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Abstract: Academic clock routing research results has often had
limited impact on industry practice, since such practical considera-
tions as hierarchical buffering, rise-time and overshoot constraints,
obstacle- and legal location-checking, varying layer parasitics and
congestion, and even the underlying design flow are often ignored.
This paper explores directions in which traditional formulations
can be extended so that the resulting algorithms are more useful
in production design environments. Specifically, the following is-
sues are addressed: (i) clock routing for varying layer parasitics
with nonzero via parasitics; (ii) obstacle-avoidance clock routing;
(iii) a new topology design rule for prescribed-delay clock rout-
ing; and (iv) predictive modeling of the clock routing itself. We
develop new theoretical analyses and heuristics, and present ex-
perimental results that validate our new approaches.

1 Preliminaries

Control of signal delay skew has become a dominant objective in
the routing of VLSI clock distribution networks; see [13, 9] for
reviews. “Exact zero skew” is typically obtained at the expense of
increased wiring area and higher power dissipation. In practice,
circuits still operate correctly within some nonzero skew bound,
hence the actual design requirement is for abounded-skew routing
tree(BST).

In our discussion, thedistancebetween two pointsp andq is
the Manhattan (or rectilinear) distanced(p;q), and the distance
between two sets of pointsP andQ is d(P;Q) = minfd(p;q) j p2
P andq 2 Qg. The costof the edgeev is simply its wirelength,
denotedjevj; this is always at least as large as the Manhattan dis-
tance between the endpoints of the edge, i.e.,jevj � d(l(p); l(v)).
Detour wiring, ordetouring, occurs whenjevj> d(l(p); l(v)). The
cost ofT, denotedcost(T), is the total wirelength of the edges in
T. We denote the set of sink locations in a clock routing instance
asS= fs1;s2; : : : ;sng�ℜ2. A connection topologyis a binary tree
with n leaves corresponding to the sinks inS. A clock tree TG(S) is
an embedding of the connection topology in the Manhattan plane,
i.e., each internal nodev 2 G is mapped to a locationl(v) in the
Manhattan plane. The root of the clock tree is thesource, denoted
by s0. When the clock tree is rooted at the source, any edge be-
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tween a parent nodep and its childv may be identified with the
child node, i.e., we denote this edge asev. If di denotes the signal
delay from clock sources0 to sinksi , then theskewof clock treeT
is given byskew(T) = maxsi ;sj2S jdi �dj )j. The BST problem is
formally stated as follows.

Minimum-Cost Bounded Skew Routing Tree (BST) Problem:
Given a setS= fs1; :::;sng � R 2 of sink locations and a skew
boundB, find a routing topologyG and a minimum-cost clock tree
TG(S) that satisfiesskew(TG(S))� B.

The BST problem has been previously addressed in [12, 4, 3].
The basicExtended DME(Ex-DME) approach extends the DME
algorithm [2, 5] via the concept of amerging region, which is a
set of embedding points with feasible skew and minimum merging
cost if no detour wiring occurs. For a fixed tree topology, Ex-DME
follows the 2-phase approach of the DME algorithm in construct-
ing a bounded-skew tree: (i) a bottom-up phase to construct a bi-
nary tree of merging regions which represent the loci of possible
embedding points of the internal nodes, and (ii) a top-down phase
to determine the exact locations of the internal nodes. We now
review necessary concepts from [4, 12, 3].

For a nodev2G with childrena andb, its merging region, de-
notedmr(v), is constructed from the so-called “joining segments”
La 2 mr(a) andLb 2 mr(b), which are the closest boundary seg-
ments ofmr(a) andmr(b). In practice,La andLb are either a pair
of parallel Manhattan arcs (i.e., segments with possibly zero length
having slope+1 or�1) or a pair of parallel rectilinear segments
(i.e., horizontal or vertical line segments). The set of points with
minimum sum of distances toLa andLb form aShortest Distance
Region SDR(La;Lb), where the points with skew�B (i.e., feasible
skew) in turn form the merging regionmr(v). It is observed in [3]
that under Elmore delay each line segmentl = p1p22SDR(La;Lb)
is well-behaved, in that the skew values alongl can be either a
constant (whenLa andLb are Manhattan arcs) or piecewise-linear
decreasing, then constant, then piecewise-linear increasing along
l . This important property enables the merging regionmr(v) 2
SDR(La;Lb) to be constructed inO(n) time [3]. The resulting
merging region is a convex polygon bounded by at most 2 Man-
hattan arcs and 2 horizontal/vertical segments whenLa andLb are
Manhattan arcs, or a convex polygon bounded by at most 4n (with
arbitrary slopes) segments wheren is the number of the sinks.

Since each merging region is constructed from the closest bound-
ary segments of its child regions, the method for constructing the
merging region is calledBoundary Merging and Embedding(BME).
When the topology is not prescribed, [12] propose the Extended
Greedy-DME algorithm (ExG-DME), which combines merging
region computation with topology generation, following the Greedy-
DME approach of [6]. ExG-DME allows merging at non-root
nodes, whereas Greedy-DME always merges two subtrees at their
roots.
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Figure 1: (a) Two simple routing patterns between two points: HV and VH
for non-uniform layer parasitics. (b) Resulting merging regions according to
the the HV routing pattern.

2 Non-Uniform Layer Parasitics

Consider the practical scenario where per-unit resistance and ca-
pacitance values differ between the V-layer (vertical routing layer)
and H-layer (horizontal routing layer).1 We first assume that vias
have no resistance and capacitance, then extend our analysis to
nonzero via parasitics. Let nodev be a node in the topology with
childrena andb, and let merging regionmr(v) be constructed from
joining segmentsLa � mr(a) andLb � mr(b). When bothLa and
Lb are rectilinear segments or are two single points sitting on a
vertical or horizontal line, only one routing layer is needed for
mergingmr(a) andmr(b). Thus, the original BME construction
rules [3] still apply in these cases.

Corollary 1 below shows that for non-uniform layer parasitics,
joining segments will never be Manhattan arcs of nonzero length.
Thus we need consider only the possible modification of BME
construction rules for the case where the joining segments are two
single points not on the same horizontal or vertical line. In this
case, both routing layers have to be used for mergingmr(a) and
mr(b). One problem with routing under non-uniform layer par-
asitics is that different routing patterns between two points will
result in different delays, even if the wirelength on both layers are
the same. However, if we can prescribe the routing pattern for
each edge of the clock tree, the ambiguity of delay values between
two points can be avoided. Fig. 1 shows the two simplest routing
patterns between two points, which we call theHV andVH rout-
ing patterns. Other routing patterns can be considered, but may
result in more vias and more complicated computation of merging
regions. In [16], we prove the following theorems.

Theorem 1 Let v be a node in the topology with children a and b.
Assume that joining segments La �mr(a) and Lb �mr(b) are two
single points. By using the HV (or VH) routing pattern for non-
uniform layer parasitics, (i) any line segment l2 SDR(La;Lb) is
well-behaved, (ii) merging region mr(v) has at most6sides with no
boundary segments which are Manhattan arcs (of nonzero length).

Notice that at the beginning of the construction, each nodev is a

1We assume that there are only two routing layers. Our approach easily extends
to multiple routing layers.

sink withmr(v) being a single point. Thus, no merging region can
have boundary segments which are Manhattan arcs with constant
delays, and we have

Corollary 1 For non-uniform layer parasitics, each pair of join-
ing segments will be either (i) parallel rectilinear line segments or
(ii) two single points.

From the observation in Fig. 1 that vias are only located at the
boundary ofSDR(La;Lb), we have

Theorem 2 With nonzero via resistance and/or capacitance, The-
orem 1 still holds except that there will be different delay/skew
equations for points on boundary segments and interior segments
of SDR(La;Lb).

Experiments and Discussion Table 1 compares the total wire-
length of routing solutions under non-uniform and uniform layer
parasitics for standard test cases in the literature. Letc1, r1 and
c2, r2 be the per-unit capacitance and per-unit resistance for the
H-layer and V-layer, respectively. For the uniform layer parasitics,
we setc1 = c2 = 0:027f F and r1 = r2 = 16:6mΩ. For the non-
uniform layer parasitics, we setc2 = 2:0�c1 andr2 = 3:0� r1. For
simplicity, we use only the HV routing pattern and ignore via re-
sistance and capacitance.

We see that solutions under non-uniform layer parasitics aver-
age 2% more total wirelength than those under uniform layer par-
asitics. This may be due to merging regions under non-uniform
layer parasitics being smaller (and thus having higher merging
cost at the next higher level) since the joining segments cannot
be Manhattan arcs of nonzero length. Note that when the skew
bound is infinite, all joining segments are rectilinear, and thus
the routing solutions under non-uniform and uniform layer par-
asitics have identical total wirelength. Separately, detailed exper-
iments on benchmark r1 have compared the total wirelength of
zero-skew routing for different ratios ofr2=r1 andc2=c1. Even as
(r2c2)=(r1c1) changes from 1 to 10, the total wirelength of solu-
tions only varies between+4% and�1% from that obtained for
uniform layer parasitics (i.e.,(r2c2)=(r1c1) = 1). Hence, our new
BME method has routing costs that are insensitive to changes in
the ratio of H-layer/V-layer RC values.

3 Routing in the Presence of Obstacles

This section proposes new merging region construction rules when
there are obstacles in the routing plane. Without loss of general-
ity, we assume that all obstacles are rectangular. We also assume
that an obstacle occupies both the V-layer and H-layer.2 We first
present the analysis for uniform layer parasitics along with exper-
imental results, then extend our method to non-uniform layer par-
asitics.

3.1 Analysis for Uniform Layer Parasitics

Given two merging regionsmr(a) andmr(b), the merging region
mr(v) of parent nodev is constructed from joining segmentsLa �
mr(a) andLb � mr(b). Obviously, pointsp 2 mr(v) covered by
an obstacle are not feasible merging points. Also, pointsp; p0 2

2If some obstacle occupies only one routing layer, then the pre-routed wires over
the obstacle become the obstacles for the later routing. In other words, the routing
over the obstacle has to be planar. Indeed, our obstacle-avoidance routing was origi-
nally applied to improve planar clock routing [16].



r1 r2 r3 r4 r5
Skew Wirelengths under Non-uniform layer parasitics
Bound Wirelengths under Uniform layer parasitics
0 [6] 1253.2 2483.8 3193.8 6499.7 9723.7

0 1332.5 2623.8 *3359.1 *6810.7 *10108.7
1320.7 2603.6 3382.4 6877.5 10138.5

1ps 1283.5 2531.8 3207.0 6461.5 9610.8
1232.2 2401.7 3118.1 6241.1 9190.7

5ps 1182.1 2333.3 2988.6 5979.8 8753.9
1130.6 2256.2 2875.1 5715.1 8371.2

10ps 1158.6 2248.3 2810.7 5719.0 8482.4
1069.2 2183.5 2747.6 5453.8 8063.7

20ps 1071.5 2183.4 2709.8 5474.6 8018.2
1039.6 2069.1 2569.0 5290.1 7695.9

50ps 1058.6 2028.9 2557.0 5195.8 7562.9
1009.3 1917.8 2459.7 5008.0 7248.2

100ps 989.0 1929.0 2463.9 4940.1 7193.1
964.3 1880.7 2350.1 4786.1 6869.6

200ps 936.7 1886.7 *2356.0 4734.4 6905.9
895.8 1741.6 2359.5 4540.1 6650.0

500ps 919.4 1770.9 2205.2 4635.1 6564.1
820.4 1754.6 2187.4 4564.2 6449.3

1ns 830.0 *1664.2 *2156.4 *4500.5 *6395.4
819.1 1709.4 2175.8 4531.4 6453.4

10ns 775.9 *1569.4 *2160.6 *4072.1 6168.5
775.9 1613.5 2212.4 4184.2 5979.3

∞ 775.9 1522.0 1925.2 3838.2 5625.2
775.9 152.20 1925.2 3838.2 5625.2

∞[1] 769.3 1498.8 1902.6 3781.4 5571.1

Table 1: Comparison of total wirelength of routing solutions under non-
uniform and uniform layer parasitics. We mark by * the cases where the rout-
ing solution under non-uniform layer parasitics has smaller total wirelength
than the solution under uniform layer parasitics.

SDR(La;Lb) may have different minimum sums of pathlengths
to La and Lb because obstacles that intersectSDR(La;Lb) may
cause different amounts of detouring fromp and p0 to La and
Lb. Thus, we seek pointsp 2 mr(v) which have minimum sum
of pathlengths toLa andLb. Define a paths; t to be a sequence
of line segments from points to t, with pathlength denoted by
cost(P); a planar path is a path that does not cross any obsta-
cles. For each nodev, the planar merging region pmr(v) is the
set of feasible merging pointp such that the cost of the short-
est planar pathP = s; p; t is minimum, wheres2 La and
t 2 Lb. Note thatcost(P) � d(La;Lb), andpmr(v) � mr(v) when
cost(P) = d(La;Lb). Just as the merging regionmr(v) becomes a
merging segmentms(v) under zero-skew routing, the planar merg-
ing region pmr(v) becomes theplanar merging segment pms(v)
under zero-skew routing.

The construction ofpmr(v) is as follows. If joining segments
La and Lb overlap, pmr(v) = mr(v) = La

T
Lb. Otherwise, we

expand any obstacles that intersect with rectilinear boundaries of
SDR(La;Lb) according to four possible cases; these define theOb-
stacle Expansion Rules.

Case I. (expand as in Fig. 2(a))

1. La = fp1g, Lb = fp2g, andp1p2 has finite nonzero positive
slopem, i.e., 0< m< ∞.

2. La or Lb is a nonzero-length Manhattan arc with slope�1.

In other words, an obstacleO intersecting the top (bottom) bound-
ary ofSDR(La;Lb) is expanded horizontally toward the left (right)
until it reaches the left (right) boundary ofSDR(La;Lb). If O inter-
sects the left (right) boundary ofSDR(La;Lb), thenO is expanded
upward (downward) until it reaches the top (bottom) boundary of
SDR(La;Lb).
Case II. (symmetric to Case I)

1. La = fp1g, Lb = fp2g, andp1p2 has finite nonzero negative
slopem, i.e.,�∞ < m< 0.

2. La or Lb is a nonzero-length Manhattan arc with slope+1.

Case III. (expand as in Fig. 2(b)) Both joining segments are
vertical segments, possibly of zero length.

mr(v)

pmr(v)

pmr(v)

(a)

(b)

La

Lb

La Lb
mr(v)

Figure 2: Illustration of Obstacle Expansion Rules.

In other words, an obstacleO intersecting withSDR(La;Lb) is ex-
panded along the horizontal direction untilO reaches both joining
segments.
Case IV. (symmetric to Case III) Both joining segments are hor-
izontal segments, possibly of zero length.

In Cases I and II an expanded obstacleO can intersect with
another obstacle, which must then also expand in the same direc-
tion via a sort of “chain reaction”. With these obstacle expansion
rules, we constructpmr(v) from child regionsmr(a) andmr(b) as
follows.3

1. Apply the obstacle expansion rules to expand obstacles, and
calculatepmr(v) = fpjp2 mr(v)�expanded obstaclesg.

2. If pmr(v) 6= /0 then stop; otherwise, restore the sizes of all
the expanded obstacles and continue with next step.

3. Compute the shortest planar pathP= s; t, wheres2mr(a)
andt 2mr(b).

4. Divide pathP into a minimum number of subpathsPi = si;

ti such thatcost(Pi) = d(si ;ti).

5. Calculate delay and skew functions for each line segment in
P.

6. For each subpathPi which has a pointp with feasible or
minimum skew, usesi andti (the endpoints ofPi) as the new
joining segments. Then, calculate the planar merging region
pmri(v) from the new joining segments (actually, the points
si and ti ) using Steps 1, 2 and 3. (Note thatpmri(v) 6= /0
sincep2 pmri(v).)

7. pmr(v) =
S

pmri(v), where subpathPi � P contains a point
p with feasible or minimum skew.

Notice that the purpose of Step 4 is to maximize the total area
of pmr(v). As shown in Fig. 3, if we divide subpathP2 = y;
z; t into two smaller subpathsy; z andz; t, regionpmr2(v)
in the Figure will shrink to be within the shortest distance region
SDR(y;z). As we can see from Fig. 3,pmr(v) actually consists of
several convex polygonal regions. So the number of regions per
node may grow exponentially during the bottom-up construction
of merging regions (this is the difficulty encountered by the IME

3Strictly speaking, there can be joining segments with slopes other than�1, 0,
and∞ although they are not encountered in practice. For joining segments having
slopesm with jmj> 1 (jmj< 1), we expand obstacles as in Case III (IV).
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Figure 4: Modification of the embedding rule in the top-down phase of the
Ex-DME algorithm when there are obstacles in the routing plane.

method of [3]).4 Our current implementation simply keeps at most
k regions with lowest tree cost for each internal node.

Recall that in the top-down phase of Ex-DME each nodev is
embedded at a pointq 2 Lv closest tol(p), where p is the par-
ent node ofv andLv 2 mr(v) is one of the joining segments used
to constructmr(p). However, whenLv is a Manhattan arc and
there are obstacles intersectingSDR(l(p);Lv), some of the em-
bedding pointsq 2 Lv closest tol(p) may become infeasible be-
cause the shortest path fromq to l(p) is blocked by some obstacle
(Fig. 4(a)). These infeasible embedding points can be removed
from Lv by applying the obstacle expansion rules withl(p) andLv
being the joining segments (Fig. 4(b)). The remaining points ofLv
left uncovered by the expanded obstacles are the feasible embed-
ding locations forv.

Experimental Results Our obstacle-avoiding BST routing al-
gorithm was tested on four examples respectively having 50, 100,
150 and 555 sinks with uniformly random locations in a 100 by
100 layout region; all four examples have the same 40 randomly
generated obstacles shown in Fig. 5. For comparison, we run the
same algorithm on the same test cases without any obstacles. De-
tails of the experiment are as follows. Parasitics are taken from
MCNC benchmarks Primary1 and Primary2, i.e., all sinks have
identical 0:5pF loading capacitance and the per-unit wire resis-
tance and wire capacitance are 16:6mΩ and 0:027f F . For each
internal node, we maintain at mostk = 5 merging regions with
lowest tree cost. We use the procedure Find-Shortest-Planar-Path
of the Elmore-Planar-DME algorithm [14] to find shortest planar
s-t paths. The current implementation uses Dijkstra’s algorithm
in the visibility graphG(V;E) (e.g., [10]) whereV consists of the
source and destination pointss, t along with detour points around

4Moreover, it may be better to construct and maintain planar merging regions
along several shortest planar paths since the planar merging regions along the shortest
planar path will not guarantee minimum tree cost at the next higher level, as stated in
the Elmore-Planar-DME algorithm [14]

Figure 5: A zero-skew solution for the 555-sink test case with 40 obstacles.

the corners of obstacles. The weightjej of edgee= (p;q) 2 E
is computed on the fly; ife intersects any obstacle, thenjej = ∞,
elsejej= d(p;q). TheΩ(n2) worst-case running time, wheren is
the total number of vertices in the obstacle polygons, can be re-
duced toO(nlog2n) using techniques in [11]. Table 2 shows that
the wirelengths of routing solutions with obstacles are very close
to those of routing solutions without obstacles (typically within a
few percent). The higher runtimes (reported for a Sun 85 MHz
Sparc-5) in the presence of obstacles are due to the current naive
implementation of obstacle detection and path-finding.

#sinks 50 100 150 555
Skew Wirelength:µm(normalized)
Bound CPU time: hr:min:sec (normalized)

0 8791(1.06) 11925 (1.04) 14748 (1.03) 28855 (1.01)
0:00:04(4) 0:00:10(2) 0:00:15(2) 0:00:34(1)

1ps 8049 (1.09) 10761 (1.04) 13389 (1.03) 26240 (1.04)
0:01:09(6) 0:05:20(7) 0:11:36(3) 0:44:14(10)

2ps 7832 (1.07) 10797 (1.01) 12643 (1.02) 25205 (1.04)
0:01:47(8) 0:08:17(9) 0:20:55(10) 1:30:08(13)

5ps 7141 (1.04) 10494 (1.08) 11599 (1.01) 23648 (1.04)
0:04:01(13) 0:15:16(11) 0:30:34(13) 1:30:08(13)

10ps 7126 (1.06) 9701 (1.03) 11426 (1.07) 22737 (1.05)
0:06:13(14) 0:19:36(12) 0:36:30(12) 1:48:06(13)

20ps 6832 (1.13) 9296 (1.03) 11606 (1.10) 21642 (1.05)
0:07:40(15) 0:21:56(10) 0:40:39(3) 3:42:52(24)

50ps 6468 (1.12) 8740 (1.09) 10194 (1.10) 22167 (1.15)
0:10:36(15) 0:26:47(11) 0:01:50(13) 2:18:20(14)

100ps 6485 (1.20) 8588 (1.11) 9296 (1.02) 19087 (1.01)
0:13:51(18) 0:30:16(9) 01:03:00(15) 3:06:23(17)

1ns 6485 (1.24) 8115 (1.13) 9266 (1.10) 17167 (.99)
0:16:20(18) 0:36:52(11) 1:18:36(15) 7:24:38(12)

10ns 6485 (1.24) 8115 (1.13) 9266 (1.10) 16698 (.99)
0:16:19(18) 0:36:43(11) 1:20:07(15) 3:18:20(7)

∞ 6485 (1.24) 8115 (1.13) 9266 (1.10) 16698 (1.02)
0:16:43(18) 0:36:52(11) 1:20:25(13) 3:21:11(7)

Table 2: Total wirelength and runtime for obstacle-avoiding BST algorithm,
for various instances and skew bounds. Sizes and locations of obstacles are
shown in Fig. 5. Numbers in parentheses are ratios to corresponding (total
wirelength, runtime) values when no obstacles are present in the layout.

3.2 Extension to Non-Uniform Layer Parasitics

When the layer parasitics are non-uniform, no joining segment can
be a Manhattan arc, so Cases I.2 and II.2 of the obstacle expansion
rules are inapplicable. In Cases III and IV, only one routing layer
will be used to merge the child regions, so the construction of pla-
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nar merging regions will be the same as with uniform layer para-
sitics. Hence, the construction of planar merging regions changes
only for Cases I.1 and II.1, i.e., when the joining segmentsLa and
Lb are two single points not on the same vertical or horizontal line.

We construct planar merging regions for Cases I.1 and II.1 as
follows. First, we divideSDR(La;Lb) into a set of disjoint rect-
anglesRi that contains no obstacles, as shown in Fig. 6(a). Let
c2 Ri andd 2 Ri be the corner points closest to joining segments
La andLb. If prescribed routing patterns are assumed for the short-
est planar paths fromc to La and fromd to Lb, delays atc andd
are well-defined. Since there are no obstacles insideRi , the planar
merging region can be constructed from pointsc andd for non-
uniform layer parasitics using the methods of Section 2. Since
larger merging regions will result in smaller merging costs at the
next higher level, we further maximize the size of the merging
region constructed within each rectangleRi �SDR(La;Lb), by ex-
pandingRi as shown in Fig. 6(b). After expansion, “redundant”
rectangles contained in the expansions of other rectangles (e.g.,
rectanglesR2 andR5 in Fig. 6 are contained in the union of ex-
pansions ofR1, R3, R4, R6 andR7) can be removed to simplify the
computation. The merging region construction for Cases I.1 and
II.1 with non-uniform layer parasitics is summarized as follows.

1. Divide SDR(La;Lb) into a set of disjoint rectanglesRi by ex-
tending horizontal boundary segments of the obstacles inSDR(La;Lb),
and then expand each rectangleRi until blocked by obstacles.
2. Remove rectanglesRi that are completely contained by other
rectangles.
3. For each remaining rectangleRi do:

� Let c 2 Ri andd 2 Ri be the corner points which are clos-
est to joining segmentLa andLb. Apply prescribed routing
patterns fromc to La and fromd to Lb.

� Calculate delays atc andd, and construct the merging region
from pointsc andd as described in Section 2.

4 A New Prescribed-Delay Topology Rule

Prescribed-delay routing is motivated by hierarchical clock tree
constructions used with clock gating, building-block design, and

the general trend to lower fanouts in deep-submicron technolo-
gies. The prescribed-delay formulation is also useful in that it
allows existing zero-skew routing algorithms to address the pre-
scribed (local) skew problem, as follows. Letskew(i; j) = di �dj
denote the prescribed local skew for sinkssi andsj . By rearranging
skew constraint equations, we can express each sink delay relative
to the delay of sinks1, i.e., di = d1 + Di , with D1 = 0. Let D
= maxn

i=1Di . By adding a pseudo-delay element with delayD �
Di to each sinksi and performing zero-skew routing, the result-
ing clock tree will satisfy the prescribed skew constraints after we
remove the pseudo-delay elements.5

Note that the useful skew problem addressed in [8, 17] is a
more general problem of prescribed skew, in that the useful skew
specifies a “range” of allowed skew values (rather than an “exact”
skew value) for each pair of sinks. (For example, the range can
be [�∞;∞] if there is no skew constraint between a certain pair
of sinks.) However, the prescribed skew formulation is still very
useful for cases where the “negative skew” (or “signed skew”) is
desired [17].

Orig Meta(Orig,New)
n Rank Cost Subopt Rank Cost Subopt
4 1/15/1.78 0/.64/.02 1/9/1.49 0/.31/.01
5 1/79/5.22 0/.65/.04 1/28/2.68 0/.21/.01
6 1/752/19.41 0/.65/.05 1/413/7.23 0/0.34/0.03

Table 3: Solutions with Original BST topology rule and meta-heuristic of
(Original,New) topology rule, compared against optimal topology BST costs.
Triples indicate (min,max,avg). There are 15 possible topologies for 4 sinks,
105 for 5 sinks, and 945 for 6 sinks.

With prescribed delays, the BST topology construction must
take greater care with temporal (as opposed to spatial) compatibil-
ities. While our goal to to minimize the total wirelength, ignoring
the balance of subtree delays during the construction can lead to a
great deal of detour wiring. Our studies of small instances show
that our original BST merging rule, while generally quite effec-
tive, can yield topologies that have rank 752 (out of 945), with
65% cost suboptimality, even for instances as small as 6 sinks (see
Table 3). We have studied a new topology construction rule that
merges two subtrees so as to minimizeα�MC + (1�α)�MD,
whereMC andMD are respectively the total wirelength and max-
imum source-sink delay of the newly merged subtree. We study
this new rule in the context of a meta-heuristic that takes the better
of the tree costs according to the original and new merging rules,
i.e., we attempt to address the difficult cases for the original rule,
rather than find a completely new and general-purpose rule.6 The
parameterα depends on technology and units, since it captures a
tradeoff between wirelength and delay. For our technology param-
eters, we foundα = 0:67 to be most effective; all our experimental
data reflect this value.7 Table 3 shows that our metaheuristic sub-
stantially improves both average-case and worst-case suboptimal-
ity for small instances; Table 4 shows that even for larger instances

5For example, suppose we haveskew(s1,s2) = �10 andskew(s2,s3) = +50 for
a 3-sink clock net. Then we haved2 = d1 + 10 andd3 = d2� 50= d1� 40, with
D = 10. The pseudo-delay elements with delays 10, 0, and 50 are added to sinks1,
s2, ands3, respectively.

6Edahiro [7] proposed similar greedy min-wirelength and min-delay based topol-
ogy generation heuristics in the context of wire sizing. Here, we in some sense ex-
tend the application of his two heuristics for uniform wire width. We find that neither
heuristic is overly strong by itself, and that the combination of both is superior.

7Our technology parameters are again taken from MCNC benchmarks; see Sec-
tion 3.1. All experiments were for 1000 random instances with random sink locations
in bounding box area = 500000 square units, skew boundB uniformly random in
[1;20] ps, and prescribed delays uniformly random in the range[0;max delay] where
max delayis itself random in[1;15] ps. Our ongoing work studies the subtle relation-
ships that unify sink placement, skew assignment, clock tree topology construction,
and bounded-skew embedding.



the metaheuristic can offer large improvements over the original
BST-DME topology construction.

5 Predictive Modeling

Finally, our work has explored the issue of predictive modeling.
The combined effects of deep-submicron physics and constraint-
dominated designs have led to a recent trend of “constructive esti-
mation” in place of analytic or empirical estimation. Nevertheless,
efficient design optimization will always require estimators that
are less expensive than actual constructions. A case in point is the
clustering objective for hierarchical buffered clock tree synthesis:
how can such an objective capture the actual performance of the
bounded-skew clock routing algorithm that will be invoked after
the buffer hierarchy has been determined?

We have recently implemented a generic model-building capa-
bility in our group, and have applied it to model prescribed-delay
BST routing cost. Our package uses a slight enhancement of the
Levenberg-Marquardt global optimization iteration fromNumer-
ical Recipes in C[15], and for the present experiment we use a
simple “sum of powers” model, i.e.,cost(BST) = c1pe1

1 +c2pe2
2 +

: : :+ ckpek
k for k parameters, along with a simple bottom-up ap-

proach for variable identification. Table 5 shows that very rea-
sonable model accuracy can be easily obtained. Furthermore, us-
ing even three inexpensive parameters (center-of-gravity star cost,
skew boundB, and maximum prescribed delaymax delay) to sup-
plement the traditional MST cost can significantly improve model
accuracy over using the MST cost alone. While the BST construc-
tion is actually quite efficient, Table 5 also shows that accurate
models can be found foroptimalBST costs (which can be obtained
only with exponential runtimes).

Improvement of Meta(Orig,New) over Orig(%)
# sinks max avg std

8 26.327 1.378 3.496
12 25.790 1.234 3.021
16 27.928 0.812 2.659
20 34.390 0.559 2.473
24 36.814 0.413 2.462

Table 4: Improvement of Meta(Orig,New) over Orig topology construction,
expressed as percentage tree cost reduction.

# f(MSTcost) Model f(MSTcost++) Model
sinks AvgErr MaxErr AvgErr MaxErr

4 0.067 0.474 0.056 0.416
4opt 0.042 0.504 0.038 0.474

5 0.083 0.480 0.063 0.392
5opt 0.058 0.482 0.047 0.420

6 0.099 0.491 0.075 0.457
6opt 0.067 0.426 0.050 0.371

8 0.107 0.507 0.077 0.365
10 0.121 0.525 0.086 0.403
12 0.121 0.574 0.083 0.434
16 0.124 0.525 0.084 0.361

Table 5: Average and worst-case relative errors for fitted sum-of-powers
prescribed-delay BST cost models, taken over 1000 trials. Default model
is for original BST topology construction; *opt models are for optimal-
cost topology construction.f(MSTcost)= model based on MST cost only.
f(MSTcost++)= model based on MST cost, center-of-gravity star cost, skew
boundB, and maximum sink delay.

6 Conclusions

We have extended the bounded-skew routing methodology to ad-
dress a number of practical clock routing issues. Specifically, we
have extended the BST-DME construction to handle non-uniform

layer parasitics, nonzero via parasitics, and large obstacles on the
clock distribution layers. We have also addressed hierarchical clock
routing applications via a new prescribed-delay topology construc-
tion rule; our experiments indicate that this rule nicely comple-
ments the original ExG-DME topology rule for BST construction.
The complementary nature of the two rules is particularly use-
ful for small instances, since most clock subtrees are small in a
buffered clock tree. Finally, we have proposed a predictive mod-
eling methodology that can allow close integration of a given BST
routing algorithm with a higher-level clock topology generation
(sink and buffer clustering) tool. We are continuing to develop
further practical clock routing extensions, while also pursuing in-
tegration within a commercial cell-based layout tool.
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