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Abstract. More-or-less-uniform samples are introduced and used to estimate lengths

of smooth regular strictly convex curves in R2. Quartic convergence is proved and illus-

trated by examples.

1. Introduction. The problem of measuring the length of a curve has a long history

in mathematics, dating back to ancient geometry. In particular, Archimedes and Liu

Hui [11] estimated the length of a circular curve. Jordan, Peano and others introduced

digitizations of sets in R2 and R3 for the purpose of different feature measurements such

as perimeters (see, e.g., [4]). Related historical and contemporary work can be found in

[2], [3], [6], [7], [9], [10], and [12],

Let 7: [0,T] —> R™ be a smooth regular curve; namely, 7 is Ck for some k > 1 and

7(t) 7^ 0 for all t £ [0, T\. The length of 7 is defined to be

dh) = f \\i(t)\\dt,
Jo

where 7 is the derivative of 7, and || • || is the Euclidean norm. Consider the problem of

estimating d(7) from an ordered (m + l)-tuple

Q = (qo,qi,---,qm)

of points in Rn, where qi = j{ti), and 0 = to < ti <■■■< ti <■•■< tm = T. Depending

on what is known about the ti, the problem may be straightforward or unsolvable.

Example 1. Let 7 be Cr+2, where r is a positive integer, and take m to be a multiple

of r. Then Q gives y (r + l)-tuples of the form

(*70) 91; • • • > 9r)> (<?i-)9r+l> • • • j </2r)) • • • j (? m—ri Qm—r+1? • • • ■> Qm)>
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The jth (r + l)-tuple can be interpolated by a polynomial 7j: [t(j-i)r,tjr] —* R™ of

degree r, and the track-sum 7 of the 7j is everywhere continuous and C°° except at the

knot points tr,t2r> ■ ■ ■ ,tm-r■ Suppose that sampling is uniform: ti = ^ for 0 < i < m.

The errors in Lagrange interpolation are best studied using Lemma 2.1 in Sec. 2 of Part

I of [5]. We find that 7(t) = 7(t) + 0(m}+1) for t € [0, T], and 7 = 7(t) + O(^) for

t 7^ tr,t2r, ■ ■ ■; im—r• Consequently, d(7) — d(7) = 0{~). This error can be shown to

be 0(m}+ 2) or 0( *+1) according as r is even or odd [8].

Example 2. Let t\ = ^ and = ti + ^ for 2 < z < m. Q gives only endpoint

information for 7 over [0, j], and therefore does not even determine an upper bound on

d(j) as m —> 00.

An intermediate situation is where the tt are not given, but sampled more-or-less

uniformly in the following sense.

Definition 1. Sampling is more-or-less uniform when there are constants 0 < Ki <

Ku such that, for any sufficiently large integer m, and any 1 < i < m,

Ki Ku— <U-U-i < —■
m m

The uniform sampling of Example 1 is more-or-less uniform, and the sampling in

Example 2 is not. With more-or-less uniform sampling, increments between successive

parameters are neither large nor small in proportion to ~i. Then, just as for the uniform

sampling of Example 1, piecewise-linear interpolation between sample points approxi-

mates the image of 7 to O(^), and d(7) to 0(^2 )■ However, use of piecewise-quadratic

instead of piecewise-linear can lead to unfortunate results, because of the need to es-

timate1 the parameters ti for 0 < i < m. If we guess U = then the resulting

piecewise-quadratic 7: [0,1] —> Rn is sometimes informative [7], [8], and sometimes not.

Example 3. For 0 < i < m, set U = ^3t+^n1^ ■ Then sampling is more-or-less

uniform, with Ki = j, Ku = Let 7: [0,7r] —* M2 be the parametrization 7(t) =

(cos t, sin t) of the unit semicircle in the upper half-plane. When m is small, the image of

7 does not much resemble a semicircle, as in Fig. 1 where m = 3 and d{^)—d{^) = 0.0601.

The error in length estimate with piecewise-linear interpolation is —0.0712. When m is

large the image of 7 looks semicircular, as in Fig. 2 where m = 30. In this case, however,

d(7) — d(7) = 0.1194, an error nearly twice as large as for m = 6. Even piecewise-linear

interpolation with 31 points gives a better estimate, with error —0.0033. Indeed, as

m increases (at least for m < 100), piecewise-quadratic interpolation tends to increase

errors of length estimates. Linear interpolation is better, but not impressive.

Example 4. For 0 < i < m, let 1,t be a random number (according to some distri-

bution) in the interval [^3l^T, Then sampling is more-or-less uniform, with

Ku, Ki as in Example 3.

Example 5. Choose 6 > 0 and 0 < Li < Lu. Set so = 0. For 1 < i < m, choose

Si G [^, independently from (say) the uniform distribution. Define Sj = Sj_ 1 + 6i

for i = 1,2,..., m. The expectation of sm is Lv+Li ancj the standard deviation ■

1In Example 1 these were assumed to be given.
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Fig. 1. 7 data points, with 3 successive triples interpolated by

piecewise-quadratics, giving length estimate -n + 0.0601035 for the

semicircle (shown dashed).

Fig. 2. 31 data points, with 15 successive triples interpolated by

piecewise-quadratics, giving length estimate n + 0.119407 for the

semicircle.

So if m is large, sm ~ Lv+Li with high probability. For 0 < i < m. define ti = Set
^ sm

2 LtT 2LUT
l~Lu + Lt ' Ku~ Lu + U+e'

Then with high probability for m large, the sampling (to, ti, t2, ■ ■ ■, tm) from [0, T] is

more-or-less uniform with constants K[,KU.

More-or-less uniform sampling is invariant with respect to reparameterizations;

namely, if 0: [0, T\ —> [0, T] is an order-preserving C1 diffeomorphism, and if (to, t\,... ,tm)

are sampled more-or-less uniformly, then so are (cp(to),4>(ti),... ,<p(tm)). So reparame-

terizations lead to further examples from the ones already given. To state our main

result, first take n = 2 and suppose that 7 is C4 and (without loss) parameterized by

arc-length; namely, ||7|| is identically 1. The curvature of 7 is defined as

k(t) = det(M(t)) ,

where M(t) is the 2x2 matrix with columns ^(t),^(t). When k(t) ^ 0 for all t G [0, T],

7 is said to be strictly convex.
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Theorem 1. Let 7: [0, T] —> 1R2 be strictly convex and suppose that sampling is more-

or-less uniform. Then, for some d(Q), calculable in terms of Q,

d(Q) = d(-y) + O
TO'

In Sections 2, 3 we prove Theorem 1, constructing d(Q) as a sum of lengths of qua-

dratic arcs interpolating quadruples of sample points. In Sec. 4, some examples are

given, showing that the quartic convergence of Theorem 1 is the best possible for our

construction.

Note added in proof. The authors have recently become aware of [13] which contains

work on closely related problems and other interesting references.

2. Quadratics interpolating quadruples. Let Q be sampled more-or-less uni-

formly from 7, and suppose (without loss) that to is a positive integer multiple of 3.

For each quadruple (qi, qi+i, qi+2, qi+3), where 0 < i < m — 3, define ao,ai,a2 £ M2 and

Ql(s) = a0 + a\s + a2S2 by

Ql(0) = qi , Ql{ 1) = qi+i , Ql(a) = ql+2 , and Ql(fi) = ql+3.

Then ao = qi, = qi+i — do — ai, and we obtain two vector equations:

aia + (pi - ai)a2 = pa and ax(5 + (pi - ai)/32 = p0 , (1)

where (pi,pa,pp) = (qi+1 - qi, qt+2 - qt, Qi+3 - qi)- Then (1) amounts to four quadratic

scalar equations in four scalar unknowns a\ = (an,a^),a,/?. Set

c= -det(pa,p0) , d = -det(p0,pi)/c , e = - det(pQ,pi)/c ,

where c,d,e ^ 0 by strict convexity, and define

Pi = \Je(l + d — e)/d , p2 = \/d(l + d - e)/e.

Then (1) has two solutions (as can be verified by substitution):

1 a \ (I+PI1I+P2) , a ^ (1 — Pi» 1 — P2)(a+,/?+) =    , (a_,/3_) =    , (2)
6 — d 6 — d

provided pi, p2 are real and d — e / 0. We now justify these assumptions and show that

precisely one of (2) satisfies the additional condition

1 <a<(3. (3)

It suffices2 to deal with the case where k(t) < 0 for all t e [0, T]. Then it is rather

apparent, for geometrical reasons, that 1 + d — e, —d, —e, and e — d are all positive

asymptotically. Alternatively, these facts can be proved (and sharper estimates obtained)

by Mathematica calculations, as in Lemma 1 below. Define

l{t) = It?)
k{t)

2The other case, where k(t) is everywhere positive, is dealt with by considering the reversed curve

7r(<) = (71 (T - 0.72(7' - t)).
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Then, using Taylor's theorem, for t,u 6 3],

det(7(t)-ft,7(u)-gi) = fc-—^)(M ̂ ^ + ^ _ 2t. +£)0 +O , (4)

where k, I are evaluated at tn.

Lemma 1.

, „ , ((ti+2 - U)(1 + i(t'V'+l)), (ti+3 - ti)(i + ;(ti+36"ti+l))) , ^ ( \\ ,c,
(a+'^+)~ +UWJ■ (5)

Proof. By (4),

C = -fc(ti+2 ~ *»)(*»+3 ~ *«)(*»+3 ~ *i+2) ^ + (t.+3 _ ^ + t.+a)^ + 0 (^_L ^ )

Cd = -fc(*<+3 ~ *i)(*i+l ~ ~ W3) ^ + (ti+i _ + t.+s)0 + G ̂  ^

ce = _fc(^ -*0(^+1-^(^+1-^+2) ^ + (t.+i _ 2ti + t.+2)^ + 0 ^

Consequently,

('-"•«-^4)+°(^
The lemma follows from these two equations. The detailed calculation can be viewed at

the URL address http://www.cs.uwa.edu.au/~ryszard/4points/. □

We continue with the assumption that k(t) < 0 for all t. Then (3) follows from (5) for

to large with (a, (3) = (a+, /?+)• Then, for 0 < s < /?, Ql(s) = qi + a\s + 02s2, where

pa - a2pi Pa ~ (32Pi , api - pa (3px - pp
ai = 2 = ~h and "2 = 2 =  02"- (6)

Q! — Q! P — P Q — GI P — P

Lemma 2.

ai — (U+i — U)j{ti) ( 1 + O ( •—^ + O (—5- I ,

°2 - {ti+\ti) m f1+0 (£))+0 G^)i{ti)+0 (i

Proof. From (5),

/ 2 „ „2\ {ti+2 2 ti+2) ^ 1 ,
(a ,a - a ) = - —~z 1- (J — .

(ti+1 - U)2 m
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Then by (6),

= C.+1 - u)y. - «'pi) f!+o fl
(ti+2 -ti){ti+i -ti+2) V \m

= (U+i - U)2{qi+2 ~ ft) ~ ({tj+2 ~ U)2 + Q(^))(ft+i ~ ft)) A +Q f
(ti+2 - u){ti+1 - ti+2) V \mJJ

_ (ti+1-ti)2((tl+2-U)^ + (tj+2-tj)2%)~ (tj+2-ti)2((ti+1-ti)j + (tj+1 ~ ti)2|)

+ 0

(ti+2 ti)(ti+1 ^i+2)

1 \ (ti+l ~ U)i + (tj+1 - tj)2\ + Q{m^ )

(ii+2 ~ it)(^i+l — U+2)

x(l+0(—
m

— (^i+i - (1 + c ( —1 ^ + o ( 21 7 + ̂  f ) '
m2

where 7,7 are evaluated at £,. In similar fashion,

a2= fa-Wan-p.) (1 + 0(±
(ti+2 - ti)(ti+i -ti+2) \ \m

((ti+1 - ti)(ti+2 - ij) + 0(;£r))(ft+i - ft) - (U+i ~ ti)2(qi+2 - ft) /1 + 0 f j_

(^i+2 ti^)(ti+1 ^1+2) \

_ (tj+1 ~ tj)(tj+2 ~ ^i)(ft+l ~ ft) ~ (^i+1 ~ ^i) (ft + 2 ~ ft) q / 1 \ \

(ti+2 ~ ti)(ti+i ~ ti+2) V \m))

+ O ( —2 7 + ̂  f 3\mz J yra-3

(ti+i - ^)2((^»+i - ii) - (ii+2 - ii))7 _|_ q (J_\ \ _|_ q j _|_ Q ( 1

2{ti+1 -ti+2) \ \m

□

In particular,

g-°G) - £-<>&)•
for s e [0, /?]. The quadratics Ql, determined by Q and i, need to be reparameterized for

comparison with the original curve 7.

3. Proof of Theorem 1. Let tp: [ti,U+3] —> [0,/?] be the cubic given by

ip(U) = 0, ip(ti+1) = 1, ij){ti+2)= a, i/j(ti+3)=p.

Using Lemma 1 (see http://www.cs.uwa.edu.au/~ryszard/4points/, especially for

treatment of O(^) errors in (5)) yields

<L?t=0(m), for k = 1,2,3. (8)
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In particular, xp is a diffeomorphism for m large. Define 7$ = Ql o [ii,£t+3] —> R2.

Then 7j is a polynomial of degree at most 6 and, using (7), (8), it turns out that its

derivatives of all orders are 0(1). The C4 function / = 7^ — 7 is 0 at ti, £*+1, U+2, U+3,

and consequently,

f(t) = (t- ti)(t - ti+x)(t - ti+2)g(t), where g(t) = (t - ti+3)h(t),

and g,h: [^,^+3] —> 1R2 are C1,C° respectively. Here we use Lemma 2.1 of Part I of

[5], and to estimate errors. Because = 0(1), h = 0(1). Therefore, g = O(^). Also,

g — 0(^j£) — 0(1). Therefore,

f = °(zia) and f = (9)
ym3 J \m4 /

Write 7i(t) in the form (1 + (f(t), 7(i)))7(i) + v(t), where v(t) is the projection of f(t)

onto the line orthogonal to 7(t). By (9), v = O(^g-) and, because ||7|| = 1,

||^(t)|| = (1 + (/(i),7W))ll7(«)ll+o(^6

Then

ft i + 3 fti+3 . / 1

    -o f —=/ II4.WII - HWIIdt= f {f(t),j(t))dt-
Ju Ju m7

rti+3

/ <Jti
{f(t),l(t))dt + 0 —- ,

1

t

after integration by parts. By (9), the right-hand side is O(^); namely,

H7W11 dt~d(Qi)=o^y

and so
m 

d(Q) = J2d(Q3j) = d(1) + oU-4
3=0 ^

Notice that a track-sum 7 of the arcs swept out by the Q3j gives an O(^j) uniformly

accurate approximation of the image of 7. Although 7 is not C1 at *3, t§,..., im_3, the

differences in left and right derivatives are O(^g-), and hardly discernible when m is

large.

4. Convergence rates. In Example 3, piecewise 3-point quadratic interpolation

gives a poor estimate of the semicircle, in particular of its length. Now we check the

performance of the alternative piecewise 4-point quadratic interpolation used in the proof

of Theorem 1.

Example 6. As in Example 3, take m = 6 and use the same more-or-less uniform

sampling of parameters ti. The piecewise 4-point quadratic interpolant in Fig. 4 is more

semicircular and the error in the length estimate is reduced from 0.0601 to —0.0072.

Let em be the absolute value of the error in the length estimate using piecewise

4-point quadratic interpolation, where values of m not divisible by 3 are accounted for
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• I 

Fig. 3. A piecewise 4-point quadratic approximation to a spiral (sin-

gular point excluded), using the more-or-less uniform sampling of

Example 3 and 61 data points (m = 60). True length: 173.608,

estimate: 173.539, piecewise 3-point quadratic estimate: 181.311.

Fig. 4. Piecewise 4-point quadratic using 7 data points (m = 6)

from a semicircle (shown dashed). Length estimate: n — 0.00723637.

by a simple modification. The plot in Fig. 5 of — log em against log m for 3 < to < 100

appears linear, and the least-squares estimate of slope is approximately 3.83. According

to Theorem 1, the limiting slope is at least 4 as m —> oo. So the evidence points to

exactly quartic convergence in this example

Our experiences with other curves and other more-or-less uniform samplings are sim-

ilar to Example 6. We have also mentioned the spiral in connection with the sampling

of Example 3. We give one further example, of a cubic. There are not a lot of changes.

Example 7. The cubic is given parametrically by 7(t) = (t, -13) for t 6 [0.1,0.5] and

sampled in the random fashion of Example 4 for 3 < to < 100. The plot of — log em

against log to is shown in Fig. 6. The least-squares estimate of slope is 4.00. So the

evidence suggests only quartic convergence.

5. Concluding remarks. The condition that sampling be more-or-less uniform is

rather unrestrictive. For e > 0, sampling is said to be e-uniform when, in some parameter-

ization,
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Fig. 5. — logem against logm, for the semicircle and 3 < m < 100.

Estimate of slope: 3.82694.
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Fig. 6. — logem against logm, for the cubic and 3 < m < 100.

Estimate of slope: 4.00347.

,l+€

iT „
ti — h O

m \mx

For this more regular kind of sampling, it is possible to get results like Theorem 1 using

simpler constructions for d(Q), as in [7], [8].

There is also some analogous work for estimating lengths of digitized curves; indeed,

the analysis of digitized curves in R2 is one of the most intensively studied subjects in im-

age data analysis. A digitized curve is the result of a process (such as contour tracing, 2D

skeleton extraction, or 2D thinning) that maps a curve-like object (such as the boundary

of a region) onto a computer-representable curve. As before, 7: [0, T] —> R2 is a strictly

convex curve parameterized by arc-length. An analytical description of 7 is not given,

and numerical measurements of points on 7 are corrupted by a process of digitization: 7

is digitized within an orthogonal grid of points (^, „), where i, j are permitted to range

over integer values, and m is a fixed positive integer called the grid resolution. Depending

on the digitization model [2], 7 is mapped onto a digital curve and approximated by a

polygon 7m whose length is an estimator for d{"f). Approximating polygons jm based on
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local configurations of digital curves does not ensure multigrid length convergence, but

global approximation techniques yield linearly convergent estimates, namely,

d{l) - ^(7m) = O ( —
\m

[3, 9]. In the special case of discrete straight line segments in R2, a stronger result is

proved [1], where superlinear orders of asymptotic length estimates are given. In

Theorem 1, convergence is of order 4, but Q arises from more-or-less uniform sampling,

as opposed to digitization. So strict comparisons cannot yet be made. These issues will

be revisited in the future.
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