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Inhomogeneous recombination can give rise to perturbations in the electron number density which can

be a factor of 5 larger than the perturbations in baryon density. We do a thorough analysis of the second

order anisotropies generated in the cosmic microwave background due to perturbations in the electron

number density. We show that solving the second order Boltzmann equation for photons is equivalent to

solving the firstþ second order Boltzmann equations and then taking the second order part of the

solution. We find the approximate solution to the photon Boltzmann hierarchy in ‘ modes and show that

the contributions from inhomogeneous recombination to the second order monopole, dipole, and

quadrupole are numerically small. We also point out that perturbing the electron number density in the

first order tight coupling and damping solutions for the monopole, dipole, and quadrupole is not equivalent

to solving the second order Boltzmann equations for inhomogeneous recombination. Finally, we confirm

our result in a previous paper that inhomogeneous recombination gives rise to a local type non-

Gaussianity parameter fNL ��1. The signal to noise for the detection of the temperature bispectrum

generated by inhomogeneous recombination is�1 for an ideal full sky experiment measuring modes up to

‘max ¼ 2500.
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I. INTRODUCTION

The process of recombination depends on the energy
density of photons and baryons as well as the number
density of electrons. Perturbations in energy and number
density of photons, baryons, and electrons therefore makes
recombination a function of position. The resulting pertur-
bations in the electron number density, �e, give rise to
second order perturbations in the photons through
Compton scattering. The perturbations in the electron
number density were first calculated by Novosyadlyj [1],
who found that �e � 5� �b on large scales, where �b is
the perturbation in the baryon density. Recently, Senatore
et al. [2] did a more rigorous analysis, including perturba-
tions in the escape probability of Ly� photons, and found a
similar result.

The factor of 5 enhancement of the electron number
perturbation suggests the possibility of observable non-
Gaussianity even if the initial conditions are completely
Gaussian. Assessing whether these effects are observable
by Planck [3] is therefore important, especially since
Planck aims to probe the non-Gaussianities in the initial
conditions. There have been many studies of different
second order effects [4–21]. In our previous paper [22]
(hereafter KW09), we calculated the bispectrum arising
due to inhomogeneous recombination and found that it

gives rise to a local type non-Gaussianity with the non-
linear (NL) parameter jfNLj & 1. However, we ignored the
second order photon monopole and quadrupole and elec-
tron velocity in the second order Boltzmann equation. In
this paper, we justify ignoring these terms. We also exam-
ine two different methods of arriving at the second order
solutions to the photon Boltzmann equation. The first
method is to solve the first and second order Boltzmann
equations together and take the second order part of the
resulting solution as the solution to the second order
Boltzmann equation. The second method is to solve the
second order Boltzmann equation separately. In KW09, we
solved the second order Boltzmann equation separately
and found that the first order photon monopole does not
contribute to the second order anisotropy, while the first
order photon dipole is partially cancelled by the first order
electron velocity. We prove that the two methods are
equivalent. This is also important for the self-consistency
of the perturbation theory. The important fact that the first
order source terms are suppressed is somewhat obscured in
the expression resulting from solving the first and second
order equations together. We also explain in the conclu-
sions section that perturbing the number density of elec-
trons in the first order tight coupling and damping solutions
for the monopole, dipole, and quadrupole is not equivalent
to solving the second order Boltzmann equation for inho-
mogeneous recombination. The method of perturbing the
first order solutions was followed in [23]; whereas, what
we want is the solution to the second order Boltzmann
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equation which we find in this paper. Following cosmo-
logical parameters are used for numerical calculations:
baryon density �b ¼ 0:0418, cold dark matter density
�c ¼ 0:1965, cosmological constant �� ¼ 0:7617, num-
ber of massless neutrinos N� ¼ 3:04, Hubble constant
H0 ¼ 73, cosmic microwave background (CMB) tempera-
ture TCMB ¼ 2:725, primordial Helium fraction yHe ¼
0:24, spectral index of the primordial power spectrum ns ¼
1:0, and �8 ¼ 0:8. All first order quantities are in confor-
mal Newtonian gauge and calculated using CMBFAST [24].
Electron number density perturbation is calculated using
DRECFAST [1].

II. LINE OF SIGHT INTEGRATION AT SECOND
ORDER: METHOD 1

We begin with the firstþ second order equations as
given in, for example, Eqs. (6.6, 6.11) of Ref. [25]. We
drop the second order metric perturbations and products of
first order terms which do not contain �e, the electron
number density perturbation. However, we retain the full
first order equation since it gives rise to second order terms,
as we will later see. We drop the usual factors of 1=2

multiplied with the second order variables, and use �ðiÞ �
�ðiÞ=4 as our perturbation variable for convenience. � �
�T=T is the photon temperature perturbation, while � is
the perturbation in the photon distribution function inte-
grated over momentum and normalized appropriately [25].
Superscripts (i) denote the order of perturbation. In what
follows, all perturbation variables are functions of coordi-

nates on spatial hypersurface x, line of sight angle n̂, and
conformal time � in real space and functions of Fourier
mode k, n̂, and � in Fourier space unless specified other-
wise. We will use same symbols for real space and Fourier
space quantities, but that should not cause any confusion as
only one quantity is needed at a time. Boldface quantities
are 3 vectors, while ^ indicates a unit 3 vector. We use the

following metric signature with � ¼ �ð1Þ þ�ð2Þ þ � � �
etc. and ignoring vector and tensor modes:

ds2 ¼ a2ð�Þ½�e2cd�2 þ e�2�dx2�: (1)

Also, we decompose the first order temperature pertur-

bation in Fourier space into ‘ modes as �ð1Þð�;k; n̂Þ ¼P
‘ð�i‘Þð2‘þ 1ÞP‘ðn̂ � k̂Þ�ð1Þ

‘ ð�;kÞ, where P‘ðn̂ � k̂Þ are
the Legendre polynomials. For the second order tempera-
ture perturbation, we use the spherical harmonic decom-

position defined by, �ð2Þ
‘mð�;xÞ ¼

R
dn̂�ð2Þð�;x; n̂ÞY�

‘mðn̂Þ
and similarly in Fourier space. Note that this differs from

the convention used in [25] by a factor of ð�iÞ�‘
ffiffiffiffiffiffiffiffiffi
2‘þ1
4�

q
.

Also, the electron velocity, vð1Þe , is equal to the baryon
velocity to a high precision and we will drop the subscript
on ve in the rest of the paper.
We start with the firstþ second order Boltzmann equa-

tion for photons in real space, ignoring second order metric
perturbations and second order terms which are products of
first order terms but do not contain �e � ðne � �neÞ= �ne,
where neð�;xÞ is the electron number density and �neð�Þ
is the mean electron number density:

d

d�
½�ð1Þð�;x; n̂Þ þ c ð1Þð�;xÞ þ�ð2Þð�;x; n̂Þ� � @

@�
ð�ð1Þð�;xÞ þ c ð1Þð�;xÞÞ

¼ �neð�Þ�Tað�Þ
�
ð1þ �ð1Þ

e ð�;xÞÞðCð1Þð�;x; n̂Þ ��ð1Þð�;x; n̂Þ ��ð2Þð�;x; n̂ÞÞ þ 1ffiffiffiffiffiffiffi
4�

p �ð2Þ
00 ð�;xÞ

þ 1

10

X
m

�ð2Þ
2mð�;xÞY2mðn̂Þ þ vð2Þð�;xÞ � n̂

�
; (2)

where we have defined Cð1Þ which is given in Fourier space by

Cð1Þð�;k; n̂Þ � �ð1Þ
0 ð�;kÞ � 1

2�
ð1Þ
2 ð�;kÞP2ðk̂ � n̂Þ þ vð1Þð�;kÞ � n̂: (3)

d
d� denotes the total derivative which is equal to

@
@� þ ni d

dxi
along the line of sight to zeroth order. n̂ denotes the line of sight

direction; �T is the Thomson scattering cross section. We now add �ne�Tað1þ �ð1Þ
e Þc ð1Þ to Eq. (2). Doing this and

rearranging terms, we get�
d

d�
� _�ð1þ �ð1Þ

e Þ
�
½�ð1Þ þ c ð1Þ þ�ð2Þ� ¼ Rð�;x; n̂Þ;

Rð�;x; n̂Þ � @

@�
ð�ð1Þ þ c ð1ÞÞ � _�

�
ð1þ �ð1Þ

e ÞðCð1Þ þ c ð1ÞÞ þ 1ffiffiffiffiffiffiffi
4�

p �ð2Þ
00

þ 1

10

X
m

�ð2Þ
2mY2mðn̂Þ þ vð2Þ � n̂

�
; (4)
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where we have defined _�ð�Þ � � �ne�Ta, with �ð�Þ ¼
�R

�0
� _�d�. �0 is the conformal time at a ¼ 1. Now, we

use the fact that along the photon geodesic x is a function
of � to write Eq. (4) as

e
�
R

�0
�

d�0 _�ð1þ�ð1Þ
e Þjxð�0Þ d

d�

�
�
ð�ð1Þ þ c ð1Þ þ�ð2ÞÞe

R
�0
�

d�0 _�ð1þ�ð1Þ
e Þjxð�0 Þ

�
¼ Rð�;x; n̂Þ: (5)

Note that the above equation can only be written if the
integrals appearing are evaluated along the line of sight and
so x ceases to be an independent variable outside the
integrals.

Integrating Eq. (5) formally along the line of sight
results in

ð�ð1Þ þ c ð1Þ þ�ð2ÞÞjxð�0Þð�0Þ
¼
Z �0

0
d�e

R
�0
�

d�0 _�ð1þ�ð1Þ
e Þjxð�0 Þ ½Rð�;x; n̂Þ�xð�Þ

¼
Z �0

0
d�e��

�
1þ

Z �0

�
d�0 _��ð1Þ

e jxð�0Þ
�
½Rð�;x; n̂Þ�xð�Þ:

(6)

In the last line we have assumed that
R
�0
� d�0 _��ð1Þ

e jxð�0Þ is
small compared to unity and approximately of same order

as �ð1Þ
e , which is a good enough assumption once recom-

bination starts.
Taking the second order part of the above equation, we

get

�ð2Þjxð�0Þð�0Þ ¼
Z �0

0
d�e��

�
ð� _�Þ

�
�ð1Þ
e ðCð1Þ þ c ð1ÞÞ

þ �ð2Þ
00ffiffiffiffiffiffiffi
4�

p þ 1

10

X
m

�ð2Þ
2mY2mðn̂Þ þ vð2Þ � n̂

�
þ
�Z �0

�
d�0 _��ð1Þ

e jxð�0Þ
��

@

@�
ð�ð1Þ þ c ð1ÞÞ

� _�ðCð1Þ þ c ð1ÞÞ
��

xð�Þ
: (7)

If we consider a single observer, then we do not have an
independent three dimensional space variable with respect
to which we can Fourier transform this equation. If we
consider all possible observers, then y � xð�0Þ spans all
space at time �0 and we can write xð�Þ ¼ x0 þ n̂� ¼ y þ
n̂ð�� �0Þ along the line of sight. Now all quantities in
Eq. (7) are functions of the same variable y, and we can
take Fourier transform with respect to it. The result is (Note
that all perturbation variables are Fourier transforms of the
respective quantities in the rest of this section; we omit the
arguments (k) where there is no confusion.)

�ð2Þð�0;k; n̂Þ ¼
Z �0

0
d�eik�n̂ð���0Þe��ð�Þ

�
ð� _�ð�ÞÞ

��Z d3k0

ð2�Þ3 �
ð1Þ
e ðk0; �ÞðCð1Þðk� k0; �Þ þ c ð1Þðk� k0; �ÞÞ

�
þ�ð2Þ

00 ð�;kÞffiffiffiffiffiffiffi
4�

p þ 1

10

X
m

�ð2Þ
2mð�;kÞY2mðn̂Þ þ vð2Þð�;kÞ � n̂

�

þ
�Z d3k0

ð2�Þ3
Z �0

�
d�0eik0�n̂ð�0��Þ _�ð�0Þ�ð1Þ

e ðk0; �0Þ
�
�
�
@

@�
ð�ð1Þðk� k0; �Þ þ c ð1Þðk� k0; �ÞÞ

� _�ð�ÞðCð1Þðk� k0; �Þ þ c ð1Þðk� k0; �ÞÞ
��
; (8)

where we have used the properties of Fourier transform
when the variable getting transformed is shifted and which
gives the phase factors on the right-hand side. We could
also have chosen initial point x0 ¼ y0 or xð�1Þ ¼ y1 as our
integration variable for any fixed �1 and got the same
result.

III. LINE OF SIGHT INTEGRATION AT SECOND
ORDER: METHOD 2

Another way to do the formal integration of the

Boltzmann equation is to move all terms containing �ð1Þ
e

and primordial potentials to the right-hand side in Eq. (2),
take Fourier transform of the resulting equation and then
integrate along the line of sight. This is in fact what is done

in [25] and KW09. In that case, the solution for �ð2Þ is

�ð2Þð�0;kÞ ¼
Z �0

0
d�eik�ðxð�Þ�xð�0ÞÞe��

�
�
ð� _�Þ

��Z d3k0

ð2�Þ3 �
ð1Þ
e ðk0ÞðCð1Þðk� k0Þ

��ð1Þðk� k0ÞÞ
�
þ �ð2Þ

00ffiffiffiffiffiffiffi
4�

p

þ 1

10

X
m

�ð2Þ
2mY2mðn̂Þ þ vð2Þ � n̂

��
: (9)

We now integrate by parts in variable � the term involving

�ð1Þ. The boundary terms vanish, resulting in
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Z �0

0
d�eik�ðxð�Þ�xð�0ÞÞe�� _�

�Z d3k0

ð2�Þ3 �
ð1Þ
e ðk0Þ�ð1Þðk� k0ÞÞ

¼
Z d3k0

ð2�Þ3 e
�ik�xð�0Þ

Z �0

0
d�eik

0�xð�Þ _��ð1Þ
e ðk0Þðe��eiðk�k0Þ�xð�Þ�ð1Þðk� k0ÞÞ

¼
Z d3k0

ð2�Þ3 e
�ik�xð�0Þ

Z �0

0
d�

�Z �0

�
d�0eik0�xð�0Þ _�ð�0Þ�ð1Þ

e ðk0; �0Þ
�
d

d�
ðe��eiðk�k0Þ�xð�Þ�ð1Þðk� k0ÞÞ: (10)

We now use the first order equation for �ð1Þ to obtain

Z d3k0

ð2�Þ3 e
�ik�xð�0Þ

Z �0

0
d�

�Z �0

�
d�0eik0�xð�0Þ _�ð�0Þ�ð1Þ

e ðk0; �0Þ
�
e��

� eiðk�k0Þ�xð�Þ
�
� _�Cð1Þðk� k0Þ � iðk� k0Þ � n̂c ð1Þðk� k0Þ þ @�ðk� k0Þ

@�

�
¼
Z d3k0

ð2�Þ3 e
ik�ðxð�Þ�xð�0ÞÞ

Z �0

0
d�

�Z �0

�
d�0eik0�ðxð�0Þ�xð�ÞÞ _�ð�0Þ�ð1Þ

e ðk0; �0Þ
�

� e��

�
� _�Cð1Þðk� k0Þ � iðk� k0Þ � n̂c ð1Þððk� k0ÞÞ þ @�ðk� k0Þ

@�

�
: (11)

By doing integration by parts once again on terms con-
taining c in Eq. (11), similar to what is done in solving the
first order Boltzmann equation [26], and then using the
result in Eq. (9), we obtain Eq. (8). This shows the simple
connection between the two approaches.

In KW09 we worked with Eq. (9). In Eq. (9) it is readily
apparent that there is cancellation between the collision

term Cð1Þ and �ð1Þ. This point is somewhat obscured in
Eq. (8) since the cancellation is now happening between �e

terms. Nevertheless, we have shown the exact equivalence
of the two approaches and that there is cancellation of first
order terms which leads to a small value of fNL even
though the electron number density is enhanced by a factor
of �5. It is also clear from Eq. (9) that the term which

causes the cancellation, �ð1Þ
e �ð1Þ, has no direct counterpart

among the source terms in the first order Boltzmann equa-
tion. Thus we have to be careful while using analogies with
the first order Boltzmann equation to estimate the second
order solutions. We will return to this point in the conclu-
sions section.

IV. BOLTZMANN HIERARCHYAT SECOND
ORDER

The Boltzmann equation for photons in Fourier space,
ignoring all the first order terms that do not involve the
electron number density perturbation is [25]

_�ð2Þðk; n̂;�Þþ in̂ �k�ð2Þðk; n̂;�Þ� _��ð2Þðk; n̂;�Þ ¼ Sð2Þðk; n̂;�Þ;

Sð2Þðk; n̂;�Þ �� _�
Z d3k0

ð2�Þ3�
ð1Þ
e ðk�k0;�Þ

�
�ð1Þ

0 ðk0;�Þ�X
‘00
ð�iÞ‘00 ð2‘00 þ 1ÞP‘00 ðn̂ � k̂0Þ�ð1Þ

‘00 ðk0;�Þþ n̂ � k̂0vð1Þðk0;�Þ

� 1

2
P2ðk̂0 � n̂Þ�ð1Þðk0;�Þ

�
� _�

�
�ð2Þ

00ffiffiffiffiffiffiffi
4�

p ðk;�Þþ 1

10

X
m0
�ð2Þ

2m0 ðk;�ÞY2m0 ðn̂Þþ vð2Þðk;�Þ � n̂
�

¼� _�
Z d3k0

ð2�Þ3�
ð1Þ
e ðk�k0;�Þ

�
�X

‘00�2

ð�iÞ‘00 ð2‘00 þ 1ÞP‘00 ðn̂ � k̂0Þ�ð1Þ
‘00 ðk0;�Þþ n̂ � ðk̂0vð1Þðk0;�Þ�Vð1Þ

	 ðk0;�ÞÞ

� 1

2
P2ðk̂0 � n̂Þ�ð1Þðk0;�Þ

�
� _�

�
�ð2Þ

00ffiffiffiffiffiffiffi
4�

p ðk;�Þþ 1

10

X
m0
�ð2Þ

2m0 ðk;�ÞY2m0 ðn̂Þþ vð2Þðk;�Þ � n̂
�
; (12)

where Vð1Þ
	 is the first order photon velocity. Vð1Þ

	 and Vð2Þ
	 , the second order photon velocity, are defined as follows [25]:
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ð
	 þ p	ÞV	 ¼
Z d3p

ð2�Þ3 fp; Vð1Þ
	 ðk0Þ ¼ 3

4�

Z
dn̂�ð1Þðk0; �; n̂Þn̂;

Vð2Þ
	 ðk; �Þ ¼ 3

4�

Z
dn̂�ð2Þðk; �; n̂Þn̂� 4

Z d3k0

ð2�Þ3 �
ð1Þ
0 ðk� k0; �ÞVð1Þ

	 ðk0; �Þ 	 3

4�

Z
dn̂�ð2Þðk; �; n̂Þn̂:

(13)

In the last line we have ignored the second term since it does not contain �ð1Þ
e . We remark that this extra term in the above

equation partially cancels a term of the form �ð1Þ
0 � v in the full second order equation. The dot product of photon

velocities with line of sight direction which appears in the Boltzmann equation is given by

V ð1Þ
	 ðk0Þ � n̂ ¼ �i�ð1Þ

1 ðk0; �Þ4�X
m0
Y�
1m0 ðk̂0ÞY1m0 ðn̂Þ; Vð2Þ

	 ðk; �Þ � n̂ ¼ X
m0
�ð2Þ

1m0 ðk; �ÞY1m0 ðn̂Þ: (14)

We choose the ẑ axis along k̂ and take the spherical harmonic transform of Eq. (12):

_�ð2Þ
‘m ¼ _��ð2Þ

‘m � ik

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�mÞð‘þmÞ
ð2‘� 1Þð2‘þ 1Þ

s
�ð2Þ

‘�1m þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1�mÞð‘þ 1þmÞ

ð2‘þ 3Þð2‘þ 1Þ

s
�ð2Þ

‘þ1m

�
þ Sð2Þ‘m;

Sð2Þ‘m ¼ � _�
Z d3k0

ð2�Þ3 �
ð1Þ
e ðk� k0; �Þ

�
�ð1� �‘0Þð1� �‘1Þ4�ð�iÞ‘�ð1Þ

‘ ðk0; �ÞY�
‘mðk̂0Þ � 1

2

4�

5
Y�
2mðk̂0Þ�‘2�

ð1Þðk0; �Þ
�

� _�

�
�ð2Þ

00�‘0�m0 þ 1

10
�ð2Þ

2m�‘2 þ Vð2Þ
m �‘1 þ Sm�v�‘1

�
: (15)

In the above, we have defined

Sm�v �
Z d3k0

ð2�Þ3 �
ð1Þ
e ðk� k0; �Þ

�
4�

3
Y�
1mðk̂0Þðvð1Þðk0; �Þ þ 3i�ð1Þ

1 ðk0; �ÞÞ
�
; (16)

and Vð2Þ
m �‘1 is the spherical harmonic transform of vð2Þ:n̂. All second order quantities are functions of (k; �). Note that

different m modes are independent of each other. Now we can write down the Boltzmann hierarchy explicitly:

_�
ð2Þ
00 ¼ � ikffiffiffi

3
p �ð2Þ

10 ;
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� ffiffiffi
1
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For ‘ � 3,
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ð‘þ 1�mÞð‘þ 1þmÞ

ð2‘þ 3Þð2‘þ 1Þ

s
�ð2Þ

‘þ1m

�
� _�Sm�‘

Sm�2 �
Z d3k0

ð2�Þ3 �
ð1Þ
e ðk� k0; �Þ

�
4��ð1Þ

2 ðk0; �ÞY�
2mðk̂0Þ � 4�

10
Y�
2mðk̂0Þ�ð1Þðk0; �Þ�;

Sm�‘ �
Z d3k0

ð2�Þ3 �
ð1Þ
e ðk� k0; �Þ½�4�ð�iÞ‘�ð1Þ

‘ ðk0; �ÞY�
‘mðk̂0Þ�:

(19)

We note that the first order monopole does not appear in the
above equations. Also the first order photon dipole is
partially cancelled by the first order electron dipole. Thus
only the first order quadrupole and higher multipoles con-
tribute to the hierarchy. These first order terms are small
during recombination, and thus we should expect the sec-
ond order terms due to inhomogeneous recombination to
be small. This cancellation counteracts the production of
non-Gaussianity due to enhancement in �ð1Þ

e .

V. APPROXIMATE SOLUTION OF BOLTZMANN
HIERARCHY

To find the approximate solutions, we can use the fact
that during recombination _� 
 1=�. Then, as in the case
of the first order Boltzmann equation, we can attempt to
find an approximate solution at different orders in 1= _�. In
the limit of _� 
 1=�, which is true during the entire
recombination period except at the very end when the
visibility also drops sharply, we can ignore the ‘ � 3
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modes. Also in Eq. (18), we can ignore terms with ‘ � 2
which do not involve _�. Equation (18) with these approx-
imations is

�ð2Þ
2m ¼ 10ik

9 _�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�m2

15

s
�ð2Þ

1m þ 10

9
Sm�2: (20)

Using this in Eq. (17),

_�ð2Þ
1m ¼ �ik

ffiffiffi
1

3

s
�ð2Þ

00�m0 þ 2ð4�m2Þk2
27 _�

�ð2Þ
1m

� 10ik

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�m2

15

s
Sm�2 � _�½Vð2Þ

m ��ð2Þ
1m þ Sm�v�: (21)

To proceed further, we need the momentum equation for
baryons [27]. Note that we ignore the second order metric
perturbations and the terms arising from the first order

perturbations that do not contain �ð1Þ
e as we did with the

Boltzmann equation for photons [2,25]:

@vð2Þ

@�
¼ �H vð2Þ þ _�

R

�Z d3k0

ð2�Þ3 �
ð1Þ
e ðk� k0; �Þ

� ðvð1Þðk0; �Þ � Vð1Þ
	 ðk0; �ÞÞ

þ ðvð2Þðk; �Þ � Vð2Þ
	 ðk; �ÞÞ

�
	 _�

R

�Z d3k0

ð2�Þ3 �
ð1Þ
e ðk� k0; �Þ

� ðvð1Þðk0; �Þ � Vð1Þ
	 ðk0; �ÞÞ

þ ðvð2Þðk; �Þ � Vð2Þ
	 ðk; �ÞÞ

�
: (22)

We have defined ratio of mean baryon to mean photon
density R � 3 �
b=4 �
	. Ignoring the expansion term above

introduces only a small error on small scales [factors of

ð1þ RÞ1=4] which is not important here (for example, see
Chap. 8, Exercise 5 in [26], also [28]). We take the dot
product of above equation with line of sight direction n̂ and
take the spherical harmonic transform of the resulting
equation. The result is

@Vð2Þ
m

@�
¼ _�

R
½Sm�v þ Vð2Þ

m ��ð2Þ
1m�: (23)

We can expand Eq. (23) perturbatively in R= _� as in the
first order case [26,28]. At zeroth order in R= _�, all the
source terms (terms which are products of the first order
terms) vanish. This causes all the intrinsic second order
terms to also vanish if we impose Gaussian initial condi-
tions. Thus all terms in the hierarchy are of first order or
higher in R= _�. At first order in R= _�, we have

Vð2Þ
m ¼ �ð2Þ

1m � Sm�v: (24)

Using this in Eq. (23), we get up to second order in R
_� ,

Vð2Þ
m ¼ �ð2Þ

1m � Sm�v þ
R

_�

@

@�
ð�ð2Þ

1m � Sm�vÞ: (25)

Continuing like this, we can obtain the terms at higher
orders in R

_� . Note that in first order perturbation theory we

need to go to second order in factors of R_� to get the damping

solution. However, here we are interested in the contribu-
tion of �e to the second order anisotropies which are
intrinsically of first order in R

_� , and it suffices to work at

first order in visible factors of R
_� . This gives us the leading

term in the solution of the second order Boltzmann equa-
tion. We comment on the solution beyond this approxima-
tion in Appendix B. At leading order in R

_� the equations

simplify a lot and the solution is similar to that of the first
order Boltzmann equation [28]. Using Eq. (25) in Eq. (21),
we get [dropping a higher order term from Eq. (21)]

_�ð2Þ
1m ¼ � ik

1þ R

ffiffiffi
1

3

s
�ð2Þ

00�m0 � 10ik

9ð1þ RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�m2

15

s
Sm�2

þ R

1þ R

@Sm�v
@�

; (26)

€�
ð2Þ
00 ¼ � ikffiffiffi

3
p _�ð2Þ

10

¼ �k2c2s�
ð2Þ
00 � 4

ffiffiffi
5

p
9

k2c2sS
0
�2 � ikR

ffiffiffi
3

p
c2s

@S0�v
@�

:

(27)

The solution to this equation in the limit that the sound

speed cs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ð1þ RÞp

is slowly varying is given by

�ð2Þ
00 ¼ C1 sin½krsð�Þ� þ C2 cos½krsð�Þ�

�
Z �

0
d�0

�
4
ffiffiffi
5

p
9

k2c2sð�0ÞS0�2ð�0Þ þ ikRð�0Þ

� ffiffiffi
3

p
c2sð�0Þ@S

0
�v

@�
ð�0Þ

�
sin½kðrsð�Þ � rsð�0ÞÞ�

kcsð�0Þ ;

(28)

where we have defined the sound horizon rsð�Þ �R�
0 d�

0csð�0Þ. With the Gaussian initial conditions, the

second order part of temperature anisotropy and its deriva-
tive are initially zero. Thus C1 ¼ C2 ¼ 0. Integrating by
parts the S�v term we get, assuming slowly varying cs,

�ð2Þ
00 ¼ �

Z �

0
d�0

�
4

ffiffiffi
5

p
9

kcsð�0ÞS0�2ð�0Þ
�

� sin½kðrsð�Þ � rsð�0ÞÞ�
�
Z �

0
d�0½iRð�0Þ ffiffiffi

3
p

kc2sð�0ÞS0�vð�0Þ�
� cos½kðrsð�Þ � rsð�0ÞÞ�: (29)
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Taking derivative with respect to � of above equation, we
get

�ð2Þ
10 ¼ i

ffiffiffi
3

p
k

_�ð2Þ
00

¼ �
Z �

0
d�0

�
4i

ffiffiffiffiffiffi
15

p
9

kcsð�0Þcsð�ÞS0�2ð�0Þ
�

� cos½kðrsð�Þ � rsð�0ÞÞ� þ Rð�Þ3c2sð�ÞS0�vð�Þ
�
Z �

0
d�0½Rð�0Þ3kc2sð�0Þcsð�ÞS0�vð�0Þ�

� sin½kðrsð�Þ � rsð�0ÞÞ�: (30)

For m ¼ �1 modes, we can directly integrate Eq. (26):

�ð2Þ
1m¼�1ð�Þ ¼ �

Z �

0
d�0 10ik

9ð1þ Rð�0ÞÞ

ffiffiffiffiffiffi
4

15

s
Sm�2ð�0Þ

þ R

1þ R
Sm�v: (31)

We can combine Eqs. (30) and (31) to get

�ð2Þ
1m ¼ �

Z �

0
d�0

�
4i

ffiffiffiffiffiffi
15

p
9

kcsð�0Þcsð�ÞS0�2ð�0Þ
�

� cos½kðrsð�Þ � rsð�0ÞÞ��m0

�
Z �

0
d�0½Rð�0Þ3kc2sð�0Þcsð�ÞS0�vð�0Þ�

� sin½kðrsð�Þ � rsð�0ÞÞ��m0

�
Z �

0
d�0 10ik

9ð1þ Rð�0ÞÞ

ffiffiffiffiffiffi
4

15

s
Sm�2ð�0Þð1� �m0Þ

þ R

1þ R
Sm�v: (32)

The quadrupole is given by ignoring the 1= _ð�Þ term in
Eq. (20) (at the level of approximation we are working):

�ð2Þ
2m ¼ 10

9 S
m
�2: (33)

Finally, the second order baryon velocity is given by
[Eq. (24)]

Vð2Þ
m ¼ �ð2Þ

1m � Sm�v

¼ �
Z �

0
d�0

�
4i

ffiffiffiffiffiffi
15

p
9

kcsð�0Þcsð�ÞS0�2ð�0Þ
�

� cos½kðrsð�Þ � rsð�0ÞÞ��m0

�
Z �

0
d�0½Rð�0Þ3kc2sð�0Þcsð�ÞS0�vð�0Þ�

� sin½kðrsð�Þ � rsð�0ÞÞ��m0

�
Z �

0
d�0 10ik

9ð1þ Rð�0ÞÞ

ffiffiffiffiffiffi
4

15

s
Sm�2ð�0Þð1� �m0Þ

� 1

1þ R
Sm�v: (34)

An important point to note here is that the photon and
baryon velocities are not equal. In particular, the sign of the
last term above is different (in addition to a factor of R).
These were assumed to be equal in [23].

VI. NUMERICAL RESULTS

We want to calculate the angular averaged bispectrum

due to �ð2Þ
00 , V

ð2Þ
m , and �ð2Þ

2m. The contribution from �ð2Þ
00 , as

well as the S�2 terms in Vð2Þ
m to the angular averaged

bispectrum, is exactly zero. This is shown in

Appendix A. The reason that the contribution from �ð2Þ
00

vanishes is the absence of first order monopole from the
second order Boltzmann equations. The contribution to

�ð2Þ
00 from the first order dipole and quadrupole averages

to zero. The same is true for the contribution from first

order quadrupole terms in Vð2Þ
m .

Thus the only terms which will give nonzero contribu-

tion to the angular averaged bispectrum are �ð2Þ
2m and S�v

terms in Vð2Þ
m .�ð2Þ

2m and the last term in Eq. (34) are same as
the terms already calculated in KW09 with additional
multiplying factors. The integral term involving S�v in
Eq. (34) can be calculated exactly following the calculation
in Appendix A. However, there is an easier way to estimate
the magnitude of this term. Figure 1 shows the function
sin½kðrsð�Þ � rsð�0ÞÞ� at k ¼ 0:25 for different values of �
as a function of�0. In general there will be cancellation due
to oscillations in the sin½kðrsð�Þ � rsð�0ÞÞ� as well as S�v
(Fig. 2 and [1,2]). We can get an upper bound for the region
after the peak of the visibility function when the magnitude

of 3�ð1Þ
1 � ivð1Þ is monotonically increasing by assuming

that the last half cycle of the sine contributes without any
cancellation and S�vð�0Þ � S�vð�Þ. Thus we arrive at the
following approximation (with slowly varying sound speed
assumption):

290 300 310 320 330 340

−1.0

−0.5

0.5

1.0

(Mpc)η’

FIG. 1 (color online). sin½kðrsð�Þ � rsð�0ÞÞ� for k ¼ 0:25 as
a function of �0 for different values of �. All curves end at
�0 ¼ �.
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�
Z �

0
d�0½Rð�0Þ3kc2sð�0Þcsð�ÞS0�vð�0Þ�

� sin½kðrsð�Þ � rsð�0ÞÞ��m0 & �½Rð�Þ3c2sð�ÞS0�vð�Þ�
�
Z krsð�Þ

krsð�Þ��
d½krsð�0Þ� sin½kðrsð�Þ � rsð�0ÞÞ��m0

¼ � 2Rð�Þ
1þ Rð�ÞS

0
�vð�Þ�m0; (35)

where the & sign is understood to be with respect to the
magnitude of the terms. For most values of � and k, where

we do not have a monotonic 3�ð1Þ
1 � ivð1Þ, there will be

additional cancellations due to the oscillations in 3�ð1Þ
1 �

ivð1Þ. Thus the above term will be smaller than or at most of
similar magnitude as the last term in Eq. (34). As we will
see later, the last term in Eq. (34) gives only �5% con-
tribution to signal to noise and is thus not important.
Before presenting the numerical results, we note that S�v

remains small until the very end of recombination. By the
time S�v finally becomes somewhat larger, the visibility
function becomes small suppressing the contribution to the
CMB anisotropies. Figures 3–6 show a comparison be-

tween �ð1Þ
0 , 3�ð1Þ

1 � ivð1Þ, and �ð1Þ
2 for wave numbers k ¼

0:001 Mpc�1, 0:01 Mpc�1, 0:1 Mpc�1, and 0:2 Mpc�1. In
interpreting these figures it should be kept in mind that

3�ð1Þ
1 � ivð1Þ is weighted by the derivative of the spherical

FIG. 2 (color online). 3�ð1Þ
1 � ivð1Þ as a function of conformal

time � for wave number k ¼ 0:2, 0.3, 0:4 Mpc�1. Note that it
becomes almost monotonically increasing at large � when
photon free streaming becomes important.

FIG. 3 (color online). �ð1Þ
0 , j3�ð1Þ

1 � ivð1Þj, and j�ð1Þ
2 j as a

function of � for wave number k ¼ 0:001 Mpc�1. Also shown
is the visibility function gð�Þ � � _�e��.

FIG. 4 (color online). �ð1Þ
0 , j3�ð1Þ

1 � ivð1Þj, and j�ð1Þ
2 j as a

function of � for wave number k ¼ 0:01 Mpc�1. The key is
the same as in Fig. 3.

FIG. 5 (color online). �ð1Þ
0 , 3�ð1Þ

1 � ivð1Þ, and �ð1Þ
2 as a func-

tion of � for wave number k ¼ 0:1 Mpc�1. Note that at small

scales 3�ð1Þ
1 � ivð1Þ becomes comparable to �ð1Þ

0 , but its con-

tribution to the bispectrum is suppressed because it is weighted
by the derivative of spherical Bessel function. See also Eq. (10)
and Fig. 3 in KW09.
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Bessel function [Eq. (10) in KW09] in the expression for
bispectrum which is smaller than the spherical Bessel
function by about an order of magnitude near the peak.

Thus even though in Figs. 5 and 6 3�ð1Þ
1 � ivð1Þ seems

comparable in magnitude to �ð1Þ
0 , its contribution to the

bispectrum is much smaller.
We will collectively refer to the source terms calculated

in KW09 as SKW09, that is all the terms on the right-hand

side of Eq. (9) except �ð2Þ
00 , V

ð2Þ, and �ð2Þ
2m. Figure 7 shows

the confusion with primordial bispectrum of local type as
parametrized by fNL defined in KW09 as a function of
maximum ‘ mode measured by an ideal experiment due to

�ð2Þ
2m ¼ 10=9Sm�2 and Vð2Þ

m ¼ �1=ð1þ RÞSm�v. For ‘max ¼
2500we get fNL ��0:02, a few percent of the value found
in KW09 for SKW09. An important point to note is that the
sign of the bispectrum at small scales is same as the net
contribution from SKW09. Thus the new terms calculated
here will add to the bispectrum from SKW09 and should
increase S=N by a small amount.
In Fig. 8 we show the signal to noise ratio for the

detection of the bispectrum generated by inhomogeneous
recombination for a cosmic variance limited experiment as
a function of the maximum multipole moment observed
‘max [29]

S

N
� 1ffiffiffiffiffiffiffiffiffi

F�1
rec

p ; Frec ¼
X

‘1�‘2�‘3�‘max

ðB‘1‘2‘3
rec Þ2

�‘1‘2‘3C‘1C‘2C‘3

;

�‘1‘2‘3 � 1þ �‘1‘2 þ �‘2‘3 þ �‘3‘1 þ 2�‘1‘2�‘2‘3 ;

(36)

where B‘1‘2‘3
rec is the angular averaged bispectrum generated

by inhomogeneous recombination , C‘ is the CMB angular
power spectrum, and �‘1‘2 is the Kronecker delta function.

We get S=N � 1 at ‘max ¼ 2500. Contributions from

SKW09 and�ð2Þ
2m and Vð2Þ

m calculated in this paper are shown
separately. SKW09 give S=N � 1 compared with S=N �
0:05 contributed by the second order baryon velocity and

FIG. 7 (color online). Confusion with primordial non-

Gaussianity parametrized by fNL. Contribution of �ð2Þ
2m ¼

10=9Sm�2 and Vð2Þ
m ¼ �1=ð1þ RÞSm�v is only a few per cent of

the contribution from SKW09, the source terms calculated in
KW09. SKW09 gives a cumulative contribution of fNL ��1 at
‘max ¼ 2500. The calculations were done including Fourier
modes up to k ¼ 0:5 Mpc�1. Contributions from k *
0:4 Mpc�1 are negligible.

FIG. 6 (color online). �ð1Þ
0 , 3�ð1Þ

1 � ivð1Þ, and �ð1Þ
2 as a func-

tion of � for wave number k ¼ 0:2 Mpc�1. Note that at small

scales 3�ð1Þ
1 � ivð1Þ becomes comparable to �ð1Þ

0 , but its con-

tribution to the bispectrum is suppressed because it is weighted
by the derivative of spherical Bessel function. See also Eq. (10)
and Fig. 3 in KW09.

FIG. 8 (color online). Signal to noise ratio for the bispectrum
generated by inhomogeneous recombination for a cosmic vari-
ance limited experiment as a function of the maximum multipole
moment ‘max. S=N due to SKW09 is �1 for ‘max ¼ 2500.

Contribution due to �ð2Þ
2m ¼ 10=9Sm�2 and Vð2Þ

m ¼ �1=ð1þ
RÞSm�v is only a few percent of the contributions SKW09. Also

shown for comparison is S=N from primordial non-Gaussianity
with fNL ¼ 1. The calculations were done including Fourier
modes up to k ¼ 0:5 Mpc�1. Contributions from k *
0:4 Mpc�1 are negligible.
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second order quadrupole. A future high-resolution cosmic
variance limited experiment may thus see a hint of inho-
mogeneous recombination in the bispectrum.

VII. CONCLUSIONS

We have analyzed two different ways of integrating the
second order photon Boltzmann equations. It is necessary
for the consistency of perturbation theory that it should not
matter if you solve different perturbation orders together or
separately and we find that it is so in this case. We can

define a typical second order term to be of the form�ð1Þ
0 �

�ð1Þ
0 with a prefactor of order unity and which can be

expected to give rise to a local type non-Gaussianity pa-
rameter jfNLj � 1. Then we have shown that the second
order monopole, dipole, and quadrupole are smaller than
typical second order terms. Although we have derived this
result in the tight coupling limit to second order in R= _�, the
fact that these terms are small is valid in general. This is
because the cancellation that causes these terms to be small
occurs in the original Boltzmann equations.

It can be seen that perturbing the electron number den-
sity in the first order monopole, dipole, and quadrupole
solutions does not work as follows. The full first order
solution can be approximately written as a product of an
oscillating part and a damping part. Senatore et al. [23]
perturb just the damping part to estimate the second order
solution. The oscillating part of the solution does not
contain explicit dependence on the electron number den-
sity, but the equations used in arriving at that solution do
depend on the electron number density [26]. To get the
oscillating part, we have to expand the baryon momentum
equation to first order in R= _�. The factor of _�, however,
cancels when the baryon momentum equation is substi-
tuted into the photon Boltzmann equation and does not
explicitly show up in the resulting oscillating solution.
Similar cancellation happens for the damping solution as
well. When the electron number density is perturbed in the
original equations these additional factors of _� lead to
additional terms in the second order equation that depend
on electron number density perturbation. Thus there is no
way to perturb the electron number density in the first order
oscillating and damping solutions to take into account
these extra second order terms, and the only way to get
the correct second order solution is to solve the second
order Boltzmann hierarchy explicitly as we have done. In

particular, the terms missed come from the �e�
ð1Þ term in

the second order Boltzmann equation which also results in
the cancellation of the first order monopole in the second
order Boltzmann hierarchy and gives the second �e term in
Eq. (8).

In addition, the correct solution should satisfy the rela-
tion between the second order monopole and dipole,
Eq. (17) (first equation in the Boltzmann hierarchy). The
solutions given in Senatore et al. [23] clearly fail to satisfy
this relation. In particular, this relation says that the second

order monopole and dipole should have the same depen-

dence on angular wave numbers, the factors of Y‘mðk̂Þ. The
first order solutions are the solutions for the transfer func-
tions and depend on only the wave number magnitude. So
it is not surprising that perturbing the first order solutions
fails to capture the angular dependence of the second order
solutions.
Physically, what the absence of the first order monopole

from the second order Boltzmann equations means is that if
we have a uniform radiation field then scattering by a
stationary inhomogeneous distribution of electrons does
not introduce additional inhomogeneities in the radiation
field (in the elastic Thomson scattering limit). The dipole
seen in the electron rest frame contributes to the additional
inhomogeneities in the radiation field but it is small during
recombination. Our analysis justifies neglecting the second
order monopole, dipole, and quadrupole, as we did in
KW09. In particular, we conclude, as in KW09, the con-
fusion with the primordial non-Gaussianity of local type
resulting from inhomogeneous recombination is jfNLj & 1
and thus not important for the Planck satellite mission [3]
which is predicted to achieve an accuracy of �fNL � 5
[30,31]. The S=N for the detection of this bispectrum by an
ideal full sky experiment using temperature data alone is
�1. However, perturbations in the electron number density
will also have an effect on CMB polarization. If this effect
is of a magnitude comparable or larger than the effect on
temperature, a post-Planck, high-resolution, all-sky mis-
sion measuring the CMB temperature and polarization
anisotropies may see the imprint of inhomogeneous recom-
bination in the CMB bispectrum at few sigma level.
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APPENDIX A: CONTRIBUTION FROM �ð2Þ
00

AND Vð2Þ
m

We can write the formal solution for �ð2Þðk; n̂; �0Þ,

�ð2Þðk; n̂; �0Þ ¼
Z �0

0
d�eikð���0Þk̂�n̂e��Sð2Þðk; n̂; �Þ:

(A1)

We will first include only the first term in Eq. (29) in the

source Sð2Þðk; n̂; �Þ. The calculation for other terms is
similar.
The angular averaged bispectrum is defined as the sum

over the m0s of bispectrum times a Wigner 3jm symbol,
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B‘1‘2‘3 ¼ X
m1m2m3

‘1 ‘2 ‘3
m1 m2 m3

� �
B
‘1‘2‘3
m1m2m3

¼ X
m1m2m3

‘1 ‘2 ‘3
m1 m2 m3

� �
�hað1Þ‘1m1

ðx; �0Það1Þ‘2m2
ðx; �0Það2Þ‘3m3

ðx; �0Þi
þ 2 permutations; (A2)

where að2Þ‘m is the Fourier transform of �ð2Þ
‘m, and að1Þ‘m is

calculated from first order multipole moments �ð1Þ
‘ :

að2Þ‘mðx; �0Þ ¼
Z d3k

ð2�Þ3 e
ik�x�ð2Þ

‘mðk; �0Þ;

að1Þ‘mðx; �0Þ ¼ 4�
Z d3k

ð2�Þ3 e
ik�xð�iÞ‘�ð1Þ

‘ ðk; �0ÞY�
‘mðk̂Þ:

Proceeding as in KW09, we get for the bispectrum from
the first term in Eq. (29):

B‘1‘2‘3
m1m2m3

¼ �ð4�Þ2ð2�Þ3
Z �0

0
d�gð�Þ

Z d3k1
ð2�Þ3

d3k2
ð2�Þ3

d3k3
ð2�Þ3 ð�iÞ‘1þ‘2þ‘3Y�

l1m1
ðk̂1ÞY�

‘2m2
ðk̂2ÞPðk1ÞPðk2Þð4�Þ3=2

�
Z �

0
d�0 4

ffiffiffi
5

p
9

k3csð�0Þ sin½k3ðrsð�Þ � rsð�0ÞÞ�j‘3½k3ð�� �0Þ�Y�
‘3m3

ðk̂3ÞY�
20ð�k̂2Þ�eðk1; �0Þ�ð1Þ

2 ðk2; �0Þ

��ð1Þ
‘1
ðk1; �0Þ�ð1Þ

‘2
ðk2; �0Þ�3ðk1 þ k2 þ k3Þ þ 5 permutations: (A3)

We have ignored�ð1Þ in Sð0Þ�2 to simplify equations, including it at the end of the calculation is trivial. We now use the Dirac
delta distribution to integrate over k3:

B
‘1‘2‘3
m1m2m3

¼ �ð4�Þ2
Z �0

0
d�gð�Þ

Z d3k1
ð2�Þ3

d3k2
ð2�Þ3 ð�iÞ‘1þ‘2 i‘3Pðk1ÞPðk2Þ�ð1Þ

‘1
ðk1; �0Þ�ð1Þ

‘2
ðk2; �0Þð4�Þ3=2

�
Z �

0
d�0 4

ffiffiffi
5

p
9

jk1 þ k2jcsð�0Þ sin½jk1 þ k2jðrsð�Þ � rsð�0ÞÞ�j‘3½jk1 þ k2jð�� �0Þ�

� Y�
l1m1

ðk̂1ÞY�
‘2m2

ðk̂2ÞY�
‘3m3

ð�ð dk1 þ k2ÞÞY�
20ð�k̂2Þ�eðk1; �0Þ�ð1Þ

2 ðk2; �0Þ þ 5 permutations: (A4)

To proceed further, we will need the following addition theorem for spherical waves [32]:

zLðjk1 þ k2jrÞYLMð dk1 þ k2Þ ¼
X

‘1‘2m1m2

i‘1þ‘2�Lð�1ÞM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ð2Lþ 1Þð2‘1 þ 1Þð2‘2 þ 1Þ

q
j‘1ðk1rÞz‘2ðk2rÞ

‘1 ‘2 L

0 0 0

 !

� ‘1 ‘2 L

m1 m2 �M

 !
Y‘1m1

ðk̂1ÞY‘2m2
ðk̂2Þ; (A5)

where z‘ is any of the spherical Bessel function and the
sum is over all allowed values of ‘1, ‘2,m1, m2. The above
equation is valid for arbitrary values of k1 and k2 if z‘ ¼ j‘,
the spherical Bessel function of first kind. If z‘ ¼ y‘, the
spherical Bessel function of second kind, then Eq. (A5) is
valid for k1 < k2 (and for k2 < k1 after interchanging k1
and k2).

We now use (A5) for the product j‘3Y
�
‘3m3

. We also

write sin½jk1 þk2jðrsð�Þ � rsð�0ÞÞ� ¼ ½jk1 þk2jðrsð�Þ �
rsð�0ÞÞ�j0½jk1 þk2jðrsð�Þ � rsð�0ÞÞ� and use Eq. (A5)
again. We also use

jk1 þ k2j2 ¼ k21 þ k22 þ
8�

3
k1k2

X
m0
Y�
1m0 ðk̂1ÞY1m0 ðk̂2Þ:

(A6)

The angular integrals over k̂1 and k̂2 can now be done. The
right-hand side of Eq. (A6) consists of two terms: k21 þ k22
has no angular dependence, while the rest of the right-hand

side depends on the angles k̂1 and k̂2. For simplicity we
will show the calculation for only k21 þ k22 part. The calcu-
lation for the other part is similar, but since we have extra
factors of spherical harmonics, we will get extra Wigner
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3jm symbols on integration over angles summing over which will require few extra steps.
The result for k21 þ k22 part is

�ð4�Þ3
ð2�Þ6

Z �0

0
d�gð�Þ

Z
dk1k

2
1

Z
dk2k

2
2ð�iÞ‘1þ‘2Pðk1ÞPðk2Þ�ð1Þ

‘1
ðk1;�0Þ�ð1Þ

‘2
ðk2;�0Þ

Z �

0
d�0 4

ffiffiffi
5

p
9

ðk21 þ k22Þðrsð�Þ� rsð�0ÞÞ

� csð�0Þ�eðk1;�0Þ�ð1Þ
2 ðk2;�0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s X
‘00‘0

1
‘0
2
Lm00m0

1
m0

2
M

ð�1Þ‘00þ‘3þm1i‘
0
1
þ‘0

2ð2‘01 þ 1Þð2‘02 þ 1Þ

� ð2‘00 þ 1Þð2Lþ 1Þj‘0
1
½ð���0Þk1�j‘0

2
½ð���0Þk2�j‘00 ½ðrsð�Þ� rsð�0ÞÞk1�j‘00 ½ðrsð�Þ� rsð�0ÞÞk2�

� ‘01 ‘02 ‘3

0 0 0

 !
‘00 ‘01 ‘1

0 0 0

 !
2 ‘02 L

0 0 0

 !
‘2 ‘00 L

0 0 0

 !
‘01 ‘02 ‘3

m0
1 m0

2 m3

 !
‘00 ‘01 ‘1

m00 m0
1 �m1

 !
2 ‘02 L

0 m0
2 �M

 !

� ‘2 ‘00 L

m2 m00 �M

 !
: (A7)

Summing over the m0s, we get [32]

X
m00m0

1
m0

2
M

ð�1Þ‘00þ‘3þm1
‘01 ‘02 ‘3

m0
1 m0

2 m3

 !
‘00 ‘01 ‘1

m00 m0
1 �m1

 !
2 ‘02 L

0 m0
2 �M

 !
‘2 ‘00 L

m2 m00 �M

 !

¼ X
L0M0

ð�1ÞLþ‘00þ‘0
2
þ‘3þ‘1þL0�m1�m2�m3�M0 ð2L0 þ 1Þ ‘3 L0 ‘1

m3 �M0 m1

 !
2 L0 ‘2

0 M0 m2

 !� ‘3 L0 ‘1

‘00 ‘01 ‘02

�� 2 L0 ‘2

‘00 L ‘02

�
;

(A8)

where the matrices in the last line are the 6j symbols. All the m dependence of the bispectrum is in the above expression.
Therefore to calculate the angular averaged bispectrum, we need only consider the above expression for averaging overm1,
m2, m3. The result of doing this averaging is

X
L0M0m1m2m3

ð�1ÞLþ‘00þ‘0
2
þ‘3þ‘1þL0�m1�m2�m3�M0 ð2L0 þ 1Þ ‘1 ‘2 ‘3

m1 m2 m3

 !
‘3 L0 ‘1

m3 �M0 m1

 !
2 L0 ‘2

0 M0 m2

 !

�
� ‘3 L0 ‘1

‘00 ‘01 ‘02

�� 2 L0 ‘2

‘00 L ‘02

�

¼ X
L0m3

ð�1ÞLþ‘00þ‘02þ‘1þ‘2þL0�m3ð2L0 þ 1Þ ‘3 ‘3 2

�m3 m3 0

 !�
‘3 ‘3 2

L0 ‘2 ‘1

�� ‘3 L0 ‘1

‘00 ‘01 ‘02

�� 2 L0 ‘2

‘00 L ‘02

�

¼ X
L0
ð�1ÞLþ‘00þ‘0

2
þ‘1þ‘2þ‘3þL0 ð2L0 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘3 þ 1Þ

q
�20�00

�
‘3 ‘3 2

L0 ‘2 ‘1

�� ‘3 L0 ‘1

‘00 ‘01 ‘02

�� 2 L0 ‘2

‘00 L ‘02

�
¼ 0: (A9)

The calculation for the other term in (A6) is similar, and it
also results in the Kronecker delta symbol �20 ¼ 0.

The second term in Eq. (29) involves cosine which can
be written in terms of the spherical Bessel function of the
second kind, y0. We therefore need to break the integral
over (k1; k2) in two parts, k1 > k2 and k1 < k2, in order to
apply the addition theorem. Both the terms will give a zero
contribution to the angular averaged bispectrum (with �10

in the final result due to Y10 in this term), which is easily
shown by a calculation similar to above. The boundary
k1 ¼ k2 will also give zero contribution to the (k1; k2)
integral because the integrand is finite.

Thus we have shown that the contribution from �ð2Þ
00 to

the angular averaged bispectrum vanishes. A similar cal-

culation for the Vð2Þ
m shows that the contribution from the

terms involving S�2 in Eq. (34) also gives zero contribution
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to the angular averaged bispectrum. In general, �ð2Þ
LM �

�e�
ð1Þ
‘ Y‘m gives nonzero contribution to the angular aver-

aged bispectrum if and only if L ¼ ‘ and M ¼ m because
of the orthogonality of spherical harmonics of different
orders.

APPENDIX B: INTEGRAL EQUATION FOR
SECOND ORDER MONOPOLE

An alternative to solving the Boltzmann hierarchy for
the second order monopole is to solve an integral equation
[33,34]. The line of sight solution for second order
Boltzmann equation is

�ð2Þð�;k; n̂Þ ¼ e�ð�Þ
Z �

0
d�0eik�n̂ð�0��Þgð�0Þ

�Z d3k0

ð2�Þ3 �
ð1Þ
e ðk0Þ4�X

‘00m00
ð�iÞ‘00f‘00 ðk� k0; �0ÞY‘00m00 ðn̂ÞY�

‘00m00 ð dk� k
0Þ

þ 1ffiffiffiffiffiffiffi
4�

p �ð2Þ
00 ðk; �0Þ þ 1

10

X
m00
�ð2Þ

2m00 ðk; �0ÞY2m00 ðn̂Þ þX
m00
vð2Þ
m00 ðk; �0ÞY1m00 ðn̂Þ

�
; (B1)

where f‘ represents a general first order term multiplying �e. We can integrate over direction n̂ to get an integral equation
for the monopole

�ð2Þ
00 ð�;kÞ ¼ e�ð�Þ

Z �

0
d�0gð�0Þ

�
ð4�Þ3=2

Z d3k0

ð2�Þ3 �
ð1Þ
e ðk0ÞX

‘00m00
j‘00 ½kð�0 � �Þ�f‘00 ðk� k0; �0ÞY‘00m00 ðk̂ÞY�

‘00m00 ð dk� k
0Þ

þ j0½kð�0 � �Þ��ð2Þ
00 ðk; �0Þ �

ffiffiffiffiffiffiffi
4�

p
10

j2½kð�0 � �Þ�X
m00
�ð2Þ

2m00 ðk; �0ÞY2m00 ðk̂Þ þ i
ffiffiffiffiffiffiffi
4�

p
j1½kð�0 � �Þ�

�X
m00

vð2Þ
m00 ðk; �0ÞY1m00 ðk̂Þ

�
: (B2)

We can now write down the contribution of �ð2Þ
00 to the bispectrum

Bm1m2m3

‘1‘2‘3
¼
Z �0

0
d�gð�ÞSm1m2m3

‘1‘2‘3
ð�Þ þ 2 permutations;

S
m1m2m3

‘1‘2‘3
ð�Þ � ð4�Þ3

Z d3k1
ð2�Þ3

d3k2
ð2�Þ3

d3k3
ð2�Þ3 ð�iÞ‘1þ‘2i‘3Y�

‘1m1
ðk̂1ÞY�

‘2m2
ðk̂2ÞY�

‘3m3
ðk̂3Þj‘3½k3ð�� �0Þ�

�
�

1ffiffiffiffiffiffiffi
4�

p �00ðk3; �Þ�‘1ðk1; �0Þ�‘2ðk2; �0Þ
	

¼ ð4�Þ3
Z d3k1

ð2�Þ3
d3k2
ð2�Þ3

d3k3
ð2�Þ3 ð�iÞ‘1þ‘2i‘3Y�

‘1m1
ðk̂1ÞY�

‘2m2
ðk̂2ÞY�

‘3m3
ðk̂3Þj‘3½k3ð�� �0Þ�e�ð�Þ

Z �

0
d�0gð�0Þ

�
�
4�

Z d3k0

ð2�Þ3
X
‘00m00

j‘00 ½k3ð�0 � �Þ�Y‘00m00 ðk̂3ÞY�
‘00m00 ð dk3�k0Þ�h�ð1Þ

e ðk0Þf‘00 ðk3 � k0; �0Þ�‘1ðk1; �0Þ

��‘2ðk2; �0Þi þ 1ffiffiffiffiffiffiffi
4�

p j0½k3ð�0 � �Þ�h�ð2Þ
00 ðk3; �

0Þ�‘1ðk1; �0Þ�‘2ðk2; �0Þi þ ij1½k3ð�0 � �Þ�

�X
m00

Y1m00 ðk̂3Þhvð2Þ
m00 ðk3; �

0Þ�‘1ðk1; �0Þ�‘2ðk2; �0Þi � 1

10
j2½k3ð�0 � �Þ�

�X
m00

Y2m00 ðk̂3Þh�ð2Þ
2m00 ðk3; �

0Þ�‘1ðk1; �0Þ�‘2ðk2; �0Þi
�
: (B3)

Here, we have used the integral equation for �ð2Þ
00

[Eq. (B2)] to get an equation for Sm1m2m3

‘1‘2‘3
. The last term

involving �ð2Þ
2m00 will give a small contribution (� 10%)

because of the factor of 1=10 and can be neglected. For
vð2Þ
m , we can use the approximate tight coupling solution,

the last term in Eq. (34), in which case it can be absorbed
into f‘00 for ‘

00 ¼ 1. We can similarly absorb the last term
also if we choose not to neglect it. If we did not have a

factor of j0 multiplying the second order monopole term in
last but third line, we would have an integral equation for
S
m1m2m3

‘1‘2‘3
. We can however make progress by using the

approximate solution for the second order monopole
Eq. (29). Then a calculation similar to Appendix A shows
that the contribution of this term to the reduced bispectrum
is exactly zero, so this term can be dropped. For the other
terms, we proceed as in KW09 and Appendix A. We break
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the four point correlation function of first order terms into
two point correlation functions using Wick’s theorem. We
can then perform all the angular integrals and two of the

radial integrals using the properties of Dirac delta distri-
bution, spherical harmonics, and Wigner 3jm and 6j sym-
bols. The result is

Sm1m2m3

‘1‘2‘3
ð�Þ ¼ ‘1 ‘2 ‘3

m1 m2 m3

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s
ð4�Þ4
ð2�Þ6

Z
dk1k

2
1

Z
dk2k

2
2e

�ð�Þ Z �

0
d�0gð�0Þ

� X
‘00‘01‘

0
2‘

00
1‘

00
2

f‘00 ðk1; �0Þ�eðk2; �0Þ�‘1ðk1; �0Þ�‘2ðk2; �0ÞPðk1ÞPðk2Þð�iÞ‘1þ‘2þ‘00þ‘00
2 i‘

0
1
þ‘0

2
þ‘00

1 ð2‘01 þ 1Þ

� ð2‘02 þ 1Þð2‘001 þ 1Þð2‘002 þ 1Þð2‘00 þ 1Þ ‘01 ‘02 ‘3

0 0 0

 !
‘2 ‘02 ‘002
0 0 0

 !
‘01 ‘1 ‘002
0 0 0

 !
‘001 ‘002 ‘00

0 0 0

 !
2

� j‘0
1
½k1ð�� �0Þ�j‘0

2
½k2ð�� �0Þ�j‘00

1
½k1ð�0 � �Þ�j‘00

2
½k2ð�0 � �Þ� þ permutation: (B4)

Note that this solution is approximate but does not assume
tight coupling, despite the fact that we used the tight
coupling solutions Eqs. (29), (33), and (34) as a trial
solution. Equation (B4) is the result of iterating the integral
equation once and will therefore contain corrections be-
yond the tight coupling approximation. In particular, this
solution takes into account all the terms in the full
Boltzmann hierarchy, Eqs. (17)–(19). The dominant con-
tribution would come from around the last scattering sur-
face, that is when �0 � �� 0. In that case the
corresponding spherical Bessel functions would be close
to zero unless the order of the spherical Bessel function is
zero. Thus we would expect that most contribution comes
from terms with ‘001 ¼ ‘002 ¼ 0. The last Wigner 3jm symbol
then forces ‘00 ¼ 0. But f‘00¼0 ¼ 0 since the first order
monopole cancels out making S

m1m2m3

‘1‘2‘3
vanish. This is the

result that we found for the approximate solution of the
second order Boltzmann equations also. For ‘001 , ‘002 � 0 we

also note that the arguments of the first two spherical
Bessel functions differ from the arguments of the last
two spherical Bessel functions by a factor of �100. But
for the squeezed triangles we would expect either ‘1 or ‘2
to be small making ‘01 � ‘002 or ‘02 � ‘002 due to triangle
conditions inWigner 3jm symbols. Thus we have a product
of the spherical Bessel functions of similar orders but with
arguments differing by a factor of hundred. This product
will be negligibly small, since if one of the spherical Bessel
function is near the peak the other would be negligibly
small or oscillating very fast giving a small residual after
integration. Thus the contribution from the second order
monopole can be safely neglected for the case of inhomo-
geneous recombination. This argument also applies to all
other terms in the second order Boltzmann equation which
are a product of monopole type term and higher order
multipoles.
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