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Summary. Integrative genomics offers a promising approach to more powerful genetic association studies. The hope is that
combining outcome and genotype data with other types of genomic information can lead to more powerful SNP detection.
We present a new association test based on a statistical model that explicitly assumes that genetic variations affect the
outcome through perturbing gene expression levels. It is shown analytically that the proposed approach can have more power
to detect SNPs that are associated with the outcome through transcriptional regulation, compared to tests using the outcome
and genotype data alone, and simulations show that our method is relatively robust to misspecification. We also provide
a strategy for applying our approach to high-dimensional genomic data. We use this strategy to identify a potentially new
association between a SNP and a yeast cell’s response to the natural product tomatidine, which standard association analysis
did not detect.
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1. Introduction
Missing heritability is a major issue in genetic association
studies and refers to the fact that for many traits, only a
small proportion of their variance in the population can be
explained by the genetic variants identified so far (Manolio
et al., 2009; Visscher and Montgomery, 2009; Bansal et al.,
2010). There are many possible causes, but recent experimen-
tal work by Bloom et al. (2013) suggests that missing additive
heritability may arise partly because there is insufficient sta-
tistical power to detect SNPs with small but nonzero effects.

Our interest in this problem was motivated by a study of
the genetic basis of drug response. One major goal of per-
sonalized medicine is to target treatments to those patients
who will see the greatest benefits. To begin to understand the
mechanisms of patient-specific drug response, Perlstein et al.
(2007) collected expression and genotype data on yeast seg-
regants before exposing them to a variety of small molecules.
Using standard methods they identified several genetic vari-
ants responsible for segregant-specific responses to some of
the drugs, but noted that identifying additional functional
polymorphisms was a major area of future interest. We were
interested in incorporating the expression information into as-
sociation testing in order to detect variants associated with
yeast cell drug response that were missed by standard analy-
ses.

Integrative genomics, this joint analysis of outcome and
genotype data with additional types of genomic information,
offers a promising general approach to more powerful associ-

ation studies (Chen et al., 2008; Emilsson et al., 2008). Most
existing integration methods use the additional information
to filter the SNPs, for example by removing SNPs that are
not significantly associated with outcome-associated genes.
The power gain then comes from the reduced multiple testing
burden (Ware, Petretto, and Cook, 2013). While sensible, the
statistical properties of this approach are unclear because it
requires a number of ad hoc decisions, such as the thresholds
for deciding which genes are associated with the outcome and
with SNPs. Furthermore, it is unclear how to control for mul-
tiple comparisons or false discovery rates when the filtering
steps are performed on the same set of samples.

In this article, we propose a new method for integrating
expression data into genetic association studies. Intuitively,
expression data should provide more information about SNPs
that are associated with the outcome by regulating the tran-
scription of outcome-associated genes. We indeed show that
compared to standard non-integrative methods, our approach
can have increased power to detect just these SNPs, which
we will refer to as outcome-associated expression SNPs, or
o-eSNPs. Furthermore, we use standard estimating equation
theory to provide a valid inferential procedure. When a par-
ticular set of genes is of interest, our method can be applied to
detect o-eSNPs that are associated with the outcome through
genes in that set. For a more unbiased discovery procedure,
our method can also be applied genome-wide by considering
one gene at a time, where to reduce the multiple testing bur-
den imposed by the huge number of pairwise tests we can
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restrict ourselves to testing only those SNPs located cis to
each gene.

In Section 2 we specify our procedure, discuss its as-
sumptions, describe its estimation and inference, and present
strategies for analyzing high-dimensional genomic data, where
the number of genes may exceed the sample size. In Section 3
we explain why our method can have more power to detect
o-eSNPs. In simulations in Section 4, we explore its perfor-
mance under model misspecification, in Section 5 we apply
our method to the yeast drug response experiment of Perlstein
et al. (2007), and the article ends with a discussion in Sec-
tion 6.

2. Integrative Analysis

2.1. Method

For the ith subject, i = 1, . . . , n, let Yi be the outcome of
interest, Gij, j = 1, . . . , p be the expression of the jth tran-
script, and Xil, l = 1, . . . , r be additional non-genomic covari-
ates, such as clinical or environmental measurements or prin-
cipal components derived from the genotype data, to con-
trol for population stratification (Price et al., 2006). Also let
Gi = (Gi1, . . . , Gip)

T and Xi = (Xi1, . . . , Xir)
T .

We focus on testing the association between the outcome
and a set of SNPs Sik, k ∈ A, where Sik is the number of mi-
nor alleles at the kth SNP and we assume that |A| < n. Let-
ting |A| = 1 corresponds to testing one SNP at a time, which
is standard practice in genome-wide association studies. We
also allow |A| > 1 in order to test sets of SNP, such as those
located near the same transcript or belonging to the same
pathway. Letting Si = (Sik, k ∈ A)T , we posit that in general
the relationship between Yi, Gi, Xi, and Si can be modeled
as

g{E(Yi | Gi,Si,Xi)} = αint + GT
i αG + XT

i αX + ST
i αS

+GT
i AGXXi + ST

i ASXXi, (1)

GT
i αG + GT

i AGXXi = βint + ST
i βS + XT

i βX

+ST
i BSXXi + XT

i BXXXi + εi, (2)

where g is a link function and εi is a random error term.
The outcome model (1) describes the effect of Gi and Xi

on Yi, where αG, αX, and αS are the regression coefficients
of the main effects of transcript expressions, covariates and
SNPs, and AGX and ASX represent the effects of interactions.
The transcript model (2) describes the regulation of Gi by
Si and Xi, where βS and βX are the regression coefficients
of the main effects of the SNPs and covariates and BSX and
BXX represent interaction effects. Since Gi may depend on
both Si and Xi, including the GT

i AGXXi term in (1) requires
including the XT

i BXXXi term in (2). For example, if Gi =
γint + �SSi + �XXi + εi, then AGX �= 0 implies that BXX �= 0.
The proposed models are quite general by specifying gene-
and SNP-environment interactions, but additional terms, such
as gene–gene interactions, could also be added, or the in-
teraction terms could be dropped to reduce the number of
parameters.

We propose the following procedure to test the association
between Si and Yi:

(1) Estimate α̂G and ÂGX by fitting (1) under the assump-
tions that αS = 0 and ASX = 0.

(2) Use these estimates in (2) to estimate β̂S and B̂SX.
(3) Use a Wald test based on these estimates to test βS = 0

and BSX = 0.

Under the null hypothesis of no association, αS , ASX, βS , and
BSX are all zero, so our procedure gives a valid test for asso-
ciation between Si and Yi. We are interested in the particular
alternative that Si is associated with Yi through regulation
of the expression of Gi (Si are o-eSNPs). In this case, βS is
nonzero and BSX may be as well. If we had measurements on
gene methylation, we could also similarly include these mea-
surements in models (1) and (2) to identify SNPs that affect
Yi through methylation.

Our framework is similar to a mediation analysis model
(Baron and Kenny, 1986; Hayes, 2009; VanderWeele and
Vansteelandt, 2010), with two major differences. First, in con-
trast to mediation analysis, we are not interested in assigning
causal interpretations to any of our parameters, and instead
are concerned solely with increasing the power of association
testing. Second, to our knowledge our approach is novel in
its use of unknown parameters in the outcome of the tran-
script model (2) to reduce p transcript expression levels to a
scalar summary. Most mediation models only consider a sin-
gle mediator, and those that allow more than one require esti-
mating the indirect effect of Sik on each transcript separately
(Preacher and Hayes, 2008; VanderWeele and Vansteelandt,
2014). Models used in the analysis of expression quantitative
trait loci (Brem et al., 2002; Morley et al., 2004; Cai et al.,
2013) also study the effect of genotype on every measured
transcript. Our approach is instead only concerned with a
particular scalar function of the transcripts. It requires esti-
mating fewer parameters, and does not require modeling the
individual transcript-SNP associations.

2.2. Assumptions

The good performance of our procedure requires two assump-
tions. First, there can be no unmeasured covariates that con-
found either the effect of the SNPs on the outcome, or the
effect of the transcripts on the outcome. This is in contrast
to standard analysis, which only requires adjusting for con-
founders of the SNP-outcome association. We study violations
of this assumption in Example 4 of Section 4, where we find
that at least in our simulation settings, the type I error is still
maintained and in some cases our integrative analysis still has
improved power compared to standard analysis.

Second, our method works best when there is no direct
effect of the SNPs on the outcome, such that the SNPs act
only through regulating gene expression. Indeed, Kenny and
Judd (2014) recently noted that in the absence of a direct
effect, testing the indirect effect in a mediation analysis can
be dramatically more powerful than testing the total effect.
They considered a single mediator in a simulation study and
gave a heuristic explanation of the phenomenon. In Section 3
we show analytically, for multiple mediators, that our test can
be more powerful than standard analysis. Furthermore, even
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when a direct effect exists (αS �= 0), we show in Example 2 of
Section 4 and Web Appendix A that our test can sometimes
still have increased power.

2.3. Estimation and Inference

Let θ = (αint, αG, αX,AGX) and τ = (βint, βS, βX,BSX,BXX) be
vectors of the unknown parameters, let θ̂ and τ̂ denote their
estimates, and let μi(θ) and ηi(τ) be the mean functions of
(1) and (2), respectively. When the dimensions of Gi and Xi

are small enough, we can simultaneously fit models (1) and
(2) by solving the estimating equation

Un(θ, τ) = 1

n

∑
i

ui(θ, τ)

=

⎡
⎢⎣

1

n

∑
i

∂g−1(μi)

∂θ
{Yi − g−1(μi)}

1

n

∑
i

∂ηi

∂τ
(GT

i αG + GT
i AGXXi − ηi)

⎤
⎥⎦= 0.

Step 1 of our procedure obtains θ̂ and Step 2 obtains τ̂, and
it is easy to see that Un(θ̂, τ̂) = 0. Standard generalized esti-
mating equation theory (Diggle et al., 2013) then gives that

√
n{(θ̂, τ̂)T − (θ, τ)T } → N{0,J(θ, τ)−1V(θ, τ)J(θ, τ)−1},

where ∂Un/∂(θ, τ) → J(θ, τ) and
√

nUn(θ, τ)→ N{0,V(θ, τ)},
and we use this distribution to implement the Wald test in
Step 3 of our procedure. The Jacobian J can be estimated by
evaluating ∂Un/∂(θ, τ) at θ̂ and τ̂ and V(θ, τ) can be estimated
by the sample covariance matrix of the ui(θ̂, τ̂).

It is worth considering the special case of case-control sam-
pling, which is common in genome-wide association studies of
binary outcomes Yi. In this setting, fitting a logistic regres-
sion in the outcome model will still give valid estimates and
inference (Prentice and Pyke, 1979), but we must modify the
estimating equations for the transcript model. We adopt the
weighting method of Monsees, Tamimi, and Kraft (2009): if
P is the prevalence of the outcome, n1 is the number of cases,
n0 is the number of controls, and n = n1 + n0, we solve

Un(θ, τ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

n

∑
i

∂g−1(μi)

∂θ
{Yi − g−1(μi)}

P

n1

∑
i:Yi=1

∂ηi

∂τ
(GT

i αG + GT
i AGXXi − ηi)+

1 − P

n0

∑
i:Yi=0

∂ηi

∂τ
(GT

i αG +GT
i AGXXi − ηi)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0,

where here g−1(x) = 1/(1 + e−x) is the canonical link function
for logistic regression. One disadvantage of this approach is
that we must have a priori knowledge of the prevalence P ,
but good estimates are available for many well-studied dis-
eases. Another disadvantage is that this probability weight-
ing method can give parameter estimates with relative large
variances (Monsees et al., 2009). We may be able to improve
our results by using secondary phenotype analysis methods
proposed by Lin and Zeng (2009) and He et al. (2012).

2.4. Strategies for High Dimensional Data

In most genomic applications the number of transcripts ex-
ceeds the sample size, so the estimating equations do not
have a unique solution. This high-dimensional transcript is-
sue is unique to our method and is a not a problem for non-
integrative analyses. If the mechanism underlying the out-
come is known to proceed via a certain pathway, or a certain
pathway is of particular interest, one approach is to perform
integrative analysis using only the transcripts in the pathway.
We refer to this as the pathway approach.

On the other hand, we may want a more unbiased o-eSNP
detection procedure. An alternative approach to reducing di-
mensionality is to fit our integrative model one transcript at
a time. This type of marginal analysis is popular in gene ex-
pression profiling experiments. We refer to this as the pair-
wise approach, because it quantifies the association between
the outcome and each transcript-SNP or transcript-SNP set
pair. Because of the complicated dependencies between these
tests, we adjust for multiple comparisons using the Bonferroni
correction. However, this may be too conservative, especially
when we conduct all possible pairwise tests. One way to re-
duce the number of tests is to consider only pairs that are in
cis. This is sensible because cis-SNPs are likely to function by
regulating transcription and so are exactly the type of SNPs
our method is designed to detect.

In general, the two assumptions discussed in Section 2.2
that are required by our integrative method may not hold
when using these high-dimensional approaches. First, it is
likely that some confounders of the transcript-outcome associ-
ation have not been accounted for, because there are probably
many genes that affect both the outcome and the genes in the
model, but which themselves have not been included in the
model. In addition, it is likely that there are direct effects
between the SNP or SNP set and the outcome, for exam-
ple through the confounding genes. However, in simulations
and in Web Appendix A we show that our method can still
perform well. In particular, we study the performance of the
pairwise approach in simulations in Example 6 of Section 4.

3. More Powerful o-eSNP Detection

We show analytically that our procedure can have more power
than standard analysis for detecting o-eSNPs. For simplic-
ity we consider a single SNP, no other covariates, and scalar
continuous Yi under the ordinary linear model, though simi-
lar calculations can be performed for generalized linear mod-
els. We also assume that Yi, Gi, and Si have been cen-
tered to mean zero, so that the intercept terms disappear.
Finally, we let αS = 0 and ASX = 0, so model (1) becomes
Yi = GT

i αG + εi1 and model (2) becomes GT
i αG = βSSi + εi2,

where εi1 ∼ N(0, σ2
1) and εi2 ∼ N(0, σ2

2) are independent of
Gi, Si, and each other. We compare our integrative analysis
to the usual approach of directly regressing Yi on Si accord-
ing to Yi = β∗

SSi + N(0, σ∗2). If our integrative model is true,
β∗

S = βS , σ∗2 = σ2
1 + σ2, and the null hypothesis of no associa-

tion between Si and Yi is equivalent to βS = 0 in the integrative
model and β∗

S = 0 in the usual linear model.
Let β̂S be the estimate of βS from our integrative analysis,

and let β̂∗
S be the estimate of β∗

S obtained from linear
regression. Since both estimates are asymptotically unbiased
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and normal, to show that the integrative method has
greater power we must show that var (β̂S) < var (β̂∗

S). It is
easy to see that

√
n var (β̂∗

S) = (σ2
1 + σ2

2)/var (Si). Next let
G = (G1, . . . ,Gn)

T and S = (S1, . . . , Sn)
T . Then

√
n(β̂S − βS) = √

n(STS)−1ST (Gα̂G − SβS)

= √
n(STS)−1ST (GαG − SβS)

+ (STS)−1STG(α̂G − αG)
√

n

→ N{0, σ2
2/var (Si)} + var (Si)

−1	SGN{0, σ2
1	−1

GG},

where α̂S is the estimate of αS from fitting the outcome
model, 	SG = E(STG), and 	GG = E(GTG). Since the two
normal distributions in the last line are independent,

√
n var (β̂S) = σ2

2/var (Si) + σ2
1	SG	−1

GG	GS/var (Si)
2,

where 	GS = E(GTS), so var (β̂S) < var (β̂∗
S) when

	SG	−1
GG	GS/var (Si) < 1. For example, when the genes are

independent this condition reduces to
∑p

j=1
cor (Si, Gij)

2 < 1.
In other words, we gain the most power if the Gi are weakly

correlated with Si. This is sensible, because otherwise the ex-
pression data would add little additional information. In the
extreme case where they are perfectly correlated, our integra-
tive analysis would be no different from a standard analysis.
On the other hand, while the integrative approach has more
relative power for weak correlations, its absolute power can
be low if the correlations are too low, as in the extreme case
where cor (Si, Gij) = 0 we also have βS = 0. In the ideal set-
ting, the correlations are weak but βS is still large, which is
only possible when Gi is highly associated with Yi so that αG

is large.
So far we have assumed that the SNP functions entirely

through regulating gene expression. In Web Appendix A we
show that our procedure can sometimes also have greater
power than standard analysis for detecting SNPs that also
function through non-regulatory mechanisms. One reviewer
raised the question of whether accounting for these direct ef-
fects might improve the power of our integrative approach. We
also analytically and numerically compare two such methods.
One turns out to have the same power as standard analy-
sis. The other can be more powerful than our procedure for
o-eSNPs with large direct effects but is always worse for de-
tecting those without direct effects.

4. Model Misspecification and Simulations

4.1. Types of Misspecification

Our integrative approach requires us to model the relation-
ship between expression and genotype and expression and the
outcome. This is in contrast to standard analysis methods,
which only require specifying the outcome–genotype relation-
ship. Here, we study different model specifications in six sim-
ulated examples.

Briefly, we constructed Example 1 so that both the in-
tegrative and the standard models were correctly specified.
We constructed Examples 2 through 4 so that only the stan-
dard analysis model remained valid. Specifically, Example 2
allowed a direct effect of a SNP on the outcome not medi-

ated through transcriptional regulation, Example 3 allowed
for measurement error in the gene expression measurements,
and Example 4 omitted some important genes from the inte-
grative analysis and included unimportant ones. Examples 2
and 4 illustrate the consequences of violating the assumptions
required by our method, discussed in Section 2.2. In Example
5 we misspecified both the integrative and standard models by
allowing interaction terms, and in Example 6 we considered
high-dimensional SNPs and genes. Details are given below.

4.2. Analysis Methods

For all data generating mechanisms, when the number of
genes p was small we implement our integrative procedure
using the linear univariate integrative model

g{E(Yi | Gi, Si,Xi)} = αint + GT
i αG + XT

i αX,

GT
i αG = βint + βSSi + XT

i βX + εi

for each of the q SNPs. When p > n we used this model in
the pairwise fashion discussed in Section 2.4. We compared to
the standard marginal generalized linear model

g{E(Yi | Si,Xi)} = β∗
int + β∗

SSi + XT
i β∗

X,

specifically the linear model for continuous Yi and the logistic
model for binary Yi.

As a comparison, we also considered what we refer to as the
overlap method: we first identified genes associated with the
outcome, and then for each SNP we identified genes associated
with that SNP. In both cases we set the significance threshold
using false discovery rate control (Benjamini and Hochberg,
1995) at the 5% level. We assessed the significance of each
SNP by calculating the p-value for the overlap between the
two gene sets using Fisher’s exact test. To calculate the gene-
SNP associations under case-control sampling we used the
weighting scheme described in Section 2.3. Similar overlap
procedures have been proposed in other integrative genomics
applications (He et al., 2013).

4.3. Simulation Settings

For each setting, we generated continuous Yi according to
Yi = mi(θ) + εi for some mean function mi(θ), where εi ∼
N(0, 4). We generated binary Yi according to logit P(Y1 = 1 |
Gi,Si,Xi) = −αint + mi(θ), where αint was such that marginal
prevalence was around 31%. In Examples 1–5 we generated
n = 200 samples for the continuous outcome and n1 = 100
cases and n0 = 100 controls for the binary outcome, and we
doubled these in Example 6. We studied the power and type I
error of the integrative, standard, and overlap analysis meth-
ods mentioned above, averaged over 250 simulations.

Example 1. We independently generated 100 SNPs under
Hardy–Weinberg equilibrium using additive coding (0, 1, or 2),
with minor allele frequencies of 10%, and r = 2 clinical covari-
ates from standard normals. We then generated p = 10 tran-
scripts according to Gi = ST

i �S + XT
i �X + εi, where �S and �X

were 100 × p and r × p coefficient matrices, respectively, and
εi ∼ N(0, 4	). We set 	 equal to the sample correlation ma-
trix of 10 observations drawn from a p-dimensional standard
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Table 1
Average type I errors at nominal 0.05 level. Integration: proposed method; Standard: standard univariate regression analysis;

Overlap: overlap method.

Linear Binary

Example Integrative Standard Overlap Integrative Standard Overlap

1 0.040 0.052 0.000 0.052 0.040 0.000
2 0.036 0.028 0.000 0.036 0.060 0.000
3 0.040 0.052 0.000 0.040 0.040 0.000
4 0.056 0.044 0.000 0.032 0.032 0.004
5 0.060 0.056 0.000 0.036 0.028 0.000

normal with independent components. We independently set
each entry of �S and �X to zero with probability 0.5 and
generated the nonzero entries uniformly from [−1, −0.05] ∪
[0.05, 1]. We let mi(θ) = GT

i αG + XT
i αX and αint = −3. We

independently generated the components of αG uniformly be-
tween [−0.7, −0.05] ∪ [0.05, 0.7], and the components of αX

from a standard normal. Finally we generated a single ad-
ditional SNP, for a total of q = 101, to be unassociated with
Yi, by adding a row to �S that was drawn from a standard
normal and then made orthogonal to αG.

Example 2. We followed Example 1 but let mi(θ) =
GT

i αG + XT
i αX + ST

i αS and αint = −5.8. We let each entry of
αS have magnitude 0.75 and the same sign as the correspond-
ing entry of βS = �SαG, so that the total effect of each SNP
was always stronger than its indirect effect through the tran-
scripts.

Example 3. We followed Example 1 but assumed that in-
stead of observing Gi we only observed Gi + εi, where the mea-
surement error εi was a p-dimensional mean-zero normal with
a covariance matrix whose jkth entry equaled 2 · 0.5|j−k|.

Example 4. We followed Example 1 but simulated 15 in-
stead of 10 genes. We added rows to �S and �X to make them
q × 15 and r × 15 coefficient matrices, respectively. We set the
covariance matrix of the error term εi equal to four times the
sample correlation matrix of 10 observations drawn from a 15-
dimensional standard normal with independent components.
We then replaced the upper 10×10 block of this covariance
matrix by the 	 used in Example 1. We simulated the Yi us-
ing the first 10 genes, as in Example 1, but in our analysis
we used only the first five and the last five genes. In other
words, we misspecified Gi with five false negatives and five
false positives. Because the Gi were all correlated, this exam-
ple simulates the presence of unmeasured confounders of the
transcript-outcome association.

Example 5. We followed in Example 1 but let mi(θ) =
GT

i αG + XT
i αX + ST

i αS + GT
i AGSSi + GT

i AGXXi + ST
i ASXXi

and αint = −4.3. To generate AGS and ASX we randomly set
each entry to zero with 10% probability, and then sampled the
nonzero entries uniformly from [−0.5, −0.05] ∪ [0.05, 0.5]. To
generate AGX we set entries to zero with 30% probability.

Example 6. We generated q =10,000 SNPs and two cis-
genes for each SNP by multiplying the number of minor al-
leles by coefficients generated from standard normals, for a
total of p =20,000 genes. To each gene we added normally
distributed error terms such that the covariance between the
jth and kth genes was 16 · 0.5|j−k|. We generated Xi as in Ex-
ample 1 and let mi(θ) = GT

i αG + XT
i αX and αint = −16. We

randomly set each of the components of αG to be zero with
99.9% probability, and we drew the nonzero entries uniformly
from [−5, −1] ∪ [1, 5]. This resulted in 14 SNPs associated
with Yi. We independently generated the components of αX

from a standard normal. We applied our pairwise integrative
analysis to each SNP and its cis genes. We used a Bonferroni
adjustment to correct for multiple testing in both the integra-
tive and standard analyses. We did not implement the overlap
method because it requires regressing each of the 20,000 genes
on each of the 10,000 SNPS, and would have been computa-
tionally cumbersome.

4.4. Results

Table 1 reports the type I errors of testing the SNP that was
unassociated with Yi. The integrative and standard analyses
both maintained the type I error at the nominal 0.05 level,
for all of the model misspecifications. The overlap method was
extremely conservative.

Figures 1 and 2 illustrate the average power curves for iden-
tifying the other 100 SNPs that we simulated to be associated
with Yi. In each example, the overlap procedure had almost
no power to detect any of the SNPs. This was because the
gene-SNP associations were usually too weak to detect, and
when they were detected, the overlap between the outcome-
associated and the SNP-associated genes was not significant
because there were only 10 genes. The overlap method is thus
more suitable for high-dimensional expression data, but was
too computationally prohibitive to implement in Example 6.
In the ideal setting of Example 1, integration indeed was more
powerful than standard analysis.

Our method was not always preferable in Example 2, which
included direct effects that our integrative model could not
detect. When the magnitude of the direct effect exceeded the
magnitude of the indirect effect, standard analysis had more
power. However, when the βS were large enough, our integra-
tive procedure was still more effective. We discuss the conse-
quences of direct effects in greater detail in Web Appendix A.

The effect of the measurement error in Example 3 was to
reduce the power gain of integration over standard analysis.
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Figure 1. Average power curves for linear outcomes. Integration, proposed method; standard, standard univariate regression
analysis; overlap, overlap method.

For example, with binary outcomes the power of integration
to detect a SNP with βS ≈ −1.5 decreased from 70% to 60%.
However, this was still higher than the 40% power of the stan-
dard logistic regression of Yi on Si. There were no additional
negative consequences of measurement error, most likely be-
cause we assumed a measurement error model that was lin-

ear in the true covariates Gi. In this case the error could be
absorbed by the intercepts and the random error terms of
the integrative outcome and transcript models, with reduced
power as the only downside. Nonlinear measurement error
could have more complicated effects, similar to those studied
in Example 5.
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Figure 2. Average power curves for binary outcomes. Integration, proposed method; standard, standard univariate regres-
sion analysis; overlap, overlap method.

It is more difficult to characterize the consequences of the
misspecified gene set in Example 4. The effect of including
genes not associated with the outcome is simply to increase
the variance of the final estimate and to reduce power, but
the effect of not including important genes obviously differs
for different SNPs. For example, we lose power to detect SNPs

associated with the outcome through the genes left out of the
gene set. This is why in our pairwise approach we advocate
testing multiple gene-SNP pairs for each SNP.

Both the integrative and standard analysis models were
misspecified in Example 5 due to the omission of interaction
terms. In fact the importance of each SNP is more difficult to
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Table 2
SNP detection in high-dimensions (Example 6), after

Bonferroni correction to give a family-wise error rate of
0.05. We simulated a total of 14 o-eSNPs. Integration,

proposed method, 20,000 tests; Standard, standard univariate
regression analysis, 10,000 tests. Performance metrics (SD):
TP, true positive rate; FD, false discovery rate; Median size

is reported (interquartile range).

Outcome Method TP FD Size

Continuous Integration 34.86 (7.77) 1.14 (4.69) 5 (2)
Standard 1.2 (2.97) 5.2 (22.25) 0 (0)

Binary Integration 12.4 (6.72) 0.13 (2.11) 2 (1)
Standard 0.14 (1) 0 (0) 0 (0)

quantify in this setting, since both the main effects and inter-
action terms need to be taken into account. For simplicity, in
the X-axes of the power curves for Example 5 we ordered the
SNPs by their average effect sizes as estimated using the stan-
dard analysis methods. Though standard analysis was more
effective for a few SNPs, the preponderance of SNPs were still
more easily detected by our integration.

For the pairwise analysis of the high-dimensional data in
Example 6, Table 2 gives the true positive rates, defined as
the proportion of the outcome-associated SNPs that were de-
tected, the false discovery rates, defined as the proportion of
the detected SNPs that were not associated with the out-
come, and the total number of SNPs detected. We defined
the false discovery rate to be zero when no SNPs were de-
tected. Even with the Bonferroni adjustment over twice as
many tests, pairwise integrative analysis had much higher
power to detect outcome-associated SNPs, with much lower
false discovery rates, than standard analysis.

5. Data Analysis

We used our integrative analysis method to explore the ge-
netic basis of drug resistance in yeast cells. Perlstein et al.
(2007) measured expression levels of 6228 genes from 104
yeast genotyped segregants at baseline. They then treated the
segregants with 94 different small molecules at different con-
centrations and for different amounts of time and recorded
the segregant final yields. We focused on the natural prod-
uct tomatidine, which has been found to have anticarcino-
genic potential, as well as a variety of other health benefits
(Friedman, 2013). Our goal was to detect o-eSNPs associated
with response to tomatidine. We focused on the shortest time
point (68 hours in 3.4M tomatidine), when we felt the effect of
baseline gene expression on final yield would be the strongest.

We first imputed missing expression values using the av-
erages of the values of the 10 nearest neighbors, using the
BioConductor package impute, and then averaged observa-
tions with the same gene symbol. Next, following Lee et al.
(2006) we identified 584 blocks of highly correlated markers,
and within each block we selected a representative marker
SNP with the lowest proportion of missing data.

Using final yield as the outcome, we applied our integra-
tive analysis, using the pairwise approach, to all SNPs and
their cis-genes. As discussed in Section 2.4, this approach

is unlikely to satisfy the assumptions stated in Section 2.2,
but simulations and Web Appendix A show that our ap-
proach can still perform well. Following Brem et al. (2002),
we defined a SNP and a gene to be in cis if they are located
within 10 kb of each other, which resulted in 6628 total pairs
that included all 584 marker SNPs. There was a single pair
that remained significant after Bonferroni correction for 6628
tests (p-value cutoff of 7.5 × 10−6). This pair had a p-value
of 3.3 × 10−6, was located on chromosome 8, consisted of the
gene YHR005C (GPA1) and the SNP NHR001C, and sug-
gests that NHR001C may affect the response to tomatidine
by regulating the expression of GPA1, a G protein involved
in the yeast mating pathway. In contrast, simply regressing
final yield on NHR001C gave a p-value of 4.1 × 10−3, which
would not pass a Bonferroni correction for 584 tests (p-value
cutoff of 8.6 × 10−5). This potential o-eSNP would not have
been discovered with standard analysis.

6. Discussion

We have proposed a new statistical framework for integrating
outcome, gene expression and genotype data, and we showed
analytically and in simulations that under certain conditions,
integration can provide more powerful detection of outcome-
associated expression SNPs (o-eSNPs). Using our approach,
we discovered in yeast a potentially new association between
response to tomatidine and the SNP NHR001C.

Our method requires that all confounders of both the SNP-
outcome and the transcript-outcome associations be included
in the regression models. It also works best if the associa-
tions between the SNPs and the outcome are entirely medi-
ated through regulation of gene expression. Violations of the
first assumption may result in low power or inflated type I
error, while violations of the second can result in low power.
However, simulation Examples 2 and 4, and our analytic work
and further simulations in Web Appendix A, suggest that our
approach can still be effective.

In Section 2.3 we described fitting our approach using
estimating equations composed of the sum of independent
and identically distributed terms. However, some widely used
models cannot be fit using such estimating equations. Chief
among them is the Cox model for survival outcomes, whose
estimating equation is a continuous-time martingale. Integra-
tive analysis can still be performed using Cox regression as
the outcome model, but more work is needed to rigorously
derive the asymptotic distribution of the resulting estimates.

Our pairwise approach described in Section 2.4 may miss
SNPs with trans-regulatory relationships. Ideally we would be
able to fit our integrative model using all genes, and even all
genotyped SNPs, and indeed modifications of existing high-
dimensional regression techniques such as the lasso may allow
us to achieve simultaneous estimation and variable selection.
However, in the practical application of our approach it is
vital to be able to quantify the uncertainty of our parameter
estimates. Assigning p-values to sparse regression estimates is
currently an active area of research (Zhang and Zhang, 2011;
Javanmard and Montanari, 2013; van de Geer et al., 2013)
and we believe that in the future it may be possible to apply
some of these developments to our integration method.
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One limitation of our approach is the difficulty of correctly
specifying the relationships between the different data types.
Though our simulations suggest that we can still gain power
under misspecified models, we can also consider semiparamet-
ric models of the form

g{E(Yi | Gi,Sik,Xi) = αint + α1(Gi,Xi) + α2(Xi),

α1(Gi,Xi) = αint + β1(Si,Xi) + εi,

where α1, α2, and β1 are unspecified functions. For example,
we can use kernel-based methods (Wu et al., 2011) to estimate
nonlinear functions of SNP sets and genes.

7. Supplementary Materials

Web Appendix A, which compares different methods of ac-
commodating a direct effect in our integrative approach and
is referenced in Sections 2.1, 3, and 4, is available with this
paper at the Biometrics website on Wiley Online Library. We
also provide a zip file including an R implementation of our
methods, instructions, and simulation examples.
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