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Sweden.
Corresponding author: Martin Ohlson. Tel.: +46 13 281447. E-mail address:
martin.ohlson@liu.se
† Energy and Technology, Swedish University of Agricultural Sciences, SE–
750 07 Uppsala, Sweden.





More on the Kronecker
Structured Covariance Matrix

Martin Ohlson∗, M. Rauf Ahmad∗ and Dietrich von Rosen† ∗

∗Department of Mathematics,
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Sammanfattning

In this paper the multivariate normal distribution with a Kronecker
product structured covariance matrix is studied. Particularly, estima-
tion of a Kronecker structured covariance matrix of order three, the so
called double separable covariance matrix. The estimation procedure,
suggested in this paper, is a generalization of the procedure derived by
Srivastava et al. (2008), for a separable covariance matrix.

Furthermore, the restrictions imposed by separability and double
separability are discussed.
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1 Introduction

In this paper we consider estimation of a Kronecker structured covariance
matrix of order three. The main goal is to extend the estimation procedure,
suggested by Srivastava et al. (2008), for the matrix normal distribution
vecX ∼ Npq (vecM ,Ψ⊗Σ) to the case where

vecX ∼ Npqr (vecM,Θ⊗Ψ⊗Σ) ,

with some vectorization vecX of the third order tensor X = (xijk) : p× q ×
r, which will be defined in Section 2 and where ⊗ denotes the Kronecker
product. We will say that the covariance matrix D(vecX ) = Θ ⊗ Ψ ⊗ Σ
is double separable (or three-factor separable) compared to the separable
covariance matrix D(vecX) = Ψ ⊗ Σ. The Kronecker product restrictions
make the family of densities to be curved, i.e., it belongs to the curved
exponential family

Recently Roy and Leiva (2011) have studied doubly exchangeable line-
ar models, which are suitable for three-level multivariate data, and closely
related to double separability. Doubly exchangeable covariance structure as-
sumes a block circulant covariance structure consisting of three unstructured
covariance matrices for three multivariate levels.

Several authors, see for example Naik and Rao (2001); Roy and Khattree
(2005a); Lu and Zimmerman (2005); Mitchell et al. (2005, 2006); Srivastava
et al. (2008), considered estimation and testing under the separability as-
sumption. Srivastava et al. (2008) discussed estimability of the paramters
under the separability assumption. From the likelihood function, construc-
ted of independent observation matrices, Srivastava et al. (2008) proved
that the maximum likelihood estimates under the restriction ψqq = 1, where
Ψ = (ψij) : q × q are found by an iterative flip-flop algorithm. Srivasta-
va et al. (2008) also showed that the likelihood equations provide unique
estimators. A similar algorithm has been suggested by Mardia and Goodall
(1993); Dutilleul (1999); Brown et al. (2001) but without the restriction
ψqq = 1.

In many applications, different structures of the covariance matrices have
been discussed. In Roy and Khattree (2005a,b); Srivastava et al. (2008) the
intraclass covariance structure was considered and in Roy and Khattree
(2005b) an autoregressive structure hold.

Also a structure on the mean has been considered. In Srivastava et al.
(2009) the growth curve model for the mean M = ABC, where A : p × s
and C : t × q are known design matrices and B : s × t is the parameter
matrix, was assumed. Under the restriction ψqq = 1 and some full rank
assaumption unique estimatiors for B,Σ,Ψ were derived.

This paper is organized as follows. In Section 2 the normal distribution
for the third order tensor X = (xijk) : p × q × r are presented. One of the
main points in Section 2 is how to vectorize the third order tensor and how
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to permute this vectorization to present the data in a proper way. In Section
3 the estimation procedure are presented and motivated. Section 4 discusses
the restrictions imposed on the matrices Θ,Ψ and Σ, similar as ψqq = 1, by
the Kronecker product structure.

2 Model

Let X be a tensor of order three, with the dimension p, q and r in the x, y and
z direction, respectively, see Figure 1. If r = 1 we have a special case with
the tensor equal to a p×q matrix. For such a matrix X = (x1, . . . ,xq) : p×q
the standard way to vectorize is as

vecX = (x′1, . . . ,x
′
q)′.

�
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�
�

��

�
�

��

�
�

��

k = 1, . . . , r

 x11k . . . x1qk
...

. . .
...

xp1k . . . xpqk

X =

Figur 1: The box visualizes a three dimensional data set as a third order
tensor.

Vectorization of the three dimensional tensor X can be done in several
ways. Let us use the following definition.

Definition 1 Let X = (xijk) : p × q × r be a three dimensional tensor.
Define the vectorization of X as

vecX =
p∑

i=1

q∑
j=1

r∑
k=1

xijke
3
k ⊗ e2

j ⊗ e1
i ,

where e3
k, e2

j and e1
i are the unit basis vectors of size r, q and p, respectively.

We will assume that the vectorization of X follows a multivariate normal
distribution with a double separable covariance matrix

D(vecX ) = Θ⊗Ψ⊗Σ,

with Σ : p× p, Ψ : q× q and Θ : r× r, assumed to be positive definite. This
structure is a generalization of the separable covariance matrix discussed by,
e.g., Dutilleul (1999); Lu and Zimmerman (2005); Srivastava et al. (2008).
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If we use Definition 2.2.3 in Kollo and von Rosen (2005) we can write
the double separable model for X (or vecX ) as

vecX =
∑
ijk

µijke
3
k ⊗ e2

j ⊗ e1
i +

∑
ijk

∑
i′j′k′

ςii′τjj′ϑkk′ui′j′k′e3
k ⊗ e2

j ⊗ e1
i ,

where M = (µijk) : p × q × r, Σ = ςς ′, Ψ = ττ ′ and Θ = ϑϑ′ and
ui′j′k′ ∼ N(0, 1), iid (independent and identically distributed). The density
of X can now be written

(2π)−pqr/2|Θ|−pq/2|Ψ|−pr/2|Σ|−qr/2

exp
{
−1

2
vec′(X −M)(Θ⊗Ψ⊗Σ)−1vec(X −M)

}
and is denoted

X ∼ Np,q,r (M,Σ,Ψ,Θ) . (1)

For more details about the multilinear normal distribution (1) see (Kollo
and von Rosen, 2005, p. 215). Furthermore, the tensor in Figure 1 can be
looked upon from different directions. To understand this we will use the
following matrices

X =
∑
ijk

xijk(e3
k ⊗ e2

j )(e1
i )′ : (qr)× p, (2)

Y =
∑
ijk

xijk(e1
i ⊗ e3

k)(e2
j )′ : (pr)× q, (3)

Z =
∑
ijk

xijk(e2
j ⊗ e1

i )(e3
k)′ : (pq)× r. (4)

Using these matrices and the fact that vec(ab′) = b⊗ a, for all a ∈ Rp, b ∈
Rq, we will have the following relations

vecX = vecZ = Kqr,pvecX = Kqr,pKpr,qvecY ,

where Kp,q : pq × pq is the commutation matrix. Using properties of the
commutation matrix, yields

vec′X (Θ⊗Ψ⊗Σ)−1vecX
= vec′Z(Θ⊗Ψ⊗Σ)−1vecZ = tr

{
Θ−1Z ′(Ψ⊗Σ)−1Z

}
= vec′X(Σ⊗Θ⊗Ψ)−1vecX = tr

{
Σ−1X ′(Θ⊗Ψ)−1X

}
(5)

= vec′Y (Ψ⊗Σ⊗Θ)−1vecY = tr
{
Ψ−1Y ′(Σ⊗Θ)−1Y

}
. (6)
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3 Estimation

All the parameters of Σ, Ψ and Θ in the covariance matrix D(vecX ) =
Θ⊗Ψ⊗Σ are not uniquely defined. Several authors have discussed this for
a separable covariance matrix D(vecX) = Ψ⊗Σ, e.g., Galecki (1994); Naik
and Rao (2001). The parametrization problem is related to the fact that

Ψ⊗Σ = (cΨ)⊗
(

1
c
Σ
)

and this leads to estimability problems. Recently, Srivastava et al. (2008)
also considered the problem and suggested, without any loss of generality,
to set ψqq = 1. For a double separable covariance matrix we have a similar
problem since

Θ⊗Ψ⊗Σ =
(

1
ab

Θ
)
⊗ (aΨ)⊗ (bΣ) .

In this case to get an unique parametrization, without any loss of generality
and similar to Srivastava et al. (2008), we suppose Σ: p×p to be unstructu-
red, Ψ = (ψij): q × q with ψqq = 1 and Θ = (θij): r × r with θrr = 1.

Now, assume that we have n independent observations Xj : p × q × r,
j = 1, . . . , n, from (1). One can easily see thatM : p×q×r will be estimated
by averaging. Hence, in the subsequent without any loss of generality, we
may put M = 0.

Furthermore, with M = 0 the likelihood function for Σ,Ψ and Θ is
proportional to

|Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

vec′Xj (Θ⊗Ψ⊗Σ)−1 vecXj

 ,

which can be written as

|Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

vec′Xj (Σ⊗Θ⊗Ψ)−1 vecXj


= |Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

tr
{

Σ−1X ′j (Θ⊗Ψ)−1Xj

} ,

(7)
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where we have used relation (5). Now, the trace in (7) can be rewritten as

tr
{

Σ−1X ′j (Θ⊗Ψ)−1Xj

}
= tr

{
Σ−1X ′j

(
Ir ⊗Ψ−1/2

) (
Θ−1 ⊗ Iq

) (
Ir ⊗Ψ−1/2

)
Xj

}
=

q∑
l=1

tr
{

Σ−1X ′j

(
Ir ⊗

(
Ψ−1/2e2

l

))
Θ−1

(
Ir ⊗

((
e2

l

)′Ψ−1/2
))
Xj

}
=

q∑
l=1

tr{Σ−1X ′jlΘ
−1Xjl},

where Xjl =
(
Ir ⊗

((
e2

l

)
)′Ψ−1/2

))
Xj which implies that the likelihood

function is proportional to

|Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

q∑
l=1

tr
{
Σ−1X ′jlΘ

−1Xjl

} . (8)

Hence, it means that we have nq independent observations, Xjl j = 1, . . . , n
and l = 1, . . . , q. From Srivastava et al. (2008) under the restriction θrr = 1
we obtain the likelihood equations

Σ̂ =
1
qrn

n∑
j=1

q∑
l=1

X ′jlΘ̂
−1
Xjl,

Θ̂ =
1
pqn

n∑
j=1

q∑
l=1

XjlΣ̂
−1
X ′jl,

which equal

Σ̂ =
1
qrn

n∑
j=1

q∑
l=1

X ′jlΘ̂
−1
Xjl

=
1
qrn

n∑
j=1

q∑
l=1

X ′j

(
Ir ⊗ Ψ̂

−1/2
e2

l

)
Θ̂
−1
(
Ir ⊗ (e2

l )′Ψ̂
−1/2

)
Xj

=
1
qrn

n∑
j=1

X ′j

(
Θ̂⊗ Ψ̂

)−1
Xj (9)

and

Θ̂ =
1
pqn

n∑
j=1

q∑
l=1

XjlΣ̂
−1
X ′jl

=
1
pqn

n∑
j=1

q∑
l=1

(
Ir ⊗

((
e2

l

)′ Ψ̂−1/2
))
XjΣ̂

−1
X ′j

(
Ir ⊗

(
Ψ̂
−1/2

e2
l

))
.

(10)
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Using (6), the likelihood function (7) can also be expressed as

|Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

tr
{

Ψ−1Y ′j (Σ⊗Θ)−1 Y j

}
= |Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

r∑
l=1

tr
{
Ψ−1Y ′jlΣ

−1Y jl

}
= |Θ|−pqn/2|Ψ|−prn/2|Σ|−qrn/2exp

−1
2

n∑
j=1

r∑
l=1

tr
{
Σ−1Y jlΨ−1Y ′jl

} ,

(11)

where Y jl =
(
Ip ⊗

((
e3

l

)′Θ−1/2
))
Y j . Hence, since we have ψqq = 1 the

likelihood equations follows again from Srivastava et al. (2008) as

Ψ̂ =
1
prn

n∑
j=1

r∑
l=1

Y ′jlΣ̂
−1
Y jl

=
1
prn

n∑
j=1

r∑
l=1

Y ′j

(
Ip ⊗

(
Θ̂
−1/2

e3
l

))
Σ̂
−1
(
Ip ⊗

((
e3

l

)′ Θ̂−1/2
))
Y j

=
1
prn

n∑
j=1

Y ′j

(
Σ̂⊗ Θ̂

)−1
Y j (12)

and

Σ̂ =
1
qrn

n∑
j=1

r∑
l=1

Y jlΨ̂
−1
Y ′jl

=
1
qrn

n∑
j=1

r∑
l=1

(
Ip ⊗

((
e3

l

)′ Θ̂−1/2
))
Y jΨ̂

−1
Y ′j

(
Ip ⊗

(
Θ̂
−1/2

e3
l

))
.

(13)

The following theorem can now be stated.

Theorem 1 The likelihood equations that are maximizing the likelihood fun-
ction (7) under the conditions ψqq = 1 and θrr = 1 are given by

Σ̂ =
1
qrn

n∑
j=1

X ′j

(
Θ̂⊗ Ψ̂

)−1
Xj , (14)

Ψ̂ =
1
prn

n∑
j=1

Y ′j

(
Σ̂⊗ Θ̂

)−1
Y j , (15)

Θ̂ =
1
pqn

n∑
j=1

Z ′j

(
Ψ̂⊗ Σ̂

)−1
Zj . (16)
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Furthermore, equation (9) equals equation (13).

Proof Since we maximize the same likelihood function, (8) and (11), twice
with respect to Σ, equation (9) and (13) must be the same. Let the obser-
vations be Xd =

(
xd

ijk

)
, d = 1, . . . , n. Using (3) the expression for Y d and

(2) the expression for Xd in (13) one can show that this is the case, i.e., we
have

Σ̂ =
1
qrn

n∑
d=1

r∑
l=1

(Ip ⊗ ((e3
l )′Θ̂

−1/2
))Y dΨ̂

−1
Y ′d(Ip ⊗ (Θ̂

−1/2
e3

l ))

=
1
qrn

n∑
d=1

r∑
l=1

∑
ijk

∑
i′j′k′

xd
ijkx

d
i′j′k′(Ip ⊗ ((e3

l )′Θ̂
−1/2

))

(e1
i ⊗ e3

k)
[
(e2

j )′Ψ̂
−1
e2

j′

]
((e1

i′)
′ ⊗ (e3

k′)′)(Ip ⊗ (Θ̂
−1/2

e3
l ))

=
1
qrn

n∑
d=1

∑
ijk

∑
i′j′k′

{
(xd

ijkx
d
i′j′k′

[
(e2

j )′Ψ̂
−1
e2

j′

]
r∑

l=1

(
Ip ⊗ ((e3

l )′Θ̂
−1/2

)
) (
e1

i (e1
i′)
′ ⊗ e3

k(e3
k′)′
) (
Ip ⊗ (Θ̂

−1/2
e3

l )
)}

=
1
qrn

n∑
d=1

∑
ijk

∑
i′j′k′

{
xd

ijkx
d
i′j′k′

[
(e2

j )′Ψ̂
−1
e2

j′

]
r∑

l=1

(
e1

i (e1
i′)
′ ⊗
([

(e3
l )′Θ̂

−1/2
e3

k

] [
(e3

k′)′Θ̂
−1/2

e3
l

]))}

=
1
qrn

n∑
d=1

∑
ijk

∑
i′j′k′

{
xd

ijkx
d
i′j′k′

[
(e2

j )′Ψ̂
−1
e2

j′

]

(e3
k′)′Θ̂

−1/2

(
r∑

l=1

e3
l (e3

l )′
)

Θ̂
−1/2

e3
ke

1
i (e1

i′)
′

}
.

But
∑r

l=1 e
3
l (e3

l )′ = Ir, hence

Σ̂ =
1
qrn

n∑
d=1

∑
ijk

∑
i′j′k′

xd
ijkx

d
i′j′k′

[
(e2

j )′Ψ̂
−1
e2

j′

] [
(e3

k′)′Θ̂
−1
e3

k

]
e1

i (e1
i′)
′

=
1
qrn

n∑
d=1

∑
ijk

∑
i′j′k′

xd
ijkx

d
i′j′k′((e3

k ⊗ e2
j )(e1

i )′)′(Θ̂⊗ Ψ̂)−1(e3
k′ ⊗ e2

j′)(e1
i′)
′

=
1
qrn

n∑
d=1

X ′d(Θ̂⊗ Ψ̂)−1Xd,
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i.e., equation (9) and (13) are equal. Equation (10) can be rewritten in the
same way as above, using (2) and (4) in (10). Hence, we have

Θ̂ =
1
pqn

n∑
d=1

Z ′j

(
Ψ̂⊗ Σ̂

)−1
Zj (17)

and the proof is complete. �

Note that the likelihood equations (14)-(16) are nested and there exist
no explicit solution. Thus, we can solve (14)-(16) using the so called flip-flop
algorithm.

4 Restrictions imposed by the Kronecker product

Many statistical hypotheses can be formulated in terms of polynomial equa-
lities and inequalities in the unknown parameters. Hence, under the null
hypothesis the parameter space correspond to semi-algebraic subsets of the
parameter space. In statistical testing it is important to consider the para-
meter space under the null hypothesis careful, see for example (Rao, 1973,
p. 415-420) for some general classes of large sample tests, or Self and Liang
(1987); Drton (2009) for more details when problems can arise.

The double separable covariance matrix, D(X) = Ω = Θ ⊗ Ψ ⊗ Σ,
imposes a number of restrictions on the parameter space of the variances
and covariances. Hence, the hypothesis

H0 : Ω = Θ⊗Ψ⊗Σ vs. A : Ω > 0,

can be written as

H0 : Ri(Ω) = 0 for i = 1, . . . , k vs. A : not H0,

where Ri(Ω), i = 1, . . . , k are some functions of the variances and covarian-
ces.

The restrictions imposed by separability, are shortly discussed by Lu and
Zimmerman (2005) and are given as

ω11

ωip+1,ip+1
=

ω22

ωip+2,ip+2
= · · · = ωpp

ωip+p,ip+p
, i = 1, . . . , q − 1,

ρ[ii][kl] = ρ[11][kl], i = 2, . . . , q; k = 1, . . . , p; l = k + 1, . . . , p,

ρ[ij][kk] = ρ[ij][11], i = 1, . . . , q; j = i+ 1, . . . , q; k = 2, . . . , p, (18)

ρ[ij][kl] = ρ[ij][lk], i = 1, . . . , q; j = i+ 1, . . . , q; l = k + 1, . . . , p,

ρ[ij][kl] = ρ[ij][11]ρ[11][kl], i = 1, . . . , q; j = i+ 1, . . . , q;

k = 1, . . . , p; l = k + 1, . . . , p,

where ρ[ij][kl] is the (k, l)th element of (i, j)th p× p block of the correlation
matrix R. Since the nature of the functions Ri(Ω), i = 1, . . . k are important
we state the following Proposition.
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Proposition 1 The functions Ri(Ω), i = 1, . . . , k imposed by the Kronecker
product structure Ω = Θ⊗Ψ⊗Σ, are smooth functions.

Proof We will consider the simple cases p = q = 2 and p = q = r = 2 for
a separable and double separable covariance matrix and use these examples
to understand the restrictions imposed by the double separability. We start
with separability and p = q = 2. Consider the Kronecker product

Ω = Ψ⊗Σ =


ψ11σ11 ψ11σ12 ψ12σ11 ψ12σ12

· ψ11σ22 ψ12σ21 ψ12σ22

· · ψ22σ11 ψ22σ12

· · · ψ22σ22

 = (ωij) ,

where Σ = (σij) and Ψ = (ψij). We can directly identify one restriction
since

ω11

ω22
=
ω33

ω44
. (19)

More restrictions can be found from the correlation matrix R. The correla-
tion matrix R is nothing else than the Kronecker product of the correlation
matrices corresponding to Ψ and Σ, i.e.,

R = RΨ ⊗RΣ =


1 ρΣ ρΨ ρΨρΣ
· 1 ρΨρΣ ρΨ
· · 1 ρΣ
· · · 1

 = (ρij) , (20)

where

RΣ =
(

1 ρΣ
· 1

)
and RΨ =

(
1 ρΨ
· 1

)
,

are the correlation matrices corresponding to Σ and Ψ, respectively. From
(20) we see that we have the following restrictions

ρ12 = ρ34, ρ13 = ρ24, ρ14 = ρ23 and ρ14 = ρ12ρ13. (21)

These restrictions (19) and (21) are of course nothing else than the restric-
tions (18) given by Lu and Zimmerman (2005). Written in the original co-
variances ωij , the restrictions are

ω11ω14 = ω12ω13, ω23 = ω14, ω11ω24 = ω13ω22,

ω11ω34 = ω12ω33, ω11ω44 = ω22ω33,

i.e., the functions Ri(Ω) for i = 1, . . . , 5 can be formulated as

R1(Ω) = ω11ω14 − ω12ω13, R2(Ω) = ω23 − ω14, R3(Ω) = ω11ω24 − ω13ω22,

R4(Ω) = ω11ω34 − ω12ω33, R5(Ω) = ω11ω44 − ω22ω33,

12



These functions, Ri(Ω) for i = 1, . . . , 5, are smooth, i.e., they have derivati-
ves of all orders.

Similar argument as above can be used when considering the double
separable covariance matrix. For the case with three Kronecker products,
and with p = q = r = 2, we have the following covariance matrix

Ω = Θ⊗Ψ⊗Σ = (ωij). (22)

The covariance matrix (22) directly gives the following restrictions

ω11

ω33
=
ω22

ω44
=
ω55

ω77
=
ω66

ω88
and

ω11

ω55
=
ω22

ω66
. (23)

Furthermore, the correlation matrix

R = RΘ ⊗RΨ ⊗RΣ = (ρij) ,

where

RΘ =
(

1 ρΘ
· 1

)
,

gives all the other restrictions

ρ12 = ρ34 = ρ56 = ρ78, ρ13 = ρ24 = ρ57 = ρ68,

ρ14 = ρ23 = ρ58 = ρ67, ρ15 = ρ26 = ρ37 = ρ48,

ρ16 = ρ25 = ρ38 = ρ47, ρ17 = ρ28 = ρ35 = ρ46,

ρ18 = ρ27 = ρ36 = ρ45 (24)

and

ρ14 = ρ12ρ13, ρ16 = ρ12ρ15, ρ17 = ρ13ρ15, ρ18 = ρ12ρ13ρ15. (25)

These 29 restrictions, (23), (24) and (25), are similar and a direct generali-
zation of the restrictions imposed by separability (19) and (21). Since they
have the same form, the functions Ri(Ω), i = 1, . . . , 29 given by the double
separability will also be smooth functions. For general dimensions, p, q and
r, the smoothness can be shown using induction. �

From the Proposition above we specifically have that the functionsRi(Ω),
i = 1, . . . , k have continuous partial derivatives of the first order and this
will facilitate the asymptotics, see (Rao, 1973, p. 415-420) for more details.

Under separability the covariance matrix Ω = Ψ⊗Σ has 1
2(p× (p+ 1) +

q×(q+1)) parameters. Under the hypothesis A, the covariance matrix is the
unstructured matrix Ω : pq×pq which has 1

2pq×(pq+1) parameters. Hence,
under separability and p = q = 2, the covariance matrix Ω = Ψ⊗Σ has six
parameters, and under the alternative the covariance matrix Ω > 0 : 4 × 4
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has ten parameters. Express the parameters ω14, ω23, ω24, ω34 and ω44 as
functions of ω11, ω12, ω13, ω22 and ω33, i.e.,

ω14 =
ω12ω13

ω11
, ω23 = ω14, ω24 =

ω13ω22

ω11
,

ω34 =
ω12ω33

ω11
, ω44 =

ω22ω33

ω11

and of course if we express the five parameters ω11, ω12, ω13, ω22 and ω33 in
the six parameters σ11, σ12, σ22, ψ11, ψ12 and ψ22 we have

ω11 = ψ11σ11, ω12 = ψ11σ12, ω13 = ψ12σ11,

ω22 = ψ11σ22, ω33 = ψ22σ11.

Hence, we have six parameters but only five equations. This is of course
related to the fact that all the parameters of Ψ and Σ are not defined
uniquely

Ψ⊗Σ = (cΨ)⊗
(

1
c
Σ
)

and can be overcome with the restriction ψ22 = 1.
Furthermore, for the double separablity case with p = q = r = 2, we

have 29 equations and 36 parameters in the unstructured covariance matrix
Ω > 0, i.e., we have seven free parameters instead of nine as in the Kronecker
product Ω = Θ⊗Ψ⊗Σ. Hence, we can again set the restrictions ψ22 = 1
and θ22 = 1.
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