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Abstract: Academic clock routing research results has often had tween a parent nodp and its childv may be identified with the
limited impact on industry practice, since such practical considera- child node, i.e., we denote this edgeeas|f d; denotes the signal
tions as hierarchical buffering, rise-time and overshoot constraints, delay from clock sourcey to sinks, then theskewof clock treeT
obstacle- and legal location-checking, varying layer parasitics and is given byskewT) = max; s;es |di —d;)|. The BST problem is
congestion, and even the underlying design flow are often ignored. formally stated as follows.

This paper explores directions in which traditional formulations - \inimum-Cost Bounded Skew Routing Tree (BST) Problem:
can be extended so that the resulting algorithms are more usefulgjyen a setS= {s;,...,s,} ¢ R2 of sink locations and a skew
in production design environments. Specifically, the following is-  houndB, find a routing topologys and a minimum-cost clock tree

sues are addressed: (i) clock routing for varying layer parasitics To(S) that satisfieskewTg(S)) < B.
with nonzero via parasitics; (ii) obstacle-avoidance clock routing; -

(iii) a new topology design rule for prescribed-delay clock rout-
ing; and (iv) predictive modeling of the clock routing itself. We
develop new theoretical analyses and heuristics, and present ex
perimental results that validate our new approaches.

The BST problem has been previously addressed in [12, 4, 3].
The basicExtended DMEEx-DME) approach extends the DME
algorithm [2, 5] via the concept of merging region which is a
set of embedding points with feasible skew and minimum merging
cost if no detour wiring occurs. For a fixed tree topology, Ex-DME
follows the 2-phase approach of the DME algorithm in construct-
ing a bounded-skew tree: (i) a bottom-up phase to construct a bi-
nary tree of merging regions which represent the loci of possible
) . _ . embedding points of the internal nodes, and (ii) a top-down phase
Control of signal delay skew has become a dominant objective in {5 determine the exact locations of the internal nodes. We now
the routing of VLSI clock distribution networks; see [13, 9] for review necessary concepts from [4, 12, 3].
reviews. “Exact zero skew” is typically obtained at the expense of
increased wiring area and higher power dissipation. In practice,
circuits still operate correctly within some nonzero skew bound,
hence the actual design requirement is foboanded-skew routing

1 Preliminaries

For a nodey € G with childrena andb, its merging region, de-
notedmr(v), is constructed from the so-called “joining segments”
La € mr(a) andLy € mr(b), which are the closest boundary seg-
ments ofmr(a) andmr(b). In practice 5 andLy are either a pair

tree(BST). - ; :
. ) ) ) ) of parallel Manhattan arcs (i.e., segments with possibly zero length
In our discussion, theistancebetween two pointp andq is having slope+1 or —1) or a pair of parallel rectilinear segments
the Manhattan (or rectilinear) distandep,q), and the distance (e horizontal or vertical line segments). The set of points with
between two sets of poinBsandQis d(P,Q) = min{d(p,q) [ p€ minimum sum of distances oy andLy, form aShortest Distance

Pandg € Q}. Thecostof the edgesy is simply its wirelength, — Region SDRL4, L), where the points with skew B (i.e., feasible
denotede,|; this is always at least as large as the Manhattan dis- skew) in turn form the merging regianr(v). It is observed in [3]

tance between the endpoints of the edge, fieg > d(I(p),I(v)). that under Elmore delay each line segmentprp; € SDRLa, L)
Detour wiring or detouring occurs wherey| > d(l(p),1(v)). The 5 ell-behavedin that the skew values alorigcan be either a

cost of T, denoteccost(T), is the total wirelength of the edges in  ¢gnstant (wheh, andLy, are Manhattan arcs) or piecewise-linear
T. We denote the set of sink locations in a clock routing instance gecreasing, then constant, then piecewise-linear increasing along

asS={s1,%,...,5} C 0% A connection topologis a binary tree | " Ths important property enables the merging regiorfv) ¢

with n leaves corresponding to the sinksSnA clock tree §(S) is SDRLa,Lp) to be constructed i©(n) time [3]. The resulting

an embedding of the connection topology in the Manhattan plane, merging region is a convex polygon bounded by at most 2 Man-
i.e., each internal node € G is mapped to a locatiol{v) in the hattan arcs and 2 horizontal/vertical segments wheandL,, are
Manhattan plane. The root of the clock tree is soairce denoted Manhattan arcs, or a convex polygon bounded by at moétith

by sp. When the clock tree is rooted at the source, any edge be- arbitrary slopes) segments wheres the number of the sinks.
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H Lp Ly sink withmr(v) being a single point. Thus, no merging region can
have boundary segments which are Manhattan arcs with constant

Vv Vv delays, and we have
y H L H
v N Corollary 1 For non-uniform layer parasitics, each pair of join-
Y, ing segments will be either (i) parallel rectilinear line segments or
L, \ L. (i) two single points.
H
(@ HV routing pattern VH routing pattern From the observation in Fig. 1 that vias are only located at the
boundary ofSDRLa, L), we have
parallel, but not Lp
Manhattan arcs \[ === Theorem 2 With nonzero via resistance and/or capacitance, The-
orem 1 still holds except that there will be different delay/skew
mr(v) equations for points on boundary segments and interior segments

of SDRLa, Lp).
L,

Experiments and Discussion Table 1 compares the total wire-
(b) parent merging region length of routing solutions under non-uniform and uniform layer

parasitics for standard test cases in the literature.cLet; and

Cp, I'> be the per-unit capacitance and per-unit resistance for the
Figure 1: (a) Two simple routing patterns between two points: HV and VHH-layer and V-layer, respectively. For the uniform layer parasitics,
for non-uniform layer parasitics. (b) Resulting merging regions according tQue setc; = c, = 0.027fF andr, = r, = 16.6mQ. For the non-
the the HV routing pattern. uniform layer parasitics, we set = 2.0-¢; andry = 3.0-rq. For
simplicity, we use only the HV routing pattern and ignore via re-
sistance and capacitance.

Consider the practical scenario where per-unit resistance and ca, ewzi /s?neotrgattoiglh\j\tl'i?;z#n&%gm%’gfeo{mdlg ﬁ:}ﬁg{ﬁsllgczrav:rr_-
pacitance values differ between the V-layer (vertical routing layer) giti OThi mav be d ? meraing reqions under non ynifprm
and H-layer (horizontal routing layet)We first assume that vias asftics. S may be due 1o merging regions under non-unitol
have no resistance and capacitance, then extend our analysis t(gayer parasitics be.'“g smaller (and thusf ha_vmg higher merging
nonzero via parasitics. Let nogebe a node in the topology with cost at the next higher level) since the joining segments cannot
childrena andb, and let merging regiomr(v) be constructed from ~ °€ Manhattan arcs of nonzero length. Note that when the skew
joining segmentd.a C mr(a) andLy C mr(b). When bothLa and bound is infinite, all joining segments are rectilinear, and thus

L, are rectilinear segments or are two single points sitting on a 1€ fouting solutions under non-uniform and uniform layer par-
vertical or horizontal line, only one routing layer is needed for asitics have identical total wirelength. Separately, detailed exper-

mergingmr(a) andmr(b). Thus, the original BME construction iments on benchmark rl have compared the total wirelength of
rules [3] still apply in these cases. zero-skew routing for different ratios of/r1 and(_:z/cl. Even as

) . (racz)/(r1c1) changes from 1 to 10, the total wirelength of solu-
_ Corollary 1 below shows that for non-uniform layer parasitics, tions only varies between4% and—1% from that obtained for
joining segments will never be Manhattan arcs of nonzero length. \niform layer parasitics (i.e(r2c,)/(r1¢1) = 1). Hence, our new

Thus we need consider only the possible modification of BME pBME method has routing costs that are insensitive to changes in
construction rules for the case where the joining segments are tWone ratio of H-layer/V-layer RC values.

single points not on the same horizontal or vertical line. In this
case, both routing layers have to be used for mergmga) and
mr(b). One problem with routing under non-uniform layer par- 3 Routing in the Presence of Obstacles
asitics is that different routing patterns between two points will
result in different delays, even if the wirelength on both layers are
the same. However, if we can prescribe the routing pattern for
each edge of the clock tree, the ambiguity of delay values between
two points can be avoided. Fig. 1 shows the two simplest routing
patterns between two points, which we call tH& and VH rout-

ing patterns. Other routing patterns can be considered, but may
result in more vias and more complicated computation of merging
regions. In [16], we prove the following theorems.

2 Non-Uniform Layer Parasitics

This section proposes new merging region construction rules when
there are obstacles in the routing plane. Without loss of general-
ity, we assume that all obstacles are rectangular. We also assume
that an obstacle occupies both the V-layer and H-18y@¥e first
present the analysis for uniform layer parasitics along with exper-
imental results, then extend our method to non-uniform layer par-
asitics.

Theorem 1 Let v be a node in the topology with children a and b.
Assume that joining segmentg € mr(a) and L, C mr(b) are two

single points. By using the HV (or VH) routing pattern for non-
uniform layer parasitics, (i) any line segmentISDRLa, Lp) is mr(v) of parent node is constructed from joining segmeritg C

well-behaved, (i) merging region rfwr) has at mos6 sides with no mr(a) andLy C ; :
. p € mr(b). Obviously, pointsp € mr(v) covered by
boundary segments which are Manhattan arcs (of nonzero length)'an(ol):)stacle are nc()t )feasible merging points. A,goy PO €

3.1 Analysis for Uniform Layer Parasitics

Given two merging regionsir(a) andmr(b), the merging region

Notice that at the beginning of the construction, each nasla 2If some obstacle occupies only one routing layer, then the pre-routed wires over
the obstacle become the obstacles for the later routing. In other words, the routing

1We assume that there are only two routing layers. Our approach easily extends over the obstacle has to be planar. Indeed, our obstacle-avoidance routing was origi-
to multiple routing layers. nally applied to improve planar clock routing [16].




7T ¥4 K] [ [£5)
Skew Wirelengths under Non-uniform Tayer parasitics
Bound Wirelengths under Uniform layer parasitics
076] 12532 24838 3193.8] 6499.7 97237
0 13325 26238 *3359.1 | *6810.7 | *10108.7
1320.7| 2603.6| 33824 | 6877.5| 10138.5
Ips 12835 2531.8| 3207.0| 64615 9610.8
1232.2| 2401.7| 3118.1| 6241.1 9190.7
5ps 11821 23333 2988.6| 5979.8 8753.9
1130.6 | 2256.2 | 2875.1| 5715.1 8371.2
I0ps | 1158.6 | 22483 2810.7| 5719.0 84824
1069.2 | 2183.5| 2747.6| 5453.8 8063.7
20ps | 10715 21834 2709.8| 5474.6 8018.2
1039.6 | 2069.1 | 2569.0 | 5290.1 7695.9
50ps | 1058.6| 20289 2557.0| 51958 7562.9
1009.3 | 1917.8| 2459.7 | 5008.0 7248.2
T100ps 989.0 1929.0| 24639 4940.1 71931
964.3 1880.7 | 2350.1 | 4786.1 6869.6
200ps 936.7 1886.7 | *2356.0 47344 6905.9
895.8 1741.6 | 2359.5| 4540.1 6650.0
500ps 919.4 17709 2205.2| 4635.1 6564.1
820.4 1754.6 | 2187.4| 4564.2 6449.3
Ins 830.0 | *1664.2 | *2156.4 | *4500.5 *6395.4
819.1 1709.4 | 2175.8| 4531.4 6453.4
10ns 77591 *1569.4 | ¥2160.6 | *4072.1 6168.5
775.9 1613.5| 2212.4| 4184.2 5979.3
) 775.9 1522.0 | 1925.2 3838.2 5625.2
775.9 152.20 | 1925.2 | 3838.2 5625.2
oo[I] 769.3 14988 19026 37814 55711

Table 1: Comparison of total wirelength of routing solutions under non-

uniform and uniform layer parasitics. We mark by * the cases where the rouj:

ing solution under non-uniform layer parasitics has smaller total wirelengt
than the solution under uniform layer parasitics.

SDRLa,Lp) may have different minimum sums of pathlengths
to Ly and L, because obstacles that inters88RLa, L) may
cause different amounts of detouring fromand p’ to Ly and
Lp. Thus, we seek pointp € mr(v) which have minimum sum
of pathlengths td.; andLy. Define a patts~» t to be a sequence
of line segments from poins to t, with pathlength denoted by
cost(P); a planar pathis a path that does not cross any obsta-
cles. For each node the planar merging region pniw) is the
set of feasible merging poirp such that the cost of the short-
est planar pattP = s~ p~»t is minimum, wheres € L, and

t € Lp. Note thatcost(P) > d(La,Lp), andpmr(v) C mr(v) when
costP) = d(La,Lp). Just as the merging regionr(v) becomes a
merging segmenhgv) under zero-skew routing, the planar merg-
ing region pmr(v) becomes thelanar merging segment piivg
under zero-skew routing.

The construction opmr(v) is as follows. If joining segments
La and Ly overlap, pmr(v) = mr(v) = La\Lp. Otherwise, we
expand any obstacles that intersect with rectilinear boundaries of
SDRLa,Lp) according to four possible cases; these defin@tre
stacle Expansion Rules

Case l. (expand as in Fig. 2(a))

1. La={p1}, Lp = {p2}, andpip; has finite nonzero positive
slopem, i.e., 0< m< oo,

2. LaorLy is a nonzero-length Manhattan arc with slopg.

In other words, an obstac{@ intersecting the top (bottom) bound-
ary of SDRLa, Lp) is expanded horizontally toward the left (right)
until it reaches the left (right) boundary 8DR L4, Lp). If Ointer-
sects the left (right) boundary &R La,Ly), thenO is expanded
upward (downward) until it reaches the top (bottom) boundary of
SDRLa, Lp).
Case ll. (symmetric to Case I)

1. La={p1}, Lp = {p2}. andprpz has finite nonzero negative

slopem, i.e.,—c0o < m< 0.

2. Ly or Ly is a nonzero-length Manhattan arc with slopg.

Case lll. (expand as in Fig. 2(b)) Both joining segments are
vertical segments, possibly of zero length.

Figure 2: Illlustration of Obstacle Expansion Rules.

In other words, an obstac@ intersecting wittSDR L4, L) is ex-

egments.
ase IV. (symmetric to Case lll) Both joining segments are hor-
izontal segments, possibly of zero length.

In Cases | and Il an expanded obsta€lean intersect with
another obstacle, which must then also expand in the same direc-
tion via a sort of “chain reaction”. With these obstacle expansion
rules, we construgdbmr(v) from child regionsmr(a) andmr(b) as
follows .3

’%anded along the horizontal direction ur@ireaches both joining

1. Apply the obstacle expansion rules to expand obstacles, and
calculatepmr(v) = {p|p € mr(v) — expanded obstaclgs

2. If pmr(v) # 0 then stop; otherwise, restore the sizes of alll

the expanded obstacles and continue with next step.

3. Compute the shortest planar pRth: s~ t, wheres€ mr(a)
andt € mr(b).

. Divide pathP into a minimum number of subpatRs=§ ~»
tj such thatostR) = d(s,t;).

. Calculate delay and skew functions for each line segment in
P.

. For each subpatR which has a poinp with feasible or
minimum skew, usg andt; (the endpoints oR,) as the new
joining segments. Then, calculate the planar merging region
pmr; (v) from the new joining segments (actually, the points
s andt; ) using Steps 1, 2 and 3. (Note thatr(v) # 0
sincep € pmf(v).)

. pmr(v) = U pmr(v), where subpatR C P contains a point
p with feasible or minimum skew.

Notice that the purpose of Step 4 is to maximize the total area
of pmr(v). As shown in Fig. 3, if we divide subpafy =y ~»
z~~t into two smaller subpathg~» zandz~~ t, region pmr,(v)
in the Figure will shrink to be within the shortest distance region
SDRY,z). As we can see from Fig. 3mr(v) actually consists of
several convex polygonal regions. So the number of regions per
node may grow exponentially during the bottom-up construction
of merging regions (this is the difficulty encountered by the IME

3strictly speaking, there can be joining segments with slopes other-thai®,
ando although they are not encountered in practice. For joining segments having
slopesmwith [m| > 1 (Jm| < 1), we expand obstacles as in Case lll (IV).



Figure 3: Construction of planar merging regions along a shortest planar
path between child merging regions.

Io) I(p)

L, L} Figure 5: A zero-skew solution for the 555-sink test case with 40 obstacles.

(a) (b) the corners of obstacles. The weidht of edgee= (p,q) € E
is computed on the fly; i€ intersects any obstacle, théj = oo,
elsele| = d(p,q). TheQ(n?) worst-case running time, wherds
Figure 4: Modification of the embedding rule in the top-down phase of theth€ total number of vertices in the obstacle polygons, can be re-
Ex-DME algorithm when there are obstacles in the routing plane. duced toO(nlog?n) using techniques in [11]. Table 2 shows that
the wirelengths of routing solutions with obstacles are very close
method of [3])# Our current implementation simply keeps at most  to those of routing solutions without obstacles (typically within a

k regions with lowest tree cost for each internal node. few percent). The higher runtimes (reported for a Sun 85 MHz
Recall that in the top-down phase of Ex-DME each nods Sparc-5) in the presence of obstacles are due to the current naive
embedded at a poin € L, closest tol (p), wherep is the par- implementation of obstacle detection and path-finding.

ent node ofv andLy € mr(v) is one of the joining segments used
to constructmr(p). However, wherlLy is a Manhattan arc and

k . S
there are obstacles intersectiB®pR|I(p),Ly), some of the em- sﬁl’;'v‘vs 2 W|r.eleng1??r?:p|m(normalliggl)l =
bedding pointgy € Ly closest td (p) may become infeasible be- Bog”d BTOT(IG C'ilfg'zngle 5231'”:153?4(3?%%)'26325&5 o
cause the shortest path franto I (p) is blocked by some obstacle 0:00:04(4 0:00:10(2f |~ 0:00:15(2) | ~ 0:00:34(1)

(Fig. 4(a)). These infeasible embedding points can be removed Ips 88:‘})91%9((’3 1078 10?;‘)) 1369’:?%%6(()%) 285131?1%(’%))
from Ly by applying the obstacle expansion rules with) andLy 7ps | 7832 (L.07)[ 10797 (L.01)| 12643 1.02)) 25205 (1.04
being the joining segments (Fig. 4(b)). The remaining points,of 5ps 7%;?111(‘%?1 10%821(117_6@ 1%52&5(1%% 2%:,:634?5:30(81(%31
left uncovered by the expanded obstacles are the feasible embed- o 9:1();6011(%% 3:71051:1?%%; 1%3631((1)373 1:30:081(%)%

H : . . . 22737 (1.
ding locations fow. ps 0:0621(3(14; 0:19:3(6(12; 0:36:3(0(12)) 1:48:0(6(13
Experimental Results  Our obstacle-avoiding BST routing al- 0PSO a015) | 02 1a6(i0) | 0403603} | “3azeaion
gorithm was tested on four examples respectively having 50, 100, 50ps | 6468 (1.123 8740 1.09; 10194 1.10f 22167 (1.15))
150 and 555 sinks with uniformly random locations in a 100 by T00ps %jggﬁ%gg %52&4(1(_% 8'209165(1%3 1%,-388?28%‘{
100 layout region; all four examples have the same 40 randomly . %:41135511%?1 8(1:133:11%93 03535609(%8 31%53%;
generatled Ql;)]stacleshshown in Fig. 5. For (;]omparisor;), we Irun tge 1;5 %415?5:23%?1 %13{555{21%3 gzlgé?f?qg; ﬁfg‘g%‘{%é
same algorithm on the same test cases without any obstacles. De- ns | 6485 (L, 115 (1, 266 (1. 698 (.
tails of the experiment are as follows. Parasitics are taken from - %415?5-13%?1 gff;‘a%g %)-22&0(1(.%; 16%33.(219(()72 )
MCNC benchmarks Primaryl and Primary2, i.e., all sinks have 0:16:43(18) | 0:36:52(11) | 1:20:25(13 3:21:11(7)
identical O5pF loading capacitance and the per-unit wire resis- ) . o ]
tance and wire capacitance are®&8Q and 0027fF. For each Table 2: Total wirelength and runtime for obstacle-avoiding BST algorithm,

- L - . - for vari instan nd skew nds. Siz nd | ions of | r
internal node, we maintain at most=5 merging regions with G TNHESE R S S oG, RS B O O O omaing (rotal
lowest tree cost. We use the procedure Find-Shortest-Planar-Pathwirelength, runtime) values when no obstacles are present in the layout.

of the EImore-Planar-DME algorithm [14] to find shortest planar

st paths. The current implementation uses Dijkstra’s algorithm ) ) .

in the visibility graphG(V,E) (e.g., [10]) where/ consists of the 3.2 Extension to Non-Uniform Layer Parasitics

source and destination poirgst along with detour points around

When the layer parasitics are non-uniform, no joining segment can

“Moreover, it may be better to construct and maintain planar merging regions be a Manhattan arc, so Cases 1.2 and I1.2 of the obstacle expansion
along several shortest planar paths since the planar merging regions along the shortest | - i b’l InC ) n d. v | i |
planar path will not guarantee minimum tree cost at the next higher level, as stated in fules are inapplicable. In Cases an » only one routing layer

the Elmore-Planar-DME algorithm [14] will be used to merge the child regions, so the construction of pla-




Figure 6: Obstacle-avoidance routing for non-uniform layer parasitics.

nar merging regions will be the same as with uniform layer para-

sitics. Hence, the construction of planar merging regions changes

only for Cases I.1 and 1.1, i.e., when the joining segmégtand
Ly, are two single points not on the same vertical or horizontal line.

We construct planar merging regions for Cases I.1 and Il.1 as
follows. First, we divideSDRLa,Lyp) into a set of disjoint rect-
anglesR; that contains no obstacles, as shown in Fig. 6(a). Let
c € R andd € R be the corner points closest to joining segments
La andLy. If prescribed routing patterns are assumed for the short-
est planar paths fromto Ly and fromd to Ly, delays at andd
are well-defined. Since there are no obstacles inRidthe planar
merging region can be constructed from poiatandd for non-
uniform layer parasitics using the methods of Section 2. Since
larger merging regions will result in smaller merging costs at the
next higher level, we further maximize the size of the merging
region constructed within each rectangeC SDRLa, Lp), by ex-
pandingR; as shown in Fig. 6(b). After expansion, “redundant”
rectangles contained in the expansions of other rectangles (e.g.
rectangleR; andRg in Fig. 6 are contained in the union of ex-
pansions oRy, Rz, R4, Rg andR7) can be removed to simplify the
computation. The merging region construction for Cases |.1 and
11.1 with non-uniform layer parasitics is summarized as follows.

1. Divide SDRL,, Lp) into a set of disjoint rectangle®; by ex-
tending horizontal boundary segments of the obstacl8®R L4, L),
and then expand each rectanBleuntil blocked by obstacles.

2. Remove rectangleR; that are completely contained by other
rectangles.

3. For each remaining rectandRe do: . )
e Letce R andd € R be'the corner points which are clos-

est to joining segmerit; andLy. Apply prescribed routing
patterns front to Ly and fromd to Ly,

¢ Calculate delays atandd, and construct the merging region
from pointsc andd as described in Section 2.

4 A New Prescribed-Delay Topology Rule

Prescribed-delay routing is motivated by hierarchical clock tree
constructions used with clock gating, building-block design, and

the general trend to lower fanouts in deep-submicron technolo-
gies. The prescribed-delay formulation is also useful in that it
allows existing zero-skew routing algorithms to address the pre-
scribed (local) skew problem, as follows. Lskewi, j) = di —d;
denote the prescribed local skew for siiskands;. By rearranging
skew constraint equations, we can express each sink delay relative
to the delay of sinksy, i.e., dj = d; + Dj, with D1 = 0. LetD

= max_, Dj. By adding a pseudo-delay element with delay-

D; to each sinks and performing zero-skew routing, the result-
ing clock tree will satisfy the prescribed skew constraints after we
remove the pseudo-delay elemehts.

Note that the useful skew problem addressed in [8, 17] is a
more general problem of prescribed skew, in that the useful skew
specifies a “range” of allowed skew values (rather than an “exact”
skew value) for each pair of sinks. (For example, the range can
be [—o, o] if there is no skew constraint between a certain pair
of sinks.) However, the prescribed skew formulation is still very
useful for cases where the “negative skew” (or “signed skew”) is
desired [17].

Orig Meta(Orig,New)
n Rank Cost Subopt Rank Cost Subopt
4 1/15/1.78 0/.647.02 1/9/1.49 0/.317.01
5 1/79/5.22 0/.65/.04 1/28/2.68 0/.217.01
6 | 1/752/19.41] 0/.65/.05 1/413/7.23] 0/0.34/0.03

Table 3: Solutions with Original BST topology rule and meta-heuristic of
(Criginal,New) topology rule, compared against optimal topology BST costs.
Triples indicate (min,max,avg). There are 15 possible topologies for 4 sinks,
105 for 5 sinks, and 945 for 6 sinks.

With prescribed delays, the BST topology construction must
take greater care with temporal (as opposed to spatial) compatibil-
ities. While our goal to to minimize the total wirelength, ignoring
the balance of subtree delays during the construction can lead to a
great deal of detour wiring. Our studies of small instances show
that our original BST merging rule, while generally quite effec-
tive, can yield topologies that have rank 752 (out of 945), with
65% cost suboptimality, even for instances as small as 6 sinks (see
Table 3). We have studied a new topology construction rule that
merges two subtrees so as to minimize MC + (1—a) x MD,
whereMC andMD are respectively the total wirelength and max-
imum source-sink delay of the newly merged subtree. We study
this new rule in the context of a meta-heuristic that takes the better
of the tree costs according to the original and new merging rules,
i.e., we attempt to address the difficult cases for the original rule,
rather than find a completely new and general-purpose®rililee
parameten depends on technology and units, since it captures a
tradeoff between wirelength and delay. For our technology param-
eters, we foundt = 0.67 to be most effective; all our experimental
data reflect this valué.Table 3 shows that our metaheuristic sub-
stantially improves both average-case and worst-case suboptimal-
ity for small instances; Table 4 shows that even for larger instances

SFor example, suppose we haskews;,s;) = —10 andskews,,s3) = +50 for
a 3-sink clock net. Then we hawk = d; + 10 andd; = d; — 50 = d; — 40, with
D = 10. The pseudo-delay elements with delays 10, 0, and 50 are added &,sink
S, andss, respectively.

8Edahiro [7] proposed similar greedy min-wirelength and min-delay based topol-
ogy generation heuristics in the context of wire sizing. Here, we in some sense ex-
tend the application of his two heuristics for uniform wire width. We find that neither
heuristic is overly strong by itself, and that the combination of both is superior.

70Our technology parameters are again taken from MCNC benchmarks; see Sec-
tion 3.1. All experiments were for 1000 random instances with random sink locations
in bounding box area = 500000 square units, skew bdBinhiformly random in
[1,20] ps, and prescribed delays uniformly random in the rajfgmaxdelay where
maxdelayis itself random irf1,15] ps Our ongoing work studies the subtle relation-
ships that unify sink placement, skew assignment, clock tree topology construction,
and bounded-skew embedding.



the metaheuristic can offer large improvements over the original layer parasitics, nonzero via parasitics, and large obstacles on the
BST-DME topology construction. clock distribution layers. We have also addressed hierarchical clock
routing applications via a new prescribed-delay topology construc-
tion rule; our experiments indicate that this rule nicely comple-
ments the original ExG-DME topology rule for BST construction.
The complementary nature of the two rules is particularly use-
Finally, our work has explored the issue of predictive modeling. ful for small instances, since most clock subtrees are small in a
The combined effects of deep-submicron physics and constraint- Puffered clock tree. Finally, we have proposed a predictive mod-
dominated designs have led to a recent trend of “constructive esti- €ling methodology that can allow close integration of a given BST

5 Predictive Modeling

mation” in place of analytic or empirical estimation. Nevertheless, fouting algorithm with a higher-level clock topology generation
efficient design optimization will always require estimators that (Sink and buffer clustering) tool. We are continuing to develop
are less expensive than actual constructions. A case in point is thefurther practical clock routing extensions, while also pursuing in-
clustering objective for hierarchical buffered clock tree synthesis: t€gration within a commercial cell-based layout tool.

how can such an objective capture the actual performance of the
bounded-skew clock routing algorithm that will be invoked after
the buffer hierarchy has been determined?

We have recently implemented a generic model-building capa-
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Levenberg-Marquardt global optimization iteration frodumer-

ical Recipes in 15], and for the present experiment we use a REFERENCES

simple “sum of powers” model, i.ecpstBST) = c1p* + C2p3 +
...+ckp‘|?‘ for k parameters, along with a simple bottom-up ap-
proach for variable identification. Table 5 shows that very rea-
sonable model accuracy can be easily obtained. Furthermore, us- 2]
ing even three inexpensive parameters (center-of-gravity star cost,
skew bound, and maximum prescribed delayaxdelay) to sup-
plement the traditional MST cost can significantly improve model
accuracy over using the MST cost alone. While the BST construc-
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6 Conclusions

We have extended the bounded-skew routing methodology to ad-
dress a number of practical clock routing issues. Specifically, we
have extended the BST-DME construction to handle non-uniform
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