence of the direct
"3 coupling, the former is given by the vertex w — ©"p, followed by the o™ — ~
transition, and the latter is given by w — 70", followed by v — 27 (see Fig. 4).
These diagrams are identical to those in the Gell-Mann - Sharp - Wagner (GSW)
model,*V) which is known to be in good agreement with experimental data. Let us

examine how it works in our model.
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More on a Holographic Dual of QCD 1107

~-~n
w a W ——d

\7'(' \71'

Fig. 4. The relevant diagrams for (1) w — 7y and (2) w — 7rm.

The calculation of the w — 7%y decay amplitude is analogous to that given in
Refs. 40) and 36), and we obtain

m=1 Myym

2
N? « > Cytym Gym N2 «
0 _ v v™mIv 3 _ 2 3
F(w—>7T’Y)— 3C 647T4f72r<§ 2 |p7r| - 3c 647T4f720v1|p7r| )
(4-26)

where a = €2 /47, and we have used the sum rule (4-12). Here, c,1 plays the role of
the parameter g in Ref. 40) and it is shown there that the decay width is consistent
with the experimental value when g ~ gpm.*) Remarkably, this is exactly what we
have in our model. In fact, it can easily be shown that, in general,

Cyn = Gunrgr (427)

using (2-12) and integrating by parts in the expression for gynrr given by (3-21) and

(3-12).
0+

Similarly, the w — 7°7 ),40)

7~ decay width is36

INw— 197T77) = 1977;‘;3

[ 4545 0 Pia, - (ay - 07 sl
(4-28)

where E1 are the energies and g, are the momenta of 7% in the rest frame of w,
and

o0

Ne Z
Fw_>37|— = — C’Ul’[)”g’l)nﬂ'ﬂ'
A2 f,
n=1

1 1 1
x + + ,
(mgn g+ +0-)? mn+ (- + ) mn+ (g0 + Q+)2)
(4-29)

where qo and ¢+ are the four momenta of 7° and 7+, respectively. The results of our
numerical analysis suggest that the n = 1 term dominates the sum. If we replace
the entire sum with this single term, the expression for the decay width in (4-28)

) A recent experiment value* is I'(w — Wov)’ ~ 0.757 MeV, which implies ¢, |exp =~ 5.80.
exp
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1108 T. Sakai and S. Sugimoto

becomes the same as that in Ref. 36) with the parameters g and ¢; (i = 1,2, 3) chosen
as
9 2
- W%ﬂ = byt prCotyt 4 (4-30)
m?,

and ¢; — cp = cg = 1. It is shown in Refs. 40) and 36) that the decay width is
consistent with the experimental results again with g ~ g,.». Note that the right-
hand side of the relation (4-30) is the main contribution on the left-hand side of
(4-17). If we approximate (4-30) with (4-17), the relation (4-30) is replaced by

g Cyt —dyt = Gyipr — dyt (4-31)

where we have used (4-27). We have found numerically that d,: is much smaller
than c,1, as seen in (4-32). This implies that g =~ gyrr, as desired.
Here we list the results of our numerical estimations of several quantities:

H K Cylyn n_l/vanmr Iil/QCvn Iil/den
0.202 1.58 0.415 0.0875
—0.0992 —0.0964 —0.109 0.0485 (4-32)
0.0284 0.00619 0.0160 —0.0367
—0.00618 —0.000880 —0.00408 0.00887

=W N 3

As a check, we note that the numerically determined value of (4-30) is g ~ 0.319 k12,
while that of (4-31) is g ~ 0.328 x~'/2. Tt is found that the above approximation
gives reasonable results, though they are not extremely close to g,1,, >~ 0.415 k12,
If we use the value of  in (3-40), the parameter g in (4-30) is estimated as g ~ 3.69,
which is about 64% of the experimental value of g,qr.

To determine the extent to which the result is affected by including the contri-
butions from n > 1 terms in (4-29), let us estimate the decay width by performing
the integration in (4-28). By using (3-40) and the experimental values N, = 3,
my+ ~ 140 MeV and m_o >~ 135 MeV, we obtain

I(w — 77 7% o~ {2.48, 2.58, 2.58, 2.58,---} MeV . (4-33)

Here, I';(w — 3m) denotes the decay width with the exchange of the v™ (1 <n < k)
vector mesons incorporated in (4-29). Therefore, the contribution of the p meson
exchange dominates the sum. Unfortunately, this value is much smaller than the
experimental value, I'(w — 777779 |exp = 7.56 MeV.34) This is mainly due to the
smallness of the coupling g estimated above.

§5. Vector meson dominance revisited

In the previous sections, we have shown that our model exhibits the vector meson
dominance by examining the couplings with the external gauge fields one by one.
Here we present a more systematic way to understand why it works.

In this subsection, we work with the expansions given in (2-19) and (2-11). We
can gauge away o™ in (2-11) without changing the asymptotic condition (2-18).

220z 1snbny 0z uo 1senb Ag G068581/€80L/S/1 L L/ejonue/did/woo dnoolwepeoe)/:sdyy woly pspeojumoq



More on a Holographic Dual of QCD 1109

Then, these expansions are written as

A,u = V,u + A,u¢0 =+ Z 'UZ ¢2n—1 + Z aZ Yon (5'1)
n=1 n=1

where IT denotes the pion field ¢(®) in (2-11). Note that vy, a,; and II in these
expansions are not exactly equal to those appearing in §§3 and 4, but they are
related through certain field redefinitions. If we rewrite the expansion (5-1) in terms
of vj; and aj, given in (3-5) and (3-6), we have

A,LL = V,u wv + A;ﬂﬁa + Zbﬁ w2n—1 + ZaZ w2n ; (53)
n=1 n=1
where*)
¢v =1- Z aVU"an—l , wa = 7/]0 - Z aAa”¢2n . (5'4)
n=1 n=1

Note that it can be shown using (2-13) and (3-4) that

0= /dz K_l/Swvwm = /dz K_1/3¢a¢m (5'5)

for all m. Equivalently, we have

0:/de‘l/%Uf:/de‘l/?’waf (5-6)

for an arbitrary normalizable function f(z). From this fact, we immediately see that
if we write the action in terms of vj; and aj; defined in (3-5) and (3:6), many of the
couplings that include V), or A, vanish. In fact, following the procedure described
in Appendix A, we obtain

1 1
v [ | GEE | < L— ((E)? + (Fi)?)
1 o ~n ) ~n\2 1 B ~n ) ~n\2
+§( wUy — V'U,u) +§( nly — Va’,u)
+(a/ﬂ71rxl - (9V'17LL)([?JP“7 0] gunopya + [@P,@% ] gynavad)
+(Ouay, — Ovay)([VP*, a®] — [V, aP*]) guraras
1 ~
5 [T TN, 5] gumomoron
1

+§ [aLn7 aﬁ] [Epﬂa ’dqu] Jamanarat

*) The infinite sums in (5-4) should be regarded as formal expressions, since they do not uni-

formly converge to smooth, normalizable functions. In the following, we take the limit of an infinite
sum after performing the integration over z.
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1110 T. Sakai and S. Sugimoto

+([o vl at] + [y, ap] [, a)

- [5;”?65] [WV’EL’QM]) Gumoynapad | - (57)

[See (A-24) for the definition of the four-point coupling constants.] This shows that
all the couplings between the external gauge fields (Ar, Ag) and the vector meson
fields (v™,@™) vanish in the first term of the effective action (2-6). Here we have used
the relations

/{/dz K_1/3¢21/JZ” = /{/dz K_1/3711a¢6171 ,  (forn>1,m>0) (5-8)
n/dz K3 ynym = /i/dz K=Y3¢pp, . (form > 1, n>0) (5-9)

which can be shown by using (5-6), and we have set

e 2= %/de_l/?’i/)v(l +1p2) .

This is divergent (or ill-defined), because 1, is a function that approaches 1 at
z — ZFo0.

It is important to note that we cannot conclude that ¢, = ¢, = 0 from the
relation (5-6). Actually, using (2-12) and (2-13), one can show

r [d 0.0, 0utm1 = ~Danmaavin (510)
n/de({)zi/)a 0 M9n = —AanGAqn (5-11)
Then, the second term in the effective action (2-6) is calculated as

/dz tr KF2

= tr [min (@ — ayenV)? + min (@ — anan Au)? + (00,17 + frAu)?

+ 2igamv”7r fdlzn[n,ﬂn ] — 2gv”7r7rv [H 8“]7]

— Cangm [, a ][H a” ]—cvnvm[ﬂ,ﬁm[ﬂ,’ﬁ”“]] , (5-12)
where
1
Cqngm = — /dz K_1¢2n'l/)2m . (513)
T

Here, we have used the relation (4-27), as well as the fact that ggm,n, defined in
(3-72) is equal to

Gamong = f7r /dz ¢2mazw2n—l s (514)
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which can be shown by using (2:12). The mesons couple to the external gauge fields
only through the v — V and a" — A transitions in (5-12).

The expression for the WZW term can also be simplified by using the expansions
(5-3) and (5-2). It is easy to see that all the terms including V,, and A,, vanish because
of the relation (5-6). This demonstrates the complete vector meson dominance in
the WZW term. Moreover, because the pion field IT appears only in (5-2), the terms
with two or more pion fields vanish, as we partly observed in §4.2. Inserting (5-3)
and (5-2) into (2-8), we obtain

N
SSS = _4_7:2% /M4 tr [U dB"dB™ ¢y
+ IT (dB™B" B + B™B"dB") ¢y + 1T B™ B" B B cmnpq}
N, 3
+ 553 L [BmB”dBp dypnip = 5 B" B"B'B" dmnp‘q] . (515)

where B?"~1 =", B?" = @" and

1 1
Cmn = ; /dZK_1¢m¢n 5 Cmnp = ; /dZK_lme/)nwp )

Cmnpq =

/ dz Kbty |

1
T
dmn\p = /dz (wnazwm - wmazwn) wp ) dmnp\q = /dz wmwnwp 32% i (5'16)
§6. Summary and discussion

In this paper, we computed the effective action including the pion, the vector
mesons and the external gauge fields associated with the chiral U(Ny)r, x U(Ny)r
symmetry, based on the D4/D8 model proposed in Ref. 1), which is conjectured to be
a holographic dual of large N. QCD with Ny massless flavors. We estimated various
coupling constants numerically and compared these values with the experimental
values. The agreement was, of course, not perfect, but we think that it is good
enough to believe that our model nicely captures the expected features of QCD even
quantitatively.

One of the major issues addressed in this paper is vector meson dominance.
An intuitive explanation for this phenomenon in our model is as follows (see also
Ref. 16)). As seen in §5, the external gauge fields appearing in (5-3) have support
only at the boundary, corresponding to z — +oo, while the pion and the vector
mesons correspond to the normalizable modes, which vanish as z — +oo. Therefore
the external gauge fields cannot couple to the mesons, unless the divergent factor K
in the second term of (2:6) picks up the contribution in the z — +oo limit. For the
second term of (2:6), we know that the fields vj; are the mass eigenmodes and hence
that the fields vj; mix with V.

We have found various useful sum rules among the masses and the coupling
constants of an infinite tower of vector mesons. These follow from the complete-
ness condition of the mode functions (3-13). As far as we have determined, the
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1112 T. Sakai and S. Sugimoto

contribution from the p meson is always the most dominant term in the sum rules.
Approximating these infinite sums with the contribution from only the p meson, we
obtained KSRF-type relations in §3.4 and, furthermore, the approximate p meson
dominance and p meson coupling universality, as explained in §3.5.

In order to make more reliable predictions, we must take into account the string
loop corrections and the o’ corrections and also go beyond the probe approximation.
It would be quite interesting to see how our results for the KSRF relations, the Wein-
berg sum rules, the a; meson decay amplitudes, etc., are improved by incorporating
such corrections. (See a forthcoming paper, Ref. 42) for a discussion along this line.)
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Appendix A
—— The Effective Action (DBI Part) ——

Here we calculate the field strength of the gauge field appearing in (2-25) and
(2:32):

1 - N
A = GAS, + Af) + (A5 — A5 )00+ 3 vl vancs + > ol v

n=1 n=1
= 9;1 + «Z,ﬂﬁo + Z ULL hon—1 + Z CLZ Yon (A'l)
n=1 n=1
where
~ 1 ~ 1 _
V, = 5<A€+ + A%, A= 5(145@ — A% (A-2)

In the 5;1 = ¢ = ¢ll/fx gauge, we can expand these fields as

V.=V, +2f2[n,aun]_%[n,,4ﬂ]+--- : (A-3)
A, = A, +fan—f[n,vﬂ]+---. (A-4)

Then, the field strengths are obtained as

z,u =0 Au = AH + Z'U Oz tbon—1 + Za 0 on (A5)
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and
Fo=0,A, —0,A,+ AL A =F, e + Fu i’ (A-6)
F = FV + [A, A2 + Z DV = DYvi) a1
even n>1
+ Z([A/L7 G’Z] l/7 u])¢0"¢2n
n>1
+ ) g v Wonatbam + Y lagk alantom . (A7)
n,m>1 n,m>1
Fu| = (DY A, — DY Ao + Z(D}ja’; — DYal s
n>1
+Z([A\M7UIT}] l/7 /j,])’l/}()an 1
n>1
+ Y (i al] = h ap ) demtan-1 (A'8)
m,n>1
where F),, and F),, denote the parts that are even and odd under z — —z,

respectively, and we have defined
FY, =0V — 0V + VW], DYx=0,+ V. (A-9)
The following are useful relations here:
~ PN 1 B B PN
oo M AU = S(E PR e + & Ffesh) = Ay, A= 4f) . (A10)
~ o ~ 1 3
Dy A, = DY A, = S(Ec R — 6 Fure) . (A-11)
The action (2:6) is calculated as follows. The second term in (2:6) is
4
2 1 2 n\2 2 n\2
m/deteru =tr |:—I<&.A'u + myn (v;)° + mgn (ay;) ]

f2
TUT0U) + min (v)” + men (ay)?

2
+%(A%M + A%m —2U A, UAL

—248U0, Ut - 245U10,U) (A-12)

where we have used the relation (2-37). The first term in (2-6) is more complicated.
We segregate it into terms of equal orders in the vector meson fields (v au) as

2 2
/3.2 _ ~1/3
ﬁ/dz§K / trFW—/i/dz§K /3tr [wa odd:|

= ,C(aﬂ))o + L(aﬂ))l + 'C(a,v)z + ,C(aﬂ)):s + [’(a,v)4 s (A13)
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1114 T. Sakai and S. Sugimoto

n

where L, ,)m denotes the terms with m vector meson fields vy,

zero terms are

and aZ. The order
1 1 ~ 2
Ly = & / dz S K~ [ <§<5+Fm+1 + € Futest) = [Au, A1 - w§)>

2
(e aren)'s

— tr | = ((FA9)? + (FAm)2) + 2Zmg - pAry AR

2e2 4

bV7r7r
2

1
2e

(ELFAre ! + e FArReTH[ A, AY] +

o

[«IMVFI ., (A14)
where

4
byrn = lﬂ:/dz K31 —43), e’ = H/dz K= Y3@1—¢2)?.  (A15)

e 2= f/de—1/3(1+z/z§) ,

Here, e 2 is divergent, and we should cut off the z integral to make it finite. Hence,
the divergent part Lgj, consists simply of the kinetic terms of Az, and Ag,:

1
Ldiv = 5oz T [(FOE)? + (Fom)?] . (A-16)

The terms linear in UZ or aﬁ are

E(a,v)l =tr [ <%(£+FAL ‘L”jgll + gFAR'LWE—l)>

x ((DRop = DY) aven + (A al] = [y, ) ann )

- [./Zl\“, A\V] ((D}jvg — DY vjy) byngr + ([“Zl\m a,] — [.,Zl\,,, ay]) ba”ﬂmr)

vu

! G@F et £F"‘R“”£‘1>)

x ((DYag = DYa) aaan + (A v2] = [Au, 03]) (aven = bonen)) ] ,

(A-17)

where

ayon = / G2y | apan = & / dz K=Y3gipon | (A-18)

bynnn = /i/dz K™ Y39 1(1 —92) . bangrn = m/dz K™ Y34gthan (1 — 12) .
(A-19)

220z 1snbny 0z uo 1senb Ag G068581/€80L/S/1 L L/ejonue/did/woo dnoolwepeoe)/:sdyy woly pspeojumoq



More on a Holographic Dual of QCD 1115

The terms quadratic in (vj;, ay,) are

n V, ny2
Uy _Dl/vu)

—~
S
T

1
ﬁ(aw)Q =tr 5

)

([Aw, ap] — [-ZwaZ])([vZ{“aamy] - {-’vaam“]) Canammm

N | =

v

<3

— DY) ([AF, a™] — [, a™H]) cyngmn

(§+FAL /M/g;l + €_FARMV€:1) ([UZ’,U;}] + [GZ7GZ])

+ o+ o+
>
T

N[ =

)

AT ([0 0] (B — Comman) + [0, @) (S — Canamnn))

[
+ l(D\A} n —Di; n)2
o\ Hny vy
L.+ n T .n A, mv vo.m
+ 5([ uavu] - [AV,UM])([AM,U ] ['A v M]) Corvmar
+ (DYag — DY) ([A#, 0] — [, 0"]) cungrn
1 V¢— V¢— n m n m
5 (G Pt — € PARETY) ([u ) — o a]) onarn |
(A-20)
where
Cyngmpg = H/dZ K71/3¢0¢2n—1¢2m )
Canamum = H/dz K_1/3¢(%¢2nw2m >
Commnn = [ de K01t (A21)
Similarly, £(44)3 and L, ) are
[’(aﬂ))3 =tr (DEU;L - DI?UZ) ([P H, 0] gynypya + [aPF, aT"] gynapaq)
+ ([“Zl\lu G’Z] - [ AV? aZ]) ([vp,u7 v V] Ganvypya + [apua a’ V] ga”apaq)
+ ((DZ 17} - D},}CLZ) Guranaa + ([/zl\/u 'Uij] - [A\Vu 'UZD ga‘lvl’v”)
x ([P#,a®] = [P, a?M]) |, (A-22)
and

1 1
E(a,v)4 —u [5[1};’17 v | [P H, 017 gymonpys + E[azlv ay)la’*, a?”] ggmanraras
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1116 T. Sakai and S. Sugimoto

+ ([o vl a®] + [, ab] [, a®”] = v, ab] [V, a®"]) gomynavas |

p o Gy
(A-23)
where
Gonwppa = Ii/dz K Y340, 14bop_19bag—1
dirarar = 10 [ K iyt
Janvpyd = K;/dz K39 0anthap—1ag—1
Jararad = Ii/dz K Y3 0panthapthay
Gumynyppys = H/dz K1Y 3% 1tban—1%2p— 11021
Jamanaras = K / dz K~ Y30 banibapibag |
Gumynapas = /‘é/d?«’ K™Y 3% 1tpan—10apihag - (A-24)

Appendix B
—— Calculation of [, ws(A) ——

Here we outline the derivation of (4-5). Because we are working in the A, = 0
gauge, we have

ws(A) = tr (AdAdA + gAE‘dA) . (B-1)
We then find

/trAdAdA—/tr v+ a)d(v+a)d(v+a))
5

/tr (vdvda +vdadv + advdv+ adada)
5

/tr d(vdva+vadv)+3advdv+ adada)
5

%/4tr((A+A_ —A_ A+)d(A++A_))+/5(3advdv—|—adada) ,
(B2)

/tr A3dA = /Str(v +a)3d(v +a)

5

:/tr((v3+va2+ava+a2v)da+(an—i-vav—i-an—i-ag)dv)
5
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More on a Holographic Dual of QCD 1117

tr (2(v2a—|—av2—|—a3)dv—|—2avada—d(v3a+va3+ava2—|—a2va))

Il
o~

= /tr (v*a+av* +a*)dv +avada)
5

_ %/tr (Ap + A3 (As — A+ (As + AN (A4 — AL)) . (B3)
4

The first line on the right-hand side of (B-3) contains some terms that do not include
vector mesons:

2 [travada) = g [er((As = A-poy + A)(As = AJind ((Ar = A-)bo)

+2/ [tr(avada)}
5 non-zero

tr ((Ap + A_)(Ap — AZ)) + 2/ [tr(avada)}

12 J4 5 non-zero

(B-4)

As above, [--:]|non-zero e€xtracts the terms that include at least one vector meson.
Then using (B-4), (B-3) can be rewritten as

/trA3dA:2/tr ((v2a+av2+a3)dv+[avada} )
5 5 non—zero

- é /tr [%A+A_A+A_ + (AYA_ — A3A+)] . (B5)
4

Finally, combining (B-2) and (B-3), we obtain (4-5).
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