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Abstract The background cosmological dynamics of the
late Universe is analysed on the framework of a dark energy
model described by an holographic Ricci dark energy com-
ponent. Several kind of interactions between the dark energy
and the dark matter components are considered herein. We
solve the background cosmological dynamics for the dif-
ferent choices of interactions with the aim to analyse not
only the current evolution of the universe but also its asymp-
totic behaviour and, in particular, possible future singulari-
ties removal. We show that in most of the cases, the Big Rip
singularity, a finger print of this model in absence of an inter-
action between the dark sectors, is substituted by a de Sitter
or a Minkowski state. Most importantly, we found two new
future bouncing solutions leading to two possible asymptotic
behaviours, we named Little Bang and Little Sibling of the
Big Bang. At a Little Bang, as the size of the universe shrinks
to zero in an infinite cosmic time, the Hubble rate and its cos-
mic time derivative blow up. In addition, at a Little sibling
of the Big Bang, as the size of the universe shrinks to zero
in an infinite cosmic time, the Hubble rate blows up but its
cosmic time derivative is finite. These two abrupt events can
happen as well in the past.

1 Introduction

Several astrophysical observations (cf. for example super-
novae type Ia [1,2], cosmic microwave background [3], large
scale structure [4], etc.) have confirmed that the universe is
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undergoing a state of accelerated expansion if homogeneity
and isotropy are assumed on large scales. In addition, those
experiments indicate that the matter content (i.e., the total
mass-energy) of the universe, leading this accelerated expan-
sion, must contain an exotic energy which is characterised
with a sufficiently negative pressure. Dark energy (DE) is the
most accepted hypothesis to explain the current observations,
and constitutes roughly 70% of the total matter content of the
universe. However, so far there is no clear understanding of
the true fundamental nature of DE. Indeed, the mysterious
nature of dark energy is still among the long-standing prob-
lems in theoretical physics.

There are many dynamical models trying to explain the
nature of DE [5,6]. Among them, there is an attractive model
which is inspired on the holographic principle rooted on
quantum gravity [7–9]; it is the so called holographic dark
energy [10,11]. We next summarise the ideas behind this
model. A well known fact is that the entropy of a given sys-
tem with finite volume, L3, has an upper bound which is not
proportional to its volume, but rather to its surface area, L2

[12,13]. In addition, for an effective quantum field theory
with a given ultra-violet (UV) cutoff, MUV, the entropy of
that system scales as L3M3

UV. Consequently, there is always
a scale or a length where the quantum field theory with
UV cutoff is expected to fail. This is expected to happen
for large volumes or lengths. To solve this problem a link
between UV and infrared (IR) cutoffs was proposed in [9]:
L3M4

UV � LM2
P . By this mean the validity of the quan-

tum field theory within this regime is assured. When the
inequality is saturated, we can define an energy density which
is inversely proportional to the square of the characteristic
length of the system. These ideas have been applied to the
universe giving rise to what is known as the holographic dark
energy scenario [10]. The appealing holographic Ricci dark
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energy (HRDE) model consists in taking the square of the
length characterising the Universe, L , as the inverse of the
Ricci scalar curvature [14] (see also [15–21]).

It has been proven that the HRDE is suitable to describe
the current acceleration of the universe as shown in [14,22–
25] . It has been equally shown that this model might induce
a big rip (BR) singularity [14]; i.e., the scale factor, the Hub-
ble parameter and its first cosmic time derivative reach very
large values in a finite future cosmic time [26–28]. This
model has been also constrained observationally [29]. More
recent observational constraints on the HRDE can be found
in Refs. [20,21,24,30,31] (cf. Ref. [32] for an extended list
of references on the HRDE scenario).

On this paper, we intend to see how the BR1 present on
the HRDE can be removed or appeased by the inclusion of
interactions between cold dark matter (CDM) and the HRDE.
An interaction on the dark sector and within the HRDE model
has been previously analysed in [19–21,30,34–36] where the
main goal of these papers was to study the adequacy (from an
observational point of view) of these models to describe the
late time acceleration rather than analysing the asymptotic
behaviour of the universe. On this work, we will carry a
thorough analytical analysis of the HRDE when a CDM and
DE, given through the HRDE, are interacting. The goal of this
work is to identify those interactions that are able to remove
or smooth the BR. It is worth mentioning that an interaction
on the dark sector has been favoured observationally [37,
38] and has been shown to be extremely helpful to mitigate
the coincidence problem (cf. the recent review [39] on this
topic).

The paper is organised as follows. In Sect. 2, we review the
general setup of the HRDE model in a Friedmann-Lemaître-
Robertson-Walker (FLRW) background in presence of an
interaction term between DM and DE. In Sect. 3, we carry
out a careful analysis of the asymptotic behaviour of the uni-
verse in this framework. Finally, in Sect. 4, we present our
conclusions.

2 General setup

We consider a spatially flat FLRW universe, filled with matter
with the energy density ρ, whose evolution is described by
the Friedmann equation:

3M2
PH

2 = ρ, (2.1)

where MP is the reduced Planck mass. We assume that the
total energy density, ρ, of the cosmic fluid is described

1 It is worth mentioning that the fate of the BR in the HRDE within a
quantum cosmological formalism was analysed in [33] and proven to
be harmless once appropriate boundary conditions on the wave function
of the universe are imposed.

through a CDM component with the energy density ρm and a
HRDE component ρH. The HRDE density is defined as [14]

ρH = 3βM2
P

(
1

2

dH2

dx
+ 2H2

)
, (2.2)

where x ≡ ln(a/a0) and β is a positive dimensionless param-
eter that measures the strength of the holographic component.
From now on a zero subindex stands for quantities evaluated
at present.

It is convenient to rewrite the Friedmann equation (2.1) in
terms of the dimensionless energy densities:

�m = ρm

3M2
PH

2
0

,

�H = ρH

3M2
PH

2
0

= β

(
1

2

dE2

dx
+ 2E2

)
, (2.3)

where E(z) = H/H0. Therefore, Eq. (2.1) becomes

E2 = �m + �H. (2.4)

This equation constrains the cosmological parameters of
the model at present time, x = 0, as

1 = �m0 + �H0 , (2.5)

in which the present value of the dimensionless Hubble rate
E and its derivative with respect to x are governed by the
following equations:{

E(x = 0) = 1,

dE/dx |x=0 = −2 + �H0
β

.
(2.6)

In addition, at present time, the deceleration parameter q =
−(1 + 1

E dE/dx) reads,

q0 = 1 − �H0

β
, (2.7)

which must be negative (i.e., q0 < 0) because the universe
is accelerating currently. So that, the holographic parameter
is constrained through the inequality

0 < β < �H0 . (2.8)

A characteristic of the HRDE model is that the energy
density of any matter component is self-conserved. However,
we will further assume in this model an interaction between
the energy densities of CDM and the HRDE components.
Therefore, the corresponding conservation equations read

ρ̇H + 3H(1 + ωH)ρH = −Q , (2.9)

ρ̇m + 3Hρm = Q, (2.10)

where the function Q denotes the interaction between the
energy density of CDM and the holographic dark energy den-
sity components. Furthermore, positive Q represents energy
transfer from CDM to DE, and vice versa for negative Q.
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2.1 General equations in the presence of interaction

It is expected physically and also from Eqs. (2.9) and (2.10)
that the interaction is defined through the energy densities
involved in the system, in particular Q should be a func-
tion of the energy densities of CDM and HRDE components
multiplied by a quantity with the unit of inverse of time. For
convenience, we choose the Hubble rate H as the charac-
teristic magnitude with units of inverse of time, and hence
Q = Q(Hρm, HρH, Hρc) where ρc = 3M2

P H
2
0 is the criti-

cal energy density. Since the value of the interaction param-
eter Q is small (cf. Ref. [39]), a power law expansion of
Q in terms of the energy densities of the system is doable.
The first order terms of this interaction; i.e. linear interaction,
corresponds to

Q � λmHρm + λHHρH + λcHρc , (2.11)

where λm, λH and λc are constants.
Substituting Eq. (2.11) in Eq. (2.10), and replacing the

energy densities in terms of dimensionless parameters, the
conservation equation ( 2.10) can be written as

d�m

dx
= −�m (3 − λm + λH) + λHE2 + λc. (2.12)

On the other hand, the Friedmann equation (2.4) can be
rewritten as a differential equation of the dimensionless Hub-
ble rate E with respect to x as

dE2

dx
= 2

(
1

β
− 2

)
E2 − 2

β
�m. (2.13)

Notice that the equations (2.12) and (2.13) form a system of
coupled equations. However, by differentiating both sides of
Eq. (2.13) with respect to x , and using Eq. ( 2.12), we obtain
a second order differential equation for E2:

d2E2

dx2 = −2
λc

β
+ 2

[
3

β
− 6 +

(
2 − 1

β

)
λm − 2λH

]
E2

+
(

2

β
+ λm − λH − 7

)
dE2

dx
· (2.14)

The total conservation law for the system is given by ρ̇ +
3H(ρ+ωHρH) = 0 where the total energy density is given by
ρ = 3M2

PH
2
0 E

2. The equation of state (EoS) for the HRDE
is

ωH = − 1

�H

(
E2 + 1

3

dE2

dx

)
. (2.15)

This EoS can be rewritten by using Eqs. (2.3)-(2.4) as

ωH = 1

3

(
�m

�H
+ 1 − 2

β

)

= 1

3

(
E2

�H
− 2

β

)
. (2.16)

Notice that Eq. (2.16) is valid for any HRDE model where
the total energy density of the universe is conserved.

In order to study the behaviour of the universe within the
context of the HRDE, we will analyse the solutions of the
differential equation (2.14) which depend on λm, λH, λc and
β parameters. We remind that we are interested in analysing
the phase space of the parameters of the model for which the
universe has a smooth future behaviour.

2.2 Expected behaviour: general solutions

The general solution of the equation (2.14) can be written as:

E2(x) = A+eσ+x + A−eσ−x + �c , (2.17)

with A± being constants,

�c := λc

3 − 6β + (2β − 1)λm − 2λHβ
, (2.18)

and

σ± := σ0 ±
√

	

2β
,

where σ0 = 1

2β

[
2 + (λm − λH − 7)β

]
. (2.19)

The parameter 	 reads

	 =
[(

λm + λH + 1 − 2

β

)2 − 4λH(λm + 1)

]
β2. (2.20)

On the other hand, for the case in which	 = 0 andσ0 �= 0,
the solution for E2 reads

E2(x) = (A0 + A1x)e
σ0x + �c , (2.21)

where A0 and A1 are constants. The Hubble rate E2 at the
present time must satisfy the conditions of Eq. (2.6), i.e., the
constants A±, A0 and A1 can be expressed in terms of q0,
Eq. (2.7), as

A± = ±2(1 + q0) + σ∓(1 − �c)

σ− − σ+
, (2.22)

A0 = 1 − �c , (2.23)

A1 = −2(1 + q0) + σ0(�c − 1) . (2.24)

Furthermore, by substituting the solutions (2.17) and
(2.21) in the second equation of (2.3), the dimensionless
HRDE densities read, respectively
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�H = βA+
2

(σ+ + 4) eσ+x

+βA−
2

(σ− + 4) eσ−x + 2β�c , (2.25)

and

�H = β

2

[
(4 + σ0)(A0 + A1x) + A1

]
eσ0x + 2β�c. (2.26)

In the rest of this paper, we will analyse the solutions of
Eqs. (2.17) and (2.21), and we will discuss their asymptotic
behaviours, which depend on the choices of the holographic
parameter β and the interaction constants λm, λH and λc. We
will show that, in the far future, the fate of the universe may
end up in one of the following states: a BR singularity [26–
28]; a Minkowskian or a de Sitter behaviour; a little sibling of
the BR (LSBR) [40]; we will as well show for the first time
the presence of two other possible asymptotic behaviours
corresponding to what we named the little bang (LB) and the
little sibling of the big bang (LSBB) (cf. Sects. 3.2 and 3.3).

3 Asymptotic behaviour and interaction effects

In this section, we will analyse the asymptotic behaviour of
a FLRW filled with an HRDE fluid interacting with CDM
within the model introduced on the previous section. In par-
ticular, we will analyse potential future singularities that
might appear on the model by considering different inter-
action functions Q �= 0. First of all, we will start with a
brief review of the standard HRDE model in the absence of
interactions.

3.1 Standard HRDE model: Q = 0

For vanishing parameters λm, λH and λc, in Eq. (2.11), there
is no interaction (i.e., Q = 0) and the standard HRDE model
is recovered [14]. Then, by setting λm = λH = λc = 0
in solution (2.17) we obtain the dimensionless Hubble rate
E(x) (for the case β �= 2) as (cf. Ref [14])

E2(x) = 2q0 − 1

β − 2
β exp

[(
2

β
− 4

)
x

]

−2(q0 − 1)β + 2

β − 2
exp(−3x). (3.1)

The second term in Eq. (3.1) vanishes as x → +∞, and
the Hubble rate is governed only by the first term. This indi-
cates that, in the far future, the HRDE energy density mim-
icking matter (second term in Eq. (3.1)) is practically zero,
and the universe converges asymptotically to a universe filled
with the dominant HRDE component. Therefore, the proper-
ties of the solution (3.1) depend on the different ranges of the
holographic parameter β. Let us summarise those behaviours
as follows:

1. For β > 1
2 (β �= 2), the HRDE density tends to zero and

the universe heads to a Minkowski state in the far future.
2. For β = 1

2 , the universe tends to a de Sitter state in the
far future.

3. If 0 < β < 1
2 , the HRDE is dominant at late time. Using

Eq. (2.16), the equation of state for HRDE energy can be
written as

ωH = 1

3

(
1 − 2

β

)
, (3.2)

which is always smaller than −1. Therefore, the HRDE
component behaves as phantom-like matter at late time.
By integrating Eq. (3.1), we obtain the evolution of the
scale factor a(t):

a(t) =
[
CH0(t − t0) + 1

] β
2β−1

, (3.3)

where

C := 2β − 1√
β

√
1 − 2q0

2 − β
. (3.4)

Notice that, we have set a(t0) = 1 as the value of the scale
factor at present. On the other hand, from Eq. (2.25), we
find that the dimensionless energy density of the HRDE
increases negatively with time (since β < 1

2 ). Then, at a
finite time, namely tBR, the scale factor (Eq. (3.3)), the
Hubble parameter and its cosmic time derivative blow up
at tBR. Therefore, the universe hits a BR singularity at
tBR. In fact, it can be seen that tBR is a finite time and
depends on the holographic parameter β.

Finally, for the case β = 2 (which is not included in
Eq. (3.1)), since q0 < 1

2 , the universe tends to a Minkowski
state in the far future.

On the one hand, the latest observational data (e.g., Planck
results [3]), implies that �m ∼ 0.308 and H0 = 67.8 km ·
s−1 · Mpc−1, thus, q0 = −0.538 (for a � CDM universe).
Then, by considering the condition (2.7), we can estimate the
holographic parameter β to be of the order β ∼ 0.448. By
setting t0 = H−1

0 ∼ 14.422 Gyrs, we find that the BR would
take place when tBR = 94.675 Gyrs. On the other hand, we
have seen that for β ≥ 1

2 there would be no abrupt events
or singularities at late time. Given that we are interested in
analysing DE singularities in this model, which are observa-
tionally favoured, from now on we will disregard values of
β such that β ≥ 1

2 .

3.2 The solution with 	 = σ0 = 0

Let us now consider two particular classes of solutions for
Eq. (2.14). For one of these solutions, the right hand side of
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Eq. (2.14) vanishes for any value of the scale factor. This
corresponds to the solution (2.21) for 	 = 0, σ0 = 0 and
λc = 0. Consequently, we have

λH = 2

β
(2β − 1)2 , λm = 8β − 1 , λc = 0. (3.5)

Then, the corresponding solution for E(x) in this case can
be written as

E2(x) = Ax + B, (3.6)

where A and B are constants.
By applying the condition (2.6), and using Eq. (2.7), we

obtain

B = 1, A = 2

(
�H0

β
− 2

)
= −2(1 + q0). (3.7)

Since we expect q0 > −1 (this can be proven from a rough
estimation based on the �CDM model), from the right hand
side of Eq. (3.7), we expect A to be always negative. Posi-
tiveness of E2 in Eq. (3.6) implies that, x always lies in the
range −∞ < x ≤ B

|A| .
By using Eq. (3.6) in the relation dx/dt = H = H0E and

integrating both sides, we obtain, for negative values of A, a
relation for the time dependence of x , as

x(t) = −|A|H2
0

4

(
t − t0 − 2

|A|H0

)2

+ 1

|A| , (3.8)

where t0 denotes the present time for which x(t0) = 0. Notice
that, we have set B = 1 in the above relation. By taking the
time derivative of x , and replacing it on the left hand side
of equation dx/dt = H0E , we obtain the dimensionless
Hubble parameter

E(t) = A

2
H0(t − t0) + 1 . (3.9)

Consequently, the time derivative of the Hubble rate (3.9)
reads

Ė(t) = A

2
H0, (3.10)

which is constant during the evolution of the universe.
Since −∞ < x ≤ 1

|A| in this case, at tb where

tb = t0 + 2

|A|H0
,

x(t) reaches its upper limit x = 1
|A| , where the Hubble rate

vanishes, and the first time derivative of the Hubble rate,
Eq. (3.10), remains constant. Thus, at this point the universe
hits a bounce. Hereafter, the universe starts to collapse during
an infinite time, and as x → −∞, for which a → 0, the
Hubble rate (3.9) diverges while its time derivative (3.10)
remains finite. This represents a new abrupt event for the
future fate of the universe which happens at a = 0, and is

different from the big bang singularity (for which the Hubble
rate and its time derivative diverge). This abrupt event is
smoother than a big bang: we named it the “little sibling of
the big bang” (LSBB).

By using Eq. (2.1) and the total conservation equation
ρ̇ + 3H(1 +ωtot)ρ = 0, the total EoS ωtot = pH/(ρH +ρm)

reads

ωtot = −1 − 1

3E2

dE2

dx

= −1 − A

3(Ax + 1)
· (3.11)

In the limit x → −∞, the total EoS ωtot tends to −1. We
would like to stress that the evolution of the universe is sym-
metric with regards to the bounce. Therefore, the universe
evolves from a LSBB to a bounce and recollapse heading
back to a LSBB.

The second class of solution is the case in which param-
eters λH and λm satisfy the conditions (3.5) but λc �= 0. In
this case Eq. (2.14) reduces to

d2E2

dx2 = − 2

β
λc . (3.12)

With respect to the cosmic time t , Eq. (3.12) becomes

Ë(t) − ω2E(t) = 0 , (3.13)

where, ω2 = −λc
β
H2

0 . By imposing the conditions (2.6) and
(2.7), the dimensionless Hubble rate reads

E(t) = C+ exp(ωt) + C− exp(−ωt) , (3.14)

where, from Eq. (2.6) at the present time t = t0, we get

C± = 1

2

[
1 ∓ H0

ω
(1 + q0)

]
exp(∓ωt0) . (3.15)

Moreover, the scale factor is given by2

a(t) = a0 exp

[
H0

ω
C+eωt − H0

ω
C−e−ωt

]
. (3.16)

Here, a0 is a constant of integration. Notice that, as t → +∞
the energy density (2.2) of the universe diverges.

Likewise, the Hubble rate blows up in this case.
In order to better understand the behaviour of the Hub-

ble rate (3.12), it is convenient to write its solution in the
following form:

E2(x) = −λc

β
(x − x1) (x − x2) , (3.17)

2 We thank the referee for reminding us this class of solutions.
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where x1 and x2 are defined as

x1 := − β

λc

(
(1 + q0) +

√
(1 + q0)2 + λc

β

)
, (3.18)

x2 := − β

λc

(
(1 + q0) −

√
(1 + q0)2 + λc

β

)
. (3.19)

For λc < 0, the only physically interesting situations takes
place when x belongs to the range −∞ < x < x2: this
describes a universe that starts its evolution at an infinite
time in the past (where x → −∞ and a → 0), at which
the Hubble rate, E(x), and its time derivative, Ė , diverge.
Therefore, the universe hits a new abrupt event in this case
which is similar to the big bang singularity, but which occurs
at an infinite cosmic time. We thus name this new abrupt
event as the “little bang” (LB).After this point, the universe
expands till x = x2 and then it bounces back to a LB. The
other situation, x1 ≤ x , corresponds to an expansion that
starts at a bounce when x = x1 and heads to a little rip, when
x → +∞ and t → +∞ [43–50]. Finally, whenλc > 0, there
is a unique Lorentzian solution that interpolate between two
bounces located at x = x1 = x2.

3.3 Interacting HRDE model

In this section, and in order to illustrate our purpose, we
consider an interacting HRDE model with only the arbitrary
parameters λH and λm. By introducing a new quantity r ,
the ratio between the energy densities of CDM and HRDE
[41,42]:

r := ρm

ρH
= �m

�H
, (3.20)

and using the conservation Eqs. (2.9) and (2.10), we get

dr

dx
= (r + 1)

Q

HρH
+ 3rωH . (3.21)

By substituting the interaction Q = H(λmr + λH)ρH in Eq.
(3.21), we obtain

dr

dx
= (λm + 1)r2 +

(
λH + λm + 1 − 2

β

)
r + λH ·

(3.22)

The solutions for the differential equation (3.22) depend on
the sign of the discriminant 	, Eq. (2.20), which can be
rewritten as

	 := α
(
β − β1

)(
β − β2

)
, (3.23)

where α, β1 and β2 are:

α = (λH + λm + 1)2 − 4λH(λm + 1) , (3.24)

β1 = 2

α

[
λH + λm + 1 + 2

√
λH(λm + 1)

]
, (3.25)

β2 = 2

α

[
λH + λm + 1 − 2

√
λH(λm + 1)

]
. (3.26)

To get the physical solutions of Eq. (3.22), it is helpful to
distinguish three cases 	 > 0,	 = 0 and 	 < 0:

1. When 	 > 0, the parameter β fulfils β > β1 or β <

β2 (where β2 < β1). In this case, the solution of the
differential equation (3.22) reads,

r(x) = − b
2a

+
√

	

2aβ
tanh

(
−

√
	

2β
(x + k1)

)
,

(3.27)

where a := λm + 1, b := λm + λH + 1 − 2
β

and k1 is a
constant of integration. As x → ∞, the ratio r(x) in Eq.
(3.27) tends to a constant:

r(x → ∞) = −
√

	 + β(λH + λm + 1 − 2
β
)

2β(λm + 1)
·
(3.28)

A physical solution implies that r(x) must be always a
positive valued function, that is, r(x → ∞) ≥ 0; this
corresponds to β(λH + λm + 1 − 2

β
) + √

	 ≤ 0. Con-
sequently, this relation imposes a constraint on the holo-
graphic parameter β < 2

1+λH+λm
. Since β1 is always

larger than 2
1+λH+λm

, the positivity of the function 	

implies that β must be on the range

β < β2 <
2

1 + λH + λm
< β1 , (3.29)

for the solution (3.27) to be meaningful.
In the far future (as x → +∞), by setting λH = 0 and for
the range of the parameters satisfying 0 < β < 2

1+λm
, the

ratio of the energy densities r(x) vanishes (r → 0) and
the budget content of the universe becomes dominated
by the HRDE, as would be expected. On the other hand,
if β ≥ 2

1+λm
, the ratio r(x) becomes negative which is

not physically possible.
While by setting λm = 0, in the far future, r(x)
approaches the value

r(x → +∞) = −1

2

(
λH − 2

β
+ 1 +

√
	

β

)
. (3.30)
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Since r(x) is always positive, the parameter β is con-
strained to fulfil β < 2

1+λH
.

2. For the case 	 = 0, the possible values of β are β = β1

or β = β2. In this case, the solution of Eq. (3.22) for r(x)
is given by

r(x) = − b

2a
− 1

a (x + k2)
, (3.31)

where k2 is a constant of integration. On the limit x →
+∞, the solution (3.31) tends to

r(x → ∞) = − (λH + λm + 1 − 2
β
)

2(λm + 1)
· (3.32)

Again r(x) must be positive, then, the holographic
parameter must be on the range β < 2

1+λH+λm
. Since

β1 is larger than 2
1+λH+λm

, the only possible range for
the holographic parameter in this case is

β = β2 <
2

1 + λH + λm
< β1. (3.33)

3. Finally, if 	 < 0 then β2 < β < β1. The solution of Eq.
(3.22) in this case is given as

r(x) = − b

2a
+

√|	|
2aβ

tan
(√|	|

2β
(x + k3)

)
, (3.34)

where k3 is an integration constant. Equation (3.34)
shows that when the argument of the ‘tangent’ term
reaches the values ±π

2 + nπ where n ∈ Z, the ratio
r diverges with positive and negative signs, respectively.
The former corresponds to a universe filled with CDM at
late time, which does not match with the cosmological
observations. In addition the latter limiting case corre-
sponds to a negative ratio r(x) for the energy densities of
the universe. Therefore, the solution given by Eq. (3.34)
(that is, the solution provided by the case 	 < 0) is not
physically relevant.

We will henceforth, study the late time behaviour of the uni-
verse predicted by the two physical solutions corresponding
to 	 > 0 and 	 = 0.

3.3.1 The case 	 > 0

The dimensionless Hubble rate E(x) can be obtained by
using Eq. (2.17) in which �c = 0 and σ± are given by

σ± = 2 + (λm − λH − 7)β ± β
√

	

2β
, (3.35)

with 	 �= 0 given by Eq. (3.23). Moreover, A± reads

A± = ± (3 − 4q0 + λH − λm ± √
	)β − 2

2β
√

	
. (3.36)

When 	 > 0, the Hubble rate (2.17) at late time becomes

E2(x) = A+ exp
[2 + (λm − λH − 7)β + β

√
	

2β
x
]
. (3.37)

For the two ranges of the parameter β in which β < 2
7+λH−λm

or 2
7+λH−λm

< β < 3−λm
6+2(λH−λm)

, the argument of the expo-
nential term in Eq. (3.37) is positive. In this case, the universe
will undergo a BR singularity in the far future. By integrating
Eq. (3.37), we can find the behaviour of the scale factor a(t)
at late times as

a(t) = a0

[
2

2 − σ+H0
√

A+(t − t0)

] 2
σ+

. (3.38)

This indicates that the BR occurs at tBR where

tBR = t0 +
(
4β/H0

√
A+

)
2 + (λm − λH − 7)β + β

√
	

, (3.39)

and the scale factor diverges as a(tBR) → +∞. On the other
hand, for the range of the holographic parameter such that
β > 3−λm

6+2(λH−λm)
, the argument of the exponential term is

negative, the Hubble rate vanishes and the universe converges
to a Minkowski state in the far future. In addition, for β =

3−λm
6+2(λH−λm)

and β �= 2
7+λH−λm

the Hubble rate (3.37) reduces

to a constant E2 = A+ = const., indicating that the universe
approaches a de Sitter state at late time.

By setting λH = 0, Eq. (2.17) reduces to

E2(x) =
{
β
( λm + 2q0 − 1

β(1 + λm) − 2

)
exp

[( 2

β
− (λm + 1)

)
x
]

+ 2
( β(1 − q0) − 1

β(1 + λm) − 2

)}
exp

[
(λm − 3)x

]
. (3.40)

Now, we summarise the properties of the solution (3.40), for
the case 0 < β < 2

1+λm
:

1. For the case λm ≥ 3, the holographic parameter β is
within the range β < 2

1+λm
≤ 1

2 . In this range, the first

term in Eq. (3.40) becomes negative; λm+2q0−1
β(1+λm)−2 < 0, and

the second one becomes positive; β(1−q0)−1
β(1+λm)−2 > 0. Thus,

the Hubble rate decreases and vanishes at xb which means
that the universe hits a bounce at

xb = β

2 − β(1 + λm)
ln

[
2
(
β(q0 − 1) + 1

)
β(λm + 2q0 − 1)

]
. (3.41)
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In the far future, after the bounce (x → −∞), the dimen-
sionless Hubble rate vanishes and the universe tends to a
Minkowski state.

2. For the case λm < 3, the holographic parameter β sat-
isfies the condition β < 1

2 < 2
1+λm

and we have always
β(1−q0)−1
β(1+λm)−2 > 0. Two possibles late time behaviour of the

universe can be found. The case λm < 1 − 2q0 < 3,
i.e. λm+2q0−1

β(1+λm)−2 > 0, where the universe hits a BR sin-
gularity in the far future. The case 1 − 2q0 < λm < 3,
i.e. λm+2q0−1

β(1+λm)−2 < 0, where the dimensionless Hubble rate

decreases and vanishes at xb (given in Eq. (3.41)) and the
universe bounces at this point. In the far future, after the
bounce (x → −∞), the Hubble rate vanishes and the
universe tends to a Minkowski state.

The late time behaviour of the Hubble rate E(x) for the case
λm = 0, is the same as the general one given by Eq. (3.37);
see Table 1 for more details.

3.3.2 The case 	 = 0

In this case, where β = β1 or β = β2, the Hubble rate is
given by Eq. (2.21):

E2 = (A0 + A1x) exp

(
2 + (λm − λH − 7)β

2β
x

)
, (3.42)

where A0 = 1 and A1 are defined in Eq. (2.24) as A1 =
−σ0 −2(1+q0), where σ0 is the argument of the exponential
term in the equation above. The total EoS of the universe in
this case reads

ωtot = −1 − A1

3(1 + A1x)
+ σ0

3
, (3.43)

which converges to −1 + σ0
3 as x → −∞.

Following the discussion in item 3.3 above, we consider
only the case β = β2. For β < 2

7+λH−λm
, the argument

of the exponential term is always positive (σ0 > 0), while
A1 < 0. This indicates that the universe undergoes a bounce
at some xb = 1

|A1| in the future. Hereafter, the universe starts
to collapse and as x → −∞ it converges into a Minkowski
state.

For 2
7+λH−λm

< β < 2
1+λH+λm

(cf. Eq. (3.33)), the argu-
ment of the exponential term is always negative (σ0 < 0):

if |σ0| > 2(1 + q0), then A1 > 0; the exponential term
decays faster than the linear term A1x , thus, the universe
tends to a Minkowski state in the far future.

However, when |σ0| < 2(1 + q0) (so that A1 < 0), the
universe will bounce at xb = 1

|A1| in the future, afterwards, it
will start collapsing and in an infinite time, where x → −∞

(i.e., a → 0), the Hubble rate and its time derivative diverge.
Therefore, the universe meets a LB at late time. Notice that,
in this case (σ0 < 0), the matter content of the universe at
late time behaves as phantom matter.

In the case of interaction parameter λm = 0, if λH > 9
and σ0 > −2(1 + q0), the term in the bracket in Eq. (3.42)
is negative, while the argument of the exponential on the
same equation is positive (for x > 0). Therefore, the uni-
verse bounces in the future at some xb = 1/|A1|. After the
bounce, the universe starts collapsing towards x < 0. Here-
after, the term in the bracket will be always positive, while
the argument of the exponential term will evolve negatively.
Whence, in the far future (t → +∞), as x → −∞ the
Hubble rate tends to zero and the universe tends to a flat
Minkowskian state.

Finally, for the choice of λH = 9, we get σ0 = 0, β = 1/8
and A1 = −2(1 + q0) < 0. In this case, Eq. (3.42 ) reduces
to Eq. (3.6), we have

E2(x) = 4
(
4�H0 − 1

)
x + 1.

This implies a bouncing scenario for the universe at x =
xb = 1

2(1+q0)
. Hereafter, the universe starts to collapse during

an infinite time, and as x tends to −∞ the scale factor tends
to zero, the Hubble rate diverges while its time derivative
remains finite; Ė = 2H0(4�H0 − 1). Therefore, in the far
future (t → +∞), the universe hits a LSBB abrupt event. In
summary, what happens is that the universe evolves from a
LSBB in the past, expands until it bounces and heads back
to a LSBB.

Whenever A1 < 0, the dimensionless parameter �H0 sat-
isfies �H0 < 1

4 . Consequently, by substituting β = 1/8 in
the Eq. (2.16) we find that the EoS lies in the range

−16

3
< ωH < −4 , (0 < t < +∞).

This relation implies that, the universe starts from a LSBB
in the past with EoS for the HRDE ωH = −4, and reaches
a bounce when ωH = − 16

3 at some tb in the future. After
the bounce, the universe will collapse and will hit a LSBB
abrupt event in the far future (t → +∞) with the same EoS,
ωH = −4, of the initial state. Since the EoS of the dark energy
evolves in the regionωH < −1, the corresponding interacting
HRDE model represents a phantom-like behaviour, although
its EoS is too negative to describe nowadays universe. Notice
that, when the universe hits a LSBB in the far future, the total
EoS, ωtot, of the universe tends to −1 which has the same
value for the total EoS at the initial LSBB abrupt event.

If β = 2
7+λH−λm

, for the particular case β = 2
7 , the inter-

action parameters are equal and the condition (3.5) is satisfied
for λH = λm = 9

7 . Then, the Hubble rate is obtained from
Eq. (3.6) as

123



Eur. Phys. J. C (2018) 78 :330 Page 9 of 11 330

Table 1 Summary of the behaviours of the universe at late times, for the physical range of holographic parameters β < 1
2 , for different DM and

DE interactions

Sec. Interacting model 	 β λ σ0, σ± Late time behaviour

3.1 λm = λH = 0 	 > 0 β = 1
2 – σ− = −3, σ+ = 0 de Sitter

	 > 0 β < 1
2 – σ− = −3, σ+ > 0 BR

3.2 λm = 8β − 1, 	 = 0 β < 1
2 λc = 0 σ0 = 0 LSBB

λH = 2
β
(2β − 1)2 λc �= 0 LR

3.3 λm �= 0, λH = 0 	 = 0 β < 1
2 – σ0 > 0 Minkowski

	 > 0 β < 2
1+λm

≤ 1
2 λm ≥ 3 σ± > 0, Minkowski

	 > 0 β < 1
2 < 2

1+λm
λm < 1 − 2q0 < 3 σ− < 0, σ+ > 0 BR

	 > 0 β < 1
2 < 2

1+λm
1 − 2q0 < λm < 3 σ− < 0, σ+ > 0 Minkowski

3.3 λm = 0, λH �= 0 	 = 0 β < 2
1+λH

λH < 9 σ0 < −2(1 + q0) < 0 Minkowski

	 = 0 β < 2
1+λH

λH < 9 −2(1 + q0) < σ0 < 0 LB

	 = 0 β < 2
1+λH

λH > 9 −2(1 + q0) < 0 < σ0 Minkowski

	 = 0 β = 1
8 λH = 9 σ0 = 0 LSBBa

	 > 0 β < 2
7+λH

λH > 3 σ+ > 0, BR

σ− < 0

	 > 0 2
7+λH

< β < 3
2(3+λH)

λH > 0 σ+ > 0, BR

σ− < 0

	 > 0 3
2(3+λH)

< β < 1
2 all λH σ± < 0 Minkowski

	 > 0 β = 3
2(3+λH)

< 1
2 all λH σ+ = 0, de Sitter

σ− < 0

3.3 λm �= 0, λH �= 0 	 = 0 β = β2 < 2
7+λH−λm

– σ0 > 0 Minkowski

	 = 0 2
7+λH−λm

< β = β2 < 2
1+λm+λH

– σ0 < −2(1 + q0) < 0 Minkowski

	 = 0 2
7+λH−λm

< β = β2 < 2
1+λm+λH

– −2(1 + q0) < σ0 < 0 LB

	 > 0 β < 2
7+λH−λm

or – σ+ > 0 BR
2

7+λH−λm
< β < 3−λm

6+2(λH−λm)
σ− < 0

	 > 0 β > 3−λm
6+2(λH−λm)

– σ± < 0 Minkowski

	 > 0 β = 3−λm
6+2(λH−λm)

– σ+ = 0, σ− < 0 de Sitter

a This is a specific case of the solution of Eq. (3.5) given in the Sect. 3.2 (cf. see the third row in the table above)

E2(x) = 2

(
7

2
�H0 − 2

)
x + 1. (3.44)

On the case where the holographic dimensionless parameter
�H0 satisfies �H0 < 4/7, the universe undergoes a bounce
followed by a LB in the far future. It can be shown that at
the LB ωH(a → −∞) = − 7

4 , whereas at the bounce it
reads ωH(x = 1

|A1| ) = − 7
3 . Therefore, ωH < −1 and the

corresponding interacting HRDE model has a phantom-like
behaviour. Moreover, when the universe hits a LB in the far
future, the EoS of HRDE tends to − 7

4 again. In fact, there
is a symmetric evolution with respect to the source; i.e. the
universe heads from a LB to a bounce and then back to a LB.

All the solutions we have analysed in Sect. 3 are sum-
marised in Table 1.

4 Summary and conclusions

In this paper, we have considered a HRDE [14], as the dark
energy component of the universe, coupled to the CDM com-
ponent of the universe. As it is well known, in the absence of
interaction (Q = 0) and depending on the physically relevant
range of the holographic parameter β, the late time universe
will end up in a big rip (BR) singularity if β < 1

2 [14]. We
remind as well that those values of β are consistent with the
latest observations.

On this work, we are interested in investigating whether or
not different interactions between HRDE and CDM compo-
nents of the universe could resolve or smoothen the BR sin-
gularity. We considered different interaction functions such
as Q = λmHρm, Q = λHHρH and Q = H(rλm +λH)ρH +
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λcHρc to study the late time behaviour of the universe (r is
defined in Eq. (3.20)).

In the presence of the general function Q = H(rλm +
λH)ρH + λcHρc, the corresponding differential equation
(2.14) governing the dynamical evolution of the universe,
possesses two types of generic solutions (cf. Eqs. (2.17) and
(2.21)) depending on the discriminant function 	, given by
Eq. (2.20).

For different choices of the interaction constants λm, λH,
λc = 0, and the HRDE parameter β, the physically relevant
solutions corresponding to 	 > 0 (cf. table 1) lead to an
asymptotic behaviour of the universe with: (i) a BR singular-
ity, (ii) a Minkowski or (iii) a de Sitter state in the far future
(see table 1 for a summary of the late time behaviour of the
different solutions).

In particular, we have shown that for proper combinations
of λH, λm and β, the BR singularity can be removed.

On the other hand, when 	 = 0 (and λc = 0), the gen-
eral Hubble rate is given by Eq. (2.21). When σ0 < 0 and
A1 > 0 (or σ0 > 0 and A1 < 0), the universe approaches a
Minkowski state, asymptotically (cf. Table 1).

However, the case with A1 < 0 where σ0 ≤ 0, represents
two new abrupt events in the far future of the universe. We
next summarise carefully these two cases:

(i) For σ0 = 0, the Hubble rate reads E2(x) = 1 − |A1|x ,
while Ė = const.. This solution bounces at xb = 1

|A1| .
After this point, the universe starts to collapse and as
x → −∞, the Hubble rate diverges while its time
derivative remains finite. This corresponds to a new
abrupt event, which is smoother than the big bang sin-
gularity and happens in an infinite cosmic time. We have
called it the “little sibling of the big bang” (LSBB).

(ii) For σ0 < 0, the Hubble rate reads E2 = (1 −
|A1|x)e−|σ0|x , therefore Ė = − H0

2 [|A1| + |σ0|(1 −
|A1|x)]e−|σ0|x . This solution indicates that, the universe
bounces first at xb = 1

|A1| , then will collapse, and as
x → −∞, the Hubble rate and its time derivative
diverge at an infinite time. Therefore, in the far future
(t → +∞), the universe tends to another type of abrupt
event which we have called the “little bang” (LB) (cf.
table 1).

Finally, a similar analysis for the case 	 = 0 and σ0 = 0,
for a non-vanishing interaction parameters λc, represents a
universe which starts its evolution from an infinite past with
a LB, and afterwards it expands until it bounces at a finite
time in the future, and then it recollapses again to a LB;
or it can start from a bounce and heads to a little rip at an
infinite cosmic time. For λc > 0, there is a unique Lorentzian
solution that interpolate between two bounces.

These new types of abrupt events arise only when an inter-
action between HRDE and CDM is present. We have further

shown that, under these conditions the HRDE may have a
phantom like behaviour.
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