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Abstract. For a set S of n points in the plane and for K ~ (1,2 . . . . .  [½n] }, 
let f r ( S )  denote the number of subsets of S with cardinality k ~ K which 
can be cut off S by a straight line. We show that there is a positive constant c 
such that f r (  S )  < cn(Ek ~ r k  ) 1/2. 

Introduction 

For a set S of n points in the Euclidean plane E 2, we call a subset S '  of S a k-set 
of S, 1 < k < n - 1, if S '  contains exactly k points and it can be cut off S by a 
straight line (disjoint from S). Let f k ( S )  be the number of k-sets realized by S, 
and let f k ( n ) = m a x { f k ( T ) l  T a set of n points in E 2} for k, l < k < n .  It is 
trivial to observe that f k (n)  = f ,  _k(n); hence we restrict our attention to values k 
in the range 1 < k < [~nl. 

The only values of k for which fk (n)  is known exactly are f l (n )  = n which is 
easy to determine, and f2(n) = [3n/2J (see [3,4]; for more about fk (n)  for small 
k see [9]). For  arbitrary k, [6] proves the existence of positive constants Cl, c 2, 
and n o such that 

clnlogE(k  + l ) <_ f k ( n )  <_ c2nk 1/2 Yn > n o (1) 

(see [4] for an independent development of these bounds and also for some 
applications of  the considered functions to problems in computational geometry). 

In this article we are interested in the sum over k ~ K of the number of k-sets 
which can be realized by a set of n points in the plane, where K is a subset of 

*This research was carried out during the author's stay at the University of Leiden, The 
Netherlands. 
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{1,2 . . . . .  [½n] }. More specifically, for a set S of n points in the Euclidean plane 
and for K _  (1,2,. . . ,[½nl}, we define f K ( S ) = E k ~ r f k ( S )  and fK(n) = 
m a x ( f x ( T ) l T  a set of n points in EE}. 

Goodman and Pollack [7] showed that if k < ½n, then E~=l f , (S )<  2 n k -  
2k 2 - k for a point set S of cardinality n. This bound was then improved to 

k 
E l i ( S )  < nk fo rk  < ½n (2) 

i = l  

in [1]. Moreover, the bound in (2) is tight so that 

f K ( n )  = nk f o r K =  {1,2 . . . . .  k } , k  <½n. (3) 

Note that (3) does not hold for k = ½n if n is even. Otherwise we could calculate 
for even n: 

f , /= (n )  = 2fK(n ) - n ( n - 1 )  f o r K  = {1,2 . . . . .  ½n} 

which would give f , / 2 (n )  = n if we apply (3); a contradiction to (1). 
For the so-called half-planar range estimation problem we are interested in 

values fK(n), where K = (a,2oL . . . . .  [ n / ( 2 a ) l a  } for a positive integer a, a <  ½n 
(see [5]). So far the only bound known was the one obtained using (1) directly. 
However, e.g., for a = n 1/3, this gives already an upper bound which is (for large 
enough n) worse than the trivial one of n Z - n  ( "- > E,=lf~(S) for a set S of n 
points). We show the following: 

Theorem 1. Let n be a positive integer and let ~ * K c (1,2 . . . . .  [½n] ). Then 

&(") < 2'/ n ( k KE k '1/2-) 

This includes the bound in (1) for K = {k }, and asymptotically also the 
bound in (3) for K = {1,2 . . . . .  k}. For the above-mentioned case we get 

Corollary 2. There is a constant c 3, such that for n >_1, for 1 < a_< [½n], and for 
K = ( a , 2 a  . . . . .  [n/(2a)la), 

fK(n) < c3n2o~ -1 /2 .  

Thus the bound is better than the trivial quadratic one, unless et is a 
"'constant." (We mean here that if a is a function in n which is monotonically 
increasing and unbounded, then Corollary 2 gives a nontrivial bound for large 
enough n.) 

More general than Corollary 2 we get the following bound for f r ( n )  
expressed in the cardinality of K (and in n). 
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Corollary 3. There is a constant c 4 such that 

f r ( n )  < c4n3/l(#K) I/2. 

( # K  denotes the cardinality of a finite set K.) 

Proof of the Result 

First we briefly describe the concept of (circular) n-sequences which is due to [7]. 
For a discussion more careful than here we refer to this original source or to [2]. 

Let S be a set of n points in general position, i.e., no three points are 
coUinear and no two connecting lines are parallel. Consider now a directed line L 
which is not orthogonal to any line determined by two points in S. We label the 
points in S by 1,2 . . . . .  n in such a way that their orthogonal projections on L 
form an increasing sequence. Let us observe these projections, while L rotates 
(counterclockwise, say). Then, whenever L passes through a direction orthogonal 
to a line connecting points i and j ,  the order of the projections on L changes by 
having indices i and j interchanged. After a rotation of 180 °, the indices appear 
in reverse order, i.e., they form a decreasing sequence. 

In this way we obtain a sequence of permutations 

e ( s )  = t '1  . . . . .  PN 

which we call the n-sequence induced by S and which has the following obvious 
properties 

(i) P o = 1 2 . . . n ,  P u = n ( n - 1 ) . . . 1 ,  and N =  (2) .  

(ii) For  q, 1 < q <_ N, Pq differs from Pq_ ~ only by the interchanges of two 
adjacent indices i and j ,  where, for i < j,  /j appears in Pq_ 1 and ji appears in 
Pq. (That is, i may jump to the right only over a j with j > i.) We call 0 the 
switch (from Pq_x to Pq) and if i is in the k th  position in Pq_~, then we say that 
switch/ j  occurs in position k and we write oc(/j) = k. 

Every sequence of permutations which satisfies (i) and (ii) is called an 
n-sequence. (As we have seen, every point set induces such an n-sequence; 
however, there are n-sequences which are not induced by any point set, see [7].) 

It is now easily seen that every k-set of S forms either a prefix or a suffix of 
length k in some permutation Pq, 1 <_ q <. N. Every switch which occurs in 
position k produces a new prefix of length k and a new suffix of length n - k 
("new" with respect to the occurring numbers). In an n-sequence only prefixes 
(suffixes) of P0 of length k involve the same numbers as any suffix (prefix, 
respectively) of length k in a permutation. Hence, if we denote by gk(P) the 
number of switches which occur in position k in an n-sequence P, then we get the 
following: 

Observation 4. Let S be a set of n points in general position in the plane and let 
P(S)  be an n-sequence induced by S. Then, for k, 1 < k < n - 1, 

A ( s )  = gk(e(s)) + g._,(p(s)). 
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Note that for even n and k = ½n the observation is also true, since then every 
switch in position ½n determines two new ½n-sets, namely, the prefix and the 
suffix of length ½n in the following permutation. 

We will prove that for every n-sequence P and every ~ :~ K ___ {1,2 . . . . .  [½n] }: 

\ 1 /2  
. ~.. g , ( P )  < 2'/2n ) (4) 

k ~ K  k ~ K  

Since an upper bound for Ek e Kgk(P) is also an upper bound for Ek ~ rgn-k(P) ,  
this will certainly yield our result for point sets in general position (by Observa- 
tion 4). It is actually a more general result since there are n-sequences which are 
not induced by point sets. Moreover, since a sufficiently small perturbation of the 
points in a set S does not decrease f k (S)  for any k, Theorem 1 will follow for all 
point sets. 

Let P be a fixed n-sequence. For k, 1 < k < [½n], and i, 1 < i < n, we define 
L , ( i  ) = { j i ] j  < i, oc(ji) = k}  and R, ( i )  = {/j[i < j ,  oc(/j) = k) .  Moreover, we 
set Ik(i ) = # L , ( i  ) and rk(i ) = # R , ( i  ). Intuitively speaking, Lk(i ) is the set of 
switches in position k, where i "jumps" to the left, i.e., lk(i ) is the number of 
" jumps"  of i from position k + 1 to position k. 

Clearly, gk(P)  = ET=llk(i), and so 

E g,(e)= E E t,(;) (5) 
I , ~ K  i ~ l  k ~ K  

for K ___ {1,2 . . . . .  [½n] }. Our goal is to prove that ET=l(Y'.k ~ Klk(i)) 2 < 2nEk ~ Kk, 
from which (4) will follow via (5). 

Let 1 < i < k < [½n]. Then i starts in a position < k (in P0) and i ends up in 
a position > k (in Pu)- Hence, i has to make one more jump from k to k + 1 
than it makes jumps from k + 1 to k. This shows that rk(i ) -  lk(i ) = 1. Analo- 
gously, the rest of the following observation can be seen: for i, 1 < i < n, and for 
k, l_<k_<i nl 

+1 i f l < i < k  
r k ( i ) - - l k ( i )  = 0 i f k < i < n - k + l  (6) 

- 1  i f n - k + l < i < n .  

In a next step, for m, l < m < n - 1 ,  and for k, l < k <  [½n], let Ck(m ) be 
the set of switches /j with oc ( / j )=  k and i <  m < j ,  and let Ck(m ) = #Ck(m ). 
Observe that Ck(m ) contains the switches in Ck(m - 1 )  plus the switches mj in 
position k minus the switches im in position k. Therefore, Ck(m ) = C k ( m -  1)+ 
rk(m ) -- /k(m).  Thus, since ck(1 ) =1,  we can infer from (6) that ck(2 ) = 2, Ck(3 ) = 
3 . . . . .  c , (m ) = m for m < k, that ck(m ) = k for k < m < n - k, and, finally, that 
ck(m ) = n -- m for n - k < m < n - 1 .  Hence we get for all k 

n - 1  k - 1  n - k  n - 1  

E c k ( m ) =  E m +  E k +  E 
m = l  m - - 1  m = k  r e = n - k + 1  

( n - m )  = n k -  k 2. (7) 
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For a switch s = 0', i < j ,  let j -  i be its width which we denote by !sl. 
Obviously, a switch s of width w and with oc(s) = k contributes exactly w to the 
sum in (7). Consequently, 

E isl = n k -  k 2 < nk.  (8)  
ocis) = k 

For K _  {1,2,. . . ,[½n]), we extend the definition of Lk(i ) and l,(i ) to 
Lr( i )  =l-Jk e rLk(i)  and lk(i ) = F- k ~ xlk(i). We get 

oc(s) ~ K i = 1  S ~ LK(i ) 

~ Ix(i) 
j > ~ ½(Ix(i)) 2. (9) 

i = 1  j = l  i = 1  

Here the first equality and the last inequality are immediate, while the first 
inequality follows from the fact that, for fixed i, Lr( i )  contains at most one 
switch of width 1, at most one switch of width 2, and so on. Hence, the sorted 
sequence of widths occurring in Lr(i  ) dominates the sequence 1,2 . . . . .  Ix(i). 

We infer from (8) and (9) that 

( l x ( i ) )  2 < 2n Y~ k 
i = 1  k ~ K  

which allows the maximum in (5) if the values lx(i ) are the same for all i. Thus 

, )1/2 
Ix( i)  < 21/2n( E k 

i = 1  ~ k ~ K  

(The reader might prefer to make this conclusion by applying Schffarz's in- 
equality.) By (5) we have now 

Theorem 5. Let P be an n-sequence and let ¢k ~ K c {1,2 . . . . .  [½n]}. Then 

~ 1/2 

Ek E gAt') < 21"n ) 
k ~ K  k E K  

and 

k~x  (gk (P)+ g"-k(P)) < 23/2n(k~rE k~X/2) 

This completes also the proof of Theorem I (see Observation 4). 
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R e m a r k .  I f  ½n ~ K (which is a lways t rue for o d d  n) ,  the  b o u n d  can  be  i m p r o v e d  
to  

/ \I/2 

E ( g ~ ( P ) + g , - k ( P ) )  < 2n~ g k)  . 
k~K "kEK 

T h i s  c a n  b e  o b t a i n e d  if  o n e  goes th rough the p roo f  d i rec t ly  for Z k ~  K(gk(P) + 
g,_k(P)) i n s t e a d  of  t ak ing  twice a b o u n d  for ~,k~xgg(P). 

I f  n is even  an d  if we use Eo~s)=n/21si = ¼n 2 (see (8)), t hen  we can  easily 
( a l o n g  the l ines  above)  o b t a i n  

gn/2(e) -'b gn_n/2(P) = 2gn/2(e ) < 21/2//3/2 . 

S ince  we do  n o t  expect  the b o u n d  to be  a sympto t i ca l ly  t ight  we dec ided  no t  
to  e l abo ra t e  o n  the  cons tan t .  
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