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1 Introduction and summary of results

The application of the crossing symmetry to finding the critical exponents of the O(N)

model in the context of ε-expansion, dates back to 1973 in the seminal works of [1–3].

A recent study in [4] extended the results of Polyakov [1] for the next to the leading

order calculation in the epsilon expansion. Other modern methods have also been been

explored [5–12]. On the other hand, a significant amount of work has been done on the con-

ventional bootstrap approach [13–34]. Of these, notable works regarding the O(N) vector

models include [35–42]. While the main features of these works involved the developments

of the conformally invariant OPE for the O(N) models, these works were focussed on the

perturbative developments as 1/N expansion or the ε−expansion for example. But a formal

non perturbative development of the conformal bootstrap program for the O(N) models

was yet to be developed. With the explicit expressions of the conformal blocks in [43, 44]

and the subsequent works, it was possible to analyze the modern and conventional boot-

strap numerically to find various bounds on the operator dimensions, central charges and

coupling constants (i.e. the OPE coefficients) as discussed in [45–48] and so on.

Recent numerical studies [49–53] have shed more light on the non perturbative regime

of the O(N) models where they have showed that it is possible to obtain results of the

dimensions of certain operators for finite N case which resembles realistic models e.g the

Ising model. Meanwhile, on the analytical side, the authors of [54] have shown that it is
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possible to analytically explore a certain regime of the spectrum dominated by the large

spin sector of operators. A similar argument regarding the leading twist behaviour of the

large spin sector was also forwarded in [55]. The authors showed that with the stress tensor

in the spectrum, the bootstrap equation can be satisfied by an infinite tower of large spin

operators with twists given by,

∆ = 2∆φ + 2n+ `+ γ(n, `) , (1.1)

where ∆φ are the conformal dimensions of the external scalars and γ(n, `) are the anomalous

dimensions for these operators. For more related works see [56–58]. While the authors

have considered a special case for n = 0, the subsequent works [59, 60] have extended this

calculation for the n 6= 0 case. In these papers, it was shown that it is possible to obtain

exact analytical expression for the anomalous dimension in terms of the twist (n) and also

that an universal contribution of the anomalous dimension can be extracted in the limit

when `� n� 1 given by a generic form,

γ(n, `) ∝ nd

`d−2
, (1.2)

In a more recent work, [61], the authors have extended this analytical technique of [54]

in the case of the O(N) model for the special case of n = 0. An additional complication

for the O(N) case is that the OPE contains trace, and antisymmetric-traceless objects in

addition to the usual symmetric-traceless piece. In general,

φi(x)× φj(y) =
∑
O∆,`

C∆,`
ijk O

k
∆,` , (1.3)

where now, Ok∆,` include all the operators as trace, symmetric-traceless and antisymmetric-

traceless ones. Thus a generic four point function of the fundamentals of the O(N) can be

reduced in terms of these tensor structures,

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 = δijδklI(u, v) +

(
δikδjl + δilδjk −

2

N
δijδkl

)
S(u, v)

+ (δikδjl − δilδjk)A(u, v) , (1.4)

where I(u, v), S(u, v) and A(u, v) are the conformal blocks for the exchange of trace,

symmetric-traceless and antisymmetric-traceless objects. By imposing a crossing symmetry

, the large spin sector of the corresponding trace, symmetric-traceless and antisymmetric-

traceless operators in the crossed (t) channel can be written in terms of a linear combination

of I(u, v), S(u, v) and A(u, v) appearingin the direct (s) channel. Finally analysing each of

these contributions arising from these constraint equations, we can solve for the anomalous

dimensions of the operators of the large spin sector in terms of the contributions of these

minimal twist operators in the direct channel.

Before moving on to summarize our findings, we would like to put forward, example

set up of a bulk calculation for an O(2) model where the analog of the O(2) scalars on the

CFT is a complex charged scalar coupled to an U(1) bulk gauge field and gravity. The
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effective potential for the scalar in presence of the graviton and the gauge field interaction

following [62] is thus given by,

Veff [φ, φ†] = Vqart[φ, φ
†] +

κ

2
AµJµ[φ, φ†] +

κ

4
hµνTµν [φ, φ†] , (1.5)

where Vquar[φ, φ
†] is the scalar interaction. In presence of the graviton and the gauge

interactions, the anomalous dimensions for the generalized free fields in bulk AdS5 are

given by in terms of shifts in the binding energy, in the semi-Newtonian approximation as

an expansion in the inverse distance. We would like to point out that in this analysis we

are not assuming a bulk description of the O(2) model itself. Since O(2) is not a large N

theory, hence the correct description of the bulk dual is not the classical gravity residing in

AdS but the full type II B superstring theory in ten dimensions. Instead we are assuming

that we still have a large N theory with a gravity dual and the O(2) model is a perturbation

on this large N theory. Also the deformation introduced by the O(2) theory both in the

bulk and the boundary is negligible so that there is no deviation of the boundary theory

from the conformal fixed point.

Summary of the results. We summarize below our findings of the present work as

well as clarify on the notations pertaining to the work. We will be working in the regime

` � n � 1. By equating the contributions of the minimal twist operators as the stress

tensor Tµν , current Jµ and the singlet (ε) and the symmetric-traceless (tij) scalars , we find

that the anomalous dimensions for the trace, symmetric-traceless and the antisymmetric-

traceless operators in the large spin (`� 1) sector are given by:

γI,`n = AT
PT n

4

`2
+AJ (N − 1)

PJ n
2

`2
+Aε

Pε n
2yε

`∆ε
+At

(N2 +N − 2)

N

Pt n
2yt

`∆t
,

γA,`n = AT
PT n

4

`2
+AJ

PJ n
2

`2
+
Aε Pε n

2yε

`∆ε
−At

(N + 2)

N

Pt n
2yt

`∆t
,

γSn = AT
PT n

4

`2
−AJ

PJ n
2

`2
+Aε

Pε n
2yε

`∆ε
+At

(N − 2)

N

Pt n
2yt

`∆t
, (1.6)

where

AT, J, ε, t = − Γ(2y + 1)Γ(2y + 2)

Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

Γ(∆φ)2Γ(∆φ − 1)2 (1.7)

and y = `m + τm
2 − 1, can take values 2, 1, ∆ε−2

2 and ∆t−2
2 for stress tensor, current,

singlet scalar and symmetric tensor scalar respectively.

For the sample O(2) model, the shifts in the binding energy from the bulk side due to

the gravity and the gauge interactions are,

δEorb = −16πGN
Ω3

n4

`2
, (1.8)

and,

δEJorb =
κ2g2

2π2

n2

`2
. (1.9)
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which matches with the boundary calculation for the O(2) models with a specific

matching between the bulk and the boundary quantities. The above contribution due to

the current is for a particular set of large spin operators. This sign flips for the other set

of operators.

The remaining paper is organized as follows. In section (2) we review the details

of [61] as well as extend the analysis for the anomalous dimensions in the case of non zero

twists (n) considering separately the cases of the stress tensor, conserved current and the

singlet and the symmetric-traceless scalars. Section (3) describes the form of the anomalous

dimensions for the large spin operators for the limit `� n� 1 case. Note that the leading

universal term in this case, depends on the twist (n) and a certain combination of the

minimal twist τm and the spin `m of the minimal twist operators. We plot the behaviour

of the anomalous dimensions for the case when the minimal twist operator is either the

stress tensor Tµν or the conserved current Jµ. In section (4), we establish the known

results in the literature about the large spin double twist operators in an ε−expansion

from the conventional bootstrap. The results in this section are in complete agreement

with the previously well known results in [64] and so on. The next section (5) describes

the holographic counterpart of the calculations for the example case of the O(2) model.

We explain the details and the subtleties involved in the calculation and also point out the

mapping between the corresponding quantities in the bulk and boundary theory. We end

the paper with a discussion on the possible future works and directions.

2 O(N) fundamentals

In this section we will use the conformal bootstrap for CFTs with an O(N) symmetry. The

details can be found in [45–53, 61]. We focus on theories containing a scalar field φi in

the fundamental representation of O(N) in d = 4. Our goal is to compute the anomalous

dimension γ(n, `) for the double-twist operators, defned in [61] for non zero n. We begin by

writing the four point correlation function 〈φi1(x1)φi2(x2)φi3(x3)φi4(x4)〉 in the s-channel

and t-channel. The equality of s-channel and t-channel gives the bootstrap equation [61],(u
v

)∆φ

It(v, u) =
1

N
Is(u, v) +

(
1− 1

N

)
As(u, v) +

(
1 +

1

N
− 2

N2

)
Ss(u, v) ,(u

v

)∆φ

At(v, u) =
1

2
Is(u, v) +

1

2
As(u, v)− 1

2

(
1 +

2

N

)
Ss(u, v) ,(u

v

)∆φ

St(v, u) =
1

2
Is(u, v)− 1

2
As(u, v) +

1

2

(
1− 2

N

)
Ss(u, v) . (2.1)

We focus on the regime u � v � 1. In the (12)-(34) channel we have contributions from

the identity operator, singlet scalars ε, symmetric tensor scalars tij , the current Jµ and

the stress tensor Tµν . We assume the current and stress tensor to be conserved, so that

they are at the unitarity bounds. In the limit u � v � 1 the s-channel blocks take the

following form,

Is(u, v) ≈ 1 + Pεg∆ε,0(u, v) + PT gd−2,2(u, v) ,

As(u, v) ≈ PJgd−2,1(u, v) ,

Ss(u, v) ≈ Ptg∆t,0(u, v) . (2.2)

– 4 –



J
H
E
P
0
6
(
2
0
1
6
)
1
3
6

Here gτ,` is a conformal block for an operator exchange of twist τ and spin `. In the

(14)-(32) channel we have three types of double-twist operators:

OIn,` = φi�
n∂`φi, OAn,` = φ[i�

n∂`φj], OSn,` = φ(i�
n∂`φj) −

1

N
δijφk�

n∂`φk. (2.3)

The cross-channel conformal blocks are given by,

It(v, u) ≈
∑
`+

POI`
g2∆φ+2n+γI (v, u) ,

At(v, u) ≈
∑
`−

POA`
g2∆φ+2n+γA(v, u) ,

St(v, u) ≈
∑
`+

POS`
g2∆φ+2n+γS (v, u) . (2.4)

Here the notation `+ and `− means that the sum runs over even and odd spins respectively.

The leading contributions of (2.1) in the limit u� v � 1 give,

1

N
≈
(u
v

)∆φ

It(v, u) ,

1

2
≈
(u
v

)∆φ

At(v, u) ,

1

2
≈
(u
v

)∆φ

St(v, u) . (2.5)

As shown in [54] if we write the cross-ratios as u = zz̄ and v = (1− z)(1− z̄) then at large

` in the 14-23 channel, the `, z dependence of a conformal block separates from the τ, v

dependence. Then we can write the above as,

1

N
≈
∑
τ

(
limz→0 z

∆φ
∑
`+

POIk2`(1− z)

)
vτ/2−∆φ(1− v)∆φF (d)(τ, v),

1

2
≈
∑
τ

(
limz→0 z

∆φ
∑
`−

POAk2`(1− z)

)
vτ/2−∆φ(1− v)∆φF (d)(τ, v),

1

2
≈
∑
τ

(
limz→0 z

∆φ
∑
`+

POSk2`(1− z)

)
vτ/2−∆φ(1− v)∆φF (d)(τ, v). (2.6)

Here kβ(x) = 2F1(β/2, β/2, β, x). Since F (d)(τ, v),1 around small v begins with a

constant [54, 60], we have τ = 2∆φ + 2n in the spectrum. By matching the contribution

of the l.h.s. to the r.h.s. of (2.6)we get ,

NPOIn,`
= POAn,`

= POSn,`
= P∆φ,∆φ

. (2.7)

The MFT coefficients take the following form [54],

P∆φ,∆φ
(n, `) =

(1 + (−1)`) (∆φ − 1)2
n (∆φ)2

n+`

`!n! (`+ 2)n (2∆φ + n− 3)n (2∆φ + 2n+ `− 1)` (2∆φ + n+ `− 2)n
,

(2.8)

1We will be working in d = 4 . However we can generalise this to genral d.
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where the Pochhammer symbol (a)b = Γ(a + b)/Γ(a). In the large ` limit one can

approximate

P∆φ,∆φ

`�1
≈ q∆φ,n

√
π

22∆φ+2n+2`
`2∆φ−3/2 , (2.9)

with

q∆φ
=

8

Γ(∆φ)2

(1− d/2 + ∆φ)n
2

n!(1− d+ n+ 2∆φ)n
. (2.10)

Now we focus our attention on the subleading corrections to the bootstrap equa-

tion (2.1).The subleading corrections are characterized by the anomalous dimension γ(n, `)

and the twist is given by τ(n, `) = 2∆φ+ 2n+γ(n, `). We need to match the coefficients of

the terms vn logv on both sides of (2.1) to find the corrections to the anomalous dimensions.

One should refer to [54, 55, 59] for the details. We will have four different contributions

from the singlet scalars ε, symmetric tensor scalars tij , the current Jµ and the stress tensor

Tµν (2.2). While computing γ(n, `) we will frequently encounter the following the sums Ai
and Bi.

Ai =
1

8
Γ

(
∆φ −

τm
2

)2 n∑
α=0

γn−α,i
q∆φ,n−α( τ2 − 1)2

n−α
(τ − 2)n−α(n− α)!

,

Bi = −Pi
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

(`m + τm
2 )n

(n!)2

2

(2.11)

×3F2

[{
− n,−n,−1−`m+∆φ−

τm
2

}
,

{
1−`m−n−

τm
2
, 1− `m − n−

τm
2

}
, 1

]
,

where,

γ(n, `) =
γi,n
`τm

. (2.12)

and i = T, J, ε, t for the stress-tensor, current, singlet scalar and symmetric tensor ex-

change respectively. in the O(N) model, the bootstrap equation (2.1) is augmented by

N -dependent factors as we write below for various cases.

2.1 Stress-tensor exchange

For stress tensor exchange in d = 4, τm = d− 2 = 2 and `m = 2 and P = PT . We have the

following equations for γT,n
I , γT,n

A and γT,n
S respectively:

1

N
AT =

1

N
BT ,

1

2
AT =

1

2
BT ,

1

2
AT =

1

2
BT . (2.13)
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For n = 0, we have

γIT,0 = −
PTΓ (∆φ) 2Γ (2lm + τm)

4Γ
(
lm + τm

2

)
2Γ
(
∆φ − τm

2

)
2
,

γAT,0 = −
PTΓ (∆φ) 2Γ (2lm + τm)

4Γ
(
lm + τm

2

)
2Γ
(
∆φ − τm

2

)
2
,

γST,0 = −
PTΓ (∆φ) 2Γ (2lm + τm)

4Γ
(
lm + τm

2

)
2Γ
(
∆φ − τm

2

)
2
. (2.14)

Thus the corrections due to stress-tensor exchange are negative.

2.2 Current exchange

Here τm = d − 2 = 2 and `m = 1 and P = PJ . We have the following equations for γJ
I ,

γJ
A and γJ

S respectively:

1

N
AJ =

(
1− 1

N

)
BJ ,

1

2
AJ =

1

2
BJ ,

1

2
AJ = −1

2
BJ . (2.15)

For n = 0, we have

γIJ,0 = −(N − 1)
PJ
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 ,

γAJ,0 = −PJ
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 ,

γSJ,0 =
PJ
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 . (2.16)

The signs of anomalous dimensions depend on the representation of the operator.

2.3 Singlet scalar exchange

Here τm = ∆ε and `m = 0 and P = Pε. We have the following equations for γε
I , γε

A and

γε
S respectively:

1

N
Aε =

1

N
Bε ,

1

2
Aε =

1

2
Bε ,

1

2
Aε =

1

2
Bε . (2.17)
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For n = 0, we have

γIε,0 = −Pε
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 ,

γAε,0 = −Pε
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 ,

γSε,0 = −Pε
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 . (2.18)

2.4 Symmetric tensor scalar exchange

Here τm = ∆t and `m = 0 and P = Pt. We have the following equations for γt
I , γt

A

and γt
S :

1

N
At =

(
1 +

1

N
− 2

N2

)
Bt ,

1

2
At = −1

2

(
1 +

2

N

)
Bt ,

1

2
At =

1

2

(
1− 2

N

)
Bt . (2.19)

For n = 0, we have

γIt,0 = −
(
N2 +N − 2

N

)
Pt
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 ,

γAt,0 =

(
N + 2

N

)
Pt
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 ,

γSt,0 = −
(
N − 2

N

)
Pt
4

Γ(τm + 2`m)

Γ( τm2 + `m)2

Γ(∆φ)2

Γ(∆φ − τm/2)2 . (2.20)

Here also we have corrections of either sign. Thus (2.14), (2.16), (2.18), (2.20) reproduces

the results given in [61].

2.5 Pattern for Anomalous dimensions for n 6= 0

Now we want to compute γn for non zero n. We will consider the corrections due to stress

tensor, current, singlet scalar and symmetric tensor exchange separately. For stress-tensor

we have,

γI,A,ST,n =

n∑
m=0

Cn,mB
T
m . (2.21)

For current,

γIJ,n = (N − 1)
n∑

m=0

Cn,mB
J
m ,

γAJ,n =
n∑

m=0

Cn,mB
J
m ,

γSJ,n = −
n∑

m=0

Cn,mB
J
m . (2.22)
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For singlet scalar,

γI,A,Sε,n =

n∑
m=0

Cn,mB
ε
m . (2.23)

For symmetric tensor,

γIt,n =
(N2 +N − 2)

N

n∑
m=0

Cn,mB
t
m ,

γAt,n = −(N + 2)

N

n∑
m=0

Cn,mB
t
m ,

γSt,n =
(N − 2)

N

n∑
m=0

Cn,mB
t
m . (2.24)

where

Bi
m = −Pi

4

Γ(τm + 2`m)

Γ( τm2 + `m)2

(`m + τm
2 )n

(m!)2

2

×3F2

[{
−m,−m,−1−`m+∆φ−

τm
2

}
,

{
1−`m−m−

τm
2
, 1−`m−m−

τm
2

}
, 1

]
,

(2.25)

and

Cn,m = (−1)m+n Γ(∆φ)2

(∆φ − 1)m
2

n!

(n−m)!

(2∆φ + n− 3)m
Γ(∆φ − τm/2)2

. (2.26)

It is evident that the corrections to the anomalous dimensions can have either sign de-

pending on the nature of the double-twist operators in the spectrum and also on N . The

corrections to the anomalous dimensions for different operators add up to the following,

γI(n, `) =

n∑
m=0

Cn,m

(
PT
`d−2

+ (N − 1)
PJ
`d−2

+
Pε
`∆ε

+
(N2 +N − 2)

N

Pt
`∆t

)
Bm ,

γA(n, `) =
n∑

m=0

Cn,m

(
PT
`d−2

+
PJ
`d−2

+
Pε
`∆ε
− (N + 2)

N

Pt
`∆t

)
Bm ,

γS(n, `) =
n∑

m=0

Cn,m

(
PT
`d−2

− PJ
`d−2

+
Pε
`∆ε

+
(N − 2)

N

Pt
`∆t

)
Bm . (2.27)

3 Leading n dependence of anomalous dimensions

In this section we want to extract the leading n dependence of the coefficients of the

anomalous dimensions for large n. In doing so we will follow [60]. γin can be written as,

γin =
n∑

m=0

ain,m , (3.1)
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where,

ain,m = −
Pi(−1)m+nΓ(n+1)Γ(2∆φ+n+m−3)Γ(∆φ)2Γ(∆φ − 1)2Γ(τm + 2`m)Γ(`m + τm/2 +m)2

4 Γ(∆φ − 1 +m)2Γ(∆φ − τm
2 )2Γ(n−m+ 1)Γ(m+ 1)2Γ( τm2 + `m)4Γ(2∆φ + n− 3)

×3 F2

[{
−m,−m,−1−`m+∆φ−

τm
2

}
,

{
1−`m−m−

τm
2
, 1−`m−m−

τm
2

}
, 1

]
.

(3.2)

We can write 3F2 as,

3F2 [{−m,−m,x+ 2− y}, {−m− y,−m− y}, 1] =

m∑
k=0

(−m)k
2(x+ 2− y)k

(−m− y)k 2 k!
, (3.3)

where x = ∆φ − 4 and y = `m + τm
2 − 1. Now ain,m can be written as,

ain,m = −
Pi(−1)m+nΓ(n+1)Γ(2∆φ+n+m−3)Γ(∆φ)2Γ(∆φ − 1)2Γ(τm + 2`m)Γ(`m + τm/2 +m)2

4 Γ(∆φ − 1 +m)2Γ(∆φ − τm
2 )2Γ(n−m+ 1)Γ(m+ 1)2Γ( τm2 + `m)4Γ(2∆φ + n− 3)

×
m∑
k=0

(−m)k
2(x+ 2− y)k

(−m− y)k 2 k!
. (3.4)

We want to extract the large m dependence inside the summation. The large m expansion

takes the following form,

m∑
k=0

(−m)k
2(x+ 2− y)k

(−m− y)k 2 k!

m�1
≈ Γ(2y + 1)Γ(m+ x+ 3− y)

Γ(m+ 1)Γ(x+ y + d− 1)
+ · · · , (3.5)

where · · · are the subleading terms. Thus to the leading order,

ain,m ≈ −
Pi(−1)m+nΓ(n+1)Γ(2∆φ+n+m−3)Γ(∆φ)2Γ(∆φ − 1)2Γ(τm + 2`m)Γ(`m + τm/2 +m)2

4 Γ(∆φ − 1 +m)2Γ(∆φ − τm
2 )2Γ(n−m+ 1)Γ(m+ 1)2Γ( τm2 + `m)4Γ(2∆φ + n− 3)

× Γ(2y + 1)Γ(m+ x+ 3− y)

Γ(m+ 1)Γ(x+ y + d− 1)

≈ −
Pi(−1)m+nΓ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(y + 1)4Γ(∆φ − τm
2 )2Γ(2∆φ + n− 3)Γ(∆φ + y − 1)

×
Γ(2∆φ +m+ n− 3)

4 Γ(m+ ∆φ − 1)
× n!

m!(n−m)!
×
[

Γ(y +m+ 1)2Γ(m+ ∆φ − y − 1)

Γ(1 +m)2Γ(m+ ∆φ − 1)

]
.

The leading term inside the bracket is my. So the coefficient ain,m, to the leading order is

given by,

ain,m ≈−
Pi(−1)m+nΓ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(y + 1)4Γ(∆φ − τm
2 )2Γ(2∆φ + n− 3)Γ(∆φ + y − 1)

×
Γ(2∆φ +m+ n− 3)

Γ(m+ ∆φ − 1)
× n!my

m!(n−m)!
.

(3.6)

Using the reflection formula,

Γ(m+ ∆φ − 1)Γ(2−m−∆φ) = (−1)m
π

sin((∆φ − 1)π)
, (3.7)
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the coefficients ain,m takes the following form,

ain,m = −Pi (−1)n
sin((∆φ − 1)π)

π

n! Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(2∆φ + n− 3)Γ(∆φ + y − 1)

my

m!(n−m)!
Γ(2∆φ +m+ n− 3)Γ(2−m−∆φ) . (3.8)

We can now use the integral representation of the product of the Gamma functions to

simplify it further,

Γ(m+ n+ 2∆φ − 3)Γ(2−m−∆φ) =

∫ ∞
0

∫ ∞
0

dxdỹ e−(x+ỹ)xm+n−4+2∆φ ỹ1−m−∆φ . (3.9)

Thus γin can be written as,

γin = −Pi (−1)n
sin((∆φ − 1)π)

π

n! Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(2∆φ + n− 3)Γ(∆φ + y − 1)∫ ∞

0

∫ ∞
0

dxdỹ e−(x+ỹ)xn−4+2∆φ ỹ1−∆φ

n∑
m=0

(
x

ỹ

)m my

m!(n−m)!
. (3.10)

To perform the summation over m we need information about y. Since y = `m + τm
2 − 1,

it can take any value. However, we can perform the summation only when y is integer or

half integer using the techniques given in [60]. We can do the summation numerically for

any y.

3.1 Integer y

For integer y,

γin = −Pi
Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

[
Γ(n+ 1)Γ(−3 + n+ y + 2∆φ)

Γ(n+ 1− y)Γ(2∆φ + n− 3)

]
.

(3.11)

To extract the leading n dependence we need to look at the leading n term inside the last

bracket. The leading term in n in the last bracket is n2y. Thus to the leading order in n,

γin is given by

γin = −Pi
Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

n2y . (3.12)

3.2 Half integer y

For half integer y,

γin = −Pi
Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

[
Γ(−3 + n+ y + 2∆φ)

Γ(2∆φ + n− 3)

]
ny . (3.13)

The term in the last bracket goes as ny in the large n limit. Thus to the leading order in

n, γin is given by

γin = −Pi
Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

n2y . (3.14)
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(a) Stress tensor exchange. (b) Current exchange.

Figure 1. The figure shows the variation of the log(−γn) with log n for the current and the stress

tensor exchange for different ∆φ. The normalizations PT and PJ are for each of the current and

stress tensor exchange.

Thus for both integer and half integer y we get the same result for the leading n dependence

for γin,

γin = −Pi
Γ(2y + 1)Γ(2y + 2)Γ(∆φ)2Γ(∆φ − 1)2

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

n2y , (3.15)

where y = `m + τm
2 − 1.

For O(N) models in four dimensions y = 2, 1, ∆ε−2
2 and ∆t−2

2 for stress tensor, current,

singlet scalar and symmetric tensor exchange respectively. We will use yε and yt for ∆ε−2
2

and ∆t−2
2 respectively. Thus we have the following corrections to the anomalous dimensions

γn for three types of double-twist operators OI` , O
A
` and OS` in O(N) respectively,

γI(n, `) = AT
PT n

4

`2
+AJ (N − 1)

PJ n
2

`2
+Aε

Pε n
2yε

`∆ε
+At

(N2 +N − 2)

N

Pt n
2yt

`∆t
,

γA(n, `) = AT
PT n

4

`2
+AJ

PJ n
2

`2
+
Aε Pε n

2yε

`∆ε
−At

(N + 2)

N

Pt n
2yt

`∆t
,

γS(n, `) = AT
PT n

4

`2
−AJ

PJ n
2

`2
+Aε

Pε n
2yε

`∆ε
+At

(N − 2)

N

Pt n
2yt

`∆t
, (3.16)

where

AT, J, ε, t = − Γ(2y + 1)Γ(2y + 2)

4 Γ(1 + y)4Γ(∆φ − τm
2 )2Γ(∆φ + y − 1)2

Γ(∆φ)2Γ(∆φ − 1)2 , (3.17)

for y = 2, 1, ∆ε−2
2 and ∆t−2

2 respectively.

Note that the signs of the corrections depend on the representation of the double-twist

operator. It can have either sign and depends on N .

In figure 1, we show the plots for γn for different values of ∆φ for stress tensor and

current exchange. For n � 1, the coincidence of the plots for different ∆φ shows the

universality of the leading n dependence of γn.
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4 ε-expansion from Bootstrap

In this section we demonstrate how the bootstrap analysis reproduces known results of

double-twist operators. We will consider operators of the type,

OI` = φi∂
`φi , OA` = φ[i∂

`φj] , OS` = φ(i∂
`φj) −

δij
N
φk∂

`φk , (4.1)

in the λ(φiφi)
2 theory in d = 4 − ε dimension. We will analyse the effect of two scalars,

the singlet O1 = φiφi and the symmetric and traceless O2 = φ(iφj) in the s-channel, on the

above operators. Let us call their twists τ1 and τ2 respectively. Now, as shown in [61], the

anomalous dimensions of the above operators, due to the singlet scalar, is given by,

δγI` = δγA` = δγS` = −P1γ
τ1,0
0

`τ1
, (4.2)

and due to the symmetric traceless scalar, is given by,

N

N2 +N − 2
δγI` = − N

N + 2
δγA` =

N

N − 2
δγS` = −P2γ

τ2,0
0

`τ2
. (4.3)

In the above, γτ,`0 is given by,

γτ,`0 =
2Γ(2`+ τ)Γ2 (∆φ)

Γ2
(
`+ τ

2

)
Γ2
(
− τ

2 + ∆φ

) , (4.4)

with ` = 0 for scalar exchanges, and τ taking the values τ1 or τ2 according to the singlet

or symmetric traceless exchange.

P1 and P2, the ope coefficients for the operators O1 and O2, are also known (see [1, 61]).

They are given by,

P1 =
2

n
and P2 = 1 . (4.5)

Now the dimension of φi is ∆φ = (d−2)/2+O(ε2) and twist of the singlet scalar is given by,

τ1 = (d− 2) +
(2 + n)ε

8 + n
+O

(
ε2
)
, (4.6)

and that of the traceless symmetric scalar is,

τ2 = (d− 2) +
2ε

8 + n
+O

(
ε2
)
. (4.7)

Using the above in (4.4) and evaluating the anomalous dimensions of the operators (4.1),

we get,

γI` = −P1γ
τ1,0
0

`τ1
−
(
N2 +N − 2

N

)
P2γ

τ2,0
0

`τ2
= −3(2 +N)

(8 +N)2

ε2

`2
, (4.8)

γA` = −P1γ
τ1,0
0

`τ1
−
(
−N + 2

N

)
P2γ

τ2,0
0

`τ2
= − (2 +N)

(8 +N)2

ε2

`2
, (4.9)

γS` = −P1γ
τ1,0
0

`τ1
−
(
N − 2

N

)
P2γ

τ2,0
0

`τ2
= − (6 +N)

(8 +N)2

ε2

`2
. (4.10)
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Higher spin exchanges of minimal twists in the s-channel should also contribute to the

above results. However if we assume the anomalous dimensions of such operators to start

from O(ε2), their effects show up at an higher order of ε. So we can neglect them in

our analysis.

It was shown in [64] using standard feynman diagrams that the anomalous dimensions

of OI` and OS` kinds of operators are given by,

γOI`
=

N + 2

2(N + 8)2
ε2
(

1− 6

`(`+ 1)

)
, (4.11)

and γOS`
=

N + 2

2(N + 8)2
ε2
(

1− 2(N + 6)

(N + 2)`(`+ 1)

)
. (4.12)

In the above the 1-s inside the parentheses come from the anomalous dimensions of φi.

The anomalous dimensions we computed above in (4.8), (4.9) and (4.10) are only the spin

dependent parts of the total anomalous dimensions, and for `� 1. Hence they agree very

nicely with the above known reults. One should be able to incorporate the effect of other

exchange operators systematically to go to the next order in ε. It will also be interesting

to use the techniques of [5] or [4] to reproduce these results.

5 Holographic calculation: example O(2) model

In this section we will try to compare the double twist anomalous dimensions for an O(2)

model in a holographic picture. For holography, we will implicitly assume that there is a

large N gauge theory with an Einstein gravity in the bulk. So essentialy we have a CFT

with a large symmetry group that has a bulk dual, and also having two equi-dimensional

scalars. This picture is similar to [63], except we have two scalars instead of one. We will

match the anomalous dimensions for the O(2) model in the field theory with this picture

on the holographic side. We will consider an external charged scalar in the probe limit

coupled with the Einstein action and the U(1) gauge field. Then we are considering an

O(2) model as a probe in the field theory itself so that there is no significant deformation

of the CFT. The bulk is just the low energy Einstein gravity with a charged scalar so that

the zeroth order part of the dual is still AdS5.

With this bulk we add a charged complex scalar field φ coupled to gravity and gauge

field [62]:

S =
1

κ2

∫
d5x
√
−g
[
R+ 6− 1

4g2
F 2 − (Dµφ)†(Dµφ)−m2φ†φ

]
, (5.1)

where Dµ = ∂µ − iAµ and κ =
√

8πGN .

Note that we have redefined the gauge coupling g and absorbed the charge of the scalar

in the coupling so that there is no net charge appearing anywhere in the above action.

Henceforth g is our coupling. Our goal is to compute the leading order binding energies of

generalized free fields in the bulk with large angular momentum, due to gravitational and

gauge interactions in the bulk. According to [62], the gauge and graviton exchange deform

the Hamiltonian as,

Hfree → Hfree + δH. (5.2)
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The δH is obtained for (5.1) by expanding in the interactions of the scalar φ with the gauge

and gravity parts. We write the εH in terms of the interaction potential given by [62],

δH = Veff [φ, φ†] = Vquar[φ, φ
†] +

κ

2
AµJµ[φ, φ†] +

κ

4
hµνTµν [φ, φ†] , (5.3)

where Vquar[φ, φ
†] is the quartic scalar interaction. The first order energy shift is given by

the expectation value of the interaction Hamiltonian using the unperturbed wavefunction

for the orbiting object. Then the shift in energy is given by

δE = 〈n, `orb | δH | n, `orb〉 .

To begin, let us consider the free theory (κ → 0). We take AdS5 metric in global

coordinates,

ds2 =
1

cos2 ρ
(dt2 − dρ2 − sin2 ρ dΩ2

3) . (5.4)

We will work in units of AdS radius RAdS = 1. We now consider a free massive scalar field

ψ(x) in the bulk satisfying (∇2 −m2)ψ = 0. The wavefunction is given by,

ψn ` J(t, ρ,Ω) =
1

N∆,n,`
e−iEn,` t Y`,J(Ω)

[
sin`ρ cos∆ρ 2F1

(
− n,∆φ+`+n, `+ 2, sin2ρ

)]
,

En,` = ∆φ + 2n+ ` ,

m2 = ∆φ(∆φ − 4) , (5.5)

with normalizations

N∆,n,` = (−1)`

√
n! Γ(`+ 2) Γ(∆φ + n− 1)

Γ(n+ `+ 2) Γ(∆φ + n+ `)
, (5.6)

where Y`,J(Ω) are the normalised eigenstates of the Laplacian on S3. Here the quantum

numbers n and ` denote the twist and angular momentum respectively.

The shift in energy due to gravitational and gauge interactions between the scalar

fields in AdS5 as an expansion in inverse distance corresponds to the CFT computation of

anomalous dimensions of the large spin (`� 1) double-twist operators.

Computing the first order energy shift due to gravitational interactions in the bulk is

equivalent to computing the gravitational interaction of a scalar field in AdS-Schwarzschild

black hole [63]. We start with the AdS-Schwarzschild2 black hole in five dimensions,

ds2 = f(r) dt2 − dr2

f(r)
− r2dΩ2

3 , (5.7)

where,

f(r) = 1− 2M

r2
+ r2 . (5.8)

2We can replace the AdS-Schwarzschild black hole with the RN-AdS black hole. But this will give

subleading corrections to the anomalous dimensions.
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and the mass of the black hole is

MBH =
3 Ω3M

8πGN
. (5.9)

The shift in energy to first order in M is given by,

δEorb = 〈n, `orb | δH | n, `orb〉

= −M
∫
dr dΩ3 r

3 〈n, `orb |
1

r2(1 + r2)2
(∂tφ)2 +

1

r2
(∂rφ)2 | n, `orb〉 , (5.10)

where r = tan ρ. Here the label ‘orb’ implies that we are considering one mass, described

by the scalar field, orbiting a second mass MBH at the origin of AdS, with relative angular

momentum `orb. We use the wavefunctions from (5.5) to compute δEorb as,

δEorb = −M
Γ(∆φ + 1) (`orb + 2n)2 Γ(`orb + n+ 2)

2Γ(`orb + 2) Γ(n+ ∆φ − 1)

×
n∑
k=0

(−1)kΓ(k + `orb + 1)Γ(k + `orb + n+ ∆φ)

k! Γ(k + `orb + 2) Γ(−k + n+ 1) Γ(k + `orb + ∆φ + 2)
(5.11)

× 3F2(k + `orb + 1,−n, `orb + n+ ∆φ; `orb + 2, k + `orb + ∆φ + 2; 1) .

For n = 0,

δEorb(n = 0) = −4πGN MBH

3Ω3
∆φ(∆φ − 1)

1

`orb
. (5.12)

We can calculate δEorb for n = 0, 1, 2, · · · and get a general n dependence. The leading n

dependence of the energy shift, in agreement with [60] becomes,

δEorb = −2M
1

`orb

Γ(4)

Γ(2) Γ(3)
n2 + · · ·

= −6M
1

`orb
n2 + · · ·

= −16πGN MBH

Ω3

1

`orb
n2 + · · · . (5.13)

As shown in [59, 63] this system is equivalent to two scalar objects rotating around the

centre of AdS, with total angular momentum `. The relation between `orb and ` is given

by `orb ≈ `2/n and MBH ≈ n for large n. Thus we get

δEorb = −16πGN
Ω3

n4

`2
. (5.14)

Finally, let us evaluate the shift in energy due to gauge interactions in the bulk fol-

lowing [62]. We have considered one type of operator for which the current contribution is

of a particular sign. In principle we can also consider the other set of large spin operators

(the antisymmetric ones) for which this contribution comes with a negative sign. This also
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concurs for the two different signs of the contribution due to the conserved current for the

symmetric traceless and antisymmetric large spin operators in the CFT.

δEJorb =

∫
dr dΩ3 r

3 〈n, `orb | J0A
0 | n, `orb〉 , (5.15)

where

Jµ = ig (φ∂µφ
† − φ†∂µφ) ,

A0 = −
N2

∆ g

2 (∆φ − 1)

(
1

r2(1 + r2)
− 1

r2(1 + r2)∆φ

)
, (5.16)

and

N∆ =

√
∆φ − 1

2π2
(5.17)

in a gauge where the only surviving component of Aµ is A0 as given in [62].

Using the wavefunction, we find

δEJorb =
κ2 g2

2π2

n∑
k,α=0

En,`orb

N2
∆,n,`

(−1)k+α Γ(n+ 1)2 (∆φ + `orb + n)k (∆φ + `orb + n)α
Γ(k + 1) Γ(n− k + 1) Γ(α+ 1) Γ(n− α+ 1) (`orb + 2)k (`orb + 2)α

×
∫
dr

r3+2`orb

(1 + r2)∆φ+`

r2

(1 + r2)k+α

[
1

r2(1 + r2)
− 1

r2(1 + r2)∆φ

]
. (5.18)

The r integral gives,∫
dr

r3+2`orb

(1 + r2)∆φ+`orb

r2

(1 + r2)k+α

[
1

r2(1 + r2)
− 1

r2(1 + r2)∆φ

]
= I1 − I2 , (5.19)

where

I1 =
Γ(1 + k + `orb + α) Γ(∆φ)

2 Γ(1 + k + `orb + α+ ∆φ)
. (5.20)

and

I2 =
Γ(1 + k + `orb + α) Γ(2∆φ − 1)

2 Γ(k + `orb + α+ 2∆φ)
. (5.21)

Lets consider the contribution from I1.

Performing the first sum over α we get

κ2 g2

2π2

α∑
k=0

En,`orb

N2
∆,n,`

(−1)k Γ(n+ 1) (∆φ + `orb + n)k
Γ(k + 1) Γ(n− k + 1) (`+ 2)k

[
Γ(k + `orb + 1) Γ(∆φ)

2Γ(k + `orb + ∆φ + 1)

]

×
n∑

α=0

(−1)α n! (∆φ + `orb + n)α (k + `orb + 1)α
α! (`orb + 2)α (n− α)! (k + `orb + ∆φ + 1)α

=
κ2 g2

2π2

α∑
k=0

En,`orb

N2
∆,n,`

(−1)k Γ(n+ 1) (∆φ + `orb + n)k
Γ(k + 1) Γ(n− k + 1) (`orb + 2)k

[
Γ(k + `orb + 1) Γ(∆φ)

2Γ(k + `orb + ∆φ + 1)

]
×3F2[{1 + k + `orb,−n, `orb + n+ ∆φ}, {2 + `orb, 1 + k + `orb + ∆φ}, 1]

=
κ2g2

2π2

1

2`orb
(∆φ + 2n− 1) . (5.22)
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Now we calculate the contributions coming from I2. The first sum over α gives

κ2 g2

2π2

α∑
k=0

En,`orb

N2
n,`

(−1)k Γ(n+ 1) (∆φ + `orb + n)k
Γ(k + 1) Γ(n− k + 1) (`orb + 2)k

[
Γ(k + `orb + 1) Γ(2∆φ − 1)

2Γ(k + `orb + 2∆φ)

]

×
n∑

α=0

(−1)α n! (∆φ + `orb + n)α (k + `orb + 1)α
α! (`orb + 2)α (n− α)! (k + `orb + 2∆φ)α

=
κ2 g2

2π2

α∑
k=0

En,`orb

N2
n,`

(−1)k Γ(n+ 1) (∆φ + `orb + n)k
Γ(k + 1) Γ(n− k + 1) (`orb + 2)k

[
Γ(k + `orb + 1) Γ(2∆φ − 1)

2Γ(k + `orb + 2∆φ)

]
×3F2[{1 + k + `orb,−n, `orb + n+ ∆φ}, {2 + `orb, k + `orb + 2∆φ}, 1]

≈ 1

`
∆φ

orb

. (5.23)

Thus the contributions from I2 are at a much higher order O(1/`
∆φ

orb) and hence do not

affect the leading order result.

To the leading order in `orb, the shift in energy due to gauge interactions is given by

δEJorb =
κ2 g2

2π2

1

2`orb
(∆φ + 2n− 1) + · · ·

=
κ2 g2

2π2

1

`orb
n+ · · ·

≈ κ2 g2

2π2

n2

`2
. (5.24)

From the CFT bootstrap result we have the following predictions for the anomalous di-

mensions due to stress tensor and current exchange:

γ`T = − 40

π4CT

n4

`2
,

γ`J = (−1)O
3

π4CJ

n2

`2
. (5.25)

The sign of γ`J depends on the nature of the double-twist operators. It is negative for OI ,

OA and positive for OS .

In four dimensions, we have used the relations Sd = 2π2 = Ωd−1, PT =
8∆2

φ

9π4CT
, PJ = 4

CJ
,

g2 κ2 = 6
π2 CJ

and GN = 5
CT π3 which reproduces (5.25). This choice of the normalization

is consistent with the results of [56] and [62].

To summarize our findings in this section, we have considered a specific example of

a large N CFT dual to an Einstein gravity residing on AdS5, and the O(2) model acting

as a perturbation to this CFT. In the dual gravity the O(2) perturbation corresponds to

a charged scalar field coupled to a U(1) gauge field. Hence the gravitational and gauge

interactions, computed from the respective energy shifts in a state of two scalars rotating

fast around each other, can be compared to the anomalous dimensions of large spin com-

posite operators, due to current and stress tensor respectively, on the CFT side. While

the calculations of [62] and [63] entail this feature in some detail, we have managed to

– 18 –
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extend their work to an O(2) scalar, allowing both gauge and gravitational interactions in

composite scalar states. We considered large spin and large twist singlet, traceless symmet-

ric and anti-symmetric composite states, and the results matched with the corresponding

anomalous dimensions, computed in the field theory.

6 Discussion

• We have analyzed the anomalous dimension of the trace, symmetric-traceless and

antisymmetric-traceless large spin operators for the O(N) models.

• The anomalous dimensions have leading twist behaviour in the limit ` � n � 1

which is consistent with the leading twist behaviour given in [59] and [60]

• In the O(N) model we notice that the effect of the additional minimal twist operators

show up in every kind of large spin operators. Thus it is difficult to interpret the

monotonicity property of the anomalous dimension. However, demanding monotinic-

ity of the anomalous dimensions might lead to interesting constraints between the

OPE squared coefficients for various contributions

• We have also set up an example holographic verification by considering the O(2)

model as a probe on both sides of the duality. We have a large N CFT that allows

a holographic dual; the O(2) model is realised through a charged scalar in the bulk,

and the gravitational and gauge interactions were used to compute the anomalous

dimensions holographically.

• It will be interesting to see the same effects from holographic side by considering the

entire O(N) in the probe limit. While it will also be interesting to consider the O(N)

model as a standalone theory in the boundary, repeating the bulk calculation for the

energy shifts in the bulk will be complicated since now the bulk will be polluted by

the predominant higher spin interactions.

• If one considers correlators of spinning fields, one gets different double twist opera-

tors [56]. Demanding negativity of the anomalous dimensions reproduces the positiv-

ity of energy flux in AdS. It will be interesting to study what happens for the higher

twist operators of that kind.
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