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Abstract. A perfect Roman dominating function on a graph G = (V(G), E(G)) is a function
f:V(G) = {0,1,2} for which each u € V(G) with f(u) = 0 is adjacent to exactly one vertex
v € V(G) with f(v) = 2. The weight of a perfect Roman dominating function f is the value
wa(f) = Xvev(e) f(v). The perfect Roman domination number of G is the minimum weight of a
perfect Roman dominating function on G. In this paper, we study the perfect Roman domination
numbers of graphs under some binary operations.
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1. Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. Let
G = (V(G), E(G) be a graph. The sets V(G) and E(G) are the vertex set and edge set,
respectively, of G. For S C V(G), |S| is the cardinality of S. In particular, |V (G)| is
called the order of G. For notation and terminology not given here, see [5].

Vertices u and v of G are neighbors if uv € E(G). The open neighborhood of v refers
to the set Ng(v) consisting of all neighbors of v. The closed neighborhood of v is the set
N¢g[v] = Ng(v) U{v}. The degree of v, denoted degg(v), refers to the value |Ng(v)|, and
we define A(G) = max{degg(v) : v € V(G)}. Vertex v is an endvertex if degg(v) = 1, and
End(G) is the set of all endvertices of G. Vertex v is an isolated vertex if dege(v) = 0. We
denote by I'so(G) the set of all isolated vertices of G. For S C V(G), Ng(S) = UyesNa(v),
and Ng[S] = S U Ng(S).
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Let G and H be graphs with disjoint vertex sets. The disjoint union of G and H is the
graph GUH with V(GUH) = V(G)UV(H) and E(GUH) = E(G)UE(H). The join of G
and H is the graph G+ H with vertex set V(G)UV (H) and edge set E(G)UE(H)U{uv :
u € V(G),v e V(H)}. The corona of G and H is the graph G o H obtained by taking one
copy of G and |V (G)| copies of H, and then joining the i‘" vertex of G to every vertex in
the i*" copy of H. The edge corona of G and H is the graph G o H obtained by taking
one copy of G and |E(G)| copies of H and joining each of the end vertices u and v of
each edge uv of G to every vertex of the copy H" of H. The composition G[H] of G
and H is the graph with V(G[H]) = V(G) x V(H) and (u,v)(v/,v") € E(G[H]) if and
only if either uu’ € E(G) or uw =« and vv' € E(H). The complementary prism, denoted
GG, is the graph formed from the disjoint union of G' and its complement G by adding
a perfect matching between corresponding vertices of G and G. For the complementary
prism, V(GG) = V(G)UV(G) and E(GG) = E(G) U E(G)U{vv : v € V(G)}, where 7 is
the vertex in G corresponding to v € V(@) in the perfect matching.

A subset S C V(G) is a dominating set of G if Ng[S] = V(G). The minimum
cardinality of a dominating set is the domination number of G, denoted by ~(G). For
more details and results on domination number, we refer to [4, 9-11, 13]. In particular,
if v(G) = 1 and Ng[v] = V(G), then v is said to be a dominating vertex of G. In this
case, Dom(G) denotes the set of all dominating vertices of G. Any dominating set of G
of cardinality v(G) is called vy-set of G.

A dominating set S of G is a perfect dominating set if for every v € V(G) \ S, there
exists exactly one u € S for which uv € E(G) [16]. The minimum cardinality of a perfect
dominating set is the perfect domination number of G, which is denoted by v*'(G). Since
perfect dominating sets are dominating sets, v(G) < v¥'(G) for any graph G.

A Roman dominating function on G is a function f : V(G) — {0, 1,2} satisfying the
condition that for each u € V(G) for which f(u) = 0, there exists v € V(G) such that
f(v) =2 and w € E(G). The weight of f is the value wg(f) = X ev(q) f(v). The
Roman domination number of G, denoted by yr(G), is the minimum weight of a function
f on G. We refer to [2, 3, 7, 8, 12, 17, 18] for the history, introduction, importance and
for some of the recent developments of the study of Roman domination in graphs.

Customarily, we write f = (Vp, V3, V3) for a Roman dominating function f on G, where
Vi = {v e V(G) : f(v) = k}. With this convention, wg(f) = |[Vi| + 2|V2| and V3 U V3 is a
dominating set of G. In [8], it is known that for any graph G, v(G) < vr(G) < 27(G).

A perfect Roman dominating function (or PRD-function) on G is a Roman domination
function f = (Vy, V1, V2) on G such that for each u € V| there exists exactly one v € V5
for which uv € E(G). In other words, a PRD-function on G is a colouring of the vertices
of GG using colours 0, 1 and 2 such that each vertex coloured 0 is adjacent to exactly one
vertex coloured 2. The perfect Roman domination number of G, denoted by ’yg (G), is the
minimum weight of a PRD-function on G. A PRD-function f with wg(f) = v5(G) is
called vg-function of G.

The perfect Roman domination, a variation of the Roman domination, was introduced
and first investigated in 2018 by Henning et al. [15], particularly in trees. It is further
studied in [14] for regular graphs. More recent studies on the concept include [1, 19, 20).
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In this present paper, we continue the study of perfect Roman domination, specifically
on the join, corona, complementary prism, edge corona and composition of graphs.
The following bounds are established in the referred articles above.

Theorem 1.1. (i)[15] If T is a tree of order n > 3, then vE(T) < %n;

(ii) [14] If G is a k-regular graph of order n with k > 4, then v5(G) < (k’f:?,’jifl) n;

(i4i) [19] If G is a graph of order n, then YE(G) <n+1— A(G).

(iv) [19] For paths P, and cycles Cy, on n > 3 vertices, v (Py) = 7R (Crn) = [2].

For convenience, we adapt the symbol PRD(G) to denote the set of all perfect Roman
dominating functions on the graph G.

2. Results

The following proposition plays an important role in proving the desired results.

Proposition 2.1. If f = (Vp,V1,V3) is a Vg—function of G, then |Ng(v) N Va| # 1 for
each v € V.

Proof: Suppose that there exists v € V; for which |[Ng(v)NVa| = 1. Consider, in particular,
the function f* = (Vj, V¥, V5) given by f*(v) = 0 and f*(x) = f(z) for all z # v. We have
f* € PRD(G) with V§ = Vou{v}, Vi* = V1 \{v} and V5" = Va. Thus, wa(f*) = v5(G) -1,
a contradiction. |

Proposition 2.2. For a nontrivial connected graph G of order n,
max{2,7(@)} <£(G) < minf{n +1 - A(G),297(@)}.

Proof: Since a perfect Roman domination is a Roman domination, v(G) < v£(G). Let
f= Vo, V1,V2) be a vg—function of G. If Vj = &, then 'yg(G) =n > 2. On the other
hand, if Vo # @, then Va # @ so that 75 (G) > 2|Va| > 2.

By Theorem 1.1(iii), v5(G) < n+ 1 — A(G). Now, let S C V(G) be a yF-set of G.
Then f = (Vp, V1, V2) € PRD(G), where Vo = V(G) \ S, Vi = @ and Vo = S. Therefore,
1 (G) <218 = 297(G). _

Observe that vE(Cy) =4 =k +1 - A(Ck) < 297 (Cy) for k =5 and 75 (Cs,,) = 2n =
2vF(C3,) < (3n41) — A(C3y,) for all n > 2. Therefore, the upper bound of the inequality
in Proposition 2.2 is sharp and may be determined by exactly one of n + 1 — A(G) and
2vF(G). The inequality, however, can also be strict. To see this, note that ’yg (C7)=5<

min{(7 + 1) — A(C7),2v7(C7)}.
Corollary 2.3. Let G be a connected graph of order n > 2. Then
(i) [19] vE(G) = 2 if and only if v(G) = 1.
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(ii) vE(G) =n if and only if n = 2.
(i3i) [19] vE(G) = 3 if and only if A(G) =n — 2.

(iv) If G is the complete multipartite graph Ky, y, . ., where 2 <1 <1 < ... < 1y,
then
min{r; + 1,4}, if m =2;
TR(G) = .
r+ 1, if m > 3.

Proof: Clearly, if 7(G) = 1, then 7 (G) = 1 and the inequalities in Proposition 2.2 imply
that ’yg(G) = 2. Now, suppose that ’yﬁ(G) =2, and let f = (Vp, V1, V2) be a 'yg—function
of G. If Vo = @, then V(G) = V; and v5(G) = n = 2. Since G is connected, G = P, and
v(G) = 1. If V5 # @, then Vi = @ and Vo = {v} with Ng[v] = V(G). This means that
v(G) = 1. This proves (7).

If n = 2, then G = P and v£(G) = 2 = n. Conversely, suppose that n > 3. Pick
v € V(G) such that degg(v) = A(G) > 2. Define on G

2, if x =w;
flz) =40, ifz € Ng(v);

1, else.

Then f € PRD(G) and w(f) = n— (A(G) — 1) < n, a contradiction. Thus, if v£(G) = n,
then n = 2. We have proved (i).

If A(G) = n — 2, then Proposition 2.2 implies that 2 < v£(G) < 3. Since v(G) > 2,
vE(G) = 3 by (i). Conversely, suppose that vE(G) = 3. By (i), v(G) > 2 so that
A(G) < n—2, and by (ii), n > 4. Let f = (Vo,V4,V2) be a yh-function on G. If
Vo = @, then V; = V(G) and 75 (G) = n > 4, a contradiction. Thus, |Va| = |V;| = 1, say
Vi = {u} and V5 = {v}. This means that V(G)\ {u,v} C V). Further, by Proposition 2.1,
wv ¢ E(G). Accordingly, degg(v) = n — 2. Therefore, A(G) > n — 2. This proves (ii7).

Suppose that G is the complete multipartite graph described in (iv). Then A(G) =
n —r1. Suppose first that m = 2. Then v(G) = v7(G) = 2. By Proposition 2.2,
vE(G) < min{ry +1,4}. Also, by (i), v£(G) > 3. If r1 = 2, then 75 (G) =3 =r1 +1. On
the other hand, if r1 > 3, then v5(G) = 4 > ry + 1. Now, assume that m > 3. By (i),
vE(G) < n. Let f = (Vy,V4,V2) be a vE-function on G. Then [V = 1, say Vo = {v}.
Since f is a 'yg—function, v € U, where U is the partite set of G with |U| = r;. More
precisely, f(v) =2, f(x) =1forall z € U\ {v} and f(z) =0 for all x € V(G) \ U. Thus,
vE(G) = we(f) = r1 + 1. This proves (iv). |

Proposition 2.4. [19] Let Gi, Ga, ..., Gy be the components of G. Then 'yg(G) =

Proposition 2.4 and Corollary 2.3(i7) yield the following corollary.
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Corollary 2.5. Let G be a graph of order n. Then ’yg(G) =nif and only if G = U§:1Gj;
where Gj € {K1, K>} forall j =1,2,... k.

Corollary 2.6. Let G be a graph of order n. Then v(G) = ’yf{(G) if and only if G = K,,.

Proof: If G = K,,, then v(G) = n and by Corollary 2.5, 'yE(G) = n. Conversely, suppose
that v(G) = vE(G), and let f = (Vp, V4, Va) be a vE-function of G. Note that if Vo # @,
then v(G) < [Vi| + [Va| < v5(G), a contradiction. Thus, Va = Vp = @ and v£(G) = n.
This means that v(G) = n and, thus, G = K,,. [ |

2.1. On the join of graphs
By Corollary 2.3(i), 75 (G + K,,) = 2 for all graphs G and for all n > 1.

The following theorem characterizes all PRD-functions on the join of nontrivial con-

nected graphs.

Theorem 2.7. Let G and H be any nontrivial connected graphs and f = (Vp, V1, Va).
Then f € PRD(G + H) if and only if one of the following holds:

(i) Vo CV(G) and one of the following holds:

(@) Vo CV(G), V(H) C Vi and (Vo, Vi NV(G),V3) € PRD(G);
(b) VonV(H) # @ and Vo = {v} for which Vo NV (G) C Ng(v).

(1i) Vo CV(H) and one of the following holds:

(a) Vo CV(H), V(G) C Vi and (Vp,ViNV(H),Vz) € PRD(H);
(b) VoNV(G) # @ and Vo = {v} for which Vo NV (H) C Ng(v).

(tit) Ay =VanNV(G) # @ and Ay = Vo NV (H) # & and the following holds:

(a) If VoNV(G) # @, then |As] =1 and (Vo NV (G)) N Ng(41) = 9;
(b) If VoNV(H) # @, then |A1| =1 and (Vo NV (H)) N N (Ag) = .

Proof: Assume that f is a perfect Roman dominating function on G + H. We consider
three cases:

Case 1: Suppose that Vo C V(G). If Vy C V(G), then V(H) C V; and the restriction
flviey = Vo,VinV(G),Vz) of f on G is a perfect dominating function on G. Suppose
that Vo N V(H) # @. Then, |Vo| =1, say Va = {v}. Necessarily, Vo N V(G) C Ng(v).

Case 2: Similarly, if Vo C V(H), then either (i7)(a) or (ii)(b) holds.

Case 3: Assume that V5 intersects both V(G) and V(H), and A = Vo N V(G) and
Ag = VoNV (H). Suppose that VoNV(G) # &, and let v € VyNV (G). Since Ay C Ng1p(v),
|A2| =1 and v ¢ Ng(A;). Since v is arbitrary, (iii)(a) holds. Similarly, (iii)(b) holds.
Conversely, suppose that (i)(a) holds for f, and let w € Vj. Then w € V(G) and there
exists a unique u € V3 for which uw € E(G). Since V(H) C Vi, u is unique in V(G+H) for
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which vw € F(G + H). This means that f € PRD(G + H). Suppose that (7)(b) holds for
f, and let w € V. Whether w € V(G) or w € V(H), v is a unique element in V5 for which
wv € E(G+ H). Thus, f € PRD(G + H). Similarly, if (i) holds, the same conclusion
is attained for f. Suppose now that (ii7) holds for f. Let v € V. If v € V(G), then by
condition (a), As = {u} for some u € V(H) and Ngypg(v) = {u}. Similarly, if v € V(H),
then A; = {u} for some u € V(G) and Ng4pm(v) = {u}. Accordingly, f € PRD(G + H).
|

We now use Theorem 2.7 to prove the following result which is also provided in [19].

Corollary 2.8. [19] Let Gand H be nontrivial connected graphs of orders m and n, re-
spectively. Then

YE(G+ H) = min{4+6(G) +06(H),m+1— A(G),n+1— A(H)}.
Proof: Let « = min{4+ §(G) + 6(H),m+1—A(G),n+1— A(H)}. Let v € V(G) for
which degg(v) = A(G). Define f = (Vp,V1,V2) on G + H by
2, if x =
flx)=4 0, ifxeV(H)UNg(v);
1, else.

Since f satisfies condition (¢)(b) of Proposition 2.7, f = (Vp, V1,Va) € PRD(G + H) with
Vo = {v} and V; = V(G) \ Ng[v]. Thus,

Yr(G+H) Swen(f) = [V(G)\ Nel]| +2
= m+1-A(G).
Similarly, £ (G + H) <n+1— A(H).
Now, pick u € V(G) and v € V(H) such that degg(u) = §(G) and degy(v) = 6(H),
and define f = (Vp, V1, V2) on G + H by
2, ifx=wu,uv;
f(x) =19 1, ifz € Ng(u)U Ng(v);
0, else.
Since f satisfies Proposition 2.7 (iii), f € PRD(G + H). Since V5 = {u,v} and V; =
Ne(u) U N (v),
V(G +H) Sween(f) = |Ng(u)UNpg(v)| +4
= 446(G)+0(H).
All of the above show that 75 (G + H) < a.

Now, let f = (Vo,V1,Va) be a vE-function of G + H. By Corollary 2.3(ii), since
m+n >4, Vo # @. Assume A; = Vo NV(G) # &. We consider two cases:
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Case 1: Suppose that Ay = Vo NV (H) = @. If Proposition 2.7(i)(a) holds for f, then
werr(f) >n+E@)>n>n+1-A(H) > o

On the other hand, if Proposition 2.7(7)(b) holds for f, then

)

wa+H(f) 2 2+ [V(G) \ Ng[v]] 2m+1—-A(G) = o

Case 2: Suppose that Ay = Vo NV (H) # @. If |Ai| > 2 and |As| > 2, then Vj = &
and v£ (G + H) > m + n, which is impossible. Assume that [4;] = 1. We consider two
subcases. First, suppose that [A;]| > 2. Then VoNV(H) = @, and since f is a vE-function
of G+ H, V(G) \ Ng[A1] C Vi (by Proposition 2.1) and Ng(A;1) \ A1 € Vi. This means
that [V4| > |[V(H) \ Vo| 4+ |Ng(A71) \ A1| so that

wera(f) = —1)+ |Ng(A1) \ A1| +2|Va| >n+5>n+1—- A(H).

Finally, suppose that |A;| = 1. Let Ay = {u} and As = {v} for some u € V(G) and
v € V(H). By Proposition 2.1, f(z) =0 for all z € V(G + H) \ (Ng[u] U Ng[v]). Thus,

wa+n (f) = 2|A1 U Az| + [Ng(u) U Np(v)] 244 6(G) +0(H) = a.
All cases above imply that v5 (G + H) > a. [ |
In particular, if m > n, then

n—1, if n <6;
6, ifn>7.

n—1, ifn<7T;

and 'yE(Cm+Pn)—{7 > g

'Yg(Pm + Py) = {
2.2. On the corona of graphs

Let G and H be connected graphs. Adapting the notation used in [6], for each v €
V(G), HY denotes that copy of H which is joined with v in G o H. In case H = {z}, we
write V/(H") = {z"}. Then V(G + H) = Uyey(e)V (H" +v), where H® +v = H" + (v).

It is worth noting that K1 o H = H + K, for any graph H.

Theorem 2.9. For nontrivial connected graphs G of order n,
V(G o K1) = min{wg (f) +n — [Va| : f = (Vo, V1, V) € PRD(G)}.
In particular, 'yg(Kn oKj)=n+1.
Proof: Write H = {z}, and put o = min{wg(f) +n — |Va| : f = (Vp,V1,V2) € PRD(G)}.
Let f = (Vo, Vi, V2) € PRD(G). Define f* = (Vi V;*, Vi) on G o K1 by
f(z), if 2 € V(G);
ff(z)=1¢ 1, if z = " for some v € Vy U Vy;

0, if z = z¥ for some v € V5.
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Then f* € PRD(Go Kp) with Vi =V U{z" :v e Vo, Vif =V U{a" :v e UV} and
V5" = Va. Moreover,
waor, (f*) = wa(f) +n—[Va.
Thus, 75 (G o K3) < a.
Let f = (Vo,V1,V2) be a 'y]];—function on G o Kq, and let A denote the set of all

u € Vo NV(G) for which uv ¢ E(G) for all v € Vo N V(G). Then for each u € A,
Vo N Negok, (u) = {z*}. Define f* = (V§, V{*,V5) on G o K by

f(z), ifzeV(G)\ 4

ff(z) =< 1, ifze AU{z":ue (VpUW)NV(G)};

0, ifze{a": veVanV(G)}.
Then f* € PRD(G o K;) with Vi = (Vb NV(G))\A) U{z" : v € VanNV(GQ)}, Vi =
AuWMnV@)u{z" :u e (VhuV)NV(G)} and V5 = VonV(G). Observe that
flw)+ f(@*) =2 = f*(u)+ f*(z*) for each u € A, and f(u) + f(z") > f*(u)+ f*(z*) for
each u € V(G) \ A. Thus,

weora () = Y (f@+f@ )+ Y (flu)+ fa")

ueA veV(G)\A

> Y (W E)D+ D () + =)
u€A ueV(G)\A

= wGOK1(f*)‘

Since f is a yE-function, wgok, (f) = waor, (f*). Moreover, for each u € Vi N V(G),
u € (VoNV(G))\ A so that there exists a unique v € VaNV(G) = V5 such that uv € E(G).
This means that the restriction f*|g of f* to G is a perfect Roman dominating function
on G. Thus,

TR(G o K1) =wgor, () = wa(fla)+ Y (")
veV(Q)
= we(f*le) +1(VouW) NV (G)|
= we(f*le) +n— [V NV(G)|
> Q.

It follows from Theorem 2.9 that for all connected graphs G of order n > 2,
VR(G o K1) <AR(G) +n— A,

where A = max{|Va| : (Vp, V4, V2) is a vE-function on G}, and this bound is sharp. Verify
that equality is attained if G is a cycle C,, (n > 3), a path P,, (n > 2), or any graph with
(@) =1,

Our desired result for more general graphs G and H will follow from the following
characterization.
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Theorem 2.10. Let G and H be nontrivial graphs with G connected, and f = (Vp, V1, Va).
Then f € PRD(G o H) if and only if the following holds:

(1) For allv e Vo NV(QG) either

(a) VaNNg(v) = @ and VoNV(HY) = {u} with u satisfying VoNV (H") C Ngv(u);
or

(b) [VanN Ng(v)| =1 and V(H") C Vi;

(1) For allv € ViNV(G), the restriction f|gv of f to HY is a perfect Roman dominating
function on HY;

(791) For allv € Vo NV(G) for which Vo NV (H") # @, Vo N Ny (Vo NV (HY)) = @.

Proof: Assume that f € PRD(G o H). Let v € VN V(G). Then there exists a unique
u € Vi for which u € Ngop(v) = V(HY)UNg(v). If VaNNg(v) = @, then VonV (HY) = {u}
and Vo NV (HY) C Ngv(u). Suppose that Vo N Ng(v) # @. Then [Va N Ng(v)| = 1 and
VoNV(HY) = @. Moreover, if w € VyNV (H"), then there exists a unique z € Vo NV (H")
such that wz € E(H"). Since vz € E(G o H), this is impossible. Thus, V(H") C V4. This
proves (7). Next, let v € Vi N V(G), and let w € Vo NV (H"). Since f is a perfect Roman
dominating function, there exists unique u € V4 for which uw € E(G o H). Since v € V7,
ue VonNV(HY)and uw € E(H"). Thus, f|gv is a perfect Roman dominating function on
H", and (7i) holds. Statement (7i7) is clear.

Conversely, suppose that conditions (i), (i) and (4i7) hold for f, and let w € V. Then
w € V(H"+v) for some v € V(G). If w = v, then by condition (i), VoaN(V(H"Y) U Ng(w)) =
{u} for some u € V(G o H). This means that Vo N Ngog(w) = {u}. Suppose that
w € V(H"). We consider three cases:

Case 1: Suppose that v € V. Since w € Vo N V(H"), V(H") ¢ Vi. Thus, by condition
() there exists u € V(H") for which Va NV (H") = {u} and Vo NV (H"Y) C Ngv(u). This
means that Vo N Ngom(w) = {u}.

Case 2: Suppose that v € Vj. By condition (ii), there exists a unique v € Vo NV (H")
such that ww € F(H"Y) C E(G o H). This implies that Vo N Ngog(w) = {u}.

Case 3: Suppose that v € Vi, Since w € Vp N V(HY), condition (i7i) implies that
w ¢ Ngo(VoNV(HY). Thus, Vo N Ngopr(w) = {v}.

Therefore, f is a perfect Roman dominating function on V(G o H). |

Corollary 2.11. Let G and H be nontrivial graphs with G connected of order n. Then
vE(Go H) = 2n.

Proof: By Theorem 2.7, the function f = (Vp, V1, V) defined by f(x) = 2 for allv € V(G),
and f(z) = 0 else, is a perfect Roman dominating function on GoH. Thus, vL(GoH) < 2n.

Now, let f = (Vp, V1, V2) be a yE-function on V(G o H). Let v € V(G). Clearly,
if veVy, then 3 cy(goiy) f(x) = 2. If v € Vg, then by Proposition 2.10(i) and since
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[V(H"| > 2, Eg;gv (Hv+0) f(z) > 2. Finally, if v € Vi, then by Proposition 2.10(i7),
D zeV (HY+v) f( ) > 2. Therefore,

V(G o H) =weonr(f) = Y Y f@) | =2

veV(G) \zeV(HV+v)

2.3. On the complementary prisms

Let f = (Vo,V1,V2) € PRD(GG). Suppose that for the restriction f|z ¢ PRD(G).
Then there exists v € V(G) such that 7 € Vy and Vo N N5(0) = {v}. Let u € Vo NV(G).
There exists w € V(GG) such that Vo N Nyz(u) = {w}. If w = %, then ww ¢ E(G, and
consequently, uv € F(G), a contradiction. Thus, w € VoNV(G). This proves the following
lemma.

Lemma 2.12. Let G be any graph. If f € PRD(GG), then f|lc € PRD(G) or flg €
PRD(G).

Proposition 2.13. Let G be a graph of order n. Then

(i) 7(GG) <R (GG);
(ii) vE(GG) =2 if and only if n = 1;
(i) 75 (GG) = 3 if and only if G € {Ka, Ko}
(iv) If v(G) = 1, then vE(GG) < n + 1 and equality is attained if dege(v) < 3 for all

v ¢ Dom(G) or G is the disjoint union of K; € {K1,Ks}.
Proof: Since GG is connected, (i) follows from Corollary 2.6.

If n =1, then GG = K3 and Vg(Gé) = 2. Suppose that 'yg(Gé) =2, and let f be a
vE-function of GG. By Lemma 2.12, we may assume that f|¢ € PRD(G). Ifwg(f|c) = 1,
then n = 1. If wg(f|g) = 2, then G = {v} with f(v) = f|g(v) =2 and f(v) =

If G € {Ks, Ks}, then GG is isomorphic to Py. Thus, vE(GG) = 3. Conversely,
suppose that v5(GG) = 3. By Proposition 2.3(iii), A(GG) = 2n — 2. Let v € V(GG) be
such that deggz(v) = 2n — 2. Without loss of generality, assume that v € V(G). Since
Nga(v) NV (G) = {1}, dega(v) = 2n — 3 < n — 1. Necessarily, n < 2. By (ii), n = 2 and
G K.

If v(G) = 1, then by Proposition 2.2, 75 (GG) < n+1. First, suppose that dege(v) < 3
for all v ¢ Dom(G). Let f = (Vp, V1, Va) be a vh-function of GG. Since wz(f) <n+1,
Vo # @. We consider two cases:
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Case 1: Suppose that Vo NV(G) = @. If V(G) C Vi, then V(G) € Vj so that woz(f) >
n + 1. Suppose that V(G) NV # @. Then

wes(f) = D f@+ D (fw)+ f(w))
weVonNV(Q) weViNV(Q)
> n+1.

Case 2: Assume that Vo NV(G) # @. We consider two subcases:

Subcase 2.1: Suppose that V5 contains a dominating vertex v of G. Since f is a
vE-function, Ng(v) U {v} C V). Let w € V(G) \ {v}. Suppose that w € V. There exists
u € V(G) such that Ng(w) N Va = {u}. Since wv ¢ E(G), u # v. Thus, u € V; and
v,U € Nggz(u) N Va, a contradiction. This means that f(w) > 1. Therefore, w.z(f) =

Subcase 2.2: Suppose that Vo N Dom(G) = &. Choos v € Dom(G). Put A = {w €
V(G) : f(w) = f(w) =0}. If A= g, then f(w)+ f(w) > 1 for all w € V(G) and since
VaNV(G) # @, we have wim(f) > n+ 1. Suppose that A # @. Here, we work on two
subcases:

Subcase 2.2.1: Suppose that v € Vy. If f(v) = 2, then V(G) N Vo = & and so
f(@) = 2 for each v € Vo N V(G). This implies that w,z(f) > n + 1. Suppose that
f(@) = 1. Then there exists u € V(G) such that Vo N V(G) = {u}. Moreover, for
each w € A, wu € E(G). Since degg(u) < 3 and uwv € E(G), |A| < 2. Suppose that
A = {w}. There exists a € V(G) such that v # a and Ng(w) N Vo = {a}. Since
a = (f(u) + f@) + (f(w) + f@)) + (f(a) + f(@)) = 4,

vegH=a+ Y (f@)+f@)24+(n-4)+1=n+1
zeV(G)\{u,w,a}

Now, suppose that A = {w, z}. There exist a,b € V(G) such that a,b € Vo, wa,zb € E(G)
and @,b € Ng(@). Thus, f(u) = f(a) = f(b) = 1 and whether a = b or a # b,

a=(f(u)+ f(@) + (f(w) + f@)) + (f(2) + f(2) + (f(a) + f(@)) + (£(b) + (b)) = 6.

Thus,

wea(f) = a+ > (f(x) + f(@) 26+ (n—6)+1=n+1.
zeV (G)\{u,w,z,a,b}

Subcase 2.2.2: Suppose that v,7 € V4. For each w € A, there exist distinct vertices
u,z € V(G) such that u,z € Vo, uw € E(G) and wz € E(G). Again, for each u €
Vo N V(G), since degg(u) < 3, there can only be at most two vertices a,b € A for which
ua,ub € E(G). Using similar arguments, if A < 2, then w.z(f) > n+ 1. To proceed,

we only have to consider the case where 3 < |A| < 4. Other cases follow inductively.
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Suppose that A = {x,y,w}. The only nontrivial scenario is the following: There exist
a,c € VoNV(G) and b € V(G) such that b € V3, ac ¢ E(G), we € E(G), {z,y} C Ng(a),
and {Z,7,w} C Ng(b). Since ab € E(G), f(a) = 1. Thus,

vee(f) = Y, (F+f@)+ > (f (u) + £ (@))
ue{a,z,y,b,w,c} weV(G)\{a,b,c,x,y,w}
> 7+ (n — 7) + 2
> n+1.

Finally, suppose that A = {z,y, z, w}. It is enough to consider only the following nontrivial
case: There exist a,c € Vo NV(G) and b € V(G) such that b € V3, ac ¢ E(G), {z,y} C
Ne(a), {w, 2z} € Ng(c), and {z,7,z,w} C Ng(b). Since ab,eb € E(G), f(a) = f(¢) = 1.
Hence,

woa(f) = Y. @)+ > (f (u) + f (@)
ue{a,b,c,x,y,w,z} ueV(G)\{ab,c,z,y,w,z}
> 8+ (n — 8) +2
> n+ 1.

All of the above cases show that 75 (G) = wea(f) > n+ 1.

Next, suppose that G is the union of K; € {Kj, K>}, and let f = (Vp, V1, V2) be a
’yg—function of GG. As shown previously, we may assume that Vo NV (G) # @, and if V3
contains a dominating vertex of G, then w.=(f) > n + 1. Henceforth, we assume that

VoNDom(G) = @. Pick v € Dom(G). Then v € Iso(G). Note that for all T € Iso(G), x ¢
A={weV(G): f(w) = f(w) = 0} so that (f(x) + f(z)) = 1. Also, for all z,y € V(G)

for which 7y € E(G), if x € A, then § € V5 and so (f(z)+ f(Z)) + (f(y) + f(¥)) > 2.
Thus, if v € Vp and u € V(G) such that Vo NV (G) = {u}, then

wea(f) = (fw+f@)+ D (fl@)+f@)+

z€lso(G)

> @+ @)+ () + @)

On the other hand, if v € V4, then f(v) =1 and

veg(f) = (PO +f@)+ > (f@)+f@)+

z€ls0(G)\{v}

Zf (f(@) + F@) + (f(v) + @)

TYEE(G)
> n+1.

Therefore, 75 (GG) > n + 1. |



L. Paleta, F. Jamil / Eur. J. Pure Appl. Math, 13 (3) (2020), 529-548 541

As shown by the graph G in Figure 1, strict inequality may be attained in Proposition
2.13(iv) if we remove the condition that degg(v) < 3 for all nondominating vertices v of
G. For such G, vE(GG) =6 < |V(G)| + 1.

G: GG
Figure 1: Graph G with y(G) = 1 and v5(GG) < |V(G)| + 1

Pick G = K,,. By Proposition 2.13(iv) and Corollary 2.5,
75 (GG) = 1+ max{y(G), 7 (G)}.

Observe also that if v € V(G), then f = (V(G) \ {v},2,{v}) € PRD(G) and v£(GG) =
wa(f) +n — |Va|. The following result shows that these two expressions serve as sharp
lower and upper bounds, respectively, of 'yg (GG) for a general graph G.

Theorem 2.14. For any graph G,
1+ max{74(G), 7% (@)} < 1:(GG) < p,
where p = min{wg(f) +n — [Vo| : f = (Vo, V1, V2) € PRD(G) U PRD(G)}.

Proof: WLOG assume that for some f = (Vp, V1, V2) on G, p = we(f) + n — |Va|. Extend
f to GG by defining f(@) = 0 for all v € V3 and f(v) = 1 for all v € V(G) \ Va. Then the
extension f € PRD(GG) and vE(GG) < wg(f) +n — |Va|. Thus, v5(GG) < p.

In view of Proposition 2.13(iv), we assume that neither G nor G is a complete graph.
WLOG, assume that v5(G) > 7E(G). Let f = (Vo, V4, V2) be a yh-function on GG. If
V(G) C Vp, then Vo = V(G) so that vE(GG) = 2|V3| = |[V(GG)|. Since GG is connected,
n = 1 by Corollary 2.5 and Corollary 2.3(i7). This is contradictory to our assumption.

Thus, V(G) N (ViUWe) # @. If VaNV(G) = @, then g = (Vo NV(G),ViNV(G), Vz) €

PRD(G). Since V(G)N'V} # &,
TR(GG) = wig(f) > welg) +1 > 15(G) + 1.

Suppose that Vo N V(G) # @, and let A = {v € Vj : Va N Nyg(v) = {v}}. Define
9=V, V", V') on G by

o(z) = { f(x), ifzeV(QG)\ A4,

1 if x € A.

)
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Then g € PRD(G) with Vg = (Vo \ A)NV(G), Vi = AU(V1 N V(G)) and V§ = VanV (G).

Since {v:v € A} C Vo NV(G),

VR(GG) =walg) + ) fle) = |Al 2 welg) +1274(G) + 1.

zeV(G)
|

If G = Cs, then G and G are isomorphic and GG is isomorphic to the Petersen graph.
Observe that 75 (GG) = 7, vE(G) = vE(G) = 4 and p = 8 so that

1+ max{£(G), 7k (@)} < 7£(GG) < p.
This shows that strict inequality can be attained at each side of the inequalities in Theorem
2.14.
2.4. On the edge corona of graphs

Given graphs G and H, we write H*’ to denote that copy of H that is being joined
with the endvertices of the edge uv € E(G) in the edge corona G o H. If H = {z}, then
we write V(H") = {z""}.

For an f € PRD(G), we write for each a,b € {0, 1,2},
Ea(f;G) ={w € E(G) : (f(u) =aA f(v) =b) V (f(u) =bA f(v) =a)},

where “A“ and “V“ denote “and* and “or“, respectively.

Theorem 2.15. Let G be a nontrivial connected graph and H any graph of order n. Then
vE(Go H) < a,
where

o= gelglllzilgl(G) (wa(9) + [B11(g; G) vk (H) + n (| Bor(g: G)| + [ E22(g; G)| + Eoo(g: G))))

and this upper bound is sharp.

Proof: Let g € PRD(G). If no confusion arises, we write E,, = FEg(g;G). Let h €
PRD(H). For each ab € E(G), we define a copy h® of h on H®. Define the function
f=Wo,V1,V2) on G o H by

g(z), iteeV
v (z), ifzeV
0, ifreV
1, ifxeV

G);

H"), where uv € E1y;

H"), where uv € Ega U E19;
H"), where uv € Ep; U Eyy U Eaa.

fz) =

o~ o~ o~ o~
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We claim that f € PRD(G ¢ H). First, note that f|l¢c =g = (VW NV(G),ViNV(G),VanN
V(G)). Let z € Vy. Suppose that 2 € V(G). Then Ngor () = Na(2)U(Uyeng @)V (H™)).
Since ¢ € PRD(G), |Va N Ng(z)| = 1, say Vo N Ng(z) = {z}. Let u € Ng(z), and
let y € V(H™). If w € Vy UVy, then y € V1. On the other hand, if u € Vs, then
y € Vo. Thus, Vo N V(H") = @. Since u is arbitrary, Va2 N (Uyeng@)V (H™)) = @
and so Vo N Ngom(x) = {z}. Suppose that © € V(H") for some uv € E(G). Then
Ngop(x) = {u,v} U Nyuo(x). Since f(z) = 0, uv ¢ Epo U Egg U Eg1. If uwv € Ejq,
then h"’(z) = 0 and there exists exactly one y € V(H"?) such that xy € E(H"") and
fly) = A" (y) = 2. In this case, Vo N Ngop(z) = Vo N Nyuw(x) = {y}. Suppose that
wv € Epa U Eqa. Since V(H"™) C V), either Vo N Ngom () = {u} or Vo N Ngom(x) = {v}.
Accordingly, f € PRD(G ¢ H). Therefore,

TR(GoH) < walg) +|Bulwr(h) + > f(@)
QTG{V(H"“’)ZUUGEO()UE(HUEQQ}

= wq(9) + |Eii|lwr(h) + n (| Eo1| + |E22| + Eool) -

Since h is arbitrary, the desired inequality holds.

Consider the graph G ¢ P3 in Figure 2, where G is the caterpillar ca(2,0,2) with the
corresponding vertex labelling. The function g on V(G) given by g(z) = g(2) =2, g(y) =1
and g(z) = 0 else is in PRD(G). Since Egy = Eg1 = F9g = Epp = I, a < wi(g) = 5 so
that v£ (G o P3) < 5. Now, note that {x, 2} is the unique y-set of G o P;. However, {z, 2}

o o

x Y z T y%z

G G<>P3

Figure 2: The edge corona G o P3 with v5(G o P3) =5

does not form the V3 U V5 for any f = (Vo, Vi, V2) € PRD(G o P3). Thus, v5(G o P3) > 5.
|

The value of o in Theorem 2.15 is not necessarily determined by a ’yg—function on G.
Consider the two copies of the edge corona Ps<C}y given in Figure 3 with the corresponding
assignment of colours to the vertices. Here, we write Ps = {x1,z2, %3, 24, 25}. Observe
that f = ({x1, 23,24}, 9, {x2, 75}) is a v5-function on P (see right-hand side figure), while
g = ({z1,25}, {23}, {2, 24}) € PRD(P5) but not a vE-function on Ps (see left-hand side
figure). Verify that fyg (Ps © C4) =5 and is determined by the function g.

From Theorem 2.15 and as illustrated in the preceding example, the value of « in
Theorem 2.15 is determined by the functions ¢ € PRD(G) for which most of the sets
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Figure 3: The edge corona Ps ¢ Cy

Eoo(g; G), E22(g;G), E11(g;G) and Ep1(g; G) are empty. In view of such, the following
observation can be easily verified.

Corollary 2.16. Let H be any nontrivial graph of order m. then
(i) For the path P, onn > 2 vertices, v5 (P, o H) = 3| 52| + 2.

(13) If m > 3, then for the cycle Cy, on n > 3 vertices,

3k, if n = 2k
Wg(CnOH): P .
3k+1+,p(H), ifn=2k+1.

(idi) If m >3, then for 2 <n <k, v5(Knro H) =2n+k.

Theorem 2.17. Let G be a nontrivial connected graph. Then

YR(GoKy)= min (wg(G)+ |Eoo(g; G)| + [Eoi(g; G)| + |Eni(g; G)| + |Eaz(g; G)|) -
gePRD(G)

Proof: Put
a = min{we(G) + |Eoo(g; G)| + |Eo1(g; G)| + [E11(g; G)| + |E22(g; G)| : g € PRD(G)}.

By Theorem 2.15, v£ (G o K1) < .

Let f = (Vb,V1,V2) be a 'yg—function on G o Kj. Suppose that the restriction f|g of f
to G is not a perfect Roman dominating function on G. We will construct a vE-function g
on G ¢ K such that wgok, (9) = waoek, (f) and its restriction g|g to G is a perfect Roman
dominating function on G. There exists u € Vp N V(G) such that uv ¢ E(G) for all
v € VoNV/(G). This means that there exists v € Ng(u) such that Vo N Ngog, (u) = {z*}.

Case 1: Suppose that v ¢ V. Define f! = (Vi, Vi1, Vi) on Go Ky by f(u) = fH(z™) =1
and fl(x) = f(z) for all z € V(G o K1) \ {u,2**}. Then f! € PRD(G o K;) with
wGOKl(fl) = waok, (f)-

Case 2: Suppose that v € Vp. If (Ng(v) \ {u}) N Vy = @, then take f1 = (V!, Vi, Vi!) on
G given by f1(v) =2, f}{(z*¥) = 0 and f!(z) = f(z) for all x € V(Go K1)\ {v,z*}. Then
f! € PRD(GoK1) and waok, (f!) = waok, (f). Suppose that B = (Ng(v) \ {u})NVy # @.



L. Paleta, F. Jamil / Eur. J. Pure Appl. Math, 13 (3) (2020), 529-548 545

Necessarily, V% € V; for each w € B. In this case, take the function f! = (V4 VE V)
on G o K given by

2, if x = w;
0, if x € {2, 2" : w € B};
fay=q % reet }
, if x € B;
f(z), ifzeV(GoK;)\ (BU{z" 1w e B}).
Then f' € PRD(G o Ky) with Vi = (W\{v}) U {z*, 2" : w € B},

Vi = M\ {2 :weB})UB and Vil = (Vo \ {z"}) U {v}. Tt is easy to verify that
f' € PRD(G o K1) and wgok, (f!) = waok, (f)-

If f!|¢ ¢ PRD(G), then we follow the same process and obtain f2 € PRD(GoK;) with
waorc, (f?) = waor, (fY) = waok, (f). If necessary, we do a finitely many repetitions of the

process until we obtain a function g = f*¥ € PRD(G o K1) for which wger, (9) = waor, (f)
and g|¢ € PRD(G). By the definition of a, v£ (G ¢ K1) = waok, (9) > . [ |

The value of v£ (G ¢ K1) in Theorem 2.17 is determined by the functions g € PRD(G)
for which the sets Fa9 and Fq;1 are empty. With this observation, it can readily be verified
that for n > 1 and m > 3,

n—1 n
W (Pao K1) = [P + 9K (Pa) and 25 (Con o K1) = [5]+ 7K (Con).

2.5. On the composition of graphs

Given S C V(G[H]), we write S¢ = {z € V(GQ) : (x,y) € S for some y € V(H)},
which is called the projection of G on G[H].
Proposition 2.18. Let G and H be connected graphs, G noncomplete and H of order n
with v(H) = 1. Then
v (G[H]) <
where o = min{(n — 1) (V1| + |Va N Ng(V2)|) + wa(f) : f = (Vo, V1, V2) € PRD(G)}.
Proof: Let v € V(H) for which Ny[v] =V (H). Let f = (Vo, V1, Va) € PRD(G) such that
Vo # @. Define g = (V{f, V¥, V") on G[H]| by
0, if (x€Va\Ng(Va) A y#v) V (z€Vp);
9((xy)) =4 1, if (z€VanNg(V2) A y#v) V(z€W);
2, ifxeVyand y=w.
with Vi = ((Va \ Ng(V2)) x (V(H) \ {v})) U (Vo x V(H)), V5" = Vo x {v} and V}" =
(ViUV(H)) U ((Van Ng(Va)) x (V(H) \ {v})). Let (z,y) € V. If x € Va, then x ¢
Ng(V2) so that Ngg)((z,y)) N Vs = {(z,v)}. If 2 € Vo, then there exists u € V2 such
that Ng(z) N Va2 = {u}, which implies that Ngg((z,y)) N V5 = {(u,v)}. Thus, g €
PRD(G[H)). Therefore, v5(G[H]) < |Vi*[+2|V5| = (n—1) (|Vi| + [Va N Ne:(Va)|) +we (f)-
Since f is arbitrary, the desired inequality is established. |
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Proposition 2.19. Let G be a nontrivial connected graph and p > 2. Then
Th(GIK,)) =,
where o = min{(n — 1) (V1| + |[Va N Ne(V2)|) + wa(f) : f = (Vo, Vi, V2) € PRD(G)}.

Proof: Let f = (Vo, Vi, Va) be a yE-function on V(G[H]). Then Vs # @ and Vy # @.
First, we claim that (Vo)- N (V1)g = @. Suppose not, and let (z,y) € Vi be such that
(x,z) € Vy for some z # y. There exists unique (u,v) € V, for which (z,z2)(u,v) €
E(G[Kp). If u = x, then since y # v, (z,y)(u,v) € E(G[K,]). Thus, whether u = z
or z # u, (z,y)(u,v) € E(G[K,]). By Proposition 2.1, there exists (a,b) € Vo \ {(u,v)}
such that (z,y)(a,b) € E(G[K,]). Using the same argument, whether x = a or = # b,
(x,z)(a,b) € E(G[Kp|). This is a contradiction since (z, z) € Vp.

Fix v € V(K),). Define A = {(z,v) :x € (Vo) N(Va)e}, B=A{(z,y) € Va:x ¢ (Vo))
and C = {(z,y) € Va:z € (V§),y # v}. Put

Vi=Wo\A)UC, Vi =Vi, and Vi = AUB.

Then {Vj, V", V5'} forms a partition of V(G[K,]). Note here that, in particular, since
Vo)e N (V1) =@ and Vi N Vo = @. Now, let (z,y) € V.
Case 1: Suppose that (z,y) € Vo \ A. There exists (u,w) € V3 such that Ng(g,)((z,y)) N
Va = {(u,w)}. Tfu ¢ (Vo)g, then (u,w) € B and Ngx,)((z,y)) N V5" = {(u,w)}. On the
other hand, if u € (Vo), then (u,v) € A and Ngk,j((z,y)) N V5" = {(u,v)}.
Case 2: Suppose that (z,y) € C and let z € V(K),) \ {y} for which (z,2) € V. Since
(z,y)(x, 2) € E(G[Kp]) and (z,y) € Va, Ng[Kp]((CC,Z)) NVy = {(z,y)}. This means that
(x,w) ¢ Vo forallw € V(K,)\{y} and (u,w) ¢ V5 for allu € Ng(x) and for all w € V(K,,).
Thus, Ne(x,)((z,y)) N V5 = Nk, (z,y)) N A = {(z,v)}.

Accordingly, the function g = (V{, V¥, V5") € PRD(G[K,]). Since Vi* =V} and |V5| <
[Val, waik,) (f) > waik,)(9). Because f is a vE-function of G[K,), waik,) (f) = waik,)(9)
and g is a yE-function of G[K,)].

Define the function h = (VJ*, V{*, V*) on G by

2, ifze(Vy)eq:
h(z) =14 1, ifze (V) \(V)g;

0, else.

Let x € V. Then (z,y) € Vg for all y € V(K,). Pick y € V(K,). There exists a unique
(u,v) € Vi for which (z,y)(u,v) € E(G[Kp]). It follows that u € V* and ux € E(G).
Moreover, u is unique in this sense as (u,v) is for (z,y). Thus, h € PRD(G).

Finally, let z,u € VJ* for which zu € E(G). Let y,v € V(K,,) such that (x,y), (u,v) €
V. Since g is a vE-function of G[K,), (z,a), (u,b) € V{* for all a € V(K,)\ {y} and for all
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b€ V(K,)\ {v}. On the other hand, by the definition of h, for each x € V}*, (z,y) € V;*
for all y € V(K,). Thus, |V > p|V{*| + (p — 1)|V4* N Ng(V)|. Therefore,
T (GIE) = warr,(9) = [Vi'| + 2|V
pIVI + (0 = D|V3" 1 Na(V3')| +2|Vy'|
(= 1) (I + V8 0 Na(V)]) +walh)

Q.

V

Y

The desired equality is completed by Proposition 2.18 |

Equality in Proposition 2.18 is possible even if H is not complete. Consider the graph
G[Ps] in Figure 4, with G being the caterpillar graph ca(0,2,0,2,0). Observe that a = 7.

Figure 4: Graph G with 7% (G[Ps]) =7

On the other hand, v5(G[Ps]) = 7, which is determined by (Vp, Vi, V2) € PRD(G[Ps)),
where V; and V5 are the sets of all red and all black vertices, respectively, in G[Ps] and
Vo = V(G[B]) \ (V1 U Va).
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