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1 Introduction

Recently, many concepts in quantum information theory have been applied to investigate

gravity and quantum field theory (QFT). In particular, a concept named “complexity”,

which comes from the quantum circuit complexity in quantum information theory [1], was

introduced to study some properties of black holes, in particular for the physics inside the

black hole horizon. From the perspective of holographic principle, it is expected to have a

physical meaning of “complexity” in QFT.

In gravity side, the first motivation to consider the complexity was to investigate the

firewalls in the black hole horizon [2] and the growth rate of the Einstein-Rosen bridge in

AdS black holes [3, 4]. There are two widely studied conjectures to compute the complexity

for some particular quantum states which are dual to boundary time slices of the asymptotic

AdS black hole. One states that the complexity is proportional to the maximum volume

of some time-like hypersurface (CV conjecture) [3, 5, 6] and the other one states that the

complexity is proportional to the on-shell action in a particular spacetime region so called

the wheeler dewitt (WdW) patch (CA conjecture) [7, 8]. Along these lines, there have been

a lot of developments and we refer to some of them, [9–22], for examples. There are also

other interesting conjectures proposed in gravity, for example, subregion complexity [23–27]

and thermodynamic volume [28].

Because the holographic duality connects the gravity and QFT, it is important and

timely to develop the theory of complexity in QFT. Compared with much progress for the

complexity in gravity side, the precise meaning or a proper definition of the complexity in

QFT side, is still absent. However, recently some interesting ideas have been proposed and

promising preliminary results have been obtained in [29–49].

To make a progress towards the complexity in QFT we may rely on the intuitions

from the circuit complexity in computer science, where the concept of the complexity is

well developed. However, in the quantum circuits, the complexity is defined in discrete

and finite Hilbert spaces. The intuition based on the complexity in terms of the number

of quantum gates may be ideal for quantum circuits but may not be enough for QFT,

of which operations are continuous. The first clue to define the complexity in continuous

systems appeared in Nielsen and collaborators’ works [50–52]. Here, as a continuum ap-

proximation of the circuit complexity, a kind of “complexity geometry” was introduced and

the complexity is identified with the geodesic length in the geometry.

Inspired by this idea, a few proposals to define the complexity in QFT appeared

in [16, 29–32, 48]. Ref. [29] first introduced Nielson and collaborators’s idea to the study

of complexity in QFT and [30, 31] argued the conditions for the complexity geometry

to satisfy. Ref. [32] obtained the complexity of the ground state of a free scalar field

theory by computing the length of geodesic in a complexity geometry. See also [33–38] for

related developments. In these works it was shown that the UV divergence structures are

consistent with the holographic results [12–14]. Refs. [16, 48] computed the time evolution

of the complexity between thermofield double states in a complexity geometry and made

a comparison with the holographic results. In [16] another proposal for QFT complexity

based on the Fubuni-Study metric [39] was also investigated.

– 1 –
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However, in all these attempts [16, 29–32, 48] there are ambiguities in choosing com-

plexity geometry. These works mostly focus on the behaviour of geodesics in an assumed

geometry. For example, the geometry may be chosen to match the holographic results.

However, using holographic results as a guide for the complexity geometry in field theory

may have the following issues:

1. There are some ambiguities in the definition of holographic conjectures. For example,

in both CV and CA conjectures we do not know what the reference states are, and

in CA conjecture there is an ambiguity in choosing the parameterization on null

boundaries [10].

2. Even after fixing those ambiguities there is still a possibility that the definition of the

holographic conjectures is not complete. The concept of the complexity in field theory

independent of holography will be useful to identify the holographic complexity and

check its consistency in the holographic duality.

Therefore, it will be more satisfactory if we can first determine the complexity geometry

by some field theory principles.

We addressed this issue in ref. [49] and proposed how to determine the complexity

geometry and the complexity of the SU(n) operators. The basic ideas is as follows.

1. Start with three minimal axioms that the complexity in any system should satisfy.

These axioms are extracted from the circuit complexity which is a discrete system.

2. Add a certain smoothness assumption to deal with the complexity in continuous

systems.

3. From these considerations (three axioms and one assumption) the Finsler geometry

is naturally emerges and the complexity is identified with the length of the geodesic

between the identity and the target operator in the Finsler geometry.

4. Because we want to investigate the complexity in QFT it is natural to impose the

symmetry of QFT such as unitary and CPT invariance on the complexity. By these

symmetries, the structure of the Finsler geometry is more constrained. It turns out

the constraints enable us to determine the metric of the complexity geometry.

5. Based on these considerations, we finally obtain the complexity of the operator Ô in

SU(n) group as follows.

C(Ô) = λTr
√
H̄H̄† , ∀ H̄ = ln Ô . (1.1)

In this process, there are two important features that we want to emphasize again. First,

the Finsler geometry emerges naturally from three axioms and a smoothness assumption.

The Finsler geomtery is not an input in our formalism but an output, which is different from

other works. Second, we impose the symmetry of QFT to the complexity, so the some of our

results may not be compatible with the circuit complexity. Indeed, this is not a shortcoming

at all, because we want to study the complexity in QFT not of the quantum circuit.

– 2 –



J
H
E
P
0
3
(
2
0
1
9
)
1
6
1

In this paper we generalize eq. (1.1) by relaxing one axiom (so called ‘parallel decom-

position rule’) and a smoothness assumption. We show that the complexity of an operator

Ô in SU(n) group is still given by the geodesic between the identity and the operator Ô in

a bi-invariant Finsler geometry. By imposing some symmetries of QFT we finally obtain

C(Ô) = λ(w)

{
Tr

[(
H̄H̄†

)p/2]}1/p

, ∀ H̄ = ln Ô . (1.2)

There are two changes compared to eq. (1.1). It is generalized to the Schatten p-norm [35,

36, 53] and the overall constant is a function of additional parameter w, which may represent

a penalty factor. Because w enters into the overall constant there is no essential effect of

the complexity. We will present detailed explanation and motivation to introduce p and w

(by relaxing one axiom and the smoothness condition) in the main text.

Another important goal of this paper is to investigate the property of the complex-

ity (1.2) and clarify the relation to other works. It is classified as three sub-goals.

First, our work may look different from refs. [29–31] in the sense that our Finsler

geometry is bi-invariant while it is only right-invariant in refs. [29–31]. However, we will

show that two results are consistent with each other. The key point of the resolution lies

on the careful analysis of the section curvature and its relation to geodesic deviations. In

essence, we find that even though our Finsler geometry is bi-invariant, its sub-manifold

relevant to geodesic deviation may not be bi-invariant and only right-invariant. It implies

that the sub-manifold may have negative curvature in part which makes chaotic behavior

of the geodesics possible.

Second, we find that our complexity (1.2) realize the pattern of the time-evolution of

the complexity conjectured in [5, 31]. The linear growth in early time is explained by the

geodesic generated by a constant generator, which is originated from the bi-invariance of

the Finsler geometry. The complexity reaches its maximum value in the exponential time

(t ∼ eO(d)), where, d is the size of the classical phase space, due to the relation between

the topology and curvature of SU(n) groups. To our knowledge, this is the first concrete

realization of the time-evolution of the complexity conjectured in [5, 31].

Third, we have investigated the complexity of the precursor operators and compare

with the results in refs. [3, 29]. We find that (i) the complexity of the precursor operator

grows linearly at early time, which is similar to the result in ref. [29]. (ii) the complexity

of precursors for infinitesimal operators corresponds to the sectional curvature.

This paper is organized as follows. In section 2, we first make a brief review on the

principles and symmetries of complexity in QFT proposed by ref. [49]. Here, the complexity

in QFT is defined based on some axioms inspired by the circuit complexity and constraints

imposed on QFT. The complexity of SU(n) operator is given by the geodesic length

in a Finsler geometry. In section 3, we relax some requirements in axioms in section 2

(or ref. [49]) and find a Finsler geometry is still relevant. In section 4, by imposing some

symmetries of QFT on the complexity, we constrain the structure of a Finsler geometry and,

in section 5, determine the complexity of SU(n) group operator uniquely. In section 6, we

make comments on the properties of the complexity such as i) negative sectional curvature

and chaos, ii) the complexity growth, saturation, and quantum recurrence iii) complexity

of precursors. We conclude in section 7.

– 3 –



J
H
E
P
0
3
(
2
0
1
9
)
1
6
1

2 Review on the complexity in quantum field theory

In this section, we review the complexity proposed in ref. [49]. Here, we briefly summarize

the main results and refer to ref. [49] for more details.

One of the minimal requirements of the operators in complexity is the operators need

to be associative to construct a composite operators (bigger quantum circuits). Therefore,

at least, the operators should belong to a monoid (a semigroup with an identity Î). Let us

denote a complexity of an operator x̂ in an arbitrary monoid O by C(x̂).

Based on the essential and minimal properties of the complexity in the quantum circuit,

it was proposed that the complexity should satisfy the following three axioms.

G1 [Nonnegativity ]

∀x̂ ∈ O, C(x̂) ≥ 0 and C(Î) = 0.

G2 [Series decomposition rule (triangle inequality)]

∀x̂, ŷ ∈ O, C(x̂ŷ) ≤ C(x̂) + C(ŷ).

G3a [Parallel decomposition rule ]

∀(x̂1, x̂2) ∈ N = O1 ×O2 ⊆ O, C
(
(x̂1, x̂2)

)
= C

(
(x̂1, Î2)

)
+ C

(
(Î1, x̂2)

)
.

Here, in G3a, we consider the case that there is a sub-monoid N ⊆ O which can be

decomposed into the Cartesian product of two monoids, i.e., N = O1 × O2. Î1 and Î2
are the identities of O1 and O2. The Cartesian product of two monoids implies that

(x̂1, x̂2)(ŷ1, ŷ2) = (x̂1ŷ1, x̂2ŷ2) for arbitrary (x̂1, x̂2), (ŷ1, ŷ2) ∈ N .

The first axiom G1 is obvious by definition. The axioms G2 and G3a states the

relation between the composite operator and its component operators. In the quantum

circuit, the operator x̂ŷ corresponds to the series circuit and (x̂1, x̂2) corresponds to the

parallel circuit. The axiom G2 will imply the triangle inequality once the complexity is

interpreted as a distance in some metric space. In G3a, we stress that we consider only the

case that the operators x̂1 and x̂2 are completely independent. It may not be possible for

some systems. See figure 1 for a graphical explanation. In terms of the computer science,

G3a states the relationship between the total complexity and the complexities of parallel

sub-tasks.

The Cartesian product of two monoids is represented by the direct sum in a matrix

representation. For example, if matrixes M1 and M2 are two representations of monoids

O1 and O1, then the representation of their Cartesian product is M1 ⊕M2 rather than

M1⊗M2. Thus, in a matrix representation, G3a says, for arbitrary operators M1 and M2,

C(M1 ⊕M1) = C(M1) + C(M2) .

This equation can be generalized to the direct sum of more operators. For operators

M1,M2, · · · ,Mk

G3a⇔ C

(
k⊕
i=1

Mi

)
=

k∑
i=1

C(Mi) . (2.1)

– 4 –
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# gates of 

2x̂

+ 

# gates of # gates of 

1̂x

2x̂

1
ˆ

1̂x

2
ˆ

Figure 1. Schematic diagram for G3a in quantum circuits. Two operators x̂1 and x̂2 are indepen-

dent so it is natural that C((x̂1, x̂2)) = C((x̂1, Î2)) + C((Î1, x̂2)).

The axioms G1, G2 and G3a are valid for both discrete and continuous systems.

Next, we turn to the axiom for continuous systems, in particular, SU(n) groups. For a

given operator Ô ∈ SU(n),1 as SU(n) is connected, there is a curve c(s) connecting Ô

and identity Î, where the curve may be parameterized by s with c(0) = Î and c(1) = Ô.

The tangent of the curve, ċ(s), is assumed to be given by a right generator Hr(s) or a left

generator Hl(s):

ċ(s) = Hr(s)c(s) or ċ(s) = c(s)Hl(s) . (2.2)

As shown in figure 2, this curve can be approximated by discrete forms:

Ôn = c(sn) = δÔ(r)
n Ôn−1 = Ôn−1δÔ

(l)
n , (2.3)

where sn = n/N , n = 1, 2, 3, · · · , N , Ô0 = Î and δÔ
(α)
n = exp[Hα(sn)δs] with α = r or l

and δs = 1/N . In general, the two generators Hr(s) and Hl(s) at the same point of the

same curve can be different, i.e., Hl(s) 6= Hr(s). Indeed, Hr(s) is an adjoint transformation

of Hl(s),

Hr(s) = c(s)Hl(s)c(s)
−1 , (2.4)

from eq. (2.2).

For an arbitrary infinitesimal operator in SU(n) group, the fourth axiom was proposed:

G4a [Smoothness ] The complexity of any infinitesimal operator in SU(n),

δÔ(α) = exp(Hαδs), is a smooth function of only H 6= 0 and δs ≥ 0, i.e.,

C(δÔ(α)) = C(Î) + F̃ (Hα)δs+O(δs2) , (2.5)

This axiom implies C(δÔ(l)) = C(δÔ(r)) if δÔ(l) = δÔ(r), which means that an infinitesimal

operator will give the same complexity contribution to the complexity regardless that it is

added to the left-side or right-side.

1In this paper, by SU(n) and U(n), we mean finite dimensional groups. For infinite dimensional cases,

we will use the notation SU(∞) and U(∞).

– 5 –
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Î

Ô

1Ô

2Ô

3Ô

1Ô

2Ô3Ô

4Ô

4Ô

5Ô

Figure 2. A continuous curve c(s) connects the identity (c(0) = Î) and a particular operator Ô

(c(1) = Ô). It can be approximated by a discrete form, where every intermediate point (Ôn) is also

an operator.

All information regarding the complexity has been encoded in the function F̃ so the

cost (Lα[c]) of a curve c can be defined as

Lα[c] :=

N∑
i=1

C(δÔ(α)
i )

N→∞−−−−→
∫ 1

0
F̃ (Hα(s))ds , (2.6)

where we assume that the curve is constructed by only δÔ
(r)
n or only δÔ

(l)
n . In a geometric

picture, it is the length of a given curve and F̃ds is considered as a line element in a

geometry. Thus, a natural question is what kind of geometry can be allowed for complexity?

It has been shown that it is the Finsler geometry as follows.

First, it has been proven that three axioms G1,G2, and G4a implies that the function

F̃ introduced in G4a satisfies

F1 (Nonnegativity) F̃ (Hα) ≥ 0 and F̃ (0) = 0

F2 (Positive homogeneity) ∀λ ∈ R+, F̃ (λHα) = λF̃ (Hα)

F3 (Triangle inequality) F̃ (Hα,1) + F̃ (Hα,2) ≥ F̃ (Hα,1 +Hα,2) ,

which are the defining properties of so called Minkowski norm in mathematics literature.2

The conditions, F1-F3, characterize properties of a norm of the vector (the generators

(Hα)) in the Lie algebra, the tangent space at the identity. The Finsler metric is nothing

but a Minkowskia norm defined at all points on the base manifold. There are two natural

but different ways to extend the Minkowski norm F̃ at the identity to every point on the

base manifold:

Fr(c, ċ) := F̃ (Hr) = F̃ (ċc−1) , or Fl(c, ċ) := F̃ (Hl) = F̃ (c−1ċ) . (2.7)

Here, we introduced ‘Fα(c, ċ)’, a standard notation for the Finsler metric in mathematics

literatures. In this paper, we will simply call both F̃ (Hα) and Fα(c, ċ) a ‘Finsler metric’

2Strictly speaking, the requirements of the Minkowski norm are a little more stronger than F1-F3.

However, these differences will not affect our results in this paper.

– 6 –
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if there is no confusion. We refer to refs. [54–57] for more detailed explanation of the

Minkowski norm and Finsler geometry.

Note that there is symmetry in the Finsler metrics. Fr(c, ċ) (Fl(c, ċ)) is right(left)-

invariant because Hr(Hl) is invariant under the right(left)-translation c → cx̂(c → x̂c)

for ∀x̂ ∈ SU(n).

At this stage, any right or left invariant Finsler metric will be allowed for ‘complexity

geometry’. By requiring that the complexity obeys some symmetries of quantum field

theory the Finsler metric F̃ can be more constrained. Indeed, the unitary invariance and

the CPT symmetry of QFT respectively impose the following constraints on F̃

[adjoint invariance] F̃ (Hα) = F̃ (ÛHαÛ
†) , (2.8)

[reversibility] F̃ (Hα) = F̃ (−Hα) , (2.9)

for ∀U ∈ SU(n). It has been shown that eq. (2.8) implies

[Independence of left/right generators] F̃ (Hl) = F̃ (Hr) , (2.10)

so the Finsler metric is bi-invariant, which means both left and right invariant.

The constraints eq. (2.8) and eq. (2.9) (together with the axioms G1-G4a) turn out

to be strong enough to determine the complexity of SU(n) operators uniquely (up to an

overall constant λ) as

F (c(s), ċ(s)) = F̃ (H) = λTr
√
H(s)H†(s), H(s) := Hl(s) or Hr(s) , (2.11)

where c(s) is a curve in SU(n) group and λ is a positive constant. Note that the subscript

α in Hα is dropped because Hr or Hl give the same Finsler metric (see also eq. (2.10)).

Finally, the complexity of an operator is defined by the minimal length (or minimal

cost) of the curves connecting Î and Ô:

C(Ô) := min
{
L[c]| ∀c(s), c(0) = Î, c(1) = Ô

}
. (2.12)

Therefore, we are left with the variational problem minimizing∫ 1

0
Tr
√
H(s)H†(s)ds, with c(0) = Î, and c(1) = Ô . (2.13)

This minimization problem is simplified thanks to bi-invariance of the Finsler metric ex-

plained below eq. (2.10). It has been shown in refs. [58, 59] that, if the Finsler metric

is bi-invariant, the curve c(s) is a geodesic if and only if there is a constant generator

H(s) = H̄ such that

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (2.14)

In our case H̄ = ln Ô, by the boundary condition Ô = c(1) = exp(H̄). Therefore,

C(Ô) = min
{

Tr
√
H̄H̄† | ∀ H̄ = ln Ô

}
, (2.15)

where ‘min’ is not in the sense of a variational problem. It picks up the minimal value

among the multi-values of ln Ô.

– 7 –
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3 Generalization of axioms

The axioms G1 and G2 are general enough but the axioms G3a and G4a may be

relaxed more.

3.1 Generalized parallel decomposition rule

First, we generalize the parallel decomposition rule in the axiom G3a as follows

G3b [Parallel decomposition rule ]

∀(x̂1, x̂2) ∈ N = O1 ×O2 ⊆ O, [C((x̂1, x̂2))]p = [C((x̂1, Î2))]p + [C((Î1, x̂2))]p,

where p is a positive integer.

Here, the only difference from the axiom G3a is the existence of a positive integer number

p. If p = 1, G3b becomes G3a. This new parallel decomposition rule may look less natural

if p 6= 1 because we assumed that x̂1 and x̂2 are totally independent (figure 2). However,

this p-deformed rule will open an interesting possibility that realize the Schatten norm

eq. (1.2). If we use the matrix representation for the monoid, then the axiom G3b can be

presented as

G3b⇔

[
C

(
k⊕
i=1

Mi

)]p
=

k∑
i=1

C(Mi)
p . (3.1)

When we take p = 1, this equation just recovers into the eq. (2.1). Note again that 1)

p = 1 is the most natural choice intuitively and 2) we may ‘explain’ what the Schatten

norm really means from the axiomatic point of view.

3.2 Generalized smoothness

In the axiom G4a, it is assumed that the complexity of any infinitesimal operator depends

only on this infinitesimal operator itself. However, in principle, the complexity may depend

on other factors, which are independent of any specific operator. In order to take into

account this possibility we introduce wα in the smoothness axiom G4a.

G4b The complexity of any infinitesimal operator in SU(n), δÔ(α) = exp(Hαδs), satisfies,

pC(δÔ(α), wα) = pCα(Î) + pF̃ (Hα, wα)δs+O(δs2) , (3.2)

where pF̃ (Hα, wα) := ∂
∂δs [pC(δÔ

(α), wα)]|δs=0 and pCα(Î) = 0 by G1.

Here, the quantities with the index α = r, l are related to the right generator Hr or left

generator Hl respectively. We use the left subscript p to distinguish a difference choice

of p in the axiom G3b. The difference from the axiom G4a is the existence of wα =

{w(1)
α , w

(2)
α , · · · }. They stand for all the other possible variables defined at the Lie algebra

su(n). For example, wα may stand for penalty or weight in the previous works [29, 31,

32, 50–52]. In general wr 6= wl so it is possible pC(δÔ, wr) 6= pC(δÔ, wl). It means that

an infinitesimal operator δÔ can contribute to the complexity differently depending on

whether it is added to the left-side or right-side. It is one difference compared with the

axiom G4a. (See the comment below eq. (2.5).)

– 8 –
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3.3 Emergence of the Finsler metric

Similar to eq. (3.3) we define the cost (pLα[c, wα]) of a curve c as

pLα[c, wα] :=

N∑
i=1

pC(δÔ(α)
i , wα)

N→∞−−−−→
∫ 1

0
pF̃α(Hα(s), wα)ds , (3.3)

where α = r or l denoting the curve constructed by only δÔ
(r)
n or only δÔ

(l)
n respectively.

Similar to the case p = 1 and wα = 0 in ref. [49], we can prove that pF̃ satisfies three

defining properties of the Minkowski norm by using G1, G2 and G4b:

F1 (Nonnegativity) pF̃ (Hα, wα) ≥ 0 and pF̃ (Hα, wα) = 0 iff Hα = 0

F2 (Positive homogeneity) ∀λ ∈ R+, pF̃ (λHα, wα) = λ pF̃ (Hα, wα)

F3 (Triangle inequality) pF̃ (Hα,1, wα) + pF̃ (Hα,2, wα) ≥ pF̃ (Hα,1 +Hα,2, wα)

Roughly speaking, F1 is equivalent to G1, F3 is equivalent to G2, and F2 can be read from

G4b. A detailed proof is essentially the same as the case of p = 1 and wα = 0 and provided

in appendix A in ref. [49], where we only need to replace F̃ (H)→ pF̃ (Hα, wα). The Finsler

metric is a Minkowski norm defined at all points on the base manifold. Similarly to the

case p = 1, wα = 0, there are two natural ways to extend the Minkowski norm F̃ at the

identity to every point on the base manifold:

pFα(c, ċ, wα) := pF̃ (Hα, wα) , with Hr = ċc−1 and Hl = c−1ċ , (3.4)

where we introduce a standard notation for the Finsler metric ‘pFα(c, ċ)’. Thus, we

conclude the complexity is still given by a Finsler geometry with generalized axioms:

G3.G4→ G3b,G4b.

Note also that pFr(c, ċ, wr) is right-invariant, because pF̃ is invariant under the right-

translation c → cx̂ for ∀x̂ ∈ SU(n). Similarly pFl(c, ċ, wl) is left-invariant. Finally, the

left or right complexity of an operator Ô is identified with the minimal cost of the curves

connecting Î and Ô:

pCα(Ô, wα) := min{pLα[c, wα]| ∀c(s), c(0) = Î, c(1) = Ô} . (3.5)

4 Constraints on the Finsler metric

So far, any Finsler metric will be allowed for the complexity geometry. In this section, we

give constraints on the Finsler metric by taking into account some physical requirement or

symmetry properties of quantum field theory.

First, we propose that the Finsler metric should be invariant under a adjoint transfor-

mation Hα → ÛHαÛ
†, i.e.,

pF̃ (Hα, wα) = pF̃ (ÛHαÛ
†, wα), ∀Û ∈ SU(n), ∀Hα ∈ su(n) , (4.1)

which we call ‘adjoint invariance’. We provide two arguments: i) (mathematical/geometric

reason) independence of left/right generators in subsection 4.1.1 ii) (physical reason) gauge
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invariance in subsection 4.1.2. As a corollary, it will be shown that the adjoint invariance

leads to the bi-invariance of the Finsler geometry. Next, by requiring the CPT symmetry

of QFT we propose that the Finsler metric should satisfy

pF̃ (Hα, wα) = pF̃ (−Hα, wα) , (4.2)

which is called ‘reversibility’.

When it comes to the final results (4.1) and (4.2), this subsection generalizes the result

in ref. [49] to the case with p 6= 1 and wα 6= 0. However, the supporting arguments here

are different from ref. [49]. The arguments in ref. [49] and this paper are complementary

and strengthen each other.

4.1 Adjoint invariance

4.1.1 Adjoint invariance from the independence of left/right generators

If the complexity is an intrinsic property of an operator in a given physical system, the

length (cost) of the curve c(s) should depend on the curve itself for given wα.

However, as discussed in section 2 and ref. [49], at an arbitrary point c(s0) on an

arbitrary curve c, there are two different ways to compute the length between c(s0) and

c(s0 + δs):

pF̃ (Hl, wl)δs, or pF̃ (Hr, wr)δs . (4.3)

In the Nielsen’s original works, it is argued that the right-invariance is a natural condition.

It is based on an operator (in discrete circuits) constructed as Un·Un−1 · · ·U1. However, this

is not the only possible way. For example, if we construct the operator as U1 · · · · Un−1Un,

by the same reason as Nielsen’s, the left-invariance will be the natural condition. Because,

there is no a priori reason to choose among Un ·Un−1 · · ·U1 and U1 · · · ·Un−1Un we just open

both possibilities. See appendix A for more details. Because, there is no a priori reason

to choose either the right-invariance or left-invariant complexity, we require they give the

same physics, which means

pF̃ (Hl, wl) = pF̃ (Hr, wr) . (4.4)

At first sight, it looks that eq. (4.4) is a very weak condition, because, for a given pF̃ (Hr, wr),

we can always choose wl so that eq. (4.4) holds. However, we will show that, because the

operators form a group, eq. (4.4) leads to eq. (4.1).

Let us start with the following relation implied by eq. (2.2)

Hl = Û−1HrÛ . (4.5)

Here, because Û is arbitrary, eq. (4.5) can be written as

H
(1)
l = Û−11 HrÛ1 .

H
(2)
l = Û−12 HrÛ2 .

(4.6)

with arbitrary operators Û1 and Û2. In other words, the left generator corresponding to a

given right generator Hr is not unique. This fact also can be interpreted for the generators
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Figure 3. The schematic figure to show that the left generator is not unique for a given right

generator Hr. The two left generators can be connected as: H
(2)
l = ÛH

(1)
l Û−1 with Û = Û−1

2 Û1.

on the curves in the figure 3. A right generator Hr can appear at Û1 and Û2 in SU(n)

group. Depending on the positions Û1 and Û2 there will be different left generators.3

Finally, eq. (4.6) yields

H
(2)
l = ÛH

(1)
l Û−1 , Û := Û−12 Û1 (4.7)

where Û is an arbitrary operator in SU(n) because Û1 and Û2 are arbitrary.

By using eq. (4.7) in eq. (4.4) we obtain

pF̃ (Hr, wr) = pF̃ (H
(1)
l , wl) = pF̃ (H

(2)
l , wl) = pF̃ (ÛH

(1)
l Û−1, wl) , (4.8)

which proves that pF̃ (Hl, wl) is invariant under the adjoint transformation

pF̃ (Hl, wl) = pF̃ (ÛHlÛ
−1, wl), ∀Hl ∈ su(n), ∀Û ∈ SU(n) . (4.9)

Similarly, pF̃ r(Hr, wr) is invariant under the adjoint transformation too.

Eq. (4.1) or (4.9) also implies the bi-invariance of our Finsler metric. Under the left

translation c(s)→ Ûc(s)

pF̃ (Hr(s), wr)→ pF̃ (ÛHr(s)Û
−1, wr) = pF̃ (Hr(s), wr) (4.10)

where we used the adjoint-invariance for equality. Eq. (4.10) means that the right-invariant

Finsler metric is also left invariant so it is bi-invariant. Similarly, the left-invariant Finsler

metric is also bi-invariant.

Furthermore, if the Finsler metric is bi-invariant we can show that the Finsler metric

is adjoint-invariance. For example, let us consider the right-invariant form of the Finsler

metric, pF̃ (Hr(s), wr). In the left-translation, it becomes pF̃ (ÛHr(s)Û
−1, wr) and because

it must be invariant we conclude pF̃ (Hr(s), wr) = pF̃ (ÛHr(s)Û
−1, wr). In summary we

have the following equivalence.

left or right invariance + adjoint invariance ⇔ bi invariance (4.11)

3The generator is not the tangent vector of the curve. The tangent vector of the curve and generators

are connected by eq. (2.2). Thus, the tangent vector of a curve at a point is unique but the generator is not.
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4.1.2 Adjoint invariance from symmetric transformations

Let us consider a time evolution operator c(t) of which generator is given by Hα := −iH
with a Hamiltonian H (not the Hamiltonian density). We set ~ = 1 for convenience.

Suppose that two seemingly different Hamiltonians are related by a transformation S and

both Hamiltonians give the same physical properties (except complexity yet). Now the

question is “do they give the same complexity or not?” It will be natural to expect they

also give the same complexity. Mathematically it means

pF̃ (Hα, wα) = pF̃ (S(Hα), wα) , S(Hα) := −iS(H) , (4.12)

where S(H) denotes the Hamiltonian related to H by the transformation S. wα does not

change because it is the parameter which is introduced in the definition of the complexity,

not related with a Hamiltonian H or a generator Hα.

Since the Hamiltonians S(H) and H are supposed to describe equivalent physics, they

have the same observables such as energy and have the same eigenvalues. This means

S(H) = ÛHÛ † with a unitary operator Û .4 The adjoint invariance (4.1) or (4.12) is a

sufficient condition to insure that the complexities given by H and S(H) are the same. We

now want to show that the adjoint invariance is also the necessary condition to have this

symmetry (the invariance of complexity under the stransformation S). The main idea in

following proof has three steps:

(1) start with the generators for two simple symmetric transformations;

(2) by adding their commutators and linear combinations, construct more symmetric

transformations;

(3) show that almost all the unitary transformations can be obtained by the above way.

(1) Without loss of generality, we will consider a one-particle quantum mechanical system

as an example.5 In appendix B, we obtain two kinds of special symmetric transformations,

which are given by the following Lie algebras

gs :=
{
iϕ(~̂x)

∣∣∣ ∀C∞ scalar field ϕ(~x)
}
, (4.13)

and

g̃s :=
{
icjlp̂j p̂l

∣∣∣ ∀cjl ∈ R
}
. (4.14)

The first is associated with the fact that we have a freedom to add divergent terms to a

Lagrangian. The second is associated with some canonical transformations.

4We distinguish this from ‘representation/bases transformations.’ In representation/bases transforma-

tions, we fix the Hamiltonian operator but change its matrix components by choosing different bases in a

Hilbert space. Here we change the Hamiltonian operator itself but do not change the bases in a Hilbert

space. For example, we refer to the transformations Ûϕ and Ŵf in eqs. (B.7) and (B.32).
5Strictly speaking, this Hamiltonian may not have a finite dimensional representation, which cannot be

covered by this paper. However, we expect that the general symmetries of the complexity should hold for

both finite and infinite dimensional cases.
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(2) Let us now consider the following series based on two special symmetric transforma-

tions defined in eqs. (4.13) and (4.14)

g(0)s := {ag1 + bg2 | ∀g1 ∈ gs, ∀g2 ∈ g̃s, ∀a, b ∈ R} , (4.15)

and

g(n)s :=
{
ag1 + bg2 | ∀g1 ∈ g(n−1)s , ∀g2 ∈ [g(n−1)s , g(n−1)s ], ∀a, b ∈ R

}
, (4.16)

for n ≥ 1. Here, the commutator [g
(n−1)
s , g

(n−1)
s ] is defined as

[g(n−1)s , g(n−1)s ] :=
{

[g1, g2] | ∀g1, g2 ∈ g(n−1)s

}
. (4.17)

Because the generators in gs and g̃s generate symmetric transformations of Finsler met-

ric, the generators in [g
(n−1)
s , g

(n−1)
s ] also generate symmetric transformations of Finsler

metric. Thus, the elements of g
(n)
s are all anti-Hermit operators generating symmetric

transformations of pF̃ (−iH, wα). For example, in one-dimensional case,

g(1)s =
{
iϕ1(x̂) + i(ϕ2(x̂)p̂+ p̂ϕ2(x̂)) + icp̂2 | ∀C∞ scalar fields ϕ1, ϕ2 and c ∈ R

}
,

(4.18)

and

g(2)s =
{
iϕ1(x̂) + i(ϕ2(x̂)p̂+ p̂ϕ2(x̂)) + i(ϕ3(x̂)p̂2 + p̂2ϕ3(x̂))

| ∀C∞ scalar fields ϕ1, ϕ and ϕ3} .
(4.19)

In general,

g(n)s ( g(n+1)
s (4.20)

for all n ≥ 0 so the set g
(n)
s will be bigger and bigger when we increase n. In the limit

n→∞, we define

g(∞)
s := lim

n→∞
g(n)s , (4.21)

which is closed under the commutators and forms a Lie algebra.

(3) In appendix C we have shown

g(∞)
s =

{
iH(x̂, p̂) | ∀ H(x̂, p̂) = H(x̂, p̂)†,

H(x, p) is smooth and has a Taylor’s expansion with respective to p at p = 0
}
.

Interestingly, g
(∞)
s contains almost all the possible anti-Hermit operators of a particle in

one-dimensional space, although our starting point only contains two kinds of very special

generators, eqs. (4.13) and (4.14). It can be generalized to higher dimensional cases so we

obtain one symmetric group for pF̃ (−iH, wα):

G(∞)
s =

{
exp[iH(~̂x, ~̂p)]

∣∣∣ ∀ H(~̂x, ~̂p) = H(~̂x, ~̂p)†,

H(~x, ~p) is smooth and has a Taylor’s expansion with respective to ~p at ~p = 0
}
.
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This is enough to show that the Finsler metric should be invariant under all unitary

transformation.

Recently, ref. [60] provided a different supporting argument for the adjoint symme-

try (4.1) based on the symmetry of the partition function/generating functional of quantum

systems.

4.2 Reversibility from the CPT symmetry

Let us consider the effect of the CPT symmetry6 of the quantum field theory on the Finsler

metric. For a quantum field Φ, the time evolution is given by Φ(~x, t) := c(t)†Φ(~x, 0)c(t),

where c(t) is an arbitrary curve in the SU(n) group. By denoting the CPT partner of

Φ(~x, t) by Φ̄(~x, t) we have

Φ̄(~x, t) = C ◦ P ◦ T [c(t)†Φ(~x, 0)c(t)]

= c(−t)†Φ̄(~x, 0)c(−t) ,
(4.22)

where c(t) does not have charge and spatial variables ~x. Thus, the evolution of the CPT

parter is c(−t) =: c̄(t). Given the CPT symmetry of the theory, it is natural to expect that

the costs of c(t) and c̄(t) is also the same, i.e.,

pLα[c, wα] = pLα[c̄, wα] . (4.23)

Because the generator of c̄(s) is given by H̄α(t) = −Hα(t),7 eq. (4.23) yields∫ 1

0
pF̃ (Hα(t), wα)dt =

∫ 1

0
pF̃ (−Hα(t), wα)dt . (4.24)

Because it is valid for arbitrary generators we have

F̃α(Hα, wα) = F̃α(−Hα, wα) . (4.25)

Strictly speaking, our argument here applies for SU(∞). We use the intuition from the

SU(∞) case to give a plausibility argument for the ‘reversibility’ (4.23) of the SU(n) case

with finite n.

Path-reversal symmetry. By using the adjoint invariance eq. (4.1) and the reversibility

eq. (4.2) we can prove the “path-reversal symmetry” of the cost for an arbitrary curve:

Lα[c, wα] = Lα[c−1, wα], ∀c(s) . (4.26)

Note that if the curve c(s) is generated by Hα(s), c−1(s) := [c(s)]−1 is not generated

by −Hα(s) but by −c−1Hr(c)c for α = r and −cHl(c)c
−1 for α = l. For example, for the

right generator, Hr(c
−1) = (dc−1/ds)c = −c−1(ċc−1)c = −c−1Hr(c)c. Thus

F̃ (Hr(c
−1), wr) = F̃ (−c−1Hr(c)c, wr) = F̃ (Hr(c), wr) , (4.27)

6The ‘charge conjugation’ C, ‘parity transformation’ (‘space inversion’) P and ‘time reversal’ T.
7For example, for the right generator, H̄r(t) = (dc̄/dt)c̄−1 = −(dc/dt)c−1 = −Hr(t).
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which gives eq. (4.26). Here, we used the adjoint invariance eq. (4.1) and the reversibility

eq. (4.2) in the second equality. The left-generator case works similarly.

In fact, the reverse also holds, i.e. eq. (4.26) implies eqs. (4.1) and (4.2). First, by

considering a special case c = eHs with a constant H, eqs. (4.2) can be derived from

eq. (4.26) and eq. (4.27). Thus, we are left with∫ 1

0
pF̃ (Hα(t), wα)dt =

∫ 1

0
pF̃ (c−1Hα(t)c, wα)dt . (4.28)

It is valid for arbitrary Hα and c so we have eq. (4.1). As a result, we have the following

equivalence between the path-reversal symmetry of the cost and the adjoint invariance plus

reversibility of the Finsler metric:

Path reversal symmetry: ∀c(s), Lα[c, wα] = Lα[c−1, wα]

⇔

{
adjoint invariance: pF̃ (Hα, wα) = pF̃ (ÛHαÛ

†, wα);

reversibility: pF̃ (Hα, wα) = pF̃ (−Hα, wα) .

(4.29)

5 Finsler metric and complexity of SU(n) operators

5.1 Finsler metric of SU(n) operators

So far, we have found, for the complexity geometry, we need the Finsler metric satisfying

two constraints eqs. (4.1) and (4.2). It turns out that these constraints with G3b are

strong enough to determine the Finsler metric in the operator space of any SU(n) groups

uniquely (up to an overall constant λ)

pF̃ (H(s), wα) = λ

{
Tr

[(
H(s)H(s)†

)p/2]}1/p

, (5.1)

where H(s) = Hr(s) or Hl(s) for the curve c(s) and λ := λr(wr) = λl(wl) is arbitrary

constant. The proof is similar to the case with p = 1 and wα = 0 in ref. [49] and consists

of the following four steps.

1© Note that, by using a unitary matrix Û , Hα always can be diagonalized and

the position of eigenvalues can be exchanged. Thus, the adjoint invariance (4.1),

pF̃ (Hα, wα) = pF̃ (ÛHαÛ
†, wα), implies that pF̃ (Hα, wα) is only a function of eigen-

values of Hα and independent of the permutations of these eigenvalues. Therefore,

without loss of generality, we can say

Hα = diag(iγ1, iγ2, · · · , iγn) =:

n⊕
j=1

iγj , (5.2)

where Hα is anti-Hermitian and we separate i from the eigenvalues iγj with γj ∈ R.

There is no index for α in the eigenvalues because Hr and Hl is related by a unitary

matrix Û (see eq. (4.5)) and their eigenvalues are the same.
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2© G3b or eq. (3.1) implies that if Hα = H1 ⊕H2(
pF̃ (Hα, wα)

)p
=
(
pF̃ (H1 ⊕ 0n−k, wα)

)p
+
(
pF̃ (0n ⊕H2, wα)

)p
. (5.3)

With the generator (5.2), eq. (5.3) reads(
pF̃ (Hα, wα)

)p
=

n∑
j=1

(
fα(iγj), wα

)p
=

n∑
j=1

(
fα(i|γj |), wα

)p
(5.4)

where fα is a function of the eigenvalues independent of their order. In the second

equality, the reversibility (4.2) pF̃ (Hα, wα) = pF̃ (−Hα, wα) was used.

3© Using the positive homogeneity F2 below eq. (3.3), pF̃ (βHα, wα) = β pF̃ (H) for

β ∈ R+, we obtain pF̃ (Hα, wα) = λα(wα)
[∑n

j=1 |γj |p
]1/p

, where λα(wα) is an overall

constant. Thus,

pF̃ (Hα(s), wα) = λα(wα)

 n∑
j=1

|γj |p
1/p

= λα(wα)

{
Tr

[(
Hα(s)Hα(s)†

)p/2]}1/p

.

(5.5)

4© By eq. (4.5) the trace part of the last term in eq. (5.5) are the same for α = r and

α = l. By eq. (4.4), we obtain λr(wr) = λl(wl) =: λ. Thus, eq. (5.1) is proven.8

Note that our final results (5.1) does not depend on α = r, l as expected from eq. (4.4).

Thus, from here, we will omit the indexes r, l and the symbol wα in the Finsler metric.

Without loss of generality, we may set

λ =
√

2n
1
2
− 1

p , (5.6)

so that pF̃ (Î) = 2F̃ (Î).9 The unimportant factor
√

2 was introduced for future convenience.

For example, by this factor, eq. (5.11) becomes simplified.

There are two values of p of special intrest in eq. (5.1). For p = 1 we obtain the result

in ref. [49],

1F̃ (H(s)) =

√
2

n
Tr
√
H(s)H(s)† . (5.7)

For p = 2

2F̃ (H(s)) =
√

2
√

Tr [H(s)H(s)†] . (5.8)

Interestingly enough, it turns out that the p = 2 case gives just the bi-invariant Rie-

mannian metric (‘standard’ metric) of SU(n) group. To show it, let us consider two tangent

vectors V1 and V2 at the point Û can be written as

Vk = HkÛ = iHa
kTaÛ , k = 1, 2 , (5.9)

8A penalization of different generator directions for other groups than SU(n) may be possible in principle.

For example, for non-unitary representations of some groups, as they are not related to quantum mechanical

processes, there is no physical principle to restrict the complexity for them and their penalties may be chosen

arbitrarily.
9This choice is just one convention.
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where Hk := iHa
kTa is generator for Vk, H

a
k is a real number, and {Ta, a = 1, 2 · · · , n2 − 1}

are bases of Lie algebra su(n) in the fundamental representation. The basis satisfy

TaTb =
1

2n
δabÎ +

1

2
(ifab

c + dab
c)Tc, T †a = Ta, Tr(Ta) = 0 , (5.10)

where fab
c are the structure constants antisymmetric in all indices and the d-coefficients

are symmetric in all indices. The metric tensor at the identity is given by

g̃ab :=
1

2

∂2F̃ 2

∂Ha∂Hb
= δab . (5.11)

We may compare the metric (5.11) with the Killing form of su(n). For semi-simple Lie

algebra, the bi-invariant metric must be proportional to its Killing form. The su(n) Lie

algebra is semisimple and the Killing form of su(n) is [61]

B(H1, H2) = −nδabHa
1H

b
1 . (5.12)

Noting that it is a unique candidate of the metric near identity up to proportionality

constant [61], we conclude that our metric eq. (5.11) is consistent with the Killing form

and fixes the proportionality constant.

5.2 Complexity of SU(n) operators

Now we have the precise Finsler metric, the next step is to compute the complexity by

finding the path of minimal cost (length) as shown in eq. (3.5). This minimization becomes

straightforward thanks to the bi-invariance proven in eq. (4.10). It has been shown that, in

bi-invariant Finsler geometry, the curve c(s) is a geodesic if and only if there is a constant

generator H(s) = H̄ such that [58, 59]

ċ(s) = H̄c(s) or c(s) = exp(sH̄) . (5.13)

With the boundary condition Ô = c(1) = exp(H̄), H̄ = ln Ô, which is the same as ref. [49].

Because H̄ is constant, eqs. (3.3) yields

pL[c] = pF̃ (H̄) = λ

{
Tr

[(
H̄H̄†

)p/2]}1/p

, (5.14)

where λ is defined in eq. (5.6). Finally, the complexity of Ô in eq. (3.5) is given by

pC(Ô) = min
{
pF̃ (H̄), ∀ H̄ = ln Ô

}
. (5.15)

Here ‘min’ means the minimal value among multi-values of ln Ô, which corresponds to the

possibility that the geodesic is not unique.

Note that the geodesics are independent of the value of p. It is because the geodesic is

determined only by the constant generator in the bi-invariant Finlser geometry, no matter

what specific metrics are given. The value of p only affects the metric so the numerical

value of the length of the geodesics. Therefore, all different choices of p will give the same
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qualitative results for the complexity apart from the numerical values of the complexity.

Thanks to this property, it is enough to choose a specific value of p to investigate the

property of the complexity of SU(n) operators. We choose p = 2 because in this case the

Finsler metric becomes the ‘standard’ bi-invariant Riemannian metric in SU(n) groups and

we can use a well-developed mathematics for the Riemannian geometry. In the following,

we will mostly focus on p = 2 but all the conclusion are still valid for arbitrary p > 0.

It is well known that the ‘standard’ bi-invariant Riemannian metric in SU(n) groups

is given uniquely by the Killing form of su(n) up to overall constants. However, this is

not true if we allow the geometry to be general Finsler geometry. For SU(n) groups, there

are infinitely many inequivalent Finsler geometries. For example, we refer to ref. [62] for

the way to construct a series of infinite inequivalent Finsler geometries.

6 Properties of operator complexity

In this section, we discuss some properties which can be derived from our results, eq. (5.15).

First, we investigate the geodesic deviation and chaos and compare our results with previous

works based on “k-local” metrics in refs. [29–31]. Next, we show that the pattern of the

time-evolution of the complexity conjectured in [5, 31] can be concretely realized in our

formalism of the complexity. Finally, we study the complexity related properties of the

precursor operators and compare with the results in refs. [3, 29].

6.1 Geodesic deviation and chaos

Refs. [29–31] considered the geodesic deviation of two geodesics generated by the generators

H and H + ∆δθ respectively, where δθ is an infinitesimal parameter and [H,∆] 6= 0.10 It

was argued that, in order to reflect the quantum chaos, the geodesics generated by H and

H + ∆δθ must diverge exponentially in a exponential time region. Whether the geodesics

diverge or converge has been quantified by the ‘sectional curvature’: if the sectional cur-

vature is negative (positive) the geodesics diverge (converge). We justify this criteria by

using the Jacobi field (a vector quantifying geodesic deviation) in appendix E. It has been

argued in refs. [29–31] that because the sectional curvatures of the bi-invariant metric are

all nonnegative the bi-invariant geometry cannot exhibit any chaotic behavior. However, in

this subsection we provide an argument for the possibility that even a bi-invariant geometry

may allow the diverging geodesics and so “chaotic” behaviours.

The key point of our argument is the careful analysis of the ‘sectional curvature’

quantifying the geodesic deviation. Let us consider a Riemannian manifold M with a

metric g(·, ·) and two linearly independent tangent vectors {X,Y } at the same point in M .

The sectional curvature (kM (X,Y )) is defined as

kM (X,Y ) :=
g(RM (X,Y )X,Y )

g(X,X)g(Y, Y )− [g(X,Y )]2
, (6.1)

where RM is the Riemannian curvature tensor of M with the metric g(·, ·).
10[H,∆] 6= 0 is necessary to insure the sectional curvature, which will be explain below, is nonzero.
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However, the evolution of the geodesic deviation between two neighboring geodesics

ξ1(s) = exp(Hs) and ξ2(s) = exp[(H + ∆δθ)s] is not determined by this sectional curva-

ture eq. (6.1). Instead, it is determined by the sectional curvature (kM(X,Y )) of a two

dimensional manifold M⊂M where two geodesic ξ1(s) and ξ2(s) belongs to:

kM(X,Y ) :=
g̃(RM(X,Y )X,Y )

g̃(X,X)g̃(Y, Y )− [g̃(X,Y )]2
. (6.2)

Here RM is the Riemannian curvature tensor of M and g̃(·, ·) is the induced metric in M.

Let us denote two orthonormal vector fields by {e‖, e⊥} tangent to M embedded in

an N -dimensional manifold M . Let us also denote N − 2 independent orthonormal vector

fields perpendicular toM by ei where i = 1, 2, · · · , N − 2. By the Gauss-Codazzi equation

we have the following relation between kM (e‖, e⊥) and kM(e‖, e⊥),

kM (e‖, e⊥) = kM(e‖, e⊥) +

N−2∑
i=1

[
Ki(e‖, e⊥)2 −Ki(e⊥, e⊥)Ki(e‖, e‖)

]
, (6.3)

where Ki(·, ·) is the second fundamental form associated with the normal vector field ei.

For more details for eq. (6.3), we refere to chapter 11.4c of ref. [63].

As shown in appendix E it is kM(e‖, e⊥) that governs the geodesic deviation, not

kM (e‖, e⊥). Note that it is possible

N−2∑
i=1

Ki(e‖, e⊥)2 −Ki(e⊥, e⊥)Ki(e‖, e‖) > kM (e‖, e⊥) , (6.4)

in some regions of a special M, if Ki is not positive definite. As a result, it is possible

that kM(e‖, e⊥) is negative even if kM (e‖, e⊥) > 0. For example, it is known that, for

a bi-invariant metric, kM (X,Y ) is always nonnegative for any pair of tangent vectors

{X,Y } [61], but even in this case, it is possible that the neighboring geodesics converge in a

region where kM(e‖, e⊥) is positive and diverge in a region where kM(e‖, e⊥) is non-positive.

We may understand this possibility in a different way. For a general H and ∆, the

2-dimensional sub-manifold M may not form a subgroup so in this case g̃(·, ·) is no longer

a bi-invariant metric of M. Thus, the bi-invariant metric g(·, ·) can insure kM (e‖, e⊥) ≥ 0

but cannot insure kM(e‖, e⊥) ≥ 0. For some particular choices of H and ∆, it is possible

that the sectional curvature of M is negative in some regions along ξ1(s).

In particular, for a SU(n) group with large n, there are many linear independent

generators to choose, so there are more possibilities to find two generators {H,∆} such

that two geodesics exp(Hs) and exp[(H + ∆δθ)s] can lay in a 2-dimensional sub-manifold

M of which sectional curvature is negative along ξ1(s) for some range of s. For finite n, it is

not so easy to find an example to support our claims explicitly because the group manifold

is high dimensional and its metric is very complicated. However, for SU(∞) representaion,

ref. [60] has shown an AdS3 spacetime (rather than only a time slices in AdS3) emerges as

a complexity geometry, which implies the negative sectional curvature.
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6.1.1 Comparison with “k-local” metrics

In this subsection, we compare physics of the geodesic deviations from our Finsler metric

with the ones from the “k-local” metrics [29–31]

First of all, let us start with an important statement which has not been clarified in

previous works. “It is impossible to make the curve ξ1(s) = exp(Hs) (where H is constant)

to be a geodesic completely lay in a negatively curved space no matter what metric we

choose.” The reason is as follows. i) The geodesic in a negatively curved 2-dimensional

space will never approach to the original point again as s increases as we explained in

section 6.1, ii) exp(Hs) can approach arbitrarily to the original point again and again as s

increases due to the quantum recurrence.11 iii) Therefore, exp(Hs) cannot be a geodesic

which completely lays in a negatively curved space. Thus, the correspondence between the

complexity geometry and hyperbolic geometry argued in ref. [30] will be valid only locally

in some regions of ξ1(s).

As a corollary, the sectional curvature can be negative only in some regions of ξ1(s)

rather than in the whole ξ1(s) in both our bi-invariant metric and the “k-local” metric case,

where the geodesic is also given by constant generators. The “k-local” metric with some

suitable penalties can insure some sectional curvatures to be negative near the identity [31]

but positive sectional curvature must appear somewhere else; the bi-invariant metric makes

the sectional curvature positive near the identity12 but the negative sectional curvature can

appear somewhere else. In this sense, the bi-invariant metric and “k-local” metric have no

essential difference on the aspect of geodesic deviation.

Compared with the negative sectional curvature discussed in refs. [29–31], the nega-

tive sectional curvature appearing in our bi-invariant metric is determined intrinsically by

the SU(n) group itself rather than caused by some artificial penalties. The same SU(n)

group can appear in many different physical systems. Thus, the “chaos” appearing in

the bi-invariant complexity can be seen as the universal property of complexity geometry

across the various different physical systems. On the contrary, the “chaos” discussed by

refs. [29–31] is not universal, as it depends on how to give the penalties to different genera-

tors. For example, in ref. [31], the sectional curvature at the identity can be negative only

if we choose penalty I2 = 1 “2-local” generators and In > 4/3 for all other generators.

Finally, the main motivation of refs. [29–31] to require the negative sectional curvature

for the complexity geometry is to reflect the chaos of a time dependent quantum state. In

our opinion, this quantum chaos should be achieved by the combination of the Hamilton

and initial state rather than by the Hamiltonian itself. For example, for chaotic nonlinear

11This point can be understood as follows. Supposed iγ1, iγ2, · · · , iγn are the eigenvalues of H. Then

Tr[(eHt− Î)(eHt− Î)†] = 2
∑n

l=1[1− cos(γlt)] can be made arbitrarily small for a large enough time t, which

follows from the existence of large t such that

0 < (γlt mod 2π) < δ

for all γl with arbitrary small δ.
12At the identity, we always have kM (e‖, e⊥) = kM(e‖, e⊥) for any two generators H and ∆ due to the

fact that surface M is locally geodesic at identity, where all Ki vanish. See the chapter 11.4c of ref. [63]

for details.
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s
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sc ≤ O(ed/2) sr ∝ O(exp(ed))

Fluctuation region

Figure 4. The conjectured schematic diagram for the complexity evolution of the operator exp(Hs),

where H is a constant generator in su(n). The complexity first grows linearly when s < sc and

reaches its maximum at the time s = sc ≤ O(
√
n) ∝ O(ed/2), where d is proportional to the

classical degree of freedom of the system i.e., the size of classical phase space. At a very large time

s = sr ∝ O(exp(ed)), the quantum recurrence occurs and the complexity goes down to zero.

systems, the evolutions may be chaotic for some initial conditions but may not for other

initial conditions. Therefore, also in quantum chaos, it seems to be better to focus on

the trajectories in the Hilbert space rather than the trajectories of SU(n) group operators.

From this perspective, the quantum chaos can be read from the complexity between the

states rather than operators, for example between two states: |ψ(t)〉 := exp(Ht)|ψ0〉 and

initial state |ψ0〉 or a small perturbation |ψ′(t)〉 := exp((H+δH)t)|ψ0〉. Indeed, in ref. [64],

we show that the chaos can be presented by the exponential growth of the complexity

between |ψ(t)〉 = exp(Ht)|ψ0〉 and |ψ0〉 rather than exp(Ht) and exp((H + δH)t). To

obtain this result, we first defined the complexity between states based on the complexity

of operators in this paper, which is an important result developed in ref. [64].

6.2 Linear growth and quantum recurrence

In this section, we show how the complexity of “time-dependent” operator Û(s) = exp(Hs)

evolves as time “s” goes on. It was argued that the complexity of exp(Hs) should show

the property in the figure 4 based on the quantum circuits. The complexity of exp(Hs)

first grows linearly until it saturates the maximum value. Such a linear growth time in

general is of order ed, where d is the number of the classical degrees of freedom. After then

there appears some fluctuations until s = sr ∼ exp(ed). At s ∼ sr the quantum recurrence

occurs, i.e, exp(Hsr) ≈ Î and C ≈ 0 [5, 31].

Let us show that our complexity based on the Finsler metric (5.1) can realize these

properties. First, because of the bi-invariance, the curve exp(Hs) with constant H is a

geodesic. Thus, naively we may conclude

pC(exp(Hs)) = pF̃ (H)s , (6.5)

where we relaxed the range of our parameterization s, which is s ≥ 0. Any value of s can

be the ending point of the path, where our target operator is located at.
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However, it turns out that this linear growth behavior of the complexity will be valid

only for s < sc as shown in figure 4, where sc is some critical time scale to be estimated

below. For s = s0 > sc, exp(Hs) is still the geodesic connecting Î to O0 = eHs0 but will

not be the shortest geodesic due to the multi-valuedness of logO. In general, there may

be a shorter geodesic eH
′s′ connecting Î and O0, which gives the complexity.

In the case p = 2, the geometry is bi-invariant Riemannian geometry and the existence

of the maximum complexity can be anticipated by the relation between the topology of

a manifold and curvature of SU(n) groups. According to the Bonnet-Myers theorem the

largest distance between two arbitrary points is given by (see the theorem 2.19 in ref. [61].)

π√
Ξ
, (6.6)

where Ξ is defined by the following relation between the Ricci tensor Ricc(·, ·) and

metric g(·, ·):
Ric(·, ·) = [(n2 − 1)− 1]Ξg(·, ·) . (6.7)

Here n2 − 1 is the dimension of SU(n) group. By using the relation between the Ricci

tensor and the Killing form [61]

Ric(·, ·) = −1

4
B(·, ·) , (6.8)

and the relation between the metric and the Killing form in eqs. (5.11) and (5.12)

B(·, ·) = −ng(·, ·) , (6.9)

we obtain

Ξ =
n

4(n2 − 2)
. (6.10)

Thus we have

2Cm ∼
√
n , for n� 1 . (6.11)

The critical time sc is proportional to the maximum complexity as follows.

sc =
2Cm

2F̃ (H)
∼ O(

√
n) ∼ O(ed/2) ∼ e(O(d)) , (6.12)

where we used the fact that if the classical phase space has size of order d the corresponding

quantum Hilbert space have dimension: n ∼ O(ed).

After s = sc the complexity will stop grow and may decrease or oscillate. After a

long enough time, the quantum recurrence can appear as argued in [5, 31]. The quantum

recurrence theorem says that, for large n, the recurrent time is of order exp(n). Thus,

there is a time s = sr ∝ exp(n) to make exp(Hs) ≈ Î:

2C(exp(Hsr)) ≈ 0 , sr ∼ O(exp(ed)) , (6.13)

which is the recurrent region in the figure 4. For systems with large degrees of freedom,

the dimension of Hilbert space will be the exponential of entropy S (n ∼ eS) so

2Cm ∼ sc ∼ eO(S) , sr ∼ exp
(
eO(S)

)
, (6.14)

which is consistent with the conclusions in ref. [3].
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Î

ˆ ( )U t

0Ŵ

0
ˆ ˆ ( )WU t

0
ˆ ˆ ˆ ˆ( ) ( ) ( )W t U t WU t 

( )d t

Î

0Ŵ

0
ˆ ˆ ˆ( ) ( )U t WU t

0 ( )c s

( )tc s

Figure 5. Left panel: geometric explanation of Ŵ (t) = Û(t)Ŵ0Û(−t) and distance d(t) (relative

complexity). Right penal: c0(s) and ct(s) are two geodesics connecting from Î to Ŵ0 and Ŵ (t)

respectively. It is possible that two geodesics c0(s) and ct(s) have the same length even though

Ŵ (t) 6= W0.

6.3 Complexity of precursors

It is also worth while to investigate the “complexity of precursors” studied in refs. [3, 29]

and make some comparisons. For a unitary operator Ŵ0 and a time-dependent unitary

operator U(t), a precursor operator Ŵ (t) is defined as

Ŵ (t) := Û(t)Ŵ0Û(−t) , (6.15)

where note that Ŵ0 is a unitary operator rather than a Hermitian observable. A geometrical

explanation of Ŵ (t) on a group manifold is shown in figure 5.

To quantify the time-dependent property of Ŵ (t) related to complexity, the complexity

pC(Ŵ (t)) itself is not a good quantity because pC(Ŵ (t)) may not change because of the

adjoint invariance even if Ŵ (t) changes. See the right panel of figure 5 for a schematic

example. A better one to characterize the evolution of precursor operator Ŵ (t) is the

distance d(t) between Ŵ0 and Ŵ (t) defined as

d(t) := min

∫ 1

0
pF (c(s), ċ(s))ds, c(0) = Ŵ0, c(1) = Ŵ (t) , (6.16)

which is the minimal length of the geodesic connecting Ŵ0 and Ŵ (t). We may call this

‘relative complexity’ from Ŵ0 to Ŵ (t). Because of the right-invariance of the Finsler metric,

eq. (6.16) is equivalent to

d(t) = min

∫ 1

0
pF (c(s), ċ(s))ds, c(0) = Î, c(1) = Ŵ (t)Ŵ−10 , (6.17)

which is just the complexity of Ŵ (t)Ŵ−10 .

By taking Ŵ0 = exp(Hw) and U = exp(Ht) we have

d(t) = pC(Ŵ (t)Ŵ−10 ) = pC
(

exp(Ht) exp(Hw) exp(−Ht) exp(−Hw)
)
. (6.18)
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While it is not easy to write down the explicit function of d(t) in term of t, for t � 1 the

expression may be written as

exp(Ht) exp(Hw) exp(−Ht) exp(−Hw) ≈ exp(Λt+O(t2)) , (6.19)

where Λ = Λ1 + Λ2 and Λ1 and Λ2 are given by the Baker-Cambell-Hausdorff formula

Λ1 =
1

2
[H,Hw] +

1

12
[Hw, [Hw, H]] + · · ·

Λ2 =
1

2
[H,Hw]− 1

12
[Hw, [Hw, H]] + · · ·

(6.20)

According to eq. (5.15), we obtain

d(t) = pF̃ (Λ)|t|+O(t2) , (6.21)

which means the difference between Ŵ (t) and Ŵ0 will increase linearly in time at the

beginning. This result is similar to the result in ref. [29] when the time satisfies t� 1.

In particular, for Hw = εH̃, where H̃ and H are two generators and ε ∼ t� 1, we have

exp(Ht) exp(Hw) exp(−Ht) exp(−Hw) ≈ exp([H, H̃]ε2) . (6.22)

The distance (relative complexity) becomes

d(ε) = pC(exp([H, H̃]ε2)) = ε2pF̃ ([H, H̃]) . (6.23)

On the other hand, if H̃ and H are orthonorml generators, the sectional curvature

spanned by H and H̃ in a bi-invariant Finsler geometry can be expressed as [59]

K[H,H̃](H, H̃) =
1

4
g̃([H, H̃], [H, H̃]) =

1

4
pF̃ ([H, H̃])2 , (6.24)

where the notation KY (H, H̃) means that the sectional curvature spanned by {H, H̃} with

a reference vector Y . In eq. (6.24), the reference vector is Y = [H, H̃]. To distinguish

the sectional curvature in general Finsler geometry from the one in Riemannian geometry

defined in eq. (6.1), we use a different symbol in eq. (6.24). For p = 2, KY (H, H̃) becomes

the sectional curvature in Riemannian geometry defined by eq. (6.1), which depends only

on the plane spanned by {H, H̃}. For p 6= 2, the KY (H, H̃) depends not only on the plane

spanned by {H, H̃} but also on a choice of reference vector Y . For more details about the

sectional curvatures in bi-invariant Finsler geometry, we refer to refs. [54, 55, 58, 59]

Thus, we obtain a geometrical interpretation of the relative complexity of the precursor

operator:

d(ε) = ε22
√
K[H,H̃](H, H̃) . (6.25)

For two orthonormal generators H and H̃, the square root of sectional curvature

K[H,H̃](H, H̃) quantifies the minimal required quantum gates to change the infinitesimal

operator exp(H̃ε) to its infinitesimal precursor exp(Hε) exp(H̃ε) exp(−Hε).
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7 Conclusion

In this paper we generalize the result in ref. [49] in two ways. First, we generalize the

parallel decomposition rule: G3a → G3b. It opens a possibility to consider the p-norm.

Second, we allow the complexity of the infinitesimal operator can depend on other factors

wα than the generator itself: G4 → G4a. For example, wα(α = r, l) may represent

the penalty factors. We showed that the, even with two generalizations, the complexity

geometry is still Finsler geometry.

We further constrain the Finsler geometry by these two properties. For ∀Û ∈ SU(n)

and ∀Hα ∈ su(n),

[adjoint invariance] pF̃ (Hα, wα) = pF̃ (ÛHαÛ
†, wα) ,

[reversibility] pF̃ (Hα, wα) = pF̃ (−Hα, wα) ,
(7.1)

The first is implied by the geometric idea of the complexity (i.e. independence of the curve

length on the left-right generator) and supported by the physical symmetric transforma-

tions of the complexity. The second is supported by the CPT invariance of the complexity.

The complexity of an operator is given by minimal geodesic length in the Finsler

geometry satisfying the constrints (7.1). Note that the adjoint invariance implies the

Finsler metric is bi-invariant. Thanks to this bi-invariance the geodesic is given by constant

generators and can be computed easily. We have shown that the complexity of SU(n)

operator, Ô, is given by eq. (5.15):

C(Ô) = λ(w)

{
Tr

[(
H̄H̄†

)p/2]}1/p

, ∀ H̄ = ln Ô , (7.2)

where we choose the minimal value among multi-values of ln Ô. Note that eq. (7.2) depends

on w = wr = wl and p. If w = 0 and p = 1 it becomes the result in ref. [49]. A new

ingredient w affects the complexity but only as an overall constant, so it is not essential.

Note that even though different p gives different complexity, the geodesics are the same

for all ps. i.e. the qualitative geometric and topological properties of the complexity based

on the geodesic will not be changed for different ps. Note that if p = 2 the complexity

geometry is given by the bi-invariant Riemannian metric and easier to handle. Thus, by

analyzing p = 2 case, we can figure out qualitative properties of the complexity for p 6= 2.

We have also discussed a few interesting properties of (7.2). First, we investigated the

geodesic deviation and chaos. In a manifold M with a bi-invariant metric, the sectional

curvature kM (X,Y ) is always nonnegative for any pair of tangent vectors {X,Y }, which

may imply that the geodesics converge and there cannot be any chaotic behavior [61]. How-

ever, we pointed out that the geodesic deviation is determined by the sectional curvature

(kM(X,Y )) of a two dimensional submanifoldM⊂M where two geodesic ξ1(s) and ξ2(s)

belongs to. Therefore, even in a manifold M with a bi-invariant metric, it is possible that

the neighboring geodesics diverge in a region where kM(X,Y ) is non-positive, which may

lead a chaotic behavior. As another supporting argument, we note that the induced metric

in M may not be bi-invariant even though the metric in M is bi-invariant.
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We also showed that if the geodesic is given by a constant generator, the sectional

curvature can be negative only in some part of ξ1(s), not in the whole ξ1(s).
13 This

statement is applied to both our bi-invariant metric and the “k-local” metric case, because

the geodesics are given by constant generators for both cases. Therefore, the bi-invariant

metric and “k-local” metric have no essential difference on the aspect of geodesic deviation.

Furthermore, because the geodesics both in “k-local” metric of refs. [29–31] and in a Finsler

geometry of this paper (also ref. [49]) are generated by a constant generator, most properties

in refs. [29–31] will also appear in our Finsler geometry and the predictions given by two

theories have no contradictions. In particular, all the results given by “k-local” subspace

in ref. [31] will also appear in our bi-invariant Finsler geometry.

Next, we have shown that the pattern of the time-evolution of the complexity conjec-

tured in [5, 31] is concretely realized in our complexity. i) the complexity grows linearly

because the generator is constant thanks to the bi-invariance of Finsler geometry ii) the

complexity reaches its maximum value in the exponential time (t ∼ ed/2) because of the

compactness of SU(n) group and the relation between the topology and curvature of SU(n)

groups. Finally, we have investigated the complexity of the precursor operators and found

(i) the complexity of the precursor operator grows linearly at early time (ii) the complexity

of precursors for infinitesimal operators corresponds to the sectional curvature.

In this paper we considered the complexity of the operator in the SU(n) group with

finite n. This result is extended to the case of SU(∞) and a non-compact group Sp(2N ,R)

in [60]. To study the complexity of operators in quantum mechanics, we need to choose

Hamiltonians for the generators in unitary representations. Non-compact groups have

‘infinite’ dimensional unitary representations. Therefore, to study non-compact groups we

need to generalize our method in this paper to deal with ‘infinite’ dimensional unitary

groups, which is a main technical achievement in ref. [60]. Interestingly, ref. [60] has

shown an AdS3 spacetime (rather than only a time slices in AdS3) emerges as a complexity

geometry for Sp(2,1) or SU(1,1) operator.

Another important future research direction is about the complexity between states.

Based on our work in this paper we have developed the way to compute the complexity

between states [64], where we have found a good agreement with the holographic results.
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A Relationship between the time order and left/right orders

Let us consider the time sequences (t1 < t2 < · · · < tn) and Ûn, the operator acting on the

system at t = tn. First, let us distinguish the time-order from the left or right order.

The time order, denoted by (T
∏n
k=1) Ûk, determines how to add a new operator to

the old operators. For example, it is possible, for n = 4, that(
T

n∏
k=1

)
Ûk = Û4Û3 · · · Û1Û2 , (A.1)

where at t = t2 the operator Û2 is added to the right, at t = t3 the operator Û3 is added

to the right and at t = t4 the operator Û4 is added to the right. This kind of time order

looks not so natural but can be allowed for discrete quantum circuits. However, from

the perspective of group theory, only the following ‘left-order’ or ‘right-order’ are equally

natural for a ‘time-order’.

1 Left-order L: a new operator can appear only at the left-side of old operators.(
T

n∏
k=1

)
Uk = ÛnÛn−1 · · · Û2Û1 :=

(
L

n∏
k=1

)
Ûk (A.2)

2 Right-order R: a new operator can appear only at the right-side of old operators.(
T

n∏
k=1

)
Uk = Û1Û2 · · · Ûn−1Ûn =:

(
R

n∏
k=1

)
Ûk (A.3)

For the left-order the complexity is right-invariant while for the right-order the complexity

is left-invariant.

Let us recall that both the left-order and right-order naturally appear in quantum

mechanics. For example, the Schrödinger’s equation can be written as14

d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 , (A.4)

which yields the evolution operator c(t) given by the left-order product:

c(t) = exp

(
←−
P
∫ t

0
H(s)ds

)
. (A.5)

14Here H(s) is anti-Hermitian.
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This shows that the time order corresponds to the left-order. However, it is just a conven-

tion to write the Schrödinger’s equation in terms of “ket” state |ψ〉. We can equally use

“bra” state 〈ψ| to express the Schrödinger’s equation:

d

dt
〈ψ(t)| = −〈ψ(t)|H(s) , (A.6)

which gives that evolution operator [c(t)]−1 given by the right-order product:

[c(t)]−1 = exp

(
−
−→
P
∫ t

0
H(s)ds

)
(A.7)

This shows that the time order corresponds to the right-order.

Although we usually use the left-order to present the time-order in quantum theories,

we can also use the right-order. Now a question arises: for a given unitary operator Û ,

can we know if it is built according to the “c(t)” manner (adding the new operator at the

left) or according to the “[c(t)]−1” manner (adding the new operator at the right side)? In

quantum circuits, the answer is yes because a real quantum circuit is created by ourselves

(we can decide which manner will be used.) However, for physically evolving systems in

nature, there seems no a priori reason to choose either of them. If a complexity theory

gives two different values for Û by these two ways, which way is employed by nature? A

natural assumption is that two ways give the same complexity:

pF̃ (Hl, wl) = pF̃ (Hr, wr) , (A.8)

which is shown to be true if the complexity is bi-invariant, in this paper.

B Two kinds of special symmetric transformations

In this appendix we will introduce two kinds of special symmetric transformations for the

complexity, which are used in section 4.1.2.

B.1 Adding a divergent term

Let us consider a Lagrangian for a particle in flat space

L := L(~x, ~̇x, t) , (B.1)

the canonical momentum ~p is defined by

pj :=
∂L
∂ẋj

, j = 1, 2, 3 , (B.2)

from which we can obtain ~̇x as a function of ~x, ~p,and t, i.e. ~̇x = ~̇x(~x, ~p, t). The corresponding

Hamiltonian reads

H = ~̇̂x · ~̂p− L = H(~̂x, ~̂p, t) . (B.3)

For a transformation

Sϕ : L → L+ ~∇ϕ(~x) · ~̇x , (B.4)
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with an arbitrary smooth scalar field ϕ(~x), the Hamiltonian H eq. (B.3) is transformed as

Sϕ(H) = H(~̂x, ~̂p− ~∇ϕ(~̂x), t) . (B.5)

This transformation Sϕ does not change physics such as the Feynman propagator and has

a unitary representation

Sϕ(H) = ÛϕHÛ †ϕ , (B.6)

with

Ûϕ = exp[iϕ(~̂x)] . (B.7)

Any composition of Sϕ also gives a new Hamiltonian yielding the same physics:

(Sϕ1 ◦ Sϕ2)(H) = H(~x, ~p− ~∇(ϕ1 + ϕ2), t) . (B.8)

Thus, Sϕ and their products (defined by the composition of maps) form a symmetric

group Gs for pF̃ (−iH, wα). Gs is an infinite dimensional Lie group with the following

representation for its Lie algebra gs

gs :=
{
iϕ(~̂x)

∣∣∣ ∀C∞ scalar field ϕ
}
. (B.9)

B.2 Canonical transformation

Next, let consider another kind of symmetric transformations, special canonical transfor-

mations. For example, let us take one-dimensional case:

Sf : (x, p) 7→ (X(x, p), P (x, p)) . (B.10)

We will show that if (X,P ) and (x, p) are transformed by a constant linear transformation(
X

P

)
=

(
f1, f2
f3, f4

)(
x

p

)
, (B.11)

with

f1f4 − f2f3 = 1 , (B.12)

then two Hamiltonians H(x̂, p̂) and

Sf (H) := H(X(x̂, p̂), P (x̂, p̂)) , (B.13)

describes the equivalent physics so should give the same complexity.15

First, these two Hamiltonians describe the same classical systems. This can be under-

stood by noting that a symplectic structure is invariant under the transformation

dx ∧ dp = dX ∧ dP , (B.14)

which is equivalent to

{X,P}P.B. :=
∂X

∂x

∂P

∂p
− ∂X

∂p

∂P

∂x
= 1 = {x, p}P.B. . (B.15)

15For example, if H(x̂, p̂) = x̂2 + p̂2 then Sf (H) = (f2
1 + f2

3 )x̂2 + (f1f2 + f3f4)(x̂p̂+ p̂x̂) + (f2
2 + f2

4 )p̂2.
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Thus, two Hamiltonians H and Sf (H) are transformed by a canonical transformation so

describe the same physics in classical mechanics.

Next, in order to show that two Hamiltonians H and Sf (H) are equivalent in quantum

level, let us consider the “phase-space formulation of quantum mechanics” [65, 66]. In

this formulation, the quantum state is described by a quasi-probability distribution: the

Wigner quasi-probability distribution W (x, p) [67], which is the Wigner transform of the

density matrix ρ̂

W (x, p) :=
1

π~

∫
〈x+ y|ρ̂|x− y〉e−2ipy/~dy . (B.16)

If Â(x̂, p̂) is an operator representing an observable, its expectation value with respect to

the phase-space state distribution W (x, p) is,

〈Â〉 := Tr(ρÂ) =

∫
A(x, p)W (x, p)dxdp . (B.17)

Let us define the star product “?” and the Moyal bracket “{{·, ·}}” as follows

h ? g := h exp

[
1

i~

(←−
∂ x
−→
∂ p −

←−
∂ p
−→
∂ x

)]
g , (B.18)

and

{{h, g}} := − 1

i~
(h ? g − g ? h) = −2

~
h sin

[
~
2

(←−
∂ x
−→
∂ p −

←−
∂ p
−→
∂ x

)]
g . (B.19)

The eigenvalue a and the eigenstate distribution Wa(x, p) of the observable Â are given by

the following ?-eigenvalue equation

A(x, p) ? Wa(x, p) = aWa(x, p) . (B.20)

For a given state distribution W (x, p), the possibility of obtaining eigenvalue a is given by

Ra = 2π~
∫
Wa(x, p)W (x, p)dxdp . (B.21)

For a given Hamiltonian H, the time evolution equation of an arbitrary state distribution

W (x, p) is given by
∂W

∂t
= −{{W,H}} . (B.22)

Now let us show that the transformation Sf does not change physics in quantum level.

The proof consists of the following three steps:

(1) The expectation values of observables. An observable Â and a state distribution

W (x, p) will be transformed as

Sf (Â) = Â(X(x̂, p̂), P (x̂, p̂)), Sf (W )|(x,p) = W (X(x, p), P (x, p)) . (B.23)
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The expectation value 〈Â〉 in eq. (B.17) is transformed as

Sf (〈Â〉) =

∫
Sf (A)Sf (W )dxdp =

∫
A(X(x, p), P (x, p))W (X(x, p), P (x, p))dxdp

=

∫
A(X,P )W (X,P ) det J dXdP =

∫
A(X,P )W (X,P )dXdP

=

∫
A(x, p)W (x, p)dxdp = 〈Â〉 .

(B.24)

In the second line of eq. (B.24), we have made a variables transformation (x, p)→ (X,P )

in the integration and det J is the Jacobi determinant of this variables transformation.

Eqs. (B.11) and (B.12) imply

det J = f1f4 − f2f3 = 1 . (B.25)

Eq. (B.24) shows that the expectation value of observable is invariant under the transfor-

mation Sf .

(2) The possible measurable values of observables. For arbitrary functions

h = h(x, p) and g = g(x, p), eqs. (B.11) and (B.12) imply

Sf (h)(
←−
∂ x
−→
∂ p −

←−
∂ p
−→
∂ x)nSf (g)

∣∣∣
x=x0,p=p0

= h(
←−
∂ x
−→
∂ p −

←−
∂ p
−→
∂ x)ng

∣∣∣
x=X(x0,p0),p=P (x0,y0)

,

(B.26)

with n = 0, 1, 2, 3, · · · so

Sf (h) ? Sf (g)|x=x0,p=p0 = h ? g|x=X(x0,p0),p=P (x0,y0)
. (B.27)

For an arbitrary observable Â with its eigenvalue a and eigenstate distribution Wa(x, p),

Sf (A) ? Sf (Wa)|x=x0,p=p0 = A ?Wa|x=X(x0,p0),p=P (x0,y0)

= aWa|x=X(x0,p0),p=P (x0,y0) = aSf (Wa)|x=x0,p=p0 .
(B.28)

This means that a and Sf (Wa) are the eigenvalue and eiegnstate distribution of observable

Sf (Â). Thus, Sf will not change the possible measurable values of any observable.

(3) The possibility of measurable values. For an arbitrary observable Â and a given

state distribution W (x, p), let us assume that the possibility of obtaining a measurable

value a is Ra. Under the transformation Sf , a is still the possible value of measurement

but the corresponding eigenstate distribution is Sf (W ). Under the transformation Sf , the

possibility of obtaining a is

Sf (Ra) = 2π~
∫
Sf (Wa)Sf (W )dxdp . (B.29)

Using similar steps in eq. (B.24), we find that

Sf (Ra) = Ra . (B.30)
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Thus, the possibility of obtaining a measurable value a is also invariant under the trans-

formation Sf .

These three results show that the transformation Sf will not change the results of all

measurements in quantum level. Therefore, H and Sf (H) describe two equivalent physical

systems in quantum mechanics.

In the above proof, it is important that the coefficients in eq. (B.11) are constants

and satisfy (B.12). Non-constant transformations satisfying eq. (B.12) but does not satis-

fying (B.26) will generate equivalent classical systems but inequivalent in quantum level.

For our purpose, it is enough to specify Sf by setting f1 = f4 = 1, f3 = 0 and f2 = f and

we obtain

X(x̂, p̂ ) = x̂+ fp̂ = Ŵf x̂Ŵ
†
f , P (x̂, p̂ ) = p̂ = Ŵf p̂Ŵ

†
f , Sf (H) = ŴfHŴ †f , (B.31)

with

Ŵf = exp(if p̂2/2) . (B.32)

Here, Ŵf can form a one-dimensional Lie group with Lie algebra g̃s := {icp̂2| ∀c ∈ R}.
This result can be generalized to higher dimensional cases and we obtain another symmetric

group of the Finsler metric with the following Lie algebra

g̃s :=
{
icjlp̂j p̂l

∣∣∣ ∀cjl ∈ R
}
. (B.33)

C Explicit form of g(∞)
s

In this appendix, we will show the following two results for one-dimensional case:

∀n ≥ 0, ∀ smooth ϕ(x), iϕ(x̂)p̂n + ip̂nϕ(x̂) ∈ g(∞)
s , (C.1)

and

g(∞)
s =

{
iH(x̂, p̂) | ∀ H(x̂, p̂) = H(x̂, p̂)†,

H(x, p) is smooth and has a Taylor’s expansion with respective to p at p = 0
}
.

(C.2)

Proof. It is obvious that eq. (C.1) is true for n = 0. For n ≥ 1, eq. (C.1) can be proven by

a mathematical induction. First, ∀n ≥ 0

[iϕ(x̂)p̂n + ip̂nϕ(x̂), ip̂2] = −[ϕ(x̂), p̂2]p̂n − p̂n[ϕ(x̂), p̂2]

= −iϕ′p̂n+1 − ip̂ϕ′p̂n − ip̂nϕ′p̂− ip̂n+1ϕ′

= −2i(ϕ′p̂n+1 + p̂n+1ϕ′) + i([ϕ′, p̂]p̂n − p̂n[ϕ′, p̂])

= −2i(ϕ′p̂n+1 + p̂n+1ϕ′) + [iϕ′′, ip̂n] ,

(C.3)

where we set ~ = 1. Note that iϕ(x̂) and ip̂2 belong to g
(∞)
s , which is closed under

commutators. If eq. (C.1) is true for n = k then we have ip̂k ∈ g
(∞)
s and so

∀ϕ(x), [iϕ(x̂), ip̂k] ∈ g(∞)
s , [iϕ(x̂)p̂k + ip̂kϕ(x̂), ip̂2] ∈ g(∞)

s . (C.4)
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Thus, eq. (C.3) implies

iϕ(x̂)p̂k+1 + ip̂k+1ϕ(x̂) = −1

2
[iΦ(x̂)p̂k + ip̂kΦ(x̂), ip̂2] +

1

2
[iϕ′(x̂), ip̂k] ∈ g(∞)

s , (C.5)

where Φ(x) :=
∫
ϕ(x)dx. This proves eq. (C.1). As any linear combination of elements in

g
(∞)
s is still in g

(∞)
s , we can find that for arbitrary smooth functions {ϕn(x̂), n = 0, 1, 2, · · · }

i
∞∑
n=0

[ϕn(x̂)p̂n + p̂nϕn(x̂)] ∈ g(∞)
s ,

which proves eq. (C.2).

D “Local” and “nonlocal” Hamiltonians

In some references such as ref. [31], the “locality” plays an important role. It was ar-

gued that the nonlocal interactions should be “more complex” than local interactions. In

general, by a unitary transformation, a Hamiltonian may change its “locality”, but the

symmetry (4.1) implies the complexity is invariant. This seems to be contradictory. In this

appendix, we will argue that this contradictory is due to the ambiguity of “locality” itself.

Let us explain it by an example.

Before starting let us first make a clarification on our terminology. The words “non-

locality/locality” appear in many different areas of physics and may stand for various dif-

ferent meanings. To avoid misunderstanding, we emphasis that the “nonlocality/locality”

we discuss here are only about the interactions in a given Hamiltonian. The “nonlocal-

ity/locality” of quantum states and quantum correlations do not have any relationship to

the following discussions.

Let us consider a Hamiltonian for N -lattices in 3-dimensional space

H1 =
1

2

3N∑
n=1

p2n
2mn

+
1

2

3N∑
n,l=1

fnlqnql , (D.1)

where {qn, pn} (with n = 1, 2, · · · , 3N) are the canonical coordinates of lattices, mn are the

masses of the lattices, fnl are the components of a symmetric non-diagonal matrix which

does not have negative eigenvalues. It seems that the Hamiltonian H1 is “non-local” in the

sense that every lattice has interactions with all others. However, we know that there is a

unitary transformation making Hamiltonian H1 “local” as follows

H2 =
1

2

3N∑
n=1

p2n
2mn

+
1

2

3N∑
n=1

λnq
2
n , (D.2)

where λn are the eigenvalues of the matrix of fnl. The “locality” looks changed when

we transform H1 to H2, although they are the same systems. Thus, the “nonlocality” in

Hamiltonian H1 should not be “intrinsic”.

To make this concept clear, we will call a Hamiltonian is apparently nonlocal (local)

if it contains nonlocal (only local) interactions in a given canonical variables. However,

– 33 –



J
H
E
P
0
3
(
2
0
1
9
)
1
6
1

we will call this Hamiltonian intrinsically local if there is a unitary transformation which

renders it local. Thus, H1 is apparently nonlocal, H2 is apparently local and both are

intrinsically local.

Notice again that H1 and H2 describe the same physical system and the apparent

locality will not be physical. Thus, we may expect that the complexity is also invariant

under the unitary transformation.

E Jacobi field and sectional curvature

In this subsection, we review on the Jacobi field and sectional curvature in Riemannian

geometry. We will be brief and restrict ourselves to the only relevant part to this paper,

referring to some textbooks, for example, refs. [63, 68] for more details.

In a N -dimensional Riemannian manifold (M, g(·, ·)) let us consider two neighboring

geodesics ξ1(s) and ξ2(s) laying in a 2-dimensional sub-manifold M. Locally, such a 2-

dimensional sub-manifold is determined uniquely by the neighboring geodesics ξ1(s) and

ξ2(s). They start at the same point s = 0, i.e. ξ1(0) = ξ2(0), and the angle δθ between

their tangent vectors at s = 0 is infinitesimal. The Jacobi field along the geodesic ξ1(s) (or

the geodesic deviation vector) is defined as

J(s) := lim
δθ→0

ξ2(s)− ξ1(s)
δθ

= lim
δθ→0

exp[(H + ∆δθ)s]− exp(Hs)

δθ
, (E.1)

which is a tangent vector in M. In the second equality a specific case is considered:

ξ1(s) = exp(Hs) and ξ2(s) = exp[(H + ∆δθ)s]. If there is an induced Riemannian metric

g̃(·, ·) in M, the Jacobi field J(s) satisfies the following equation

D̃

ds

D̃

ds
J(s) +RM(T (s), J(s))T (s) = 0 , (E.2)

with the initial condition J(0) = 0. Here T (s) is the tangent vector of ξ1(s) (i.e. T (s) :=

ξ̇1(s) = exp(Hs)H). D̃
ds is the directional covariant derivative along T (s) (i.e. in a local

coordinate system, Tµ∇̃µ where ∇̃µ is covariant derivative corresponding to metric g̃(·, ·)).
RM is the Riemannian curvature tensor corresponding to metric g̃(·, ·).

Using the metric g̃(·, ·), we can make a unique decomposition such that J(s) =

J⊥(s) + J‖(s), where J‖(s) is parallel to T (s) and J⊥(s) is orthogonal to T (s). With

this decomposition, the general solution for eq. (E.2) with condition J(0) = 0 may be

expressed as

J(s) = α0sT (s) + J⊥(s) , (E.3)

where α0 is constant. Plugging (E.3) into eq. (E.2), we find that transverse component

J⊥(s) satisfies

D̃

ds

D̃

ds
J⊥(s) +RM(T (s), J⊥(s))T (s) = 0 , J⊥(0) = 0 . (E.4)

Next, let us consider the vector e⊥(s), the parallel transport of e⊥(0) along ξ1(s) in

M, where e⊥(0) is the unit vector orthogonal to the tangent vector T (0). i.e.

D̃

ds
e⊥(s) = 0 , g̃(e⊥(0), T (0)) = 0 , (E.5)
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which implies that g̃(e⊥(s), T (s)) = 0 for arbitrary s. The inner product of e⊥(s) and

eq. (E.4) yields

D̃

ds

D̃

ds
g̃(J⊥, e⊥) + g̃(RM(T, J⊥)T, e⊥) = 0 , (E.6)

where eq. (E.5) was used.

Because M is 2-dimensional there is a scalar function f(s) such that

J⊥(s) = f(s)e⊥(s) , f(0) = 0 , (E.7)

so eq. (E.6) yields

f ′′(s) + kM(e‖, e⊥)g̃(T, T )f(s) = 0 , (E.8)

where

e‖ =
T√

g̃(T, T )
, (E.9)

and

kM(e‖, e⊥) :=
g̃(RM(e‖, e⊥)e‖, e⊥)

g̃(e‖, e‖)g̃(e⊥, e⊥)− [g̃(e‖, e⊥)]2
, (E.10)

which is the sectional curvature of the section spanned by {e‖, e⊥} embedded in M. Here

the denominator is indeed unity because {e‖, e⊥} are an orthonormal set, but we keep this

form for an easy comparison with eq. (6.2).

Note that the behavior of J⊥ is charactreized by f(s) in eq. (E.7) and eq. (E.8).

Therefore, it is governed by kM(e‖, e⊥) not by kM (e‖, e⊥), eq. (6.1). Depending on the

sign of the sectional curvature kM(e‖, e⊥), the neighboring geodesics ξ1(s) and ξ2(s) may

converge or diverge as s increases: in the regions for the sectional curvature is positive

(negative) the geodesics approach to each other (go far way from each other). In particular,

if the sectional curvature along ξ1(s) is positive almost everywhere16 ξ1(s) and ξ2(s) must

intersect with each other at a point s > 0; if the sectional curvature along ξ1(s) is non-

positive everywhere then ξ1(s) and ξ2(s) cannot intersect for s > 0.
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