More on the Tensor Response of the QCD Vacuum to an External Magnetic Field

based on e-Print arXiv: 1201.2039, Phys. Rev. D 85 (2012) 086006

P. N. Kopnin¹ with A. Gorsky¹ A. Krikun¹ A. Vainshtein²

¹Institute for Theoretical and Experimental Physics, Moscow, Russia

²University of Minnesota, USA

EMFCSC, 50th course of the ISSP, June 29th 2012, Erice, Italy

A B > 4
 B > 4
 B

Outline

Magnetic Susceptibility of the Chiral Condensate

- Different Approaches to χ
- Possible Alternative Derivations of χ
- 2 Holographic Model with a Tensor Field
 - The Setup of Holographic QCD
 - The Holographic Action
 - Classical Equations of Motion and Their Solution
 - Magnetization and Susceptibility: Results and Discussion

ヘロト ヘヨト ヘヨト

3 Summary

Different Approaches to χ Possible Alternative Derivations of χ

ヘロン 人間 とくほ とくほ とう

1

Magnetic Susceptibility of the Chiral Condensate

- Introduced in the framework of QCD Sum Rules [B. L. loffe, A. V. Smilga]
- $\langle \bar{\boldsymbol{q}} \sigma_{\mu\nu} \boldsymbol{q} \rangle_{\boldsymbol{F}} = \chi \langle \bar{\boldsymbol{q}} \boldsymbol{q} \rangle \boldsymbol{F}_{\mu\nu}$, where $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}]$.
- Measures induced tensor current in the QCD vacuum

Magnetic Susceptibility of the Chiral Condensate

Holographic Model with a Tensor Field Summary Different Approaches to χ Possible Alternative Derivations of χ

イロト イポト イヨト イヨト

Outline

Magnetic Susceptibility of the Chiral Condensate

• Different Approaches to χ

• Possible Alternative Derivations of χ

2 Holographic Model with a Tensor Field

- The Setup of Holographic QCD
- The Holographic Action
- Classical Equations of Motion and Their Solution
- Magnetization and Susceptibility: Results and Discussion

3 Summary

Different Approaches to χ Possible Alternative Derivations of χ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $\chi = -\frac{N_c}{4\pi^2 f_{\pi}^2} = -8.9 \,\text{GeV}^{-2}$ OPE of the $\langle VVA \rangle$ correlator and pion dominance [A. Vainshtein]
- Sum rule fit $\chi = -3.15 \pm 0.30 \, {\rm GeV^{-2}}$
- Vector dominance $\chi = -(3.38 \div 5.67) \,\text{GeV}^{-2}$ [Balitsky, Yung, Kogan ...]

Magnetic Susceptibility of the Chiral Condensate

Holographic Model with a Tensor Field Summary Different Approaches to χ Possible Alternative Derivations of χ

イロト イポト イヨト イヨト

Outline

- Possible Alternative Derivations of χ
- 2 Holographic Model with a Tensor Field
 - The Setup of Holographic QCD
 - The Holographic Action
 - Classical Equations of Motion and Their Solution
 - Magnetization and Susceptibility: Results and Discussion

3 Summary

ヘロト 人間 とくほとくほとう

ъ

- Holographic calculation of (VVA): χ ~ -11.5 GeV⁻²
 [A. Gorsky, A. Krikun]. Vainshtein relation isn't exact, but fulfilled to good accuracy.
- Holographic Son–Yamamoto relations: χ agrees with Vainshtein. Assumed to be valid at any momentum transfer. No field-theoretical derivation.
- A direct holographic calculation motivated by enhanced AdS/QCD models [Cappiello, Cata, D'Ambrosio; Domokos, Harvey, Royston; Alvares, Hoyos, Karch] that take into account the 1⁺⁻ mesons.
- Check them for self-consistency.

ヘロト 人間 とくほとく ほとう

3

- Holographic calculation of $\langle VVA \rangle$: $\chi \sim -11.5 \, \text{GeV}^{-2}$ [A. Gorsky, A. Krikun]. Vainshtein relation isn't exact, but fulfilled to good accuracy.
- Holographic Son–Yamamoto relations: χ agrees with Vainshtein. Assumed to be valid at any momentum transfer. No field-theoretical derivation.
- A direct holographic calculation motivated by enhanced AdS/QCD models [Cappiello, Cata, D'Ambrosio; Domokos, Harvey, Royston; Alvares, Hoyos, Karch] that take into account the 1⁺⁻ mesons.
- Check them for self-consistency.

<ロ> (四) (四) (三) (三) (三) (三)

- Holographic calculation of $\langle VVA \rangle$: $\chi \sim -11.5 \, {\rm GeV^{-2}}$ [A. Gorsky, A. Krikun]. Vainshtein relation isn't exact, but fulfilled to good accuracy.
- Holographic Son–Yamamoto relations: χ agrees with Vainshtein. Assumed to be valid at any momentum transfer. No field-theoretical derivation.
- A direct holographic calculation motivated by enhanced AdS/QCD models [Cappiello, Cata, D'Ambrosio; Domokos, Harvey, Royston; Alvares, Hoyos, Karch] that take into account the 1⁺⁻ mesons.
- Check them for self-consistency.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Holographic calculation of $\langle VVA \rangle$: $\chi \sim -11.5 \, {\rm GeV^{-2}}$ [A. Gorsky, A. Krikun]. Vainshtein relation isn't exact, but fulfilled to good accuracy.
- Holographic Son–Yamamoto relations: χ agrees with Vainshtein. Assumed to be valid at any momentum transfer. No field-theoretical derivation.
- A direct holographic calculation motivated by enhanced AdS/QCD models [Cappiello, Cata, D'Ambrosio; Domokos, Harvey, Royston; Alvares, Hoyos, Karch] that take into account the 1⁺⁻ mesons.
- Check them for self-consistency.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Holographic calculation of $\langle VVA \rangle$: $\chi \sim -11.5 \, {\rm GeV^{-2}}$ [A. Gorsky, A. Krikun]. Vainshtein relation isn't exact, but fulfilled to good accuracy.
- Holographic Son–Yamamoto relations: χ agrees with Vainshtein. Assumed to be valid at any momentum transfer. No field-theoretical derivation.
- A direct holographic calculation motivated by enhanced AdS/QCD models [Cappiello, Cata, D'Ambrosio; Domokos, Harvey, Royston; Alvares, Hoyos, Karch] that take into account the 1⁺⁻ mesons.
- Check them for self-consistency.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

イロト イポト イヨト イヨト

Outline

Magnetic Susceptibility of the Chiral Condensate

- Different Approaches to χ
- Possible Alternative Derivations of χ

2 Holographic Model with a Tensor Field

- The Setup of Holographic QCD
- The Holographic Action
- Classical Equations of Motion and Their Solution
- Magnetization and Susceptibility: Results and Discussion

3 Summary

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

The Setup

According to the holographic prescription:

Quantum Field Theory	Classical Gravity in 5D
Source $J(x_{\mu})$	Boundary value $\Phi(x_{\mu}, 0)$
of an operator ${\cal O}$	of a 5D field $\Phi(x_{\mu}, z)$
Effective action with sources	Action on classical trajectories
Asymptotic freedom at	AdS near
small distances	the boundary,
and confinement at	an IR hard wall
large distances	far from the boundary

• KK-decompose all the fields and integrate out the z-axis, get an effective action for mesons - a chiral Lagrangian.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

The Setup

According to the holographic prescription:

Quantum Field Theory	Classical Gravity in 5D
Source $J(x_{\mu})$	Boundary value $\Phi(x_{\mu}, 0)$
of an operator ${\cal O}$	of a 5D field $\Phi(x_{\mu}, z)$
Effective action with sources	Action on classical trajectories
Asymptotic freedom at	AdS near
small distances	the boundary,
and confinement at	an IR hard wall
large distances	far from the boundary

• KK-decompose all the fields and integrate out the z-axis, get an effective action for mesons - a chiral Lagrangian.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

The Setup

According to the holographic prescription:

Quantum Field Theory	Classical Gravity in 5D
Source $J(x_{\mu})$	Boundary value $\Phi(x_{\mu}, 0)$
of an operator ${\cal O}$	of a 5D field $\Phi(x_{\mu}, z)$
Effective action with sources	Action on classical trajectories
Asymptotic freedom at	AdS near
small distances	the boundary,
and confinement at	an IR hard wall
large distances	far from the boundary

• KK-decompose all the fields and integrate out the z-axis, get an effective action for mesons - a chiral Lagrangian.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

The Setup

According to the holographic prescription:

Quantum Field Theory	Classical Gravity in 5D
Source $J(x_{\mu})$	Boundary value $\Phi(x_{\mu}, 0)$
of an operator ${\cal O}$	of a 5D field $\Phi(x_{\mu}, z)$
Effective action with sources	Action on classical trajectories
Asymptotic freedom at	AdS near
small distances	the boundary,
and confinement at	an IR hard wall
large distances	far from the boundary

• KK-decompose all the fields and integrate out the z-axis, get an effective action for mesons - a chiral Lagrangian.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

The Setup

According to the holographic prescription:

Quantum Field Theory	Classical Gravity in 5D
Source $J(x_{\mu})$	Boundary value $\Phi(x_{\mu}, 0)$
of an operator ${\cal O}$	of a 5D field $\Phi(x_{\mu}, z)$
Effective action with sources	Action on classical trajectories
Asymptotic freedom at	AdS near
small distances	the boundary,
and confinement at	an IR hard wall
large distances	far from the boundary

- KK-decompose all the fields and integrate out the z-axis, get an effective action for mesons a chiral Lagrangian.
- An "expansion" of χPT

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

・ コ ト ・ 四 ト ・ 回 ト ・

Outline

Magnetic Susceptibility of the Chiral Condensate

- Different Approaches to χ
- Possible Alternative Derivations of χ

2 Holographic Model with a Tensor Field

The Setup of Holographic QCD

• The Holographic Action

- Classical Equations of Motion and Their Solution
- Magnetization and Susceptibility: Results and Discussion

3 Summary

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

The Action

$$\begin{split} \mathcal{S}_{5D} &= \int d^5 x \sqrt{-g} \, \mathrm{Tr} \left\{ -\frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) + g_X^2 \left(|DX|^2 - m_X^2 |X|^2 \right) \right. \\ &+ \frac{\lambda}{2} \left(X^+ F_L B + B F_R X^+ + \mathrm{c.c.} \right) \\ &- 2g_B \left(\frac{i}{6} \frac{\epsilon^{MNPQR}}{\sqrt{-g}} \left(B_{MN} H_{PQR}^+ - B_{MN}^+ H_{PQR} \right) + m_B |B|^2 \right) \right\}. \end{split}$$

 $H = DB = dB - iL \wedge B + iB \wedge R,$

 $\bar{q}_{R\bar{f}} q_L^f \leftrightarrow X_{\bar{f}}^f ,$ $\bar{q}_{R\bar{f}} \sigma_{\mu\nu} q_L^f \leftrightarrow B_{\mu\nu\bar{f}}^f ,$

$$\begin{split} \bar{q}_{R\bar{g}}\gamma_{\mu}q_{R}^{\bar{f}} \leftrightarrow R_{\mu\bar{g}}^{\bar{f}} ,\\ \bar{q}_{Lg}\gamma_{\mu}q_{L}^{f} \leftrightarrow L_{\mu g}^{f} . \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

The Action

$$\begin{split} \mathcal{S}_{5D} &= \int d^5 x \sqrt{-g} \, \mathrm{Tr} \left\{ -\frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) + g_X^2 \left(|DX|^2 - m_X^2 |X|^2 \right) \right. \\ &+ \frac{\lambda}{2} \left(X^+ F_L B + B F_R X^+ + \mathrm{c.c.} \right) \\ &- 2g_B \left(\frac{i}{6} \frac{\epsilon^{MNPQR}}{\sqrt{-g}} \left(B_{MN} H_{PQR}^+ - B_{MN}^+ H_{PQR} \right) + m_B |B|^2 \right) \right\}. \end{split}$$

 $H = DB = dB - iL \wedge B + iB \wedge R,$

 $\bar{q}_{R\bar{f}} q_L^f \leftrightarrow X_{\bar{f}}^f ,$ $\bar{q}_{R\bar{f}} \sigma_{\mu\nu} q_L^f \leftrightarrow B_{\mu\nu\bar{f}}^f ,$

$$\begin{split} \bar{q}_{R\bar{g}}\gamma_{\mu}q_{R}^{\bar{f}} \leftrightarrow R_{\mu\bar{g}}^{\bar{f}} ,\\ \bar{q}_{Lg}\gamma_{\mu}q_{L}^{f} \leftrightarrow L_{\mu g}^{f} . \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

,

ъ

イロト イポト イヨト イヨト

The Action

$$\begin{split} \mathcal{S}_{5D} &= \int d^5 x \sqrt{-g} \, \mathrm{Tr} \left\{ -\frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) + g_X^2 \left(|DX|^2 - m_X^2 |X|^2 \right) \right. \\ &+ \frac{\lambda}{2} \left(X^+ F_L B + B F_R X^+ + \mathrm{c.c.} \right) \\ &- 2g_B \left(\frac{i}{6} \frac{\epsilon^{MNPQR}}{\sqrt{-g}} \left(B_{MN} H_{PQR}^+ - B_{MN}^+ H_{PQR} \right) + m_B |B|^2 \right) \right\}. \end{split}$$

 $H = DB = dB - iL \wedge B + iB \wedge R$,

$$\begin{split} \bar{q}_{R\bar{f}} \, q_L^f &\leftrightarrow X_{\bar{f}}^f \,, & \bar{q}_{R\bar{g}} \gamma_\mu q_R^{\bar{f}} \leftrightarrow R_{\mu\bar{g}}^{\bar{f}} \\ \bar{q}_{R\bar{f}} \, \sigma_{\mu\nu} q_L^f &\leftrightarrow B_{\mu\nu\bar{f}}^f \,, & \bar{q}_{Lg} \gamma_\mu q_L^f \leftrightarrow L_{\mu g}^f \end{split}$$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

Rearranging the Degrees of Freedom

• In 4D,
$$\bar{q}\sigma^{\mu\nu}\gamma_5 q = rac{l}{2}\epsilon^{\mu\nu}_{\lambda\rho}\bar{q}\sigma^{\lambda\rho}q$$

- From the holographic point of view, this condition is ensured by the fact that the kinetic term for $B_{\mu\nu}$ is of the first order in derivatives, which leads to its complex self-duality.
- The "double counting" of the degrees of freedom that arises after we have introduced a complex tensor field is compensated by constraints imposed on half of them.

 $\bar{q}q \leftrightarrow X_+$,

 $i\bar{q}\gamma_5 q \leftrightarrow X_-$,

・ロト ・回 ト ・ヨト ・ヨト

Tensor Response

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

Rearranging the Degrees of Freedom

• In 4D,
$$ar{q}\sigma^{\mu
u}\gamma_5 q=rac{1}{2}\epsilon^{\mu
u}_{\quad \lambda
ho}ar{q}\sigma^{\lambda
ho}q$$

- From the holographic point of view, this condition is ensured by the fact that the kinetic term for $B_{\mu\nu}$ is of the first order in derivatives, which leads to its complex self-duality.
- The "double counting" of the degrees of freedom that arises after we have introduced a complex tensor field is compensated by constraints imposed on half of them.

 $\bar{q}q \leftrightarrow X_+$,

 $i\bar{q}\gamma_5 q \leftrightarrow X_-$,

ヘロト ヘワト ヘビト ヘビト

Tensor Response

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

Rearranging the Degrees of Freedom

• In 4D,
$$ar{q}\sigma^{\mu
u}\gamma_5 q=rac{l}{2}\epsilon^{\mu
u}_{\ \lambda
ho}ar{q}\sigma^{\lambda
ho}q$$

- From the holographic point of view, this condition is ensured by the fact that the kinetic term for $B_{\mu\nu}$ is of the first order in derivatives, which leads to its complex self-duality.
- The "double counting" of the degrees of freedom that arises after we have introduced a complex tensor field is compensated by constraints imposed on half of them.

 $\bar{q}q \leftrightarrow X_+$,

 $i\bar{q}\gamma_5 q \leftrightarrow X_-$,

ヘロト ヘワト ヘビト ヘビト

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

Rearranging the Degrees of Freedom

• In 4D,
$$ar{q}\sigma^{\mu
u}\gamma_5 q = rac{l}{2}\epsilon^{\mu
u}_{\ \lambda
ho}ar{q}\sigma^{\lambda
ho}q$$

- From the holographic point of view, this condition is ensured by the fact that the kinetic term for $B_{\mu\nu}$ is of the first order in derivatives, which leads to its complex self-duality.
- The "double counting" of the degrees of freedom that arises after we have introduced a complex tensor field is compensated by constraints imposed on half of them.

$$\begin{array}{ll} \bar{q}q \leftrightarrow X_{+} \,, & & \frac{1}{\sqrt{2}} \, \bar{q}\sigma_{\mu\nu}q \leftrightarrow B_{+\mu\nu} \,, \\ \\ i \bar{q}\gamma_{5}q \leftrightarrow X_{-} \,, & & \frac{i}{\sqrt{2}} \, \bar{q}\gamma_{5}\sigma_{\mu\nu}q \leftrightarrow B_{-\mu\nu} \,, \\ \\ & & \bar{q}\gamma_{\mu}q \leftrightarrow V_{\mu} \,. \end{array}$$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

Outline

Magnetic Susceptibility of the Chiral Condensate

- Different Approaches to χ
- Possible Alternative Derivations of χ

2 Holographic Model with a Tensor Field

- The Setup of Holographic QCD
- The Holographic Action
- Classical Equations of Motion and Their Solution
- Magnetization and Susceptibility: Results and Discussion

3 Summary

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

イロト イポト イヨト イヨト

æ

Equations of Motion

According to the prescription, we have to solve the classical E.o.M.'s

$$\left(\partial_{z}^{2} + \frac{1}{z}\partial_{z} - \frac{1}{z^{2}} - \partial_{\mu}\partial^{\mu}\right)(B_{\pm})_{12} = -\frac{\lambda}{8g_{B}}\frac{1}{z^{2}}X_{\pm}(F_{V})_{12},$$
$$\left(\partial_{z}^{2} - \frac{3}{z}\partial_{z} + \frac{3}{z^{2}} - \partial_{\mu}\partial^{\mu}\right)X_{\pm} = -\frac{2\lambda}{g_{X}^{2}}z^{2}(F_{V})_{12}(B_{\pm})_{12}.$$

$$\langle \bar{q}q
angle \propto \left. rac{\delta \mathcal{S}}{\delta X_+}
ight|_{z=0} \qquad \langle \bar{q}\sigma_{\mu
u}q
angle \propto \left. rac{\delta \mathcal{S}}{\delta B_{+\mu
u}}
ight|_{z=0}$$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

イロト イポト イヨト イヨト

Equations of Motion

According to the prescription, we have to solve the classical E.o.M.'s

$$\begin{split} \left(\partial_z^2 + \frac{1}{z}\partial_z - \frac{1}{z^2} - \partial_\mu\partial^\mu\right)(B_{\pm})_{12} &= -\frac{\lambda}{8g_B}\frac{1}{z^2}X_{\pm}(F_V)_{12},\\ \left(\partial_z^2 - \frac{3}{z}\partial_z + \frac{3}{z^2} - \partial_\mu\partial^\mu\right)X_{\pm} &= -\frac{2\lambda}{g_X^2}z^2(F_V)_{12}(B_{\pm})_{12}. \end{split}$$

$$\langle \bar{q}q \rangle \propto \left. \frac{\delta S}{\delta X_+} \right|_{z=0} \qquad \langle \bar{q}\sigma_{\mu\nu}q \rangle \propto \left. \frac{\delta S}{\delta B_{+\mu\nu}} \right|_{z=0}$$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

イロト イポト イヨト イヨト

Equations of Motion

According to the prescription, we have to solve the classical E.o.M.'s

$$\left(\partial_{z}^{2} + \frac{1}{z}\partial_{z} - \frac{1}{z^{2}} - \partial_{\mu}\partial^{\mu}\right)(B_{\pm})_{12} = -\frac{\lambda}{8g_{B}}\frac{1}{z^{2}}X_{\pm}(F_{V})_{12}, \\ \left(\partial_{z}^{2} - \frac{3}{z}\partial_{z} + \frac{3}{z^{2}} - \partial_{\mu}\partial^{\mu}\right)X_{\pm} = -\frac{2\lambda}{g_{X}^{2}}z^{2}(F_{V})_{12}(B_{\pm})_{12}.$$

$$\langle \bar{q}q \rangle \propto \left. \frac{\delta S}{\delta X_+} \right|_{z=0} \qquad \langle \bar{q}\sigma_{\mu\nu}q \rangle \propto \left. \frac{\delta S}{\delta B_{+\mu\nu}} \right|_{z=0}$$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

イロト イポト イヨト イヨト

Equations of Motion

According to the prescription, we have to solve the classical E.o.M.'s

$$\left(\partial_{z}^{2} + \frac{1}{z}\partial_{z} - \frac{1}{z^{2}} - \partial_{\mu}\partial^{\mu}\right)(B_{\pm})_{12} = -\frac{\lambda}{8g_{B}}\frac{1}{z^{2}}X_{\pm}(F_{V})_{12}, \\ \left(\partial_{z}^{2} - \frac{3}{z}\partial_{z} + \frac{3}{z^{2}} - \partial_{\mu}\partial^{\mu}\right)X_{\pm} = -\frac{2\lambda}{g_{X}^{2}}z^{2}(F_{V})_{12}(B_{\pm})_{12}.$$

$$\langle \bar{\boldsymbol{q}} \boldsymbol{q} \rangle \propto \left. \frac{\delta \mathcal{S}}{\delta X_+} \right|_{z=0} \qquad \langle \bar{\boldsymbol{q}} \sigma_{\mu\nu} \boldsymbol{q} \rangle \propto \left. \frac{\delta \mathcal{S}}{\delta \boldsymbol{B}_{+\mu\nu}} \right|_{z=0}$$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

・ロット (雪) ・ (目)

The Solution

- A most general property the scalar and tensor degrees of freedom X₊, B₊₁₂ decouple from the pseudoscalar and pseudotensor X₋, B₋₁₂, thus forming two independent sectors.
- The solutions for X and B are expressed in terms of Bessel and Neumann functions of $|\mathbf{B}|/q^2$ and qz (where $q = \sqrt{q_{\mu}q^{\mu}}$ is the momentum and $|\mathbf{B}| = (F_V)_{12}$ is the magnetic field) or their analytical continuations into the complex plane.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

Outline

Magnetic Susceptibility of the Chiral Condensate

- Different Approaches to χ
- Possible Alternative Derivations of χ

2 Holographic Model with a Tensor Field

- The Setup of Holographic QCD
- The Holographic Action
- Classical Equations of Motion and Their Solution
- Magnetization and Susceptibility: Results and Discussion

3 Summary

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

Magnetization

We are able to determine the magnetization $\mu(\mathbf{B}) = \frac{\langle \bar{q}\sigma_{12}q \rangle}{\langle \bar{\sigma}\sigma \rangle}$

Figure: Magnetization of the chiral condensate $\mu(\mathbf{B})$ as a function of the magnetic field (blue) vs its strong field asymptotics (red).

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

- is linear in |B| when the field is weak,
- becomes a negative constant at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Constant asymptotic is to be expected. In large magnetic fields 4D reduces to 2D and the tensor chiral condensate is kinematically reduced to a scalar one.
- The result points to the fact that not only the lowest Landau level plays a significant role: $\lim_{\mathbf{B}\to\infty} \mu(\mathbf{B}) \neq -1$.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Magnetization:

• is linear in |B| when the field is weak,

- becomes a negative constant at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Constant asymptotic is to be expected. In large magnetic fields 4D reduces to 2D and the tensor chiral condensate is kinematically reduced to a scalar one.
- The result points to the fact that not only the lowest Landau level plays a significant role: $\lim_{\mathbf{B}\to\infty} \mu(\mathbf{B}) \neq -1$.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- is linear in |B| when the field is weak,
- becomes a negative constant at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Constant asymptotic is to be expected. In large magnetic fields 4D reduces to 2D and the tensor chiral condensate is kinematically reduced to a scalar one.
- The result points to the fact that not only the lowest Landau level plays a significant role: $\lim_{\mathbf{B}\to\infty} \mu(\mathbf{B}) \neq -1$.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

・ロト ・ 理 ト ・ ヨ ト ・

- is linear in |B| when the field is weak,
- becomes a negative constant at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Constant asymptotic is to be expected. In large magnetic fields 4D reduces to 2D and the tensor chiral condensate is kinematically reduced to a scalar one.
- The result points to the fact that not only the lowest Landau level plays a significant role: $\lim_{\mathbf{B}\to\infty} \mu(\mathbf{B}) \neq -1$.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- is linear in |B| when the field is weak,
- becomes a negative constant at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Constant asymptotic is to be expected. In large magnetic fields 4D reduces to 2D and the tensor chiral condensate is kinematically reduced to a scalar one.
- The result points to the fact that not only the lowest Landau level plays a significant role: $\lim_{\mathbf{B}\to\infty}\mu(\mathbf{B})\neq-1.$

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト ヘワト ヘビト ヘビト

Magnetic Susceptibility

... and the magnetic susceptibility $\chi(\mathbf{B}) = \frac{d}{d\mathbf{B}} \mu(\mathbf{B})$:

Figure: Magnetic susceptibility of the chiral condensate $\mu(\mathbf{B})$ as a function of the magnetic field.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

◆□ > ◆□ > ◆豆 > ◆豆 > -

- possesses a quadratic behavior $\chi \sim -(const O(|\mathbf{B}|^2))$ when the field is weak,
- tends to 0 at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Parametrically $\chi(|\mathbf{B}| = 0)$ is reasonable ($\sim m_{\rho}^{-2}$), but numerically drastically differs from previous results.
- Some additional unknown factors may contribute, requires more investigation.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト 人間 とくほとくほとう

- possesses a quadratic behavior $\chi \sim -(const O(|\mathbf{B}|^2))$ when the field is weak,
- tends to 0 at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Parametrically χ(|B| = 0) is reasonable (~ m⁻²_ρ), but numerically drastically differs from previous results.
- Some additional unknown factors may contribute, requires more investigation.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト 人間 とくほとくほとう

- possesses a quadratic behavior $\chi \sim -(const O(|\mathbf{B}|^2))$ when the field is weak,
- tends to 0 at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Parametrically $\chi(|\mathbf{B}| = 0)$ is reasonable ($\sim m_{\rho}^{-2}$), but numerically drastically differs from previous results.
- Some additional unknown factors may contribute, requires more investigation.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

ヘロト 人間 とくほとくほとう

- possesses a quadratic behavior $\chi \sim -(const O(|\mathbf{B}|^2))$ when the field is weak,
- tends to 0 at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Parametrically $\chi(|\mathbf{B}| = 0)$ is reasonable ($\sim m_{\rho}^{-2}$), but numerically drastically differs from previous results.
- Some additional unknown factors may contribute, requires more investigation.

The Setup of Holographic QCD The Holographic Action Classical Equations of Motion and Their Solution Magnetization and Susceptibility: Results and Discussion

◆□ > ◆□ > ◆豆 > ◆豆 > -

- possesses a quadratic behavior $\chi \sim -(const O(|\mathbf{B}|^2))$ when the field is weak,
- tends to 0 at $\mathbf{B} \sim z_m^{-2} \sim \Lambda_{QCD}^2$.
- Parametrically $\chi(|\mathbf{B}| = 0)$ is reasonable ($\sim m_{\rho}^{-2}$), but numerically drastically differs from previous results.
- Some additional unknown factors may contribute, requires more investigation.

Summary

- A non-perturbative calculation of μ(B) and χ(B) to all orders in the magnetic field has been carried out.
- It has been performed in a holographic model enhanced by the inclusion of a tensor field – allows for a direct calculation.
- Our results reproduce the general properties both of the susceptibility and of the magnetization the weak-field expansion of the former and the negative constant asymptotic of the latter.

イロト イポト イヨト イヨト

Summary

- A non-perturbative calculation of μ(B) and χ(B) to all orders in the magnetic field has been carried out.
- It has been performed in a holographic model enhanced by the inclusion of a tensor field – allows for a direct calculation.
- Our results reproduce the general properties both of the susceptibility and of the magnetization – the weak-field expansion of the former and the negative constant asymptotic of the latter.

ヘロト ヘワト ヘビト ヘビト

Summary

- A non-perturbative calculation of μ(B) and χ(B) to all orders in the magnetic field has been carried out.
- It has been performed in a holographic model enhanced by the inclusion of a tensor field – allows for a direct calculation.
- Our results reproduce the general properties both of the susceptibility and of the magnetization – the weak-field expansion of the former and the negative constant asymptotic of the latter.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Summary

- A non-perturbative calculation of μ(B) and χ(B) to all orders in the magnetic field has been carried out.
- It has been performed in a holographic model enhanced by the inclusion of a tensor field – allows for a direct calculation.
- Our results reproduce the general properties both of the susceptibility and of the magnetization – the weak-field expansion of the former and the negative constant asymptotic of the latter.

・ロット (雪) () () () ()